2020-10-22 20:43:01 +03:00

3359 lines
176 KiB
C++

// cryptlib.h - originally written and placed in the public domain by Wei Dai
/// \file cryptlib.h
/// \brief Abstract base classes that provide a uniform interface to this library.
/*! \mainpage Crypto++ Library 8.3 API Reference
<dl>
<dt>Abstract Base Classes<dd>
cryptlib.h
<dt>Authenticated Encryption Modes<dd>
CCM, EAX, \ref GCM "GCM (2K tables)", \ref GCM "GCM (64K tables)"
<dt>Block Ciphers<dd>
\ref Rijndael "AES", ARIA, Weak::ARC4, Blowfish, BTEA, \ref CHAM128 "CHAM (64/128)", Camellia,
\ref CAST128 "CAST (128/256)", DES, \ref DES_EDE2 "2-key Triple-DES", \ref DES_EDE3 "3-key Triple-DES",
\ref DES_XEX3 "DESX", GOST, HIGHT, IDEA, LEA, \ref LR "Luby-Rackoff", \ref Kalyna128 "Kalyna (128/256/512)",
MARS, RC2, RC5, RC6, \ref SAFER_K "SAFER-K", \ref SAFER_SK "SAFER-SK", SEED, Serpent,
\ref SHACAL2 "SHACAL-2", SHARK, \ref SIMECK64 "SIMECK (32/64)" SKIPJACK, SM4, Square, TEA,
\ref ThreeWay "3-Way", \ref Threefish256 "Threefish (256/512/1024)", Twofish, XTEA
<dt>Stream Ciphers<dd>
\ref ChaCha "ChaCha (8/12/20)", \ref HC128 "HC-128/256", \ref Panama "Panama-LE", \ref Panama "Panama-BE",
Rabbit, Salsa20, \ref SEAL "SEAL-LE", \ref SEAL "SEAL-BE", WAKE, XSalsa20
<dt>Hash Functions<dd>
BLAKE2s, BLAKE2b, \ref Keccak "Keccak (F1600)", SHA1, SHA224, SHA256, SHA384, SHA512,
\ref SHA3 "SHA-3", SM3, Tiger, RIPEMD160, RIPEMD320, RIPEMD128, RIPEMD256, SipHash, Whirlpool,
Weak::MD2, Weak::MD4, Weak::MD5
<dt>Non-Cryptographic Checksums<dd>
CRC32, CRC32C, Adler32
<dt>Message Authentication Codes<dd>
BLAKE2b, BLAKE2s, CBC_MAC, CMAC, DMAC, \ref GCM "GCM (GMAC)", HMAC, Poly1305, TTMAC, VMAC
<dt>Random Number Generators<dd>
NullRNG, LC_RNG, RandomPool, BlockingRng, NonblockingRng, AutoSeededRandomPool, AutoSeededX917RNG,
NIST Hash_DRBG and HMAC_DRBG, \ref MersenneTwister "MersenneTwister (MT19937 and MT19937-AR)",
DARN, RDRAND, RDSEED
<dt>Key Derivation and Password-based Cryptography<dd>
HKDF, \ref PKCS12_PBKDF "PBKDF (PKCS #12)", \ref PKCS5_PBKDF1 "PBKDF-1 (PKCS #5)",
\ref PKCS5_PBKDF2_HMAC "PBKDF-2/HMAC (PKCS #5)"
<dt>Public Key Cryptosystems<dd>
DLIES, ECIES, LUCES, RSAES, RabinES, LUC_IES
<dt>Public Key Signature Schemes<dd>
DSA, DSA2, \ref ed25519 "Ed25519", GDSA, ECDSA, NR, ECNR, LUCSS, RSASS, RSASS_ISO,
RabinSS, RWSS, ESIGN
<dt>Key Agreement<dd>
DH, DH2, \ref x25519 "X25519", \ref MQV_Domain "MQV", \ref HMQV_Domain "HMQV",
\ref FHMQV_Domain "FHMQV", ECDH, x25519, ECMQV, ECHMQV, ECFHMQV, XTR_DH
