You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1294 lines
36 KiB
1294 lines
36 KiB
// fipsalgt.cpp - written and placed in the public domain by Wei Dai |
|
|
|
// This file implements the various algorithm tests needed to pass FIPS 140 validation. |
|
// They're preserved here (commented out) in case Crypto++ needs to be revalidated. |
|
|
|
#if 0 |
|
#ifndef CRYPTOPP_IMPORTS |
|
#define CRYPTOPP_DEFAULT_NO_DLL |
|
#endif |
|
|
|
#include "dll.h" |
|
#include "cryptlib.h" |
|
#include "smartptr.h" |
|
#include "filters.h" |
|
#include "oids.h" |
|
|
|
USING_NAMESPACE(CryptoPP) |
|
USING_NAMESPACE(std) |
|
|
|
class LineBreakParser : public AutoSignaling<Bufferless<Filter> > |
|
{ |
|
public: |
|
LineBreakParser(BufferedTransformation *attachment=NULL, byte lineEnd='\n') |
|
: m_lineEnd(lineEnd) {Detach(attachment);} |
|
|
|
size_t Put2(const byte *begin, size_t length, int messageEnd, bool blocking) |
|
{ |
|
if (!blocking) |
|
throw BlockingInputOnly("LineBreakParser"); |
|
|
|
unsigned int i, last = 0; |
|
for (i=0; i<length; i++) |
|
{ |
|
if (begin[i] == m_lineEnd) |
|
{ |
|
AttachedTransformation()->Put2(begin+last, i-last, GetAutoSignalPropagation(), blocking); |
|
last = i+1; |
|
} |
|
} |
|
if (last != i) |
|
AttachedTransformation()->Put2(begin+last, i-last, 0, blocking); |
|
|
|
if (messageEnd && GetAutoSignalPropagation()) |
|
{ |
|
AttachedTransformation()->MessageEnd(GetAutoSignalPropagation()-1, blocking); |
|
AttachedTransformation()->MessageSeriesEnd(GetAutoSignalPropagation()-1, blocking); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
private: |
|
byte m_lineEnd; |
|
}; |
|
|
|
class TestDataParser : public Unflushable<FilterWithInputQueue> |
|
{ |
|
public: |
|
enum DataType {OTHER, COUNT, KEY_T, IV, INPUT, OUTPUT}; |
|
|
|
TestDataParser(std::string algorithm, std::string test, std::string mode, unsigned int feedbackSize, bool encrypt, BufferedTransformation *attachment) |
|
: m_algorithm(algorithm), m_test(test), m_mode(mode), m_feedbackSize(feedbackSize) |
|
, m_firstLine(true), m_blankLineTransition(0) |
|
{ |
|
Detach(attachment); |
|
|
|
m_typeToName[COUNT] = "COUNT"; |
|
|
|
m_nameToType["COUNT"] = COUNT; |
|
m_nameToType["KEY"] = KEY_T; |
|
m_nameToType["KEYs"] = KEY_T; |
|
m_nameToType["key"] = KEY_T; |
|
m_nameToType["Key"] = KEY_T; |
|
m_nameToType["IV"] = IV; |
|
m_nameToType["IV1"] = IV; |
|
m_nameToType["CV"] = IV; |
|
m_nameToType["CV1"] = IV; |
|
m_nameToType["IB"] = IV; |
|
m_nameToType["TEXT"] = INPUT; |
|
m_nameToType["RESULT"] = OUTPUT; |
|
m_nameToType["Msg"] = INPUT; |
|
m_nameToType["Seed"] = INPUT; |
|
m_nameToType["V"] = INPUT; |
|
m_nameToType["DT"] = IV; |
|
SetEncrypt(encrypt); |
|
|
|
if (m_algorithm == "DSA" || m_algorithm == "ECDSA") |
|
{ |
|
if (m_test == "PKV") |
|
m_trigger = "Qy"; |
|
else if (m_test == "KeyPair") |
|
m_trigger = "N"; |
|
else if (m_test == "SigGen") |
|
m_trigger = "Msg"; |
|
else if (m_test == "SigVer") |
|
m_trigger = "S"; |
|
else if (m_test == "PQGGen") |
|
m_trigger = "N"; |
|
else if (m_test == "PQGVer") |
|
m_trigger = "H"; |
|
} |
|
else if (m_algorithm == "HMAC") |
|
m_trigger = "Msg"; |
|
else if (m_algorithm == "SHA") |
|
m_trigger = (m_test == "MONTE") ? "Seed" : "Msg"; |
|
else if (m_algorithm == "RNG") |
|
m_trigger = "V"; |
|
else if (m_algorithm == "RSA") |
|
m_trigger = (m_test == "Ver") ? "S" : "Msg"; |
|
} |
|
|
|
void SetEncrypt(bool encrypt) |
|
{ |
|
m_encrypt = encrypt; |
|
if (encrypt) |
|
{ |
|
m_nameToType["PLAINTEXT"] = INPUT; |
|
m_nameToType["CIPHERTEXT"] = OUTPUT; |
|
m_nameToType["PT"] = INPUT; |
|
m_nameToType["CT"] = OUTPUT; |
|
} |
|
else |
|
{ |
|
m_nameToType["PLAINTEXT"] = OUTPUT; |
|
m_nameToType["CIPHERTEXT"] = INPUT; |
|
m_nameToType["PT"] = OUTPUT; |
|
m_nameToType["CT"] = INPUT; |
|
} |
|
|
|
if (m_algorithm == "AES" || m_algorithm == "TDES") |
|
{ |
|
if (encrypt) |
|
{ |
|
m_trigger = "PLAINTEXT"; |
|
m_typeToName[OUTPUT] = "CIPHERTEXT"; |
|
} |
|
else |
|
{ |
|
m_trigger = "CIPHERTEXT"; |
|
m_typeToName[OUTPUT] = "PLAINTEXT"; |
|
} |
|
m_count = 0; |
|
} |
|
} |
|
|
|
protected: |
|
void OutputData(std::string &output, const std::string &key, const std::string &data) |
|
{ |
|
output += key; |
|
output += "= "; |
|
output += data; |
|
output += "\n"; |
|
} |
|
|
|
void OutputData(std::string &output, const std::string &key, int data) |
|
{ |
|
OutputData(output, key, IntToString(data)); |
|
} |
|
|
|
void OutputData(std::string &output, const std::string &key, const SecByteBlock &data) |
|
{ |
|
output += key; |
|
output += "= "; |
|
HexEncoder(new StringSink(output), false).Put(data, data.size()); |
|
output += "\n"; |
|
} |
|
|
|
