You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
340 lines
8.9 KiB
340 lines
8.9 KiB
// algebra.cpp - written and placed in the public domain by Wei Dai |
|
|
|
#include "pch.h" |
|
|
|
#ifndef CRYPTOPP_ALGEBRA_CPP // SunCC workaround: compiler could cause this file to be included twice |
|
#define CRYPTOPP_ALGEBRA_CPP |
|
|
|
#include "algebra.h" |
|
#include "integer.h" |
|
|
|
#include <vector> |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
template <class T> const T& AbstractGroup<T>::Double(const Element &a) const |
|
{ |
|
return Add(a, a); |
|
} |
|
|
|
template <class T> const T& AbstractGroup<T>::Subtract(const Element &a, const Element &b) const |
|
{ |
|
// make copy of a in case Inverse() overwrites it |
|
Element a1(a); |
|
return Add(a1, Inverse(b)); |
|
} |
|
|
|
template <class T> T& AbstractGroup<T>::Accumulate(Element &a, const Element &b) const |
|
{ |
|
return a = Add(a, b); |
|
} |
|
|
|
template <class T> T& AbstractGroup<T>::Reduce(Element &a, const Element &b) const |
|
{ |
|
return a = Subtract(a, b); |
|
} |
|
|
|
template <class T> const T& AbstractRing<T>::Square(const Element &a) const |
|
{ |
|
return Multiply(a, a); |
|
} |
|
|
|
template <class T> const T& AbstractRing<T>::Divide(const Element &a, const Element &b) const |
|
{ |
|
// make copy of a in case MultiplicativeInverse() overwrites it |
|
Element a1(a); |
|
return Multiply(a1, MultiplicativeInverse(b)); |
|
} |
|
|
|
template <class T> const T& AbstractEuclideanDomain<T>::Mod(const Element &a, const Element &b) const |
|
{ |
|
Element q; |
|
DivisionAlgorithm(result, q, a, b); |
|
return result; |
|
} |
|
|
|
template <class T> const T& AbstractEuclideanDomain<T>::Gcd(const Element &a, const Element &b) const |
|
{ |
|
Element g[3]={b, a}; |
|
unsigned int i0=0, i1=1, i2=2; |
|
|
|
while (!this->Equal(g[i1], this->Identity())) |
|
{ |
|
g[i2] = Mod(g[i0], g[i1]); |
|
unsigned int t = i0; i0 = i1; i1 = i2; i2 = t; |
|
} |
|
|
|
return result = g[i0]; |
|
} |
|
|
|
template <class T> const typename QuotientRing<T>::Element& QuotientRing<T>::MultiplicativeInverse(const Element &a) const |
|
{ |
|
Element g[3]={m_modulus, a}; |
|
Element v[3]={m_domain.Identity(), m_domain.MultiplicativeIdentity()}; |
|
Element y; |
|
unsigned int i0=0, i1=1, i2=2; |
|
|
|
while (!Equal(g[i1], Identity())) |
|
{ |
|
// y = g[i0] / g[i1]; |
|
// g[i2] = g[i0] % g[i1]; |
|
m_domain.DivisionAlgorithm(g[i2], y, g[i0], g[i1]); |
|
// v[i2] = v[i0] - (v[i1] * y); |
|
v[i2] = m_domain.Subtract(v[i0], m_domain.Multiply(v[i1], y)); |
|
unsigned int t = i0; i0 = i1; i1 = i2; i2 = t; |
|
} |
|
|
|
return m_domain.IsUnit(g[i0]) ? m_domain.Divide(v[i0], g[i0]) : m_domain.Identity(); |
|
} |
|
|
|
template <class T> T AbstractGroup<T>::ScalarMultiply(const Element &base, const Integer &exponent) const |
|
{ |
|
Element result; |
|
SimultaneousMultiply(&result, base, &exponent, 1); |
|
return result; |
|
} |
|
|
|
template <class T> T AbstractGroup<T>::CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
|
{ |
|
const unsigned expLen = STDMAX(e1.BitCount(), e2.BitCount()); |
|
if (expLen==0) |
|
return Identity(); |
|
|
|
const unsigned w = (expLen <= 46 ? 1 : (expLen <= 260 ? 2 : 3)); |
|
const unsigned tableSize = 1<<w; |
|