<dt>Algebraic Structures<dd>
Integer, PolynomialMod2, PolynomialOver, RingOfPolynomialsOver,
ModularArithmetic, MontgomeryRepresentation, GFP2_ONB, GF2NP, GF256, GF2_32, EC2N, ECP
<dt>Secret Sharing and Information Dispersal<dd>
SecretSharing, SecretRecovery, InformationDispersal, InformationRecovery
<dt>Compression<dd>
Deflator, Inflator, Gzip, Gunzip, ZlibCompressor, ZlibDecompressor
<dt>Input Source Classes<dd>
StringSource, ArraySource, VectorSource, FileSource, RandomNumberSource
<dt>Output Sink Classes<dd>
StringSinkTemplate, StringSink, VectorSink, ArraySink, FileSink, RandomNumberSink
<dt>Filter Wrappers<dd>
StreamTransformationFilter, AuthenticatedEncryptionFilter, AuthenticatedDecryptionFilter, HashFilter,
HashVerificationFilter, SignerFilter, SignatureVerificationFilter
<dt>Binary to Text Encoders and Decoders<dd>
HexEncoder, HexDecoder, Base64Encoder, Base64Decoder, Base64URLEncoder, Base64URLDecoder, Base32Encoder,
Base32Decoder
<dt>Wrappers for OS features<dd>
Timer, ThreadUserTimer
</dl>
<!--
<dt>FIPS 140 validated cryptography<dd>
fips140.h
In the DLL version of Crypto++, only the following implementation class are available.
<dl>
<dt>Block Ciphers<dd>
AES, \ref DES_EDE2 "2-key Triple-DES", \ref DES_EDE3 "3-key Triple-DES", SKIPJACK
<dt>Cipher Modes (replace template parameter BC with one of the block ciphers above)<dd>
\ref ECB_Mode "ECB_Mode<BC>", \ref CTR_Mode "CTR_Mode<BC>", \ref CBC_Mode "CBC_Mode<BC>",
\ref CFB_FIPS_Mode "CFB_FIPS_Mode<BC>", \ref OFB_Mode "OFB_Mode<BC>", \ref GCM "GCM<AES>"
<dt>Hash Functions<dd>
SHA1, SHA224, SHA256, SHA384, SHA512
<dt>Public Key Signature Schemes (replace template parameter H with one of the hash functions above)<dd>
RSASS\<PKCS1v15, H\>, RSASS\<PSS, H\>, RSASS_ISO\<H\>, RWSS\<P1363_EMSA2, H\>, DSA, ECDSA\<ECP, H\>,
ECDSA\<EC2N, H\>
<dt>Message Authentication Codes (replace template parameter H with one of the hash functions above)<dd>
HMAC\<H\>, CBC_MAC\<DES_EDE2\>, CBC_MAC\<DES_EDE3\>, GCM\<AES\>
<dt>Random Number Generators<dd>
DefaultAutoSeededRNG (AutoSeededX917RNG\<AES\>)
<dt>Key Agreement<dd>
DH, DH2
<dt>Public Key Cryptosystems<dd>
RSAES\<OAEP\<SHA1\> \>
</dl>
-->
<p>This reference manual is a work in progress. Some classes lack detailed descriptions.
<p>Click <a href="CryptoPPRef.zip">here</a> to download a zip archive containing this manual.
<p>Thanks to Ryan Phillips for providing the Doxygen configuration file
and getting us started on the manual.