void OutputData(std::string &output, const std::string &key, const Integer &data, int size=-1) |
|
{ |
|
SecByteBlock s(size < 0 ? data.MinEncodedSize() : size); |
|
data.Encode(s, s.size()); |
|
OutputData(output, key, s); |
|
} |
|
|
|
void OutputData(std::string &output, const std::string &key, const PolynomialMod2 &data, int size=-1) |
|
{ |
|
SecByteBlock s(size < 0 ? data.MinEncodedSize() : size); |
|
data.Encode(s, s.size()); |
|
OutputData(output, key, s); |
|
} |
|
|
|
void OutputData(std::string &output, DataType t, const std::string &data) |
|
{ |
|
if (m_algorithm == "SKIPJACK") |
|
{ |
|
if (m_test == "KAT") |
|
{ |
|
if (t == OUTPUT) |
|
output = m_line + data + "\n"; |
|
} |
|
else |
|
{ |
|
if (t != COUNT) |
|
{ |
|
output += m_typeToName[t]; |
|
output += "="; |
|
} |
|
output += data; |
|
output += t == OUTPUT ? "\n" : " "; |
|
} |
|
} |
|
else if (m_algorithm == "TDES" && t == KEY_T && m_typeToName[KEY_T].empty()) |
|
{ |
|
output += "KEY1 = "; |
|
output += data.substr(0, 16); |
|
output += "\nKEY2 = "; |
|
output += data.size() > 16 ? data.substr(16, 16) : data.substr(0, 16); |
|
output += "\nKEY3 = "; |
|
output += data.size() > 32 ? data.substr(32, 16) : data.substr(0, 16); |
|
output += "\n"; |
|
} |
|
else |
|
{ |
|
output += m_typeToName[t]; |
|
output += " = "; |
|
output += data; |
|
output += "\n"; |
|
} |
|
} |
|
|
|
void OutputData(std::string &output, DataType t, int i) |
|
{ |
|
OutputData(output, t, IntToString(i)); |
|
} |
|
|
|
void OutputData(std::string &output, DataType t, const SecByteBlock &data) |
|
{ |
|
std::string hexData; |
|
StringSource(data.begin(), data.size(), true, new HexEncoder(new StringSink(hexData), false)); |
|
OutputData(output, t, hexData); |
|
} |
|
|
|
void OutputGivenData(std::string &output, DataType t, bool optional = false) |
|
{ |
|
if (m_data.find(m_typeToName[t]) == m_data.end()) |
|
{ |
|
if (optional) |
|
return; |
|
throw Exception(Exception::OTHER_ERROR, "TestDataParser: key not found: " + m_typeToName[t]); |
|
} |
|
|
|
OutputData(output, t, m_data[m_typeToName[t]]); |
|
} |
|
|
|
template <class T> |
|
BlockCipher * NewBT(T *) |
|
{ |
|
if (!m_encrypt && (m_mode == "ECB" || m_mode == "CBC")) |
|
return new typename T::Decryption; |
|
else |
|
return new typename T::Encryption; |
|
} |
|
|
|
template <class T> |
|
SymmetricCipher * NewMode(T *, BlockCipher &bt, const byte *iv) |
|
{ |
|
if (!m_encrypt) |
|
return new typename T::Decryption(bt, iv, m_feedbackSize/8); |
|
else |
|
return new typename T::Encryption(bt, iv, m_feedbackSize/8); |
|
} |
|
|
|
static inline void Xor(SecByteBlock &z, const SecByteBlock &x, const SecByteBlock &y) |
|
{ |
|
assert(x.size() == y.size()); |
|
z.resize(x.size()); |
|
xorbuf(z, x, y, x.size()); |
|
} |
|
|
|
SecByteBlock UpdateKey(SecByteBlock key, const SecByteBlock *text) |
|
{ |
|
unsigned int innerCount = (m_algorithm == "AES") ? 1000 : 10000; |
|
int keySize = key.size(), blockSize = text[0].size(); |
|
SecByteBlock x(keySize); |
|
for (int k=0; k<keySize;) |
|
{ |
|
int pos = innerCount * blockSize - keySize + k; |
|
memcpy(x + k, text[pos / blockSize] + pos % blockSize, blockSize - pos % blockSize); |
|
k += blockSize - pos % blockSize; |
|
} |
|
|
|
if (m_algorithm == "TDES" || m_algorithm == "DES") |
|
{ |
|
for (int i=0; i<keySize; i+=8) |
|
{ |
|
xorbuf(key+i, x+keySize-8-i, 8); |
|
DES::CorrectKeyParityBits(key+i); |
|
} |
|
} |
|
else |
|
xorbuf(key, x, keySize); |
|
|
|
return key; |
|
} |
|
|
|
static inline void AssignLeftMostBits(SecByteBlock &z, const SecByteBlock &x, unsigned int K) |
|
{ |
|
z.Assign(x, K/8); |
|
} |
|
|
|
template <class EC> |
|
void EC_KeyPair(string &output, int n, const OID &oid) |
|
{ |
|
DL_GroupParameters_EC<EC> params(oid); |
|
for (int i=0; i<n; i++) |
|
{ |
|
DL_PrivateKey_EC<EC> priv; |
|
DL_PublicKey_EC<EC> pub; |
|
priv.Initialize(m_rng, params); |
|
priv.MakePublicKey(pub); |
|
|
|
OutputData(output, "d ", priv.GetPrivateExponent()); |
|
OutputData(output, "Qx ", pub.GetPublicElement().x, params.GetCurve().GetField().MaxElementByteLength()); |
|
OutputData(output, "Qy ", pub.GetPublicElement().y, params.GetCurve().GetField().MaxElementByteLength()); |
|
} |
|
} |
|
|
|
template <class EC> |
|
void EC_SigGen(string &output, const OID &oid) |
|
{ |
|
DL_GroupParameters_EC<EC> params(oid); |
|
typename ECDSA<EC, SHA1>::PrivateKey priv; |
|
typename ECDSA<EC, SHA1>::PublicKey pub; |
|
priv.Initialize(m_rng, params); |
|
priv.MakePublicKey(pub); |
|
|
|
typename ECDSA<EC, SHA1>::Signer signer(priv); |
|
SecByteBlock sig(signer.SignatureLength()); |
|
StringSource(m_data["Msg"], true, new HexDecoder(new SignerFilter(m_rng, signer, new ArraySink(sig, sig.size())))); |
