You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1319 lines
45 KiB
1319 lines
45 KiB
// Copyright 2005 Google Inc. All Rights Reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#include "snappy.h" |
|
#include "snappy-internal.h" |
|
#include "snappy-sinksource.h" |
|
|
|
#include <stdio.h> |
|
|
|
#include <algorithm> |
|
#include <string> |
|
#include <vector> |
|
|
|
#ifdef _WIN32 |
|
|
|
#pragma warning(disable:4018) // warning C4018: '<' : signed/unsigned mismatch |
|
#pragma warning(disable:4389) // warning C4389: '==' : signed/unsigned mismatch |
|
|
|
/* Define like size_t, omitting the "unsigned" */ |
|
#ifdef _WIN64 |
|
typedef __int64 ssize_t; |
|
#else |
|
typedef int ssize_t; |
|
#endif |
|
|
|
#endif //_WIN32 |
|
|
|
namespace snappy { |
|
|
|
// Any hash function will produce a valid compressed bitstream, but a good |
|
// hash function reduces the number of collisions and thus yields better |
|
// compression for compressible input, and more speed for incompressible |
|
// input. Of course, it doesn't hurt if the hash function is reasonably fast |
|
// either, as it gets called a lot. |
|
static inline uint32 HashBytes(uint32 bytes, int shift) { |
|
uint32 kMul = 0x1e35a7bd; |
|
return (bytes * kMul) >> shift; |
|
} |
|
static inline uint32 Hash(const char* p, int shift) { |
|
return HashBytes(UNALIGNED_LOAD32(p), shift); |
|
} |
|
|
|
size_t MaxCompressedLength(size_t source_len) { |
|
// Compressed data can be defined as: |
|
// compressed := item* literal* |
|
// item := literal* copy |
|
// |
|
// The trailing literal sequence has a space blowup of at most 62/60 |
|
// since a literal of length 60 needs one tag byte + one extra byte |
|
// for length information. |
|
// |
|
// Item blowup is trickier to measure. Suppose the "copy" op copies |
|
// 4 bytes of data. Because of a special check in the encoding code, |
|
// we produce a 4-byte copy only if the offset is < 65536. Therefore |
|
// the copy op takes 3 bytes to encode, and this type of item leads |
|
// to at most the 62/60 blowup for representing literals. |
|
// |
|
// Suppose the "copy" op copies 5 bytes of data. If the offset is big |
|
// enough, it will take 5 bytes to encode the copy op. Therefore the |
|
// worst case here is a one-byte literal followed by a five-byte copy. |
|
// I.e., 6 bytes of input turn into 7 bytes of "compressed" data. |
|
// |
|
// This last factor dominates the blowup, so the final estimate is: |
|
return 32 + source_len + source_len/6; |
|
} |
|
|
|
enum { |
|
LITERAL = 0, |
|
COPY_1_BYTE_OFFSET = 1, // 3 bit length + 3 bits of offset in opcode |
|
COPY_2_BYTE_OFFSET = 2, |
|
COPY_4_BYTE_OFFSET = 3 |
|
}; |
|
static const int kMaximumTagLength = 5; // COPY_4_BYTE_OFFSET plus the actual offset. |
|
|
|
// Copy "len" bytes from "src" to "op", one byte at a time. Used for |
|
// handling COPY operations where the input and output regions may |
|
// overlap. For example, suppose: |
|
// src == "ab" |
|
// op == src + 2 |
|
// len == 20 |
|
// After IncrementalCopy(src, op, len), the result will have |
|
// eleven copies of "ab" |
|
// ababababababababababab |
|
// Note that this does not match the semantics of either memcpy() |
|
// or memmove(). |
|
static inline void IncrementalCopy(const char* src, char* op, ssize_t len) { |
|
assert(len > 0); |
|
do { |
|
*op++ = *src++; |
|
} while (--len > 0); |
|
} |
|
|
|
// Equivalent to IncrementalCopy except that it can write up to ten extra |
|
// bytes after the end of the copy, and that it is faster. |
|
// |
|
// The main part of this loop is a simple copy of eight bytes at a time until |
|
// we've copied (at least) the requested amount of bytes. However, if op and |
|
// src are less than eight bytes apart (indicating a repeating pattern of |
|
// length < 8), we first need to expand the pattern in order to get the correct |
|
// results. For instance, if the buffer looks like this, with the eight-byte |
|
// <src> and <op> patterns marked as intervals: |
|
// |
|
// abxxxxxxxxxxxx |
|
// [------] src |
|
// [------] op |
|
// |
|
// a single eight-byte copy from <src> to <op> will repeat the pattern once, |
|
// after which we can move <op> two bytes without moving <src>: |
|
// |
|
// ababxxxxxxxxxx |
|
// [------] src |
|
// [------] op |
|
// |
|
// and repeat the exercise until the two no longer overlap. |
|
// |
|
// This allows us to do very well in the special case of one single byte |
|
// repeated many times, without taking a big hit for more general cases. |
|
// |
|
// The worst case of extra writing past the end of the match occurs when |
|
// op - src == 1 and len == 1; the last copy will read from byte positions |
|
// [0..7] and write to [4..11], whereas it was only supposed to write to |
|
// position 1. Thus, ten excess bytes. |
|
|
|
namespace { |
|
|
|
const int kMaxIncrementCopyOverflow = 10; |
|
|
|
inline void IncrementalCopyFastPath(const char* src, char* op, ssize_t len) { |
|
while (op - src < 8) { |
|
UnalignedCopy64(src, op); |
|
len -= op - src; |
|
op += op - src; |
|
} |
|
while (len > 0) { |
|
UnalignedCopy64(src, op); |
|
src += 8; |
|
op += 8; |
|
len -= 8; |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
static inline char* EmitLiteral(char* op, |
|
const char* literal, |
|
int len, |
|
bool allow_fast_path) { |
|
int n = len - 1; // Zero-length literals are disallowed |
|
if (n < 60) { |
|
// Fits in tag byte |
|
*op++ = LITERAL | (n << 2); |
|
|
|
// The vast majority of copies are below 16 bytes, for which a |
|