std::vector<Element> powerTable(tableSize << w); |
|
|
|
powerTable[1] = x; |
|
powerTable[tableSize] = y; |
|
if (w==1) |
|
powerTable[3] = Add(x,y); |
|
else |
|
{ |
|
powerTable[2] = Double(x); |
|
powerTable[2*tableSize] = Double(y); |
|
|
|
unsigned i, j; |
|
|
|
for (i=3; i<tableSize; i+=2) |
|
powerTable[i] = Add(powerTable[i-2], powerTable[2]); |
|
for (i=1; i<tableSize; i+=2) |
|
for (j=i+tableSize; j<(tableSize<<w); j+=tableSize) |
|
powerTable[j] = Add(powerTable[j-tableSize], y); |
|
|
|
for (i=3*tableSize; i<(tableSize<<w); i+=2*tableSize) |
|
powerTable[i] = Add(powerTable[i-2*tableSize], powerTable[2*tableSize]); |
|
for (i=tableSize; i<(tableSize<<w); i+=2*tableSize) |
|
for (j=i+2; j<i+tableSize; j+=2) |
|
powerTable[j] = Add(powerTable[j-1], x); |
|
} |
|
|
|
Element result; |
|
unsigned power1 = 0, power2 = 0, prevPosition = expLen-1; |
|
bool firstTime = true; |
|
|
|
for (int i = expLen-1; i>=0; i--) |
|
{ |
|
power1 = 2*power1 + e1.GetBit(i); |
|
power2 = 2*power2 + e2.GetBit(i); |
|
|
|
if (i==0 || 2*power1 >= tableSize || 2*power2 >= tableSize) |
|
{ |
|
unsigned squaresBefore = prevPosition-i; |
|
unsigned squaresAfter = 0; |
|
prevPosition = i; |
|
while ((power1 || power2) && power1%2 == 0 && power2%2==0) |
|
{ |
|
power1 /= 2; |
|
power2 /= 2; |
|
squaresBefore--; |
|
squaresAfter++; |
|
} |
|
if (firstTime) |
|
{ |
|
result = powerTable[(power2<<w) + power1]; |
|
firstTime = false; |
|
} |
|
else |
|
{ |
|
while (squaresBefore--) |
|
result = Double(result); |
|
if (power1 || power2) |
|
Accumulate(result, powerTable[(power2<<w) + power1]); |
|
} |
|
while (squaresAfter--) |
|
result = Double(result); |
|
power1 = power2 = 0; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
template <class Element, class Iterator> Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end) |
|
{ |
|
if (end-begin == 1) |
|
return group.ScalarMultiply(begin->base, begin->exponent); |
|
else if (end-begin == 2) |
|
return group.CascadeScalarMultiply(begin->base, begin->exponent, (begin+1)->base, (begin+1)->exponent); |
|
else |
|
{ |
|
Integer q, t; |
|
Iterator last = end; |
|
--last; |
|
|
|
std::make_heap(begin, end); |
|
std::pop_heap(begin, end); |
|
|
|
while (!!begin->exponent) |
|
{ |
|
// last->exponent is largest exponent, begin->exponent is next largest |
|
t = last->exponent; |
|
Integer::Divide(last->exponent, q, t, begin->exponent); |
|
|
|
if (q == Integer::One()) |
|
group.Accumulate(begin->base, last->base); // avoid overhead of ScalarMultiply() |
|
else |
|
group.Accumulate(begin->base, group.ScalarMultiply(last->base, q)); |
|
|
|
std::push_heap(begin, end); |
|
std::pop_heap(begin, end); |
|
} |
|
|
|
return group.ScalarMultiply(last->base, last->exponent); |
|
} |
|
} |
|
|
|
struct WindowSlider |
|
{ |
|
WindowSlider(const Integer &expIn, bool fastNegate, unsigned int windowSizeIn=0) |
|
: exp(expIn), windowModulus(Integer::One()), windowSize(windowSizeIn), windowBegin(0), fastNegate(fastNegate), firstTime(true), finished(false) |
|
{ |
|
if (windowSize == 0) |
|
{ |
|
unsigned int expLen = exp.BitCount(); |
|
windowSize = expLen <= 17 ? 1 : (expLen <= 24 ? 2 : (expLen <= 70 ? 3 : (expLen <= 197 ? 4 : (expLen <= 539 ? 5 : (expLen <= 1434 ? 6 : 7))))); |
|
} |
|
windowModulus <<= windowSize; |
|
} |
|
|