*/
#ifndef CRYPTOPP_CRYPTLIB_H
#define CRYPTOPP_CRYPTLIB_H
#include "config.h"
#include "stdcpp.h"
#include "trap.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4127 4189 4505 4702)
#endif
NAMESPACE_BEGIN(CryptoPP)
// forward declarations
class Integer;
class RandomNumberGenerator;
class BufferedTransformation;
/// \brief Specifies a direction for a cipher to operate
/// \sa BlockTransformation::IsForwardTransformation(), BlockTransformation::IsPermutation(), BlockTransformation::GetCipherDirection()
enum CipherDir {
/// \brief the cipher is performing encryption
ENCRYPTION,
/// \brief the cipher is performing decryption
DECRYPTION};
/// \brief Represents infinite time
const unsigned long INFINITE_TIME = ULONG_MAX;
// VC60 workaround: using enums as template parameters causes problems
/// \brief Converts an enumeration to a type suitable for use as a template parameter
template <typename ENUM_TYPE, int VALUE>
struct EnumToType
{
static ENUM_TYPE ToEnum() {return static_cast<ENUM_TYPE>(VALUE);}
};
/// \brief Provides the byte ordering
/// \details Big-endian and little-endian modes are supported. Bi-endian and PDP-endian modes
/// are not supported.
enum ByteOrder {
/// \brief byte order is little-endian
LITTLE_ENDIAN_ORDER = 0,
/// \brief byte order is big-endian
BIG_ENDIAN_ORDER = 1};
/// \brief Provides a constant for LittleEndian
typedef EnumToType<ByteOrder, LITTLE_ENDIAN_ORDER> LittleEndian;
/// \brief Provides a constant for BigEndian
typedef EnumToType<ByteOrder, BIG_ENDIAN_ORDER> BigEndian;
/// \brief Base class for all exceptions thrown by the library
/// \details All library exceptions directly or indirectly inherit from the Exception class.
/// The Exception class itself inherits from std::exception. The library does not use
/// std::runtime_error derived classes.
class CRYPTOPP_DLL Exception : public std::exception
{
public:
/// \enum ErrorType
/// \brief Error types or categories
enum ErrorType {
/// \brief A method was called which was not implemented
NOT_IMPLEMENTED,
/// \brief An invalid argument was detected
INVALID_ARGUMENT,
/// \brief BufferedTransformation received a Flush(true) signal but can't flush buffers
CANNOT_FLUSH,
/// \brief Data integerity check, such as CRC or MAC, failed
DATA_INTEGRITY_CHECK_FAILED,
/// \brief Input data was received that did not conform to expected format
INVALID_DATA_FORMAT,
/// \brief Error reading from input device or writing to output device
IO_ERROR,
/// \brief Some other error occurred not belonging to other categories
OTHER_ERROR
};
virtual ~Exception() throw() {}
/// \brief Construct a new Exception
explicit Exception(ErrorType errorType, const std::string &s) : m_errorType(errorType), m_what(s) {}
/// \brief Retrieves a C-string describing the exception
const char *what() const throw() {return (m_what.c_str());}
/// \brief Retrieves a string describing the exception
const std::string &GetWhat() const {return m_what;}
/// \brief Sets the error string for the exception
void SetWhat(const std::string &s) {m_what = s;}
/// \brief Retrieves the error type for the exception
ErrorType GetErrorType() const {return m_errorType;}
/// \brief Sets the error type for the exceptions
void SetErrorType(ErrorType errorType) {m_errorType = errorType;}
private:
ErrorType m_errorType;
std::string m_what;
};
/// \brief An invalid argument was detected
class CRYPTOPP_DLL InvalidArgument : public Exception
{
public:
/// \brief Construct an InvalidArgument
/// \param s the message for the exception
/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
explicit InvalidArgument(const std::string &s) : Exception(INVALID_ARGUMENT, s) {}
};
/// \brief Input data was received that did not conform to expected format
class CRYPTOPP_DLL InvalidDataFormat : public Exception
{
public:
/// \brief Construct an InvalidDataFormat
/// \param s the message for the exception
/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
explicit InvalidDataFormat(const std::string &s) : Exception(INVALID_DATA_FORMAT, s) {}
};