|
SecByteBlock R(sig, sig.size()/2), S(sig+sig.size()/2, sig.size()/2); |
|
|
|
OutputData(output, "Qx ", pub.GetPublicElement().x, params.GetCurve().GetField().MaxElementByteLength()); |
|
OutputData(output, "Qy ", pub.GetPublicElement().y, params.GetCurve().GetField().MaxElementByteLength()); |
|
OutputData(output, "R ", R); |
|
OutputData(output, "S ", S); |
|
} |
|
|
|
template <class EC> |
|
void EC_SigVer(string &output, const OID &oid) |
|
{ |
|
SecByteBlock x(DecodeHex(m_data["Qx"])); |
|
SecByteBlock y(DecodeHex(m_data["Qy"])); |
|
Integer r((m_data["R"]+"h").c_str()); |
|
Integer s((m_data["S"]+"h").c_str()); |
|
|
|
typename EC::FieldElement Qx(x, x.size()); |
|
typename EC::FieldElement Qy(y, y.size()); |
|
typename EC::Element Q(Qx, Qy); |
|
|
|
DL_GroupParameters_EC<EC> params(oid); |
|
typename ECDSA<EC, SHA1>::PublicKey pub; |
|
pub.Initialize(params, Q); |
|
typename ECDSA<EC, SHA1>::Verifier verifier(pub); |
|
|
|
SecByteBlock sig(verifier.SignatureLength()); |
|
r.Encode(sig, sig.size()/2); |
|
s.Encode(sig+sig.size()/2, sig.size()/2); |
|
|
|
SignatureVerificationFilter filter(verifier); |
|
filter.Put(sig, sig.size()); |
|
StringSource(m_data["Msg"], true, new HexDecoder(new Redirector(filter, Redirector::DATA_ONLY))); |
|
filter.MessageEnd(); |
|
byte b; |
|
filter.Get(b); |
|
OutputData(output, "Result ", b ? "P" : "F"); |
|
} |
|
|
|
template <class EC> |
|
static bool EC_PKV(RandomNumberGenerator &rng, const SecByteBlock &x, const SecByteBlock &y, const OID &oid) |
|
{ |
|
typename EC::FieldElement Qx(x, x.size()); |
|
typename EC::FieldElement Qy(y, y.size()); |
|
typename EC::Element Q(Qx, Qy); |
|
|
|
DL_GroupParameters_EC<EC> params(oid); |
|
typename ECDSA<EC, SHA1>::PublicKey pub; |
|
pub.Initialize(params, Q); |
|
return pub.Validate(rng, 3); |
|
} |
|
|
|
template <class H, class Result> |
|
Result * CreateRSA2(const std::string &standard) |
|
{ |
|
if (typeid(Result) == typeid(PK_Verifier)) |
|
{ |
|
if (standard == "R") |
|
return (Result *) new typename RSASS_ISO<H>::Verifier; |
|
else if (standard == "P") |
|
return (Result *) new typename RSASS<PSS, H>::Verifier; |
|
else if (standard == "1") |
|
return (Result *) new typename RSASS<PKCS1v15, H>::Verifier; |
|
} |
|
else if (typeid(Result) == typeid(PK_Signer)) |
|
{ |
|
if (standard == "R") |
|
return (Result *) new typename RSASS_ISO<H>::Signer; |
|
else if (standard == "P") |
|
return (Result *) new typename RSASS<PSS, H>::Signer; |
|
else if (standard == "1") |
|
return (Result *) new typename RSASS<PKCS1v15, H>::Signer; |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
template <class Result> |
|
Result * CreateRSA(const std::string &standard, const std::string &hash) |
|
{ |
|
if (hash == "1") |
|
return CreateRSA2<SHA1, Result>(standard); |
|
else if (hash == "224") |
|
return CreateRSA2<SHA224, Result>(standard); |
|
else if (hash == "256") |
|
return CreateRSA2<SHA256, Result>(standard); |
|
else if (hash == "384") |
|
return CreateRSA2<SHA384, Result>(standard); |
|
else if (hash == "512") |
|
return CreateRSA2<SHA512, Result>(standard); |
|
else |
|
return NULL; |
|
} |
|
|
|
virtual void DoTest() |
|
{ |
|
std::string output; |
|
|
|
if (m_algorithm == "DSA") |
|
{ |
|
if (m_test == "KeyPair") |
|
{ |
|
DL_GroupParameters_DSA pqg; |
|
int modLen = atol(m_bracketString.substr(6).c_str()); |
|
pqg.GenerateRandomWithKeySize(m_rng, modLen); |
|
|
|
OutputData(output, "P ", pqg.GetModulus()); |
|
OutputData(output, "Q ", pqg.GetSubgroupOrder()); |
|
OutputData(output, "G ", pqg.GetSubgroupGenerator()); |
|
|
|
int n = atol(m_data["N"].c_str()); |
|
for (int i=0; i<n; i++) |
|
{ |
|
DSA::Signer priv; |
|
priv.AccessKey().GenerateRandom(m_rng, pqg); |
|
DSA::Verifier pub(priv); |
|
|
|
OutputData(output, "X ", priv.GetKey().GetPrivateExponent()); |
|
OutputData(output, "Y ", pub.GetKey().GetPublicElement()); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
} |
|
else if (m_test == "PQGGen") |
|
{ |
|
int n = atol(m_data["N"].c_str()); |
|
for (int i=0; i<n; i++) |
|
{ |
|
Integer p, q, h, g; |
|
int counter; |
|
|
|
SecByteBlock seed(SHA::DIGESTSIZE); |
|
do |
|
{ |
|
m_rng.GenerateBlock(seed, seed.size()); |
|
} |
|
while (!DSA::GeneratePrimes(seed, seed.size()*8, counter, p, 1024, q)); |
|
h.Randomize(m_rng, 2, p-2); |
|
g = a_exp_b_mod_c(h, (p-1)/q, p); |
|
|
|
OutputData(output, "P ", p); |
|
OutputData(output, "Q ", q); |
|
OutputData(output, "G ", g); |
|
OutputData(output, "Seed ", seed); |
|
OutputData(output, "c ", counter); |
|
OutputData(output, "H ", h, p.ByteCount()); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
} |