// call to memcpy is overkill. This fast path can sometimes |
|
// copy up to 15 bytes too much, but that is okay in the |
|
// main loop, since we have a bit to go on for both sides: |
|
// |
|
// - The input will always have kInputMarginBytes = 15 extra |
|
// available bytes, as long as we're in the main loop, and |
|
// if not, allow_fast_path = false. |
|
// - The output will always have 32 spare bytes (see |
|
// MaxCompressedLength). |
|
if (allow_fast_path && len <= 16) { |
|
UnalignedCopy64(literal, op); |
|
UnalignedCopy64(literal + 8, op + 8); |
|
return op + len; |
|
} |
|
} else { |
|
// Encode in upcoming bytes |
|
char* base = op; |
|
int count = 0; |
|
op++; |
|
while (n > 0) { |
|
*op++ = n & 0xff; |
|
n >>= 8; |
|
count++; |
|
} |
|
assert(count >= 1); |
|
assert(count <= 4); |
|
*base = LITERAL | ((59+count) << 2); |
|
} |
|
memcpy(op, literal, len); |
|
return op + len; |
|
} |
|
|
|
static inline char* EmitCopyLessThan64(char* op, size_t offset, int len) { |
|
assert(len <= 64); |
|
assert(len >= 4); |
|
assert(offset < 65536); |
|
|
|
if ((len < 12) && (offset < 2048)) { |
|
size_t len_minus_4 = len - 4; |
|
assert(len_minus_4 < 8); // Must fit in 3 bits |
|
*op++ = (char)(COPY_1_BYTE_OFFSET + ((len_minus_4) << 2) + ((offset >> 8) << 5)); |
|
*op++ = offset & 0xff; |
|
} else { |
|
*op++ = COPY_2_BYTE_OFFSET + ((len-1) << 2); |
|
LittleEndian::Store16(op, (snappy::uint16)offset); |
|
op += 2; |
|
} |
|
return op; |
|
} |
|
|
|
static inline char* EmitCopy(char* op, size_t offset, int len) { |
|
// Emit 64 byte copies but make sure to keep at least four bytes reserved |
|
while (len >= 68) { |
|
op = EmitCopyLessThan64(op, offset, 64); |
|
len -= 64; |
|
} |
|
|
|
// Emit an extra 60 byte copy if have too much data to fit in one copy |
|
if (len > 64) { |
|
op = EmitCopyLessThan64(op, offset, 60); |
|
len -= 60; |
|
} |
|
|
|
// Emit remainder |
|
op = EmitCopyLessThan64(op, offset, len); |
|
return op; |
|
} |
|
|
|
|
|
bool GetUncompressedLength(const char* start, size_t n, size_t* result) { |
|
uint32 v = 0; |
|
const char* limit = start + n; |
|
if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { |
|
*result = v; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
namespace internal { |
|
uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) { |
|
// Use smaller hash table when input.size() is smaller, since we |
|
// fill the table, incurring O(hash table size) overhead for |
|
// compression, and if the input is short, we won't need that |
|
// many hash table entries anyway. |
|
assert(kMaxHashTableSize >= 256); |
|
size_t htsize = 256; |
|
while (htsize < kMaxHashTableSize && htsize < input_size) { |
|
htsize <<= 1; |
|
} |
|
|
|
uint16* table; |
|
if (htsize <= ARRAYSIZE(small_table_)) { |
|
table = small_table_; |
|
} else { |
|
if (large_table_ == NULL) { |
|
large_table_ = new uint16[kMaxHashTableSize]; |
|
} |
|
table = large_table_; |
|
} |
|
|
|
*table_size = (int)htsize; |
|
memset(table, 0, htsize * sizeof(*table)); |
|
return table; |
|
} |
|
} // end namespace internal |
|
|
|
// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will |
|
// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have |
|
// empirically found that overlapping loads such as |
|
// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) |
|
// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. |
|
// |
|
// We have different versions for 64- and 32-bit; ideally we would avoid the |
|
// two functions and just inline the UNALIGNED_LOAD64 call into |
|
// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever |
|
// enough to avoid loading the value multiple times then. For 64-bit, the load |
|
// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is |
|
// done at GetUint32AtOffset() time. |
|
|
|
#ifdef ARCH_K8 |
|
|
|
typedef uint64 EightBytesReference; |
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) { |
|
return UNALIGNED_LOAD64(ptr); |
|
} |
|
|
|
static inline uint32 GetUint32AtOffset(uint64 v, int offset) { |
|
assert(offset >= 0); |
|
assert(offset <= 4); |
|
return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); |
|
} |
|
|
|
#else |
|
|
|
typedef const char* EightBytesReference; |
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) { |
|
return ptr; |
|
} |
|
|
|
static inline uint32 GetUint32AtOffset(const char* v, int offset) { |
|
assert(offset >= 0); |
|
assert(offset <= 4); |
|
return UNALIGNED_LOAD32(v + offset); |
|
} |
|
|
|
#endif |
|
|
|
// Flat array compression that does not emit the "uncompressed length" |
|
// prefix. Compresses "input" string to the "*op" buffer. |
|
// |
|
// REQUIRES: "input" is at most "kBlockSize" bytes long. |
|
// REQUIRES: "op" points to an array of memory that is at least |
|
// "MaxCompressedLength(input.size())" in size. |
|
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
|
// REQUIRES: "table_size" is a power of two |
|
// |
|
// Returns an "end" pointer into "op" buffer. |
|
// "end - op" is the compressed size of "input". |
|
namespace internal { |
|
char* CompressFragment(const char* input, |
|
size_t input_size, |
|
char* op, |
|
uint16* table, |
|
const int table_size) { |
|
// "ip" is the input pointer, and "op" is the output pointer. |
|
const char* ip = input; |
|
assert(input_size <= kBlockSize); |
|
assert((table_size & (table_size - 1)) == 0); // table must be power of two |
|
const int shift = 32 - Bits::Log2Floor(table_size); |
|
assert(static_cast<int>(kuint32max >> shift) == table_size - 1); |
|
const char* ip_end = input + input_size; |