/// \brief A decryption filter encountered invalid ciphertext
class CRYPTOPP_DLL InvalidCiphertext : public InvalidDataFormat
{
public:
/// \brief Construct an InvalidCiphertext
/// \param s the message for the exception
/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
explicit InvalidCiphertext(const std::string &s) : InvalidDataFormat(s) {}
};
/// \brief A method was called which was not implemented
class CRYPTOPP_DLL NotImplemented : public Exception
{
public:
/// \brief Construct an NotImplemented
/// \param s the message for the exception
/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
explicit NotImplemented(const std::string &s) : Exception(NOT_IMPLEMENTED, s) {}
};
/// \brief Flush(true) was called but it can't completely flush its buffers
class CRYPTOPP_DLL CannotFlush : public Exception
{
public:
/// \brief Construct an CannotFlush
/// \param s the message for the exception
/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
explicit CannotFlush(const std::string &s) : Exception(CANNOT_FLUSH, s) {}
};
/// \brief The operating system reported an error
class CRYPTOPP_DLL OS_Error : public Exception
{
public:
virtual ~OS_Error() throw() {}
/// \brief Construct an OS_Error
/// \param errorType the error type
/// \param s the message for the exception
/// \param operation the operation for the exception
/// \param errorCode the error code
/// \details The member function <tt>what()</tt> returns <tt>s</tt>.
OS_Error(ErrorType errorType, const std::string &s, const std::string& operation, int errorCode)
: Exception(errorType, s), m_operation(operation), m_errorCode(errorCode) {}
/// \brief Retrieve the operating system API that reported the error
const std::string & GetOperation() const {return m_operation;}
/// \brief Retrieve the error code returned by the operating system
int GetErrorCode() const {return m_errorCode;}
protected:
std::string m_operation;
int m_errorCode;
};
/// \brief Returns a decoding results
struct CRYPTOPP_DLL DecodingResult
{
/// \brief Constructs a DecodingResult
/// \details isValidCoding is initialized to false and messageLength is
/// initialized to 0.
explicit DecodingResult() : isValidCoding(false), messageLength(0) {}
/// \brief Constructs a DecodingResult
/// \param len the message length
/// \details isValidCoding is initialized to true.
explicit DecodingResult(size_t len) : isValidCoding(true), messageLength(len) {}
/// \brief Compare two DecodingResult
/// \param rhs the other DecodingResult
/// \return true if either isValidCoding or messageLength is \a not equal,
/// false otherwise
bool operator==(const DecodingResult &rhs) const {return isValidCoding == rhs.isValidCoding && messageLength == rhs.messageLength;}
/// \brief Compare two DecodingResult
/// \param rhs the other DecodingResult
/// \return true if either isValidCoding or messageLength is \a not equal,
/// false otherwise
/// \details Returns <tt>!operator==(rhs)</tt>.
bool operator!=(const DecodingResult &rhs) const {return !operator==(rhs);}
/// \brief Flag to indicate the decoding is valid
bool isValidCoding;
/// \brief Recovered message length if isValidCoding is true, undefined otherwise
size_t messageLength;
};
/// \brief Interface for retrieving values given their names
/// \details This class is used to safely pass a variable number of arbitrarily
/// typed arguments to functions and to read values from keys and crypto parameters.
/// \details To obtain an object that implements NameValuePairs for the purpose of
/// parameter passing, use the MakeParameters() function.
/// \details To get a value from NameValuePairs, you need to know the name and the
/// type of the value. Call GetValueNames() on a NameValuePairs object to obtain a
/// list of value names that it supports. then look at the Name namespace
/// documentation to see what the type of each value is, or alternatively, call
/// GetIntValue() with the value name, and if the type is not int, a
/// ValueTypeMismatch exception will be thrown and you can get the actual type from
/// the exception object.