|
else if (m_test == "SigGen") |
|
{ |
|
std::string &encodedKey = m_data["PrivKey"]; |
|
int modLen = atol(m_bracketString.substr(6).c_str()); |
|
DSA::PrivateKey priv; |
|
|
|
if (!encodedKey.empty()) |
|
{ |
|
StringStore s(encodedKey); |
|
priv.BERDecode(s); |
|
if (priv.GetGroupParameters().GetModulus().BitCount() != modLen) |
|
encodedKey.clear(); |
|
} |
|
|
|
if (encodedKey.empty()) |
|
{ |
|
priv.Initialize(m_rng, modLen); |
|
StringSink s(encodedKey); |
|
priv.DEREncode(s); |
|
OutputData(output, "P ", priv.GetGroupParameters().GetModulus()); |
|
OutputData(output, "Q ", priv.GetGroupParameters().GetSubgroupOrder()); |
|
OutputData(output, "G ", priv.GetGroupParameters().GetSubgroupGenerator()); |
|
} |
|
|
|
DSA::Signer signer(priv); |
|
DSA::Verifier pub(signer); |
|
OutputData(output, "Msg ", m_data["Msg"]); |
|
OutputData(output, "Y ", pub.GetKey().GetPublicElement()); |
|
|
|
SecByteBlock sig(signer.SignatureLength()); |
|
StringSource(m_data["Msg"], true, new HexDecoder(new SignerFilter(m_rng, signer, new ArraySink(sig, sig.size())))); |
|
SecByteBlock R(sig, sig.size()/2), S(sig+sig.size()/2, sig.size()/2); |
|
OutputData(output, "R ", R); |
|
OutputData(output, "S ", S); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
else if (m_test == "SigVer") |
|
{ |
|
Integer p((m_data["P"] + "h").c_str()); |
|
Integer q((m_data["Q"] + "h").c_str()); |
|
Integer g((m_data["G"] + "h").c_str()); |
|
Integer y((m_data["Y"] + "h").c_str()); |
|
DSA::Verifier verifier(p, q, g, y); |
|
|
|
HexDecoder filter(new SignatureVerificationFilter(verifier)); |
|
StringSource(m_data["R"], true, new Redirector(filter, Redirector::DATA_ONLY)); |
|
StringSource(m_data["S"], true, new Redirector(filter, Redirector::DATA_ONLY)); |
|
StringSource(m_data["Msg"], true, new Redirector(filter, Redirector::DATA_ONLY)); |
|
filter.MessageEnd(); |
|
byte b; |
|
filter.Get(b); |
|
OutputData(output, "Result ", b ? "P" : "F"); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
else if (m_test == "PQGVer") |
|
{ |
|
Integer p((m_data["P"] + "h").c_str()); |
|
Integer q((m_data["Q"] + "h").c_str()); |
|
Integer g((m_data["G"] + "h").c_str()); |
|
Integer h((m_data["H"] + "h").c_str()); |
|
int c = atol(m_data["c"].c_str()); |
|
SecByteBlock seed(m_data["Seed"].size()/2); |
|
StringSource(m_data["Seed"], true, new HexDecoder(new ArraySink(seed, seed.size()))); |
|
|
|
Integer p1, q1; |
|
bool result = DSA::GeneratePrimes(seed, seed.size()*8, c, p1, 1024, q1, true); |
|
result = result && (p1 == p && q1 == q); |
|
result = result && g == a_exp_b_mod_c(h, (p-1)/q, p); |
|
|
|
OutputData(output, "Result ", result ? "P" : "F"); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
|
|
return; |
|
} |
|
|
|
if (m_algorithm == "ECDSA") |
|
{ |
|
std::map<std::string, OID> name2oid; |
|
name2oid["P-192"] = ASN1::secp192r1(); |
|
name2oid["P-224"] = ASN1::secp224r1(); |
|
name2oid["P-256"] = ASN1::secp256r1(); |
|
name2oid["P-384"] = ASN1::secp384r1(); |
|
name2oid["P-521"] = ASN1::secp521r1(); |
|
name2oid["K-163"] = ASN1::sect163k1(); |
|
name2oid["K-233"] = ASN1::sect233k1(); |
|
name2oid["K-283"] = ASN1::sect283k1(); |
|
name2oid["K-409"] = ASN1::sect409k1(); |
|
name2oid["K-571"] = ASN1::sect571k1(); |
|
name2oid["B-163"] = ASN1::sect163r2(); |
|
name2oid["B-233"] = ASN1::sect233r1(); |
|
name2oid["B-283"] = ASN1::sect283r1(); |
|
name2oid["B-409"] = ASN1::sect409r1(); |
|
name2oid["B-571"] = ASN1::sect571r1(); |
|
|
|
if (m_test == "PKV") |
|
{ |
|
bool pass; |
|
if (m_bracketString[0] == 'P') |
|
pass = EC_PKV<ECP>(m_rng, DecodeHex(m_data["Qx"]), DecodeHex(m_data["Qy"]), name2oid[m_bracketString]); |
|
else |
|
pass = EC_PKV<EC2N>(m_rng, DecodeHex(m_data["Qx"]), DecodeHex(m_data["Qy"]), name2oid[m_bracketString]); |
|
|
|
OutputData(output, "Result ", pass ? "P" : "F"); |
|
} |
|
else if (m_test == "KeyPair") |
|
{ |
|
if (m_bracketString[0] == 'P') |
|
EC_KeyPair<ECP>(output, atol(m_data["N"].c_str()), name2oid[m_bracketString]); |
|
else |
|
EC_KeyPair<EC2N>(output, atol(m_data["N"].c_str()), name2oid[m_bracketString]); |
|
} |
|
else if (m_test == "SigGen") |
|
{ |
|
if (m_bracketString[0] == 'P') |
|
EC_SigGen<ECP>(output, name2oid[m_bracketString]); |
|
else |
|
EC_SigGen<EC2N>(output, name2oid[m_bracketString]); |
|
} |
|
else if (m_test == "SigVer") |
|
{ |
|
if (m_bracketString[0] == 'P') |
|
EC_SigVer<ECP>(output, name2oid[m_bracketString]); |
|
else |
|
EC_SigVer<EC2N>(output, name2oid[m_bracketString]); |
|
} |
|
|
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
return; |
|
} |
|
|
|
if (m_algorithm == "RSA") |
|
{ |
|
std::string shaAlg = m_data["SHAAlg"].substr(3); |
|
|
|
