You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.2 KiB
158 lines
5.2 KiB
#ifndef CRYPTOPP_MODARITH_H |
|
#define CRYPTOPP_MODARITH_H |
|
|
|
// implementations are in integer.cpp |
|
|
|
#include "cryptlib.h" |
|
#include "misc.h" |
|
#include "integer.h" |
|
#include "algebra.h" |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>; |
|
|
|
//! ring of congruence classes modulo n |
|
/*! \note this implementation represents each congruence class as the smallest non-negative integer in that class */ |
|
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer> |
|
{ |
|
public: |
|
|
|
typedef int RandomizationParameter; |
|
typedef Integer Element; |
|
|
|
ModularArithmetic(const Integer &modulus = Integer::One()) |
|
: m_modulus(modulus), m_result((word)0, modulus.reg.size()) {} |
|
|
|
ModularArithmetic(const ModularArithmetic &ma) |
|
: m_modulus(ma.m_modulus), m_result((word)0, m_modulus.reg.size()) {} |
|
|
|
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters |
|
|
|
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);} |
|
|
|
void DEREncode(BufferedTransformation &bt) const; |
|
|
|
void DEREncodeElement(BufferedTransformation &out, const Element &a) const; |
|
void BERDecodeElement(BufferedTransformation &in, Element &a) const; |
|
|
|
const Integer& GetModulus() const {return m_modulus;} |
|
void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());} |
|
|
|
virtual bool IsMontgomeryRepresentation() const {return false;} |
|
|
|
virtual Integer ConvertIn(const Integer &a) const |
|
{return a%m_modulus;} |
|
|
|
virtual Integer ConvertOut(const Integer &a) const |
|
{return a;} |
|
|
|
const Integer& Half(const Integer &a) const; |
|
|
|
bool Equal(const Integer &a, const Integer &b) const |
|
{return a==b;} |
|
|
|
const Integer& Identity() const |
|
{return Integer::Zero();} |
|
|
|
const Integer& Add(const Integer &a, const Integer &b) const; |
|
|
|
Integer& Accumulate(Integer &a, const Integer &b) const; |
|
|
|
const Integer& Inverse(const Integer &a) const; |
|
|
|
const Integer& Subtract(const Integer &a, const Integer &b) const; |
|
|
|
Integer& Reduce(Integer &a, const Integer &b) const; |
|
|
|
const Integer& Double(const Integer &a) const |
|
{return Add(a, a);} |
|
|
|
const Integer& MultiplicativeIdentity() const |
|
{return Integer::One();} |
|
|
|
const Integer& Multiply(const Integer &a, const Integer &b) const |
|
{return m_result1 = a*b%m_modulus;} |
|
|
|
const Integer& Square(const Integer &a) const |
|
{return m_result1 = a.Squared()%m_modulus;} |
|
|
|
bool IsUnit(const Integer &a) const |
|
{return Integer::Gcd(a, m_modulus).IsUnit();} |
|
|
|
const Integer& MultiplicativeInverse(const Integer &a) const |
|
{return m_result1 = a.InverseMod(m_modulus);} |
|
|
|
const Integer& Divide(const Integer &a, const Integer &b) const |
|
{return Multiply(a, MultiplicativeInverse(b));} |
|
|
|
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; |
|
|
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
|
|
|
unsigned int MaxElementBitLength() const |
|
{return (m_modulus-1).BitCount();} |
|
|
|
unsigned int MaxElementByteLength() const |
|
{return (m_modulus-1).ByteCount();} |
|
|
|
Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const |
|
// left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct |
|
{ |
|
return Element( rng , Integer( (long) 0) , m_modulus - Integer( (long) 1 ) ) ; |
|
} |
|
|
|
bool operator==(const ModularArithmetic &rhs) const |
|
{return m_modulus == rhs.m_modulus;} |
|
|
|
static const RandomizationParameter DefaultRandomizationParameter ; |
|
|
|
protected: |
|
Integer m_modulus; |
|
mutable Integer m_result, m_result1; |
|
|
|
}; |
|
|
|
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ; |
|
|
|
//! do modular arithmetics in Montgomery representation for increased speed |
|
/*! \note the Montgomery representation represents each congruence class [a] as a*r%n, where r is a convenient power of 2 */ |
|
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic |
|
{ |
|
public: |
|
MontgomeryRepresentation(const Integer &modulus); // modulus must be odd |
|
|
|
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);} |
|
|
|
bool IsMontgomeryRepresentation() const {return true;} |
|
|
|
Integer ConvertIn(const Integer &a) const |
|
{return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;} |
|
|
|
Integer ConvertOut(const Integer &a) const; |
|
|
|
const Integer& MultiplicativeIdentity() const |
|
{return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;} |
|
|
|
const Integer& Multiply(const Integer &a, const Integer &b) const; |
|
|
|
const Integer& Square(const Integer &a) const; |
|
|
|
const Integer& MultiplicativeInverse(const Integer &a) const; |
|
|
|
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const |
|
{return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);} |
|
|
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
|
{AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);} |
|
|
|
private: |
|
Integer m_u; |
|
mutable IntegerSecBlock m_workspace; |
|
}; |
|
|
|
NAMESPACE_END |
|
|
|
#endif
|
|
|