/// \sa NullNameValuePairs, g_nullNameValuePairs,
/// <A HREF="http://www.cryptopp.com/wiki/NameValuePairs">NameValuePairs</A> on the
/// Crypto++ wiki
class NameValuePairs
{
public:
virtual ~NameValuePairs() {}
/// \brief Thrown when an unexpected type is encountered
/// \details Exception thrown when trying to retrieve a value using a different
/// type than expected
class CRYPTOPP_DLL ValueTypeMismatch : public InvalidArgument
{
public:
/// \brief Construct a ValueTypeMismatch
/// \param name the name of the value
/// \param stored the \a actual type of the value stored
/// \param retrieving the \a presumed type of the value retrieved
ValueTypeMismatch(const std::string &name, const std::type_info &stored, const std::type_info &retrieving)
: InvalidArgument("NameValuePairs: type mismatch for '" + name + "', stored '" + stored.name() + "', trying to retrieve '" + retrieving.name() + "'")
, m_stored(stored), m_retrieving(retrieving) {}
/// \brief Provides the stored type
/// \return the C++ mangled name of the type
const std::type_info & GetStoredTypeInfo() const {return m_stored;}
/// \brief Provides the retrieveing type
/// \return the C++ mangled name of the type
const std::type_info & GetRetrievingTypeInfo() const {return m_retrieving;}
private:
const std::type_info &m_stored;
const std::type_info &m_retrieving;
};
/// \brief Get a copy of this object or subobject
/// \tparam T class or type
/// \param object reference to a variable that receives the value
template <class T>
bool GetThisObject(T &object) const
{
return GetValue((std::string("ThisObject:")+typeid(T).name()).c_str(), object);
}
/// \brief Get a pointer to this object
/// \tparam T class or type
/// \param ptr reference to a pointer to a variable that receives the value
template <class T>
bool GetThisPointer(T *&ptr) const
{
return GetValue((std::string("ThisPointer:")+typeid(T).name()).c_str(), ptr);
}
/// \brief Get a named value
/// \tparam T class or type
/// \param name the name of the object or value to retrieve
/// \param value reference to a variable that receives the value
/// \return true if the value was retrieved, false otherwise
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
template <class T>
bool GetValue(const char *name, T &value) const
{
return GetVoidValue(name, typeid(T), &value);
}
/// \brief Get a named value
/// \tparam T class or type
/// \param name the name of the object or value to retrieve
/// \param defaultValue the default value of the class or type if it does not exist
/// \return the object or value
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
template <class T>
T GetValueWithDefault(const char *name, T defaultValue) const
{
T value;
bool result = GetValue(name, value);
// No assert... this recovers from failure
if (result) {return value;}
return defaultValue;
}
/// \brief Get a list of value names that can be retrieved
/// \return a list of names available to retrieve
/// \details the items in the list are delimited with a colon.