if (m_test == "Ver") |
|
{ |
|
Integer n((m_data["n"] + "h").c_str()); |
|
Integer e((m_data["e"] + "h").c_str()); |
|
RSA::PublicKey pub; |
|
pub.Initialize(n, e); |
|
|
|
member_ptr<PK_Verifier> pV(CreateRSA<PK_Verifier>(m_mode, shaAlg)); |
|
pV->AccessMaterial().AssignFrom(pub); |
|
|
|
HexDecoder filter(new SignatureVerificationFilter(*pV)); |
|
for (unsigned int i=m_data["S"].size(); i<pV->SignatureLength()*2; i++) |
|
filter.Put('0'); |
|
StringSource(m_data["S"], true, new Redirector(filter, Redirector::DATA_ONLY)); |
|
StringSource(m_data["Msg"], true, new Redirector(filter, Redirector::DATA_ONLY)); |
|
filter.MessageEnd(); |
|
byte b; |
|
filter.Get(b); |
|
OutputData(output, "Result ", b ? "P" : "F"); |
|
} |
|
else |
|
{ |
|
assert(m_test == "Gen"); |
|
int modLen = atol(m_bracketString.substr(6).c_str()); |
|
std::string &encodedKey = m_data["PrivKey"]; |
|
RSA::PrivateKey priv; |
|
|
|
if (!encodedKey.empty()) |
|
{ |
|
StringStore s(encodedKey); |
|
priv.BERDecode(s); |
|
if (priv.GetModulus().BitCount() != modLen) |
|
encodedKey.clear(); |
|
} |
|
|
|
if (encodedKey.empty()) |
|
{ |
|
priv.Initialize(m_rng, modLen); |
|
StringSink s(encodedKey); |
|
priv.DEREncode(s); |
|
OutputData(output, "n ", priv.GetModulus()); |
|
OutputData(output, "e ", priv.GetPublicExponent(), modLen/8); |
|
} |
|
|
|
member_ptr<PK_Signer> pS(CreateRSA<PK_Signer>(m_mode, shaAlg)); |
|
pS->AccessMaterial().AssignFrom(priv); |
|
|
|
SecByteBlock sig(pS->SignatureLength()); |
|
StringSource(m_data["Msg"], true, new HexDecoder(new SignerFilter(m_rng, *pS, new ArraySink(sig, sig.size())))); |
|
OutputData(output, "SHAAlg ", m_data["SHAAlg"]); |
|
OutputData(output, "Msg ", m_data["Msg"]); |
|
OutputData(output, "S ", sig); |
|
} |
|
|
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
return; |
|
} |
|
|
|
if (m_algorithm == "SHA") |
|
{ |
|
member_ptr<HashFunction> pHF; |
|
|
|
if (m_mode == "1") |
|
pHF.reset(new SHA1); |
|
else if (m_mode == "224") |
|
pHF.reset(new SHA224); |
|
else if (m_mode == "256") |
|
pHF.reset(new SHA256); |
|
else if (m_mode == "384") |
|
pHF.reset(new SHA384); |
|
else if (m_mode == "512") |
|
pHF.reset(new SHA512); |
|
|
|
if (m_test == "MONTE") |
|
{ |
|
SecByteBlock seed = m_data2[INPUT]; |
|
SecByteBlock MD[1003]; |
|
int i,j; |
|
|
|
for (j=0; j<100; j++) |
|
{ |
|
MD[0] = MD[1] = MD[2] = seed; |
|
for (i=3; i<1003; i++) |
|
{ |
|
SecByteBlock Mi = MD[i-3] + MD[i-2] + MD[i-1]; |
|
MD[i].resize(pHF->DigestSize()); |
|
pHF->CalculateDigest(MD[i], Mi, Mi.size()); |
|
} |
|
seed = MD[1002]; |
|
OutputData(output, "COUNT ", j); |
|
OutputData(output, "MD ", seed); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
} |
|
else |
|
{ |
|
SecByteBlock tag(pHF->DigestSize()); |
|
SecByteBlock &msg(m_data2[INPUT]); |
|
int len = atol(m_data["Len"].c_str()); |
|
StringSource(msg.begin(), len/8, true, new HashFilter(*pHF, new ArraySink(tag, tag.size()))); |
|
OutputData(output, "MD ", tag); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
return; |
|
} |
|
|
|
SecByteBlock &key = m_data2[KEY_T]; |
|
|
|
if (m_algorithm == "TDES") |
|
{ |
|
if (!m_data["KEY1"].empty()) |
|
{ |
|
const std::string keys[3] = {m_data["KEY1"], m_data["KEY2"], m_data["KEY3"]}; |
|
key.resize(24); |
|
HexDecoder hexDec(new ArraySink(key, key.size())); |
|
for (int i=0; i<3; i++) |
|
hexDec.Put((byte *)keys[i].data(), keys[i].size()); |
|
|
|
if (keys[0] == keys[2]) |
|
{ |
|
if (keys[0] == keys[1]) |
|
key.resize(8); |
|
else |
|
key.resize(16); |
|
} |
|
else |
|
key.resize(24); |
|
} |
|
} |
|
|
|
if (m_algorithm == "RNG") |
|
{ |
|
key.resize(24); |
|
StringSource(m_data["Key1"] + m_data["Key2"] + m_data["Key3"], true, new HexDecoder(new ArraySink(key, key.size()))); |
|
|
|
SecByteBlock seed(m_data2[INPUT]), dt(m_data2[IV]), r(8); |
|
X917RNG rng(new DES_EDE3::Encryption(key, key.size()), seed, dt); |
|
|
|
if (m_test == "MCT") |
|
{ |
|
for (int i=0; i<10000; i++) |
|
rng.GenerateBlock(r, r.size()); |
|
} |
|
else |
|
{ |
|
rng.GenerateBlock(r, r.size()); |
|
} |
|
|
|
OutputData(output, "R ", r); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
return; |
|
} |
|
|
|
if (m_algorithm == "HMAC") |
|
{ |
|
member_ptr<MessageAuthenticationCode> pMAC; |
|
|
|
if (m_bracketString == "L=20") |
|
pMAC.reset(new HMAC<SHA1>); |
|
else if (m_bracketString == "L=28") |
|
pMAC.reset(new HMAC<SHA224>); |
|
else if (m_bracketString == "L=32") |
|
pMAC.reset(new HMAC<SHA256>); |
|
else if (m_bracketString == "L=48") |
|
pMAC.reset(new HMAC<SHA384>); |
|
else if (m_bracketString == "L=64") |
|
pMAC.reset(new HMAC<SHA512>); |
|
else |
|
throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected HMAC bracket string: " + m_bracketString); |