|
const char* base_ip = ip; |
|
// Bytes in [next_emit, ip) will be emitted as literal bytes. Or |
|
// [next_emit, ip_end) after the main loop. |
|
const char* next_emit = ip; |
|
|
|
const size_t kInputMarginBytes = 15; |
|
if (PREDICT_TRUE(input_size >= kInputMarginBytes)) { |
|
const char* ip_limit = input + input_size - kInputMarginBytes; |
|
|
|
for (uint32 next_hash = Hash(++ip, shift); ; ) { |
|
assert(next_emit < ip); |
|
// The body of this loop calls EmitLiteral once and then EmitCopy one or |
|
// more times. (The exception is that when we're close to exhausting |
|
// the input we goto emit_remainder.) |
|
// |
|
// In the first iteration of this loop we're just starting, so |
|
// there's nothing to copy, so calling EmitLiteral once is |
|
// necessary. And we only start a new iteration when the |
|
// current iteration has determined that a call to EmitLiteral will |
|
// precede the next call to EmitCopy (if any). |
|
// |
|
// Step 1: Scan forward in the input looking for a 4-byte-long match. |
|
// If we get close to exhausting the input then goto emit_remainder. |
|
// |
|
// Heuristic match skipping: If 32 bytes are scanned with no matches |
|
// found, start looking only at every other byte. If 32 more bytes are |
|
// scanned, look at every third byte, etc.. When a match is found, |
|
// immediately go back to looking at every byte. This is a small loss |
|
// (~5% performance, ~0.1% density) for compressible data due to more |
|
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
|
// win since the compressor quickly "realizes" the data is incompressible |
|
// and doesn't bother looking for matches everywhere. |
|
// |
|
// The "skip" variable keeps track of how many bytes there are since the |
|
// last match; dividing it by 32 (ie. right-shifting by five) gives the |
|
// number of bytes to move ahead for each iteration. |
|
uint32 skip = 32; |
|
|
|
const char* next_ip = ip; |
|
const char* candidate; |
|
do { |
|
ip = next_ip; |
|
uint32 hash = next_hash; |
|
assert(hash == Hash(ip, shift)); |
|
uint32 bytes_between_hash_lookups = skip++ >> 5; |
|
next_ip = ip + bytes_between_hash_lookups; |
|
if (PREDICT_FALSE(next_ip > ip_limit)) { |
|
goto emit_remainder; |
|
} |
|
next_hash = Hash(next_ip, shift); |
|
candidate = base_ip + table[hash]; |
|
assert(candidate >= base_ip); |
|
assert(candidate < ip); |
|
|
|
table[hash] = ip - base_ip; |
|
} while (PREDICT_TRUE(UNALIGNED_LOAD32(ip) != |
|
UNALIGNED_LOAD32(candidate))); |
|
|
|
// Step 2: A 4-byte match has been found. We'll later see if more |
|
// than 4 bytes match. But, prior to the match, input |
|
// bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." |
|
assert(next_emit + 16 <= ip_end); |
|
op = EmitLiteral(op, next_emit, ip - next_emit, true); |
|
|
|
// Step 3: Call EmitCopy, and then see if another EmitCopy could |
|
// be our next move. Repeat until we find no match for the |
|
// input immediately after what was consumed by the last EmitCopy call. |
|
// |
|
// If we exit this loop normally then we need to call EmitLiteral next, |
|
// though we don't yet know how big the literal will be. We handle that |
|
// by proceeding to the next iteration of the main loop. We also can exit |
|
// this loop via goto if we get close to exhausting the input. |
|
EightBytesReference input_bytes; |
|
uint32 candidate_bytes = 0; |
|
|
|
do { |
|
// We have a 4-byte match at ip, and no need to emit any |
|
// "literal bytes" prior to ip. |
|
const char* base = ip; |
|
int matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end); |
|
ip += matched; |
|
size_t offset = base - candidate; |
|
assert(0 == memcmp(base, candidate, matched)); |
|
op = EmitCopy(op, offset, matched); |
|
// We could immediately start working at ip now, but to improve |
|
// compression we first update table[Hash(ip - 1, ...)]. |
|
const char* insert_tail = ip - 1; |
|
next_emit = ip; |
|
if (PREDICT_FALSE(ip >= ip_limit)) { |
|
goto emit_remainder; |
|
} |
|
input_bytes = GetEightBytesAt(insert_tail); |
|
uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); |
|
table[prev_hash] = ip - base_ip - 1; |
|
uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); |
|
candidate = base_ip + table[cur_hash]; |
|
candidate_bytes = UNALIGNED_LOAD32(candidate); |
|
table[cur_hash] = ip - base_ip; |
|
} while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); |
|
|
|
next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); |
|
++ip; |
|
} |
|
} |
|
|
|
emit_remainder: |
|
// Emit the remaining bytes as a literal |
|
if (next_emit < ip_end) { |
|
op = EmitLiteral(op, next_emit, ip_end - next_emit, false); |
|
} |
|
|
|
return op; |
|
} |
|
} // end namespace internal |
|
|
|
// Signature of output types needed by decompression code. |
|
// The decompression code is templatized on a type that obeys this |
|
// signature so that we do not pay virtual function call overhead in |
|
// the middle of a tight decompression loop. |
|
// |
|
// class DecompressionWriter { |
|
// public: |
|
// // Called before decompression |
|
// void SetExpectedLength(size_t length); |
|
// |
|
// // Called after decompression |
|
// bool CheckLength() const; |
|
// |
|
// // Called repeatedly during decompression |
|
// bool Append(const char* ip, size_t length); |
|
// bool AppendFromSelf(uint32 offset, size_t length); |
|
// |
|
// // The rules for how TryFastAppend differs from Append are somewhat |
|
// // convoluted: |
|
// // |
|
// // - TryFastAppend is allowed to decline (return false) at any |
