You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
8.4 KiB
173 lines
8.4 KiB
// nbtheory.h - written and placed in the public domain by Wei Dai |
|
|
|
//! \file nbtheory.h |
|
//! \brief Classes and functions for number theoretic operations |
|
|
|
#ifndef CRYPTOPP_NBTHEORY_H |
|
#define CRYPTOPP_NBTHEORY_H |
|
|
|
#include "cryptlib.h" |
|
#include "integer.h" |
|
#include "algparam.h" |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
// obtain pointer to small prime table and get its size |
|
CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); |
|
|
|
// ************ primality testing **************** |
|
|
|
//! \brief Generates a provable prime |
|
//! \param rng a RandomNumberGenerator to produce keying material |
|
//! \param bits the number of bits in the prime number |
|
//! \returns Integer() meeting Maurer's tests for primality |
|
CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); |
|
|
|
//! \brief Generates a provable prime |
|
//! \param rng a RandomNumberGenerator to produce keying material |
|
//! \param bits the number of bits in the prime number |
|
//! \returns Integer() meeting Mihailescu's tests for primality |
|
//! \details Mihailescu's methods performs a search using algorithmic progressions. |
|
CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); |
|
|
|
//! \brief Tests whether a number is a small prime |
|
//! \param p a candidate prime to test |
|
//! \returns true if p is a small prime, false otherwise |
|
//! \details Internally, the library maintains a table fo the first 32719 prime numbers |
|
//! in sorted order. IsSmallPrime() searches the table and returns true if p is |
|
//! in the table. |
|
CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); |
|
|
|
//! |
|
//! \returns true if p is divisible by some prime less than bound. |
|
//! \details TrialDivision() true if p is divisible by some prime less than bound. bound not be |
|
//! greater than the largest entry in the prime table, which is 32719. |
|
CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); |
|
|
|
// returns true if p is NOT divisible by small primes |
|
CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); |
|
|
|
// These is no reason to use these two, use the ones below instead |
|
CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); |
|
CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); |
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); |
|
CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); |
|
|
|
// Rabin-Miller primality test, i.e. repeating the strong probable prime test |
|
// for several rounds with random bases |
|
CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds); |
|
|
|
//! \brief Verifies a prime number |
|
//! \param p a candidate prime to test |
|
//! \returns true if p is a probable prime, false otherwise |
|
//! \details IsPrime() is suitable for testing candidate primes when creating them. Internally, |
|
//! IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime(). |
|
CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); |
|
|
|
//! \brief Verifies a prime number |
|
//! \param rng a RandomNumberGenerator for randomized testing |
|
//! \param p a candidate prime to test |
|
//! \param level the level of thoroughness of testing |
|
//! \returns true if p is a strong probable prime, false otherwise |
|
//! \details VerifyPrime() is suitable for testing candidate primes created by others. Internally, |
|
//! VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candiate passes and |
|
//! level is greater than 1, then 10 round RabinMillerTest() primality testing is performed. |
|
CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); |
|
|
|
//! \class PrimeSelector |
|
//! \brief Application callback to signal suitability of a cabdidate prime |
|
class CRYPTOPP_DLL PrimeSelector |
|
{ |
|
public: |
|
const PrimeSelector *GetSelectorPointer() const {return this;} |
|
virtual bool IsAcceptable(const Integer &candidate) const =0; |
|
}; |
|
|
|
//! \brief Finds a random prime of special form |
|
//! \param p an Integer reference to receive the prime |
|
//! \param max the maximum value |
|
//! \param equiv the equivalence class based on the parameter mod |
|
//! \param mod the modulus used to reduce the equivalence class |
|
//! \param pSelector pointer to a PrimeSelector function for the application to signal suitability |
|
//! \returns true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime() |
|
//! returns false, then no such prime exists and the value of p is undefined |
|
//! \details FirstPrime() uses a fast sieve to find the first probable prime |
|
//! in <tt>{x | p<=x<=max and x%mod==equiv}</tt> |
|
CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); |
|
|
|
CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); |
|
|
|
CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); |
|
|
|
// ********** other number theoretic functions ************ |
|
|
|
inline Integer GCD(const Integer &a, const Integer &b) |
|
{return Integer::Gcd(a,b);} |
|
inline bool RelativelyPrime(const Integer &a, const Integer &b) |
|
{return Integer::Gcd(a,b) == Integer::One();} |
|
inline Integer LCM(const Integer &a, const Integer &b) |
|
{return a/Integer::Gcd(a,b)*b;} |
|
inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) |
|
{return a.InverseMod(b);} |
|
|
|
// use Chinese Remainder Theorem to calculate x given x mod p and x mod q, and u = inverse of p mod q |
|
CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); |
|
|
|
// if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise |
|
// check a number theory book for what Jacobi symbol means when b is not prime |
|
CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); |
|
|
|
// calculates the Lucas function V_e(p, 1) mod n |
|
CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); |
|
// calculates x such that m==Lucas(e, x, p*q), p q primes, u=inverse of p mod q |
|
CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); |
|
|
|
inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m) |
|
{return a_exp_b_mod_c(a, e, m);} |
|
// returns x such that x*x%p == a, p prime |
|
CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); |
|
// returns x such that a==ModularExponentiation(x, e, p*q), p q primes, |
|
// and e relatively prime to (p-1)*(q-1) |
|
// dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1)) |
|
// and u=inverse of p mod q |
|
CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); |
|
|
|
// find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime |
|
// returns true if solutions exist |
|
CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); |
|
|
|
// returns log base 2 of estimated number of operations to calculate discrete log or factor a number |
|
CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); |
|
CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); |
|
|
|
// ******************************************************** |
|
|
|
//! generator of prime numbers of special forms |
|
class CRYPTOPP_DLL PrimeAndGenerator |
|
{ |
|
public: |
|
PrimeAndGenerator() {} |
|
// generate a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is also prime |
|
// Precondition: pbits > 5 |
|
// warning: this is slow, because primes of this form are harder to find |
|
PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) |
|
{Generate(delta, rng, pbits, pbits-1);} |
|
// generate a random prime p of the form 2*r*q+delta, where q is also prime |
|
// Precondition: qbits > 4 && pbits > qbits |
|
PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) |
|
{Generate(delta, rng, pbits, qbits);} |
|
|
|
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); |
|
|
|
const Integer& Prime() const {return p;} |
|
const Integer& SubPrime() const {return q;} |
|
const Integer& Generator() const {return g;} |
|
|
|
private: |
|
Integer p, q, g; |
|
}; |
|
|
|
NAMESPACE_END |
|
|
|
#endif
|
|
|