CRYPTOPP_DLL std::string GetValueNames() const
{std::string result; GetValue("ValueNames", result); return result;}
/// \brief Get a named value with type int
/// \param name the name of the value to retrieve
/// \param value the value retrieved upon success
/// \return true if an int value was retrieved, false otherwise
/// \details GetIntValue() is used to ensure we don't accidentally try to get an
/// unsigned int or some other type when we mean int (which is the most common case)
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL bool GetIntValue(const char *name, int &value) const
{return GetValue(name, value);}
/// \brief Get a named value with type int, with default
/// \param name the name of the value to retrieve
/// \param defaultValue the default value if the name does not exist
/// \return the value retrieved on success or the default value
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL int GetIntValueWithDefault(const char *name, int defaultValue) const
{return GetValueWithDefault(name, defaultValue);}
/// \brief Get a named value with type word64
/// \param name the name of the value to retrieve
/// \param value the value retrieved upon success
/// \return true if an word64 value was retrieved, false otherwise
/// \sa GetValue(), GetValueWithDefault(), GetWord64ValueWithDefault(), GetIntValue(),
/// GetIntValueWithDefault(), GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL bool GetWord64Value(const char *name, word64 &value) const
{return GetValue(name, value);}
/// \brief Get a named value with type word64, with default
/// \param name the name of the value to retrieve
/// \param defaultValue the default value if the name does not exist
/// \return the value retrieved on success or the default value
/// \sa GetValue(), GetValueWithDefault(), GetWord64Value(), GetIntValue(),
/// GetIntValueWithDefault(), GetRequiredParameter() and GetRequiredWord64Parameter()
CRYPTOPP_DLL word64 GetWord64ValueWithDefault(const char *name, word64 defaultValue) const
{return GetValueWithDefault(name, defaultValue);}
/// \brief Ensures an expected name and type is present
/// \param name the name of the value
/// \param stored the type that was stored for the name
/// \param retrieving the type that is being retrieved for the name
/// \throws ValueTypeMismatch
/// \details ThrowIfTypeMismatch() effectively performs a type safety check.
/// stored and retrieving are C++ mangled names for the type.
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL static void CRYPTOPP_API ThrowIfTypeMismatch(const char *name, const std::type_info &stored, const std::type_info &retrieving)
{if (stored != retrieving) throw ValueTypeMismatch(name, stored, retrieving);}
/// \brief Retrieves a required name/value pair
/// \tparam T class or type
/// \param className the name of the class
/// \param name the name of the value
/// \param value reference to a variable to receive the value
/// \throws InvalidArgument
/// \details GetRequiredParameter() throws InvalidArgument if the name
/// is not present or not of the expected type T.
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
template <class T>
void GetRequiredParameter(const char *className, const char *name, T &value) const
{
if (!GetValue(name, value))
throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
}
/// \brief Retrieves a required name/value pair
/// \param className the name of the class
/// \param name the name of the value
/// \param value reference to a variable to receive the value
/// \throws InvalidArgument
/// \details GetRequiredParameter() throws InvalidArgument if the name
/// is not present or not of the expected type T.
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL void GetRequiredIntParameter(const char *className, const char *name, int &value) const
{
if (!GetIntValue(name, value))
throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
}
/// \brief Get a named value
/// \param name the name of the object or value to retrieve
/// \param valueType reference to a variable that receives the value
/// \param pValue void pointer to a variable that receives the value
/// \return true if the value was retrieved, false otherwise
/// \details GetVoidValue() retrieves the value of name if it exists.
/// \note GetVoidValue() is an internal function and should be implemented
/// by derived classes. Users should use one of the other functions instead.
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
/// GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const =0;
};
// Doxygen cannot handle initialization
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Default channel for BufferedTransformation
/// \details DEFAULT_CHANNEL is equal to an empty string
/// \details The definition for DEFAULT_CHANNEL is in <tt>cryptlib.cpp</tt>.
/// It can be subject to <A HREF="https://isocpp.org/wiki/faq/ctors">Static
/// Initialization Order Fiasco</A>. If you experience a crash in
/// DEFAULT_CHANNEL where the string object is NULL, then you probably have
/// a global object using DEFAULT_CHANNEL before it has been constructed.
const std::string DEFAULT_CHANNEL;
/// \brief Channel for additional authenticated data
/// \details AAD_CHANNEL is equal to "AAD"
/// \details The definition for AAD_CHANNEL is in <tt>cryptlib.cpp</tt>.
/// It can be subject to <A HREF="https://isocpp.org/wiki/faq/ctors">Static
/// Initialization Order Fiasco</A>. If you experience a crash in
/// AAD_CHANNEL where the string object is NULL, then you probably have a
/// global object using AAD_CHANNEL before it has been constructed.
const std::string AAD_CHANNEL;
/// \brief An empty set of name-value pairs
/// \details The definition for g_nullNameValuePairs is in <tt>cryptlib.cpp</tt>.