|
// // time, for any reason -- just "return false" would be |
|
// // a perfectly legal implementation of TryFastAppend. |
|
// // The intention is for TryFastAppend to allow a fast path |
|
// // in the common case of a small append. |
|
// // - TryFastAppend is allowed to read up to <available> bytes |
|
// // from the input buffer, whereas Append is allowed to read |
|
// // <length>. However, if it returns true, it must leave |
|
// // at least five (kMaximumTagLength) bytes in the input buffer |
|
// // afterwards, so that there is always enough space to read the |
|
// // next tag without checking for a refill. |
|
// // - TryFastAppend must always return decline (return false) |
|
// // if <length> is 61 or more, as in this case the literal length is not |
|
// // decoded fully. In practice, this should not be a big problem, |
|
// // as it is unlikely that one would implement a fast path accepting |
|
// // this much data. |
|
// // |
|
// bool TryFastAppend(const char* ip, size_t available, size_t length); |
|
// }; |
|
|
|
// ----------------------------------------------------------------------- |
|
// Lookup table for decompression code. Generated by ComputeTable() below. |
|
// ----------------------------------------------------------------------- |
|
|
|
// Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits |
|
static const uint32 wordmask[] = { |
|
0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu |
|
}; |
|
|
|
// Data stored per entry in lookup table: |
|
// Range Bits-used Description |
|
// ------------------------------------ |
|
// 1..64 0..7 Literal/copy length encoded in opcode byte |
|
// 0..7 8..10 Copy offset encoded in opcode byte / 256 |
|
// 0..4 11..13 Extra bytes after opcode |
|
// |
|
// We use eight bits for the length even though 7 would have sufficed |
|
// because of efficiency reasons: |
|
// (1) Extracting a byte is faster than a bit-field |
|
// (2) It properly aligns copy offset so we do not need a <<8 |
|
static const uint16 char_table[256] = { |
|
0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002, |
|
0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004, |
|
0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006, |
|
0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008, |
|
0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a, |
|
0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c, |
|
0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e, |
|
0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010, |
|
0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012, |
|
0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014, |
|
0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016, |
|
0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018, |
|
0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a, |
|
0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c, |
|
0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e, |
|
0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020, |
|
0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022, |
|
0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024, |
|
0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026, |
|
0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028, |
|
0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a, |
|
0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c, |
|
0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e, |
|
0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030, |
|
0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032, |
|
0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034, |
|
0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036, |
|
0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038, |
|
0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a, |
|
0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c, |
|
0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e, |
|
0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040 |
|
}; |
|
|
|
// In debug mode, allow optional computation of the table at startup. |
|
// Also, check that the decompression table is correct. |
|
#ifndef NDEBUG |
|
DEFINE_bool(snappy_dump_decompression_table, false, |
|
"If true, we print the decompression table at startup."); |
|
|
|
static uint16 MakeEntry(unsigned int extra, |
|
unsigned int len, |
|
unsigned int copy_offset) { |
|
// Check that all of the fields fit within the allocated space |
|
assert(extra == (extra & 0x7)); // At most 3 bits |
|
assert(copy_offset == (copy_offset & 0x7)); // At most 3 bits |
|
assert(len == (len & 0x7f)); // At most 7 bits |
|
return len | (copy_offset << 8) | (extra << 11); |
|
} |
|
|
|
static void ComputeTable() { |
|
uint16 dst[256]; |
|
|
|
// Place invalid entries in all places to detect missing initialization |
|
int assigned = 0; |
|
for (int i = 0; i < 256; i++) { |
|
dst[i] = 0xffff; |
|
} |
|
|
|
// Small LITERAL entries. We store (len-1) in the top 6 bits. |
|
for (unsigned int len = 1; len <= 60; len++) { |
|
dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0); |
|
assigned++; |
|
} |
|
|
|
// Large LITERAL entries. We use 60..63 in the high 6 bits to |
|
// encode the number of bytes of length info that follow the opcode. |
|
for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) { |
|
// We set the length field in the lookup table to 1 because extra |
|
// bytes encode len-1. |
|
dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0); |
|
assigned++; |
|
} |
|
|
