mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-28 15:54:19 +00:00
139 lines
5.5 KiB
C++
139 lines
5.5 KiB
C++
// via-rng.h - written and placed in public domain by Jeffrey Walton
|
|
|
|
/// \file padlkrng.h
|
|
/// \brief Classes for VIA Padlock RNG
|
|
/// \since Crypto++ 6.0
|
|
/// \sa <A HREF="http://www.cryptopp.com/wiki/VIA_Padlock">VIA
|
|
/// Padlock</A> on the Crypto++ wiki
|
|
|
|
#ifndef CRYPTOPP_PADLOCK_RNG_H
|
|
#define CRYPTOPP_PADLOCK_RNG_H
|
|
|
|
#include "cryptlib.h"
|
|
#include "secblock.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
/// \brief Exception thrown when a PadlockRNG generator encounters
|
|
/// a generator related error.
|
|
/// \since Crypto++ 6.0
|
|
class PadlockRNG_Err : public Exception
|
|
{
|
|
public:
|
|
PadlockRNG_Err(const std::string &operation)
|
|
: Exception(OTHER_ERROR, "PadlockRNG: " + operation + " operation failed") {}
|
|
PadlockRNG_Err(const std::string &component, const std::string &message)
|
|
: Exception(OTHER_ERROR, component + ": " + message) {}
|
|
};
|
|
|
|
/// \brief Hardware generated random numbers using VIA XSTORE
|
|
/// \details Some VIA processors provide a Security Engine called Padlock. The Padlock
|
|
/// Security Engine provides AES, SHA and a RNG. The PadlockRNG class provides access
|
|
/// to the RNG.
|
|
/// \details The VIA generator uses an 8 byte FIFO buffer for random numbers. The
|
|
/// generator can be configured to discard bits from the buffer to resist analysis.
|
|
/// The <tt>divisor</tt> controls the number of bytes discarded. The formula for
|
|
/// the discard amount is <tt>2**divisor - 1</tt>. When <tt>divisor=0</tt> no bits
|
|
/// are discarded and the entire 8 byte buffer is read. If <tt>divisor=3</tt> then
|
|
/// 7 bytes are discarded and 1 byte is read. TheVIA SDK samples use <tt>divisor=1</tt>.
|
|
/// \details Cryptography Research, Inc (CRI) audited the Padlock Security Engine
|
|
/// in 2003. CRI provided recommendations to operate the generator for secure and
|
|
/// non-secure applications. Additionally, the Programmers Guide and SDK provided a
|
|
/// different configuration in the sample code.
|
|
/// \details You can operate the generator according to CRI recommendations by setting
|
|
/// <tt>divisor</tt>, reading one word (or partial word) at a time from the FIFO, and
|
|
/// then inspecting the MSR after each read.
|
|
/// \details The audit report with recommendations is available on the Crypto++ wiki
|
|
/// at <A HREF="http://www.cryptopp.com/wiki/VIA_Padlock">VIA Padlock</A>.
|
|
/// \sa MaurerRandomnessTest() for random bit generators
|
|
/// \since Crypto++ 6.0
|
|
class PadlockRNG : public RandomNumberGenerator
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() { return "PadlockRNG"; }
|
|
|
|
virtual ~PadlockRNG() {}
|
|
|
|
/// \brief Construct a PadlockRNG generator
|
|
/// \param divisor the XSTORE divisor
|
|
/// \details Some VIA processors provide a Security Engine called Padlock. The Padlock
|
|
/// Security Engine provides AES, SHA and a RNG. The PadlockRNG class provides access
|
|
/// to the RNG.
|
|
/// \details The VIA generator uses an 8 byte FIFO buffer for random numbers. The
|
|
/// generator can be configured to discard bits from the buffer to resist analysis.
|
|
/// The <tt>divisor</tt> controls the number of bytes discarded. The formula for
|
|
/// the discard amount is <tt>2**divisor - 1</tt>. When <tt>divisor=0</tt> no bits
|
|
/// are discarded and the entire 8 byte buffer is read. If <tt>divisor=3</tt> then
|
|
/// 7 bytes are discarded and 1 byte is read. VIA SDK samples use <tt>divisor=1</tt>.
|
|
/// \details Cryptography Research, Inc (CRI) audited the Padlock Security Engine
|
|
/// in 2003. CRI provided recommendations to operate the generator for secure and
|
|
/// non-secure applications. Additionally, the Programmers SDK provided a different
|
|
/// configuration in the sample code.
|
|
/// \details The audit report with recommendations is available on the Crypto++ wiki
|
|
/// at <A HREF="http://www.cryptopp.com/wiki/VIA_Padlock">VIA Padlock</A>.
|
|
/// \sa SetDivisor, GetDivisor
|
|
PadlockRNG(word32 divisor=1);
|
|
|
|
/// \brief Generate random array of bytes
|
|
/// \param output the byte buffer
|
|
/// \param size the length of the buffer, in bytes
|
|
virtual void GenerateBlock(byte *output, size_t size);
|
|
|
|
/// \brief Generate and discard n bytes
|
|
/// \param n the number of bytes to generate and discard
|
|
/// \details the Padlock generator discards words, not bytes. If n is
|
|
/// not a multiple of a 32-bit word, then it is rounded up to
|
|
/// that size.
|
|
virtual void DiscardBytes(size_t n);
|
|
|
|
/// \brief Update RNG state with additional unpredictable values
|
|
/// \param input unused
|
|
/// \param length unused
|
|
/// \details The operation is a nop for this generator.
|
|
virtual void IncorporateEntropy(const byte *input, size_t length)
|
|
{
|
|
// Override to avoid the base class' throw.
|
|
CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(length);
|
|
}
|
|
|
|
std::string AlgorithmProvider() const;
|
|
|
|
/// \brief Set the XSTORE divisor
|
|
/// \param divisor the XSTORE divisor
|
|
/// \returns the old XSTORE divisor
|
|
word32 SetDivisor(word32 divisor)
|
|
{
|
|
word32 old = m_divisor;
|
|
m_divisor = DivisorHelper(divisor);
|
|
return old;
|
|
}
|
|
|
|
/// \brief Get the XSTORE divisor
|
|
/// \returns the current XSTORE divisor
|
|
word32 GetDivisor() const
|
|
{
|
|
return m_divisor;
|
|
}
|
|
|
|
/// \brief Get the MSR for the last operation
|
|
/// \returns the MSR for the last read operation
|
|
word32 GetMSR() const
|
|
{
|
|
return m_msr;
|
|
}
|
|
|
|
protected:
|
|
inline word32 DivisorHelper(word32 divisor)
|
|
{
|
|
return divisor > 3 ? 3 : divisor;
|
|
}
|
|
|
|
private:
|
|
FixedSizeAlignedSecBlock<word32, 4, true> m_buffer;
|
|
word32 m_divisor, m_msr;
|
|
};
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif // CRYPTOPP_PADLOCK_RNG_H
|