|
|
|
pMAC->SetKey(key, key.size()); |
|
int Tlen = atol(m_data["Tlen"].c_str()); |
|
SecByteBlock tag(Tlen); |
|
StringSource(m_data["Msg"], true, new HexDecoder(new HashFilter(*pMAC, new ArraySink(tag, Tlen), false, Tlen))); |
|
OutputData(output, "Mac ", tag); |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
return; |
|
} |
|
|
|
member_ptr<BlockCipher> pBT; |
|
if (m_algorithm == "DES") |
|
pBT.reset(NewBT((DES*)0)); |
|
else if (m_algorithm == "TDES") |
|
{ |
|
if (key.size() == 8) |
|
pBT.reset(NewBT((DES*)0)); |
|
else if (key.size() == 16) |
|
pBT.reset(NewBT((DES_EDE2*)0)); |
|
else |
|
pBT.reset(NewBT((DES_EDE3*)0)); |
|
} |
|
else if (m_algorithm == "SKIPJACK") |
|
pBT.reset(NewBT((SKIPJACK*)0)); |
|
else if (m_algorithm == "AES") |
|
pBT.reset(NewBT((AES*)0)); |
|
else |
|
throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected algorithm: " + m_algorithm); |
|
|
|
if (!pBT->IsValidKeyLength(key.size())) |
|
key.CleanNew(pBT->DefaultKeyLength()); // for Scbcvrct |
|
pBT->SetKey(key.data(), key.size()); |
|
|
|
SecByteBlock &iv = m_data2[IV]; |
|
if (iv.empty()) |
|
iv.CleanNew(pBT->BlockSize()); |
|
|
|
member_ptr<SymmetricCipher> pCipher; |
|
unsigned int K = m_feedbackSize; |
|
|
|
if (m_mode == "ECB") |
|
pCipher.reset(NewMode((ECB_Mode_ExternalCipher*)0, *pBT, iv)); |
|
else if (m_mode == "CBC") |
|
pCipher.reset(NewMode((CBC_Mode_ExternalCipher*)0, *pBT, iv)); |
|
else if (m_mode == "CFB") |
|
pCipher.reset(NewMode((CFB_Mode_ExternalCipher*)0, *pBT, iv)); |
|
else if (m_mode == "OFB") |
|
pCipher.reset(NewMode((OFB_Mode_ExternalCipher*)0, *pBT, iv)); |
|
else |
|
throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected mode: " + m_mode); |
|
|
|
bool encrypt = m_encrypt; |
|
|
|
if (m_test == "MONTE") |
|
{ |
|
SecByteBlock KEY[401]; |
|
KEY[0] = key; |
|
int keySize = key.size(); |
|
int blockSize = pBT->BlockSize(); |
|
|
|
std::vector<SecByteBlock> IB(10001), OB(10001), PT(10001), CT(10001), RESULT(10001), TXT(10001), CV(10001); |
|
PT[0] = GetData("PLAINTEXT"); |
|
CT[0] = GetData("CIPHERTEXT"); |
|
CV[0] = IB[0] = iv; |
|
TXT[0] = GetData("TEXT"); |
|
|
|
int outerCount = (m_algorithm == "AES") ? 100 : 400; |
|
int innerCount = (m_algorithm == "AES") ? 1000 : 10000; |
|
|
|
for (int i=0; i<outerCount; i++) |
|
{ |
|
pBT->SetKey(KEY[i], keySize); |
|
|
|
for (int j=0; j<innerCount; j++) |
|
{ |
|
if (m_mode == "ECB") |
|
{ |
|
if (encrypt) |
|
{ |
|
IB[j] = PT[j]; |
|
CT[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], CT[j]); |
|
PT[j+1] = CT[j]; |
|
} |
|
else |
|
{ |
|
IB[j] = CT[j]; |
|
PT[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], PT[j]); |
|
CT[j+1] = PT[j]; |
|
} |
|
} |
|
else if (m_mode == "OFB") |
|
{ |
|
OB[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], OB[j]); |
|
Xor(RESULT[j], OB[j], TXT[j]); |
|
TXT[j+1] = IB[j]; |
|
IB[j+1] = OB[j]; |
|
} |
|
else if (m_mode == "CBC") |
|
{ |
|
if (encrypt) |
|
{ |
|
Xor(IB[j], PT[j], CV[j]); |
|
CT[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], CT[j]); |
|
PT[j+1] = CV[j]; |
|
CV[j+1] = CT[j]; |
|
} |
|
else |
|
{ |
|
IB[j] = CT[j]; |
|
OB[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], OB[j]); |
|
Xor(PT[j], OB[j], CV[j]); |
|
CV[j+1] = CT[j]; |
|
CT[j+1] = PT[j]; |
|
} |
|
} |
|
else if (m_mode == "CFB") |
|
{ |
|
if (encrypt) |
|
{ |
|
OB[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], OB[j]); |
|
AssignLeftMostBits(CT[j], OB[j], K); |
|
Xor(CT[j], CT[j], PT[j]); |
|
AssignLeftMostBits(PT[j+1], IB[j], K); |
|
IB[j+1].resize(blockSize); |
|
memcpy(IB[j+1], IB[j]+K/8, blockSize-K/8); |
|
memcpy(IB[j+1]+blockSize-K/8, CT[j], K/8); |
|
} |
|
else |
|
{ |
|
OB[j].resize(blockSize); |
|
pBT->ProcessBlock(IB[j], OB[j]); |
|
AssignLeftMostBits(PT[j], OB[j], K); |
|
Xor(PT[j], PT[j], CT[j]); |
|
IB[j+1].resize(blockSize); |
|
memcpy(IB[j+1], IB[j]+K/8, blockSize-K/8); |
|
memcpy(IB[j+1]+blockSize-K/8, CT[j], K/8); |
|
AssignLeftMostBits(CT[j+1], OB[j], K); |
|
} |
|
} |
|
else |
|
throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected mode: " + m_mode); |
|
} |
|
|
|
OutputData(output, COUNT, IntToString(i)); |
|
OutputData(output, KEY_T, KEY[i]); |
|
if (m_mode == "CBC") |
|
OutputData(output, IV, CV[0]); |
|
if (m_mode == "OFB" || m_mode == "CFB") |
|
OutputData(output, IV, IB[0]); |
|
if (m_mode == "ECB" || m_mode == "CBC" || m_mode == "CFB") |
|
{ |
|
if (encrypt) |
|
{ |
|
OutputData(output, INPUT, PT[0]); |
|
OutputData(output, OUTPUT, CT[innerCount-1]); |
|
KEY[i+1] = UpdateKey(KEY[i], &CT[0]); |
|
} |
|
else |
|
{ |
|
OutputData(output, INPUT, CT[0]); |
|