|
// COPY_1_BYTE_OFFSET. |
|
// |
|
// The tag byte in the compressed data stores len-4 in 3 bits, and |
|
// offset/256 in 5 bits. offset%256 is stored in the next byte. |
|
// |
|
// This format is used for length in range [4..11] and offset in |
|
// range [0..2047] |
|
for (unsigned int len = 4; len < 12; len++) { |
|
for (unsigned int offset = 0; offset < 2048; offset += 256) { |
|
dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] = |
|
MakeEntry(1, len, offset>>8); |
|
assigned++; |
|
} |
|
} |
|
|
|
// COPY_2_BYTE_OFFSET. |
|
// Tag contains len-1 in top 6 bits, and offset in next two bytes. |
|
for (unsigned int len = 1; len <= 64; len++) { |
|
dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0); |
|
assigned++; |
|
} |
|
|
|
// COPY_4_BYTE_OFFSET. |
|
// Tag contents len-1 in top 6 bits, and offset in next four bytes. |
|
for (unsigned int len = 1; len <= 64; len++) { |
|
dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0); |
|
assigned++; |
|
} |
|
|
|
// Check that each entry was initialized exactly once. |
|
if (assigned != 256) { |
|
fprintf(stderr, "ComputeTable: assigned only %d of 256\n", assigned); |
|
abort(); |
|
} |
|
for (int i = 0; i < 256; i++) { |
|
if (dst[i] == 0xffff) { |
|
fprintf(stderr, "ComputeTable: did not assign byte %d\n", i); |
|
abort(); |
|
} |
|
} |
|
|
|
if (FLAGS_snappy_dump_decompression_table) { |
|
printf("static const uint16 char_table[256] = {\n "); |
|
for (int i = 0; i < 256; i++) { |
|
printf("0x%04x%s", |
|
dst[i], |
|
((i == 255) ? "\n" : (((i%8) == 7) ? ",\n " : ", "))); |
|
} |
|
printf("};\n"); |
|
} |
|
|
|
// Check that computed table matched recorded table |
|
for (int i = 0; i < 256; i++) { |
|
if (dst[i] != char_table[i]) { |
|
fprintf(stderr, "ComputeTable: byte %d: computed (%x), expect (%x)\n", |
|
i, static_cast<int>(dst[i]), static_cast<int>(char_table[i])); |
|
abort(); |
|
} |
|
} |
|
} |
|
#endif /* !NDEBUG */ |
|
|
|
// Helper class for decompression |
|
class SnappyDecompressor { |
|
private: |
|
Source* reader_; // Underlying source of bytes to decompress |
|
const char* ip_; // Points to next buffered byte |
|
const char* ip_limit_; // Points just past buffered bytes |
|
uint32 peeked_; // Bytes peeked from reader (need to skip) |
|
bool eof_; // Hit end of input without an error? |
|
char scratch_[kMaximumTagLength]; // See RefillTag(). |
|
|
|
// Ensure that all of the tag metadata for the next tag is available |
|
// in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even |
|
// if (ip_limit_ - ip_ < 5). |
|
// |
|
// Returns true on success, false on error or end of input. |
|
bool RefillTag(); |
|
|
|
public: |
|
explicit SnappyDecompressor(Source* reader) |
|
: reader_(reader), |
|
ip_(NULL), |
|
ip_limit_(NULL), |
|
peeked_(0), |
|
eof_(false) { |
|
} |
|
|
|
~SnappyDecompressor() { |
|
// Advance past any bytes we peeked at from the reader |
|
reader_->Skip(peeked_); |
|
} |
|
|
|
// Returns true iff we have hit the end of the input without an error. |
|
bool eof() const { |
|
return eof_; |
|
} |
|
|
|
// Read the uncompressed length stored at the start of the compressed data. |
|
// On succcess, stores the length in *result and returns true. |
|
// On failure, returns false. |
|
bool ReadUncompressedLength(uint32* result) { |
|
assert(ip_ == NULL); // Must not have read anything yet |
|
// Length is encoded in 1..5 bytes |
|
*result = 0; |
|
uint32 shift = 0; |
|
while (true) { |
|
if (shift >= 32) return false; |
|
size_t n; |
|
const char* ip = reader_->Peek(&n); |
|
if (n == 0) return false; |
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
|
reader_->Skip(1); |
|
*result |= static_cast<uint32>(c & 0x7f) << shift; |
|
if (c < 128) { |
|
break; |
|
} |
|
shift += 7; |
|
} |
|
return true; |
|
} |
|
|
|
// Process the next item found in the input. |
|
// Returns true if successful, false on error or end of input. |
|
template <class Writer> |
|
void DecompressAllTags(Writer* writer) { |
|
const char* ip = ip_; |
|
|
|
// We could have put this refill fragment only at the beginning of the loop. |
|
// However, duplicating it at the end of each branch gives the compiler more |
|
// scope to optimize the <ip_limit_ - ip> expression based on the local |
|
// context, which overall increases speed. |
|
#define MAYBE_REFILL() \ |
|
if (ip_limit_ - ip < kMaximumTagLength) { \ |
|
ip_ = ip; \ |
|
if (!RefillTag()) return; \ |
|
ip = ip_; \ |
|
} |
|
|
|
MAYBE_REFILL(); |
|
for ( ;; ) { |
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); |
|
|
|
if ((c & 0x3) == LITERAL) { |
|
size_t literal_length = (c >> 2) + 1u; |
|
if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { |
|
assert(literal_length < 61); |
|
ip += literal_length; |
|
// NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend() |
|
// will not return true unless there's already at least five spare |
|
// bytes in addition to the literal. |
|
continue; |
|
} |
|
if (PREDICT_FALSE(literal_length >= 61)) { |
|
// Long literal. |
|
const size_t literal_length_length = literal_length - 60; |
|
literal_length = |
|
(LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1; |
|
ip += literal_length_length; |
|
} |
|
|
|
size_t avail = ip_limit_ - ip; |
|
while (avail < literal_length) { |
|
if (!writer->Append(ip, avail)) return; |
|
literal_length -= avail; |
|
reader_->Skip(peeked_); |
|
size_t n; |
|
ip = reader_->Peek(&n); |
|
avail = n; |
|
peeked_ = (snappy::uint32)avail; |
|
if (avail == 0) return; // Premature end of input |
|
ip_limit_ = ip + avail; |
|
} |
|