|
void FindNextWindow() |
|
{ |
|
unsigned int expLen = exp.WordCount() * WORD_BITS; |
|
unsigned int skipCount = firstTime ? 0 : windowSize; |
|
firstTime = false; |
|
while (!exp.GetBit(skipCount)) |
|
{ |
|
if (skipCount >= expLen) |
|
{ |
|
finished = true; |
|
return; |
|
} |
|
skipCount++; |
|
} |
|
|
|
exp >>= skipCount; |
|
windowBegin += skipCount; |
|
expWindow = word32(exp % (word(1) << windowSize)); |
|
|
|
if (fastNegate && exp.GetBit(windowSize)) |
|
{ |
|
negateNext = true; |
|
expWindow = (word32(1) << windowSize) - expWindow; |
|
exp += windowModulus; |
|
} |
|
else |
|
negateNext = false; |
|
} |
|
|
|
Integer exp, windowModulus; |
|
unsigned int windowSize, windowBegin; |
|
word32 expWindow; |
|
bool fastNegate, negateNext, firstTime, finished; |
|
}; |
|
|
|
template <class T> |
|
void AbstractGroup<T>::SimultaneousMultiply(T *results, const T &base, const Integer *expBegin, unsigned int expCount) const |
|
{ |
|
std::vector<std::vector<Element> > buckets(expCount); |
|
std::vector<WindowSlider> exponents; |
|
exponents.reserve(expCount); |
|
unsigned int i; |
|
|
|
for (i=0; i<expCount; i++) |
|
{ |
|
assert(expBegin->NotNegative()); |
|
exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 0)); |
|
exponents[i].FindNextWindow(); |
|
buckets[i].resize(1<<(exponents[i].windowSize-1), Identity()); |
|
} |
|
|
|
unsigned int expBitPosition = 0; |
|
Element g = base; |
|
bool notDone = true; |
|
|
|
while (notDone) |
|
{ |
|
notDone = false; |
|
for (i=0; i<expCount; i++) |
|
{ |
|
if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin) |
|
{ |
|
Element &bucket = buckets[i][exponents[i].expWindow/2]; |
|
if (exponents[i].negateNext) |
|
Accumulate(bucket, Inverse(g)); |
|
else |
|
Accumulate(bucket, g); |
|
exponents[i].FindNextWindow(); |
|
} |
|
notDone = notDone || !exponents[i].finished; |
|
} |
|
|
|
if (notDone) |
|
{ |
|
g = Double(g); |
|
expBitPosition++; |
|
} |
|
} |
|
|
|
for (i=0; i<expCount; i++) |
|
{ |
|
Element &r = *results++; |
|
r = buckets[i][buckets[i].size()-1]; |
|
if (buckets[i].size() > 1) |
|
{ |
|
for (int j = (int)buckets[i].size()-2; j >= 1; j--) |
|
{ |
|
Accumulate(buckets[i][j], buckets[i][j+1]); |
|
Accumulate(r, buckets[i][j]); |
|
} |
|
Accumulate(buckets[i][0], buckets[i][1]); |
|
r = Add(Double(r), buckets[i][0]); |
|
} |
|
} |
|
} |
|
|
|
template <class T> T AbstractRing<T>::Exponentiate(const Element &base, const Integer &exponent) const |
|
{ |
|
Element result; |
|
SimultaneousExponentiate(&result, base, &exponent, 1); |
|
return result; |
|
} |
|
|
|
template <class T> T AbstractRing<T>::CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
|
{ |
|
return MultiplicativeGroup().AbstractGroup<T>::CascadeScalarMultiply(x, e1, y, e2); |
|
} |
|
|
|
template <class Element, class Iterator> Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end) |
|
{ |
|
return GeneralCascadeMultiplication<Element>(ring.MultiplicativeGroup(), begin, end); |
|
} |
|
|
|
template <class T> |
|
void AbstractRing<T>::SimultaneousExponentiate(T *results, const T &base, const Integer *exponents, unsigned int expCount) const |
|
{ |
|
MultiplicativeGroup().AbstractGroup<T>::SimultaneousMultiply(results, base, exponents, expCount); |
|
} |
|
|
|
NAMESPACE_END |
|
|
|
#endif
|
|
|