OutputData(output, OUTPUT, PT[innerCount-1]); |
|
KEY[i+1] = UpdateKey(KEY[i], &PT[0]); |
|
} |
|
PT[0] = PT[innerCount]; |
|
IB[0] = IB[innerCount]; |
|
CV[0] = CV[innerCount]; |
|
CT[0] = CT[innerCount]; |
|
} |
|
else if (m_mode == "OFB") |
|
{ |
|
OutputData(output, INPUT, TXT[0]); |
|
OutputData(output, OUTPUT, RESULT[innerCount-1]); |
|
KEY[i+1] = UpdateKey(KEY[i], &RESULT[0]); |
|
Xor(TXT[0], TXT[0], IB[innerCount-1]); |
|
IB[0] = OB[innerCount-1]; |
|
} |
|
output += "\n"; |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
} |
|
} |
|
else if (m_test == "MCT") |
|
{ |
|
SecByteBlock KEY[101]; |
|
KEY[0] = key; |
|
int keySize = key.size(); |
|
int blockSize = pBT->BlockSize(); |
|
|
|
SecByteBlock ivs[101], inputs[1001], outputs[1001]; |
|
ivs[0] = iv; |
|
inputs[0] = m_data2[INPUT]; |
|
|
|
for (int i=0; i<100; i++) |
|
{ |
|
pCipher->SetKey(KEY[i], keySize, MakeParameters(Name::IV(), (const byte *)ivs[i])(Name::FeedbackSize(), (int)K/8, false)); |
|
|
|
for (int j=0; j<1000; j++) |
|
{ |
|
outputs[j] = inputs[j]; |
|
pCipher->ProcessString(outputs[j], outputs[j].size()); |
|
if (K==8 && m_mode == "CFB") |
|
{ |
|
if (j<16) |
|
inputs[j+1].Assign(ivs[i]+j, 1); |
|
else |
|
inputs[j+1] = outputs[j-16]; |
|
} |
|
else if (m_mode == "ECB") |
|
inputs[j+1] = outputs[j]; |
|
else if (j == 0) |
|
inputs[j+1] = ivs[i]; |
|
else |
|
inputs[j+1] = outputs[j-1]; |
|
} |
|
|
|
if (m_algorithm == "AES") |
|
OutputData(output, COUNT, m_count++); |
|
OutputData(output, KEY_T, KEY[i]); |
|
if (m_mode != "ECB") |
|
OutputData(output, IV, ivs[i]); |
|
OutputData(output, INPUT, inputs[0]); |
|
OutputData(output, OUTPUT, outputs[999]); |
|
output += "\n"; |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
output.resize(0); |
|
|
|
KEY[i+1] = UpdateKey(KEY[i], outputs); |
|
ivs[i+1].CleanNew(pCipher->IVSize()); |
|
ivs[i+1] = UpdateKey(ivs[i+1], outputs); |
|
if (K==8 && m_mode == "CFB") |
|
inputs[0] = outputs[999-16]; |
|
else if (m_mode == "ECB") |
|
inputs[0] = outputs[999]; |
|
else |
|
inputs[0] = outputs[998]; |
|
} |
|
} |
|
else |
|
{ |
|
assert(m_test == "KAT"); |
|
|
|
SecByteBlock &input = m_data2[INPUT]; |
|
SecByteBlock result(input.size()); |
|
member_ptr<Filter> pFilter(new StreamTransformationFilter(*pCipher, new ArraySink(result, result.size()), StreamTransformationFilter::NO_PADDING)); |
|
StringSource(input.data(), input.size(), true, pFilter.release()); |
|
|
|
OutputGivenData(output, COUNT, true); |
|
OutputData(output, KEY_T, key); |
|
OutputGivenData(output, IV, true); |
|
OutputGivenData(output, INPUT); |
|
OutputData(output, OUTPUT, result); |
|
output += "\n"; |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
} |
|
} |
|
|
|
std::vector<std::string> Tokenize(const std::string &line) |
|
{ |
|
std::vector<std::string> result; |
|
std::string s; |
|
for (unsigned int i=0; i<line.size(); i++) |
|
{ |
|
if (isalnum(line[i]) || line[i] == '^') |
|
s += line[i]; |
|
else if (!s.empty()) |
|
{ |
|
result.push_back(s); |
|
s = ""; |
|
} |
|
if (line[i] == '=') |
|
result.push_back("="); |
|
} |
|
if (!s.empty()) |
|
result.push_back(s); |
|
return result; |
|
} |
|
|
|
bool IsolatedMessageEnd(bool blocking) |
|
{ |
|
if (!blocking) |
|
throw BlockingInputOnly("TestDataParser"); |
|
|
|
m_line.resize(0); |
|
m_inQueue.TransferTo(StringSink(m_line).Ref()); |
|
|
|
if (m_line[0] == '#') |
|
return false; |
|
|
|
bool copyLine = false; |
|
|
|
if (m_line[0] == '[') |
|
{ |
|
m_bracketString = m_line.substr(1, m_line.size()-2); |
|
if (m_bracketString == "ENCRYPT") |
|
SetEncrypt(true); |
|
if (m_bracketString == "DECRYPT") |
|
SetEncrypt(false); |
|
copyLine = true; |
|
} |
|
|
|
if (m_line.substr(0, 2) == "H>") |
|
{ |
|
assert(m_test == "sha"); |
|
m_bracketString = m_line.substr(2, m_line.size()-4); |
|
m_line = m_line.substr(0, 13) + "Hashes<H"; |
|
copyLine = true; |
|
} |
|
|
|
if (m_line == "D>") |
|
copyLine = true; |
|
|
|
if (m_line == "<D") |
|
{ |
|
m_line += "\n"; |
|
copyLine = true; |
|
} |
|
|
|
if (copyLine) |
|
{ |
|
m_line += '\n'; |
|
AttachedTransformation()->Put((byte *)m_line.data(), m_line.size(), blocking); |
|
return false; |
|
} |
|
|
|
std::vector<std::string> tokens = Tokenize(m_line); |
|
|
|
if (m_algorithm == "DSA" && m_test == "sha") |
|
{ |
|
for (unsigned int i = 0; i < tokens.size(); i++) |
|
{ |
|
if (tokens[i] == "^") |
|
DoTest(); |
|
else if (tokens[i] != "") |
|
m_compactString.push_back(atol(tokens[i].c_str())); |
|
} |
|
} |
|
else |
|
{ |
|
if (!m_line.empty() && ((m_algorithm == "RSA" && m_test != "Gen") || m_algorithm == "RNG" || m_algorithm == "HMAC" || m_algorithm == "SHA" || (m_algorithm == "ECDSA" && m_test != "KeyPair") || (m_algorithm == "DSA" && (m_test == "PQGVer" || m_test == "SigVer")))) |