if (!writer->Append(ip, literal_length)) { |
|
return; |
|
} |
|
ip += literal_length; |
|
MAYBE_REFILL(); |
|
} else { |
|
const uint32 entry = char_table[c]; |
|
const uint32 trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11]; |
|
const uint32 length = entry & 0xff; |
|
ip += entry >> 11; |
|
|
|
// copy_offset/256 is encoded in bits 8..10. By just fetching |
|
// those bits, we get copy_offset (since the bit-field starts at |
|
// bit 8). |
|
const uint32 copy_offset = entry & 0x700; |
|
if (!writer->AppendFromSelf(copy_offset + trailer, length)) { |
|
return; |
|
} |
|
MAYBE_REFILL(); |
|
} |
|
} |
|
|
|
#undef MAYBE_REFILL |
|
} |
|
}; |
|
|
|
bool SnappyDecompressor::RefillTag() { |
|
const char* ip = ip_; |
|
if (ip == ip_limit_) { |
|
// Fetch a new fragment from the reader |
|
reader_->Skip(peeked_); // All peeked bytes are used up |
|
size_t n; |
|
ip = reader_->Peek(&n); |
|
peeked_ = (snappy::uint32)n; |
|
if (n == 0) { |
|
eof_ = true; |
|
return false; |
|
} |
|
ip_limit_ = ip + n; |
|
} |
|
|
|
// Read the tag character |
|
assert(ip < ip_limit_); |
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
|
const uint32 entry = char_table[c]; |
|
const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' |
|
assert(needed <= sizeof(scratch_)); |
|
|
|
// Read more bytes from reader if needed |
|
uint32 nbuf = ip_limit_ - ip; |
|
if (nbuf < needed) { |
|
// Stitch together bytes from ip and reader to form the word |
|
// contents. We store the needed bytes in "scratch_". They |
|
// will be consumed immediately by the caller since we do not |
|
// read more than we need. |
|
memmove(scratch_, ip, nbuf); |
|
reader_->Skip(peeked_); // All peeked bytes are used up |
|
peeked_ = 0; |
|
while (nbuf < needed) { |
|
size_t length; |
|
const char* src = reader_->Peek(&length); |
|
if (length == 0) return false; |
|
uint32 to_add = Min(needed - nbuf, (uint32)length); |
|
memcpy(scratch_ + nbuf, src, to_add); |
|
nbuf += to_add; |
|
reader_->Skip(to_add); |
|
} |
|
assert(nbuf == needed); |
|
ip_ = scratch_; |
|
ip_limit_ = scratch_ + needed; |
|
} else if (nbuf < kMaximumTagLength) { |
|
// Have enough bytes, but move into scratch_ so that we do not |
|
// read past end of input |
|
memmove(scratch_, ip, nbuf); |
|
reader_->Skip(peeked_); // All peeked bytes are used up |
|
peeked_ = 0; |
|
ip_ = scratch_; |
|
ip_limit_ = scratch_ + nbuf; |
|
} else { |
|
// Pass pointer to buffer returned by reader_. |
|
ip_ = ip; |
|
} |
|
return true; |
|
} |
|
|
|
template <typename Writer> |
|
static bool InternalUncompress(Source* r, Writer* writer) { |
|
// Read the uncompressed length from the front of the compressed input |
|
SnappyDecompressor decompressor(r); |
|
uint32 uncompressed_len = 0; |
|
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; |
|
return InternalUncompressAllTags(&decompressor, writer, uncompressed_len); |
|
} |
|
|
|
template <typename Writer> |
|
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, |
|
Writer* writer, |
|
uint32 uncompressed_len) { |
|
writer->SetExpectedLength(uncompressed_len); |
|
|
|
// Process the entire input |
|
decompressor->DecompressAllTags(writer); |
|
return (decompressor->eof() && writer->CheckLength()); |
|
} |
|
|
|
bool GetUncompressedLength(Source* source, uint32* result) { |
|
SnappyDecompressor decompressor(source); |
|
return decompressor.ReadUncompressedLength(result); |
|
} |
|
|
|
size_t Compress(Source* reader, Sink* writer) { |
|
size_t written = 0; |
|
size_t N = reader->Available(); |
|
char ulength[Varint::kMax32]; |
|
char* p = Varint::Encode32(ulength, (snappy::uint32)N); |
|
writer->Append(ulength, p-ulength); |
|
written += (p - ulength); |
|
|
|
internal::WorkingMemory wmem; |
|
char* scratch = NULL; |
|
char* scratch_output = NULL; |
|
|
|
while (N > 0) { |
|
// Get next block to compress (without copying if possible) |
|
size_t fragment_size; |
|
const char* fragment = reader->Peek(&fragment_size); |
|
assert(fragment_size != 0); // premature end of input |
|
const size_t num_to_read = min(N, kBlockSize); |
|
size_t bytes_read = fragment_size; |
|
|
|
size_t pending_advance = 0; |
|
if (bytes_read >= num_to_read) { |
|
// Buffer returned by reader is large enough |
|
pending_advance = num_to_read; |
|
fragment_size = num_to_read; |
|
} else { |
|
// Read into scratch buffer |
|
if (scratch == NULL) { |
|
// If this is the last iteration, we want to allocate N bytes |
|
// of space, otherwise the max possible kBlockSize space. |
|
// num_to_read contains exactly the correct value |
|
scratch = new char[num_to_read]; |
|
} |
|
memcpy(scratch, fragment, bytes_read); |
|
reader->Skip(bytes_read); |
|
|
|
while (bytes_read < num_to_read) { |
|
fragment = reader->Peek(&fragment_size); |
|
size_t n = Min(fragment_size, num_to_read - bytes_read); |
|
memcpy(scratch + bytes_read, fragment, n); |
|
bytes_read += n; |
|
reader->Skip(n); |
|
} |
|
assert(bytes_read == num_to_read); |
|
fragment = scratch; |
|
fragment_size = num_to_read; |
|
} |
|
assert(fragment_size == num_to_read); |
|
|
|
// Get encoding table for compression |
|
int table_size; |
|
uint16* table = wmem.GetHashTable(num_to_read, &table_size); |
|
|
|
// Compress input_fragment and append to dest |
|
const int max_output = (int)MaxCompressedLength(num_to_read); |
|
|
|
// Need a scratch buffer for the output, in case the byte sink doesn't |
|
// have room for us directly. |
|
if (scratch_output == NULL) { |
|
scratch_output = new char[max_output]; |
|
} else { |
|
// Since we encode kBlockSize regions followed by a region |
|
// which is <= kBlockSize in length, a previously allocated |
|
// scratch_output[] region is big enough for this iteration. |
|
} |
|
char* dest = writer->GetAppendBuffer(max_output, scratch_output); |
|
char* end = internal::CompressFragment(fragment, fragment_size, |
|
dest, table, table_size); |
|
writer->Append(dest, end - dest); |
|
written += (end - dest); |
|
|
|
N -= num_to_read; |
|
reader->Skip(pending_advance); |
|
} |
|
|
|
delete[] scratch; |
|
delete[] scratch_output; |
|
|
|
return written; |
|
} |
|
|
|
// ----------------------------------------------------------------------- |
|
// IOVec interfaces |
|
// ----------------------------------------------------------------------- |
|
|
|
// A type that writes to an iovec. |
|
// Note that this is not a "ByteSink", but a type that matches the |
|
// Writer template argument to SnappyDecompressor::DecompressAllTags(). |
|
class SnappyIOVecWriter { |
|
private: |
|
const struct iovec* output_iov_; |
|
const size_t output_iov_count_; |
|
|
|
// We are currently writing into output_iov_[curr_iov_index_]. |
|
int curr_iov_index_; |
|
|
|
// Bytes written to output_iov_[curr_iov_index_] so far. |
|
size_t curr_iov_written_; |
|
|
|
// Total bytes decompressed into output_iov_ so far. |
|
size_t total_written_; |
|
|
|
// Maximum number of bytes that will be decompressed into output_iov_. |
|
size_t output_limit_; |
|
|
|
inline char* GetIOVecPointer(int index, size_t offset) { |
|
return reinterpret_cast<char*>(output_iov_[index].iov_base) + |
|
offset; |
|
} |
|
|
|
public: |
|
// Does not take ownership of iov. iov must be valid during the |
|
// entire lifetime of the SnappyIOVecWriter. |
|
inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) |
|
: output_iov_(iov), |
|
output_iov_count_(iov_count), |
|
curr_iov_index_(0), |
|
curr_iov_written_(0), |
|
total_written_(0), |
|
output_limit_((size_t)-1) { |
|
} |
|
|
|
inline void SetExpectedLength(size_t len) { |
|
output_limit_ = len; |
|
} |
|
|
|
inline bool CheckLength() const { |
|
return total_written_ == output_limit_; |
|
} |
|
|
|
inline bool Append(const char* ip, size_t len) { |
|
if (total_written_ + len > output_limit_) { |
|
return false; |
|
} |
|
|
|
while (len > 0) { |
|
assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len); |
|
if (curr_iov_written_ >= output_iov_[curr_iov_index_].iov_len) { |
|
// This iovec is full. Go to the next one. |
|
if (curr_iov_index_ + 1 >= output_iov_count_) { |
|
return false; |
|
} |
|
curr_iov_written_ = 0; |
|
++curr_iov_index_; |
|
} |
|
|
|
const size_t to_write = Min( |
|
len, output_iov_[curr_iov_index_].iov_len - curr_iov_written_); |
|
memcpy(GetIOVecPointer(curr_iov_index_, curr_iov_written_), |
|
ip, |
|
to_write); |
|
curr_iov_written_ += to_write; |
|
total_written_ += to_write; |
|
ip += to_write; |
|
len -= to_write; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) { |
|
const size_t space_left = output_limit_ - total_written_; |
|
if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && |
|
output_iov_[curr_iov_index_].iov_len - curr_iov_written_ >= 16) { |
|
// Fast path, used for the majority (about 95%) of invocations. |
|
char* ptr = GetIOVecPointer(curr_iov_index_, curr_iov_written_); |
|
UnalignedCopy64(ip, ptr); |
|
UnalignedCopy64(ip + 8, ptr + 8); |
|
curr_iov_written_ += len; |
|
total_written_ += len; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) { |
|
if (offset > total_written_ || offset == 0) { |
|
return false; |
|
} |
|
const size_t space_left = output_limit_ - total_written_; |
|
if (len > space_left) { |
|
return false; |
|
} |
|
|
|
// Locate the iovec from which we need to start the copy. |
|
int from_iov_index = curr_iov_index_; |
|
size_t from_iov_offset = curr_iov_written_; |
|
while (offset > 0) { |
|
if (from_iov_offset >= offset) { |
|
from_iov_offset -= offset; |
|
break; |
|
} |
|
|
|
offset -= from_iov_offset; |
|
--from_iov_index; |
|
assert(from_iov_index >= 0); |
|
from_iov_offset = output_iov_[from_iov_index].iov_len; |
|
} |
|
|
|
// Copy <len> bytes starting from the iovec pointed to by from_iov_index to |
|
// the current iovec. |
|
while (len > 0) { |
|
assert(from_iov_index <= curr_iov_index_); |
|
if (from_iov_index != curr_iov_index_) { |
|
const size_t to_copy = Min( |
|
output_iov_[from_iov_index].iov_len - from_iov_offset, |
|
len); |
|
Append(GetIOVecPointer(from_iov_index, from_iov_offset), to_copy); |
|
len -= to_copy; |
|
if (len > 0) { |
|
++from_iov_index; |
|
from_iov_offset = 0; |
|
} |
|
} else { |
|
assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len); |
|
size_t to_copy = Min(output_iov_[curr_iov_index_].iov_len - |
|
curr_iov_written_, |
|
len); |
|
if (to_copy == 0) { |
|
// This iovec is full. Go to the next one. |
|
if (curr_iov_index_ + 1 >= output_iov_count_) { |
|
return false; |
|
} |
|
++curr_iov_index_; |
|
curr_iov_written_ = 0; |
|
continue; |
|
} |
|
if (to_copy > len) { |
|
to_copy = len; |
|
} |
|
IncrementalCopy(GetIOVecPointer(from_iov_index, from_iov_offset), |
|
GetIOVecPointer(curr_iov_index_, curr_iov_written_), |
|
to_copy); |
|
curr_iov_written_ += to_copy; |
|
from_iov_offset += to_copy; |
|
total_written_ += to_copy; |
|
len -= to_copy; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
}; |
|
|
|
bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, |
|
const struct iovec* iov, size_t iov_cnt) { |
|
ByteArraySource reader(compressed, compressed_length); |
|
return RawUncompressToIOVec(&reader, iov, iov_cnt); |
|
} |
|
|