|
{ |
|
// copy input to output |
|
std::string output = m_line + '\n'; |
|
AttachedTransformation()->Put((byte *)output.data(), output.size()); |
|
} |
|
|
|
for (unsigned int i = 0; i < tokens.size(); i++) |
|
{ |
|
if (m_firstLine && m_algorithm != "DSA") |
|
{ |
|
if (tokens[i] == "Encrypt" || tokens[i] == "OFB") |
|
SetEncrypt(true); |
|
else if (tokens[i] == "Decrypt") |
|
SetEncrypt(false); |
|
else if (tokens[i] == "Modes") |
|
m_test = "MONTE"; |
|
} |
|
else |
|
{ |
|
if (tokens[i] != "=") |
|
continue; |
|
|
|
if (i == 0) |
|
throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected data: " + m_line); |
|
|
|
const std::string &key = tokens[i-1]; |
|
std::string &data = m_data[key]; |
|
data = (tokens.size() > i+1) ? tokens[i+1] : ""; |
|
DataType t = m_nameToType[key]; |
|
m_typeToName[t] = key; |
|
m_data2[t] = DecodeHex(data); |
|
|
|
if (key == m_trigger || (t == OUTPUT && !m_data2[INPUT].empty() && !isspace(m_line[0]))) |
|
DoTest(); |
|
} |
|
} |
|
} |
|
|
|
m_firstLine = false; |
|
|
|
return false; |
|
} |
|
|
|
inline const SecByteBlock & GetData(const std::string &key) |
|
{ |
|
return m_data2[m_nameToType[key]]; |
|
} |
|
|
|
static SecByteBlock DecodeHex(const std::string &data) |
|
{ |
|
SecByteBlock data2(data.size() / 2); |
|
StringSource(data, true, new HexDecoder(new ArraySink(data2, data2.size()))); |
|
return data2; |
|
} |
|
|
|
std::string m_algorithm, m_test, m_mode, m_line, m_bracketString, m_trigger; |
|
unsigned int m_feedbackSize, m_blankLineTransition; |
|
bool m_encrypt, m_firstLine; |
|
|
|
typedef std::map<std::string, DataType> NameToTypeMap; |
|
NameToTypeMap m_nameToType; |
|
typedef std::map<DataType, std::string> TypeToNameMap; |
|
TypeToNameMap m_typeToName; |
|
|
|
typedef std::map<std::string, std::string> Map; |
|
Map m_data; // raw data |
|
typedef std::map<DataType, SecByteBlock> Map2; |
|
Map2 m_data2; |
|
int m_count; |
|
|
|
AutoSeededX917RNG<AES> m_rng; |
|
std::vector<unsigned int> m_compactString; |
|
}; |
|
|
|
int FIPS_140_AlgorithmTest(int argc, char **argv) |
|
{ |
|
argc--; |
|
argv++; |
|
|
|
std::string algorithm = argv[1]; |
|
std::string pathname = argv[2]; |
|
unsigned int i = pathname.find_last_of("\\/"); |
|
std::string filename = pathname.substr(i == std::string::npos ? 0 : i+1); |
|
std::string dirname = pathname.substr(0, i); |
|
|
|
if (algorithm == "auto") |
|
{ |
|
string algTable[] = {"AES", "ECDSA", "DSA", "HMAC", "RNG", "RSA", "TDES", "SKIPJACK", "SHA"}; // order is important here |
|
for (i=0; i<sizeof(algTable)/sizeof(algTable[0]); i++) |
|
{ |
|
if (dirname.find(algTable[i]) != std::string::npos) |
|
{ |
|
algorithm = algTable[i]; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
try |
|
{ |
|
std::string mode; |
|
if (algorithm == "SHA") |
|
mode = IntToString(atol(filename.substr(3, 3).c_str())); |
|
else if (algorithm == "RSA") |
|
mode = filename.substr(6, 1); |
|
else if (filename[0] == 'S' || filename[0] == 'T') |
|
mode = filename.substr(1, 3); |
|
else |
|
mode = filename.substr(0, 3); |
|
for (i = 0; i<mode.size(); i++) |
|
mode[i] = toupper(mode[i]); |
|
unsigned int feedbackSize = mode == "CFB" ? atoi(filename.substr(filename.find_first_of("0123456789")).c_str()) : 0; |
|
std::string test; |
|
if (algorithm == "DSA" || algorithm == "ECDSA") |
|
test = filename.substr(0, filename.size() - 4); |
|
else if (algorithm == "RSA") |
|
test = filename.substr(3, 3); |
|
else if (filename.find("Monte") != std::string::npos) |
|
test = "MONTE"; |
|
else if (filename.find("MCT") != std::string::npos) |
|
test = "MCT"; |
|
else |
|
test = "KAT"; |
|
bool encrypt = (filename.find("vrct") == std::string::npos); |
|
|
|
BufferedTransformation *pSink = NULL; |
|
|
|
if (argc > 3) |
|
{ |
|
std::string outDir = argv[3]; |
|
|
|
if (outDir == "auto") |
|
{ |
|
if (dirname.substr(dirname.size()-3) == "req") |
|
outDir = dirname.substr(0, dirname.size()-3) + "resp"; |
|
} |
|
|
|
if (*outDir.rbegin() != '\\' && *outDir.rbegin() != '/') |
|
outDir += '/'; |
|
std::string outPathname = outDir + filename.substr(0, filename.size() - 3) + "rsp"; |
|
pSink = new FileSink(outPathname.c_str(), false); |
|
} |
|
else |
|
pSink = new FileSink(cout); |
|
|
|
FileSource(pathname.c_str(), true, new LineBreakParser(new TestDataParser(algorithm, test, mode, feedbackSize, encrypt, pSink)), false); |
|
} |
|
catch (...) |
|
{ |
|
cout << "file: " << filename << endl; |
|
throw; |
|
} |
|
return 0; |
|
} |
|
|
|
extern int (*AdhocTest)(int argc, char *argv[]); |
|
static int s_i = (AdhocTest = &FIPS_140_AlgorithmTest, 0); |
|
#endif
|
|
|