|
bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, |
|
size_t iov_cnt) { |
|
SnappyIOVecWriter output(iov, iov_cnt); |
|
return InternalUncompress(compressed, &output); |
|
} |
|
|
|
// ----------------------------------------------------------------------- |
|
// Flat array interfaces |
|
// ----------------------------------------------------------------------- |
|
|
|
// A type that writes to a flat array. |
|
// Note that this is not a "ByteSink", but a type that matches the |
|
// Writer template argument to SnappyDecompressor::DecompressAllTags(). |
|
class SnappyArrayWriter { |
|
private: |
|
char* base_; |
|
char* op_; |
|
char* op_limit_; |
|
|
|
public: |
|
inline explicit SnappyArrayWriter(char* dst) |
|
: base_(dst), |
|
op_(dst) { |
|
} |
|
|
|
inline void SetExpectedLength(size_t len) { |
|
op_limit_ = op_ + len; |
|
} |
|
|
|
inline bool CheckLength() const { |
|
return op_ == op_limit_; |
|
} |
|
|
|
inline bool Append(const char* ip, size_t len) { |
|
char* op = op_; |
|
const size_t space_left = op_limit_ - op; |
|
if (space_left < len) { |
|
return false; |
|
} |
|
memcpy(op, ip, len); |
|
op_ = op + len; |
|
return true; |
|
} |
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) { |
|
char* op = op_; |
|
const size_t space_left = op_limit_ - op; |
|
if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { |
|
// Fast path, used for the majority (about 95%) of invocations. |
|
UnalignedCopy64(ip, op); |
|
UnalignedCopy64(ip + 8, op + 8); |
|
op_ = op + len; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) { |
|
char* op = op_; |
|
const size_t space_left = op_limit_ - op; |
|
|
|
// Check if we try to append from before the start of the buffer. |
|
// Normally this would just be a check for "produced < offset", |
|
// but "produced <= offset - 1u" is equivalent for every case |
|
// except the one where offset==0, where the right side will wrap around |
|
// to a very big number. This is convenient, as offset==0 is another |
|
// invalid case that we also want to catch, so that we do not go |
|
// into an infinite loop. |
|
assert(op >= base_); |
|
size_t produced = op - base_; |
|
if (produced <= offset - 1u) { |
|
return false; |
|
} |
|
if (len <= 16 && offset >= 8 && space_left >= 16) { |
|
// Fast path, used for the majority (70-80%) of dynamic invocations. |
|
UnalignedCopy64(op - offset, op); |
|
UnalignedCopy64(op - offset + 8, op + 8); |
|
} else { |
|
if (space_left >= len + kMaxIncrementCopyOverflow) { |
|
IncrementalCopyFastPath(op - offset, op, len); |
|
} else { |
|
if (space_left < len) { |
|
return false; |
|
} |
|
IncrementalCopy(op - offset, op, len); |
|
} |
|
} |
|
|
|
op_ = op + len; |
|
return true; |
|
} |
|
}; |
|
|
|
bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { |
|
ByteArraySource reader(compressed, n); |
|
return RawUncompress(&reader, uncompressed); |
|
} |
|
|
|
bool RawUncompress(Source* compressed, char* uncompressed) { |
|
SnappyArrayWriter output(uncompressed); |
|
return InternalUncompress(compressed, &output); |
|
} |
|
|
|
bool Uncompress(const char* compressed, size_t n, string* uncompressed) { |
|
size_t ulength; |
|
if (!GetUncompressedLength(compressed, n, &ulength)) { |
|
return false; |
|
} |
|
// On 32-bit builds: max_size() < kuint32max. Check for that instead |
|
// of crashing (e.g., consider externally specified compressed data). |
|
if (ulength > uncompressed->max_size()) { |
|
return false; |
|
} |
|
STLStringResizeUninitialized(uncompressed, ulength); |
|
return RawUncompress(compressed, n, string_as_array(uncompressed)); |
|
} |
|
|
|
|
|
// A Writer that drops everything on the floor and just does validation |
|
class SnappyDecompressionValidator { |
|
private: |
|
size_t expected_; |
|
size_t produced_; |
|
|
|
public: |
|
inline SnappyDecompressionValidator() : produced_(0) { } |
|
inline void SetExpectedLength(size_t len) { |
|
expected_ = len; |
|
} |
|
inline bool CheckLength() const { |
|
return expected_ == produced_; |
|
} |
|
inline bool Append(const char* ip, size_t len) { |
|
produced_ += len; |
|
return produced_ <= expected_; |
|
} |
|
inline bool TryFastAppend(const char* ip, size_t available, size_t length) { |
|
return false; |
|
} |
|
inline bool AppendFromSelf(size_t offset, size_t len) { |
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of |
|
// the "offset - 1u" trick. |
|
if (produced_ <= offset - 1u) return false; |
|
produced_ += len; |
|
return produced_ <= expected_; |
|
} |
|
}; |
|
|
|
bool IsValidCompressedBuffer(const char* compressed, size_t n) { |
|
ByteArraySource reader(compressed, n); |
|
SnappyDecompressionValidator writer; |
|
return InternalUncompress(&reader, &writer); |
|
} |
|
|
|
void RawCompress(const char* input, |
|
size_t input_length, |
|
char* compressed, |
|
size_t* compressed_length) { |
|
ByteArraySource reader(input, input_length); |
|
UncheckedByteArraySink writer(compressed); |
|
Compress(&reader, &writer); |
|
|
|
// Compute how many bytes were added |
|
*compressed_length = (writer.CurrentDestination() - compressed); |
|
} |
|
|
|
size_t Compress(const char* input, size_t input_length, string* compressed) { |
|
// Pre-grow the buffer to the max length of the compressed output |
|
compressed->resize(MaxCompressedLength(input_length)); |
|
|
|
size_t compressed_length; |
|
RawCompress(input, input_length, string_as_array(compressed), |
|
&compressed_length); |
|
compressed->resize(compressed_length); |
|
return compressed_length; |
|
} |
|
|
|
|
|
} // end namespace snappy |
|
|
|
|