/// It can be subject to <A HREF="https://isocpp.org/wiki/faq/ctors">Static
/// Initialization Order Fiasco</A>. If you experience a crash in
/// g_nullNameValuePairs where the string object is NULL, then you probably
/// have a global object using g_nullNameValuePairs before it has been
/// constructed.
const NameValuePairs& g_nullNameValuePairs;
#else
extern CRYPTOPP_DLL const std::string DEFAULT_CHANNEL;
extern CRYPTOPP_DLL const std::string AAD_CHANNEL;
extern CRYPTOPP_DLL const NameValuePairs& g_nullNameValuePairs;
#endif
// Document additional name spaces which show up elsewhere in the sources.
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Namespace containing value name definitions.
/// \details Name is part of the CryptoPP namespace.
/// \details The semantics of value names, types are:
/// <pre>
/// ThisObject:ClassName (ClassName, copy of this object or a subobject)
/// ThisPointer:ClassName (const ClassName *, pointer to this object or a subobject)
/// </pre>
DOCUMENTED_NAMESPACE_BEGIN(Name)
// more names defined in argnames.h
DOCUMENTED_NAMESPACE_END
/// \brief Namespace containing weak and wounded algorithms.
/// \details Weak is part of the CryptoPP namespace. Schemes and algorithms are moved into Weak
/// when their security level is reduced to an unacceptable level by contemporary standards.
/// \details To use an algorithm in the Weak namespace, you must <tt>\c \#define
/// CRYPTOPP_ENABLE_NAMESPACE_WEAK 1</tt> before including a header for a weak or wounded
/// algorithm. For example:
/// <pre> \c \#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
/// \c \#include <md5.h>
/// ...
/// CryptoPP::Weak::MD5 md5;
/// </pre>
DOCUMENTED_NAMESPACE_BEGIN(Weak)
// weak and wounded algorithms
DOCUMENTED_NAMESPACE_END
#endif
/// \brief Namespace containing NaCl library functions
/// \details TweetNaCl is a compact and portable reimplementation of the NaCl library.
DOCUMENTED_NAMESPACE_BEGIN(NaCl)
// crypto_box, crypto_box_open, crypto_sign, and crypto_sign_open (and friends)
DOCUMENTED_NAMESPACE_END
/// \brief Namespace containing testing and benchmark classes.
/// \details Source files for classes in the Test namespaces include
/// <tt>test.cpp</tt>, <tt>validat#.cpp</tt> and <tt>bench#.cpp</tt>.
DOCUMENTED_NAMESPACE_BEGIN(Test)
// testing and benchmark classes
DOCUMENTED_NAMESPACE_END
// ********************************************************
/// \brief Interface for cloning objects
/// \note this is \a not implemented by most classes
/// \sa ClonableImpl, NotCopyable
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Clonable
{
public:
virtual ~Clonable() {}
/// \brief Copies this object
/// \return a copy of this object
/// \throws NotImplemented
/// \note this is \a not implemented by most classes
/// \sa NotCopyable
virtual Clonable* Clone() const {throw NotImplemented("Clone() is not implemented yet.");} // TODO: make this =0
};
/// \brief Interface for all crypto algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Algorithm : public Clonable
{
public:
virtual ~Algorithm() {}
/// \brief Interface for all crypto algorithms
/// \param checkSelfTestStatus determines whether the object can proceed if the self
/// tests have not been run or failed.
/// \details When FIPS 140-2 compliance is enabled and checkSelfTestStatus == true,
/// this constructor throws SelfTestFailure if the self test hasn't been run or fails.
/// \details FIPS 140-2 compliance is disabled by default. It is only used by certain
/// versions of the library when the library is built as a DLL on Windows. Also see
/// CRYPTOPP_ENABLE_COMPLIANCE_WITH_FIPS_140_2 in config.h.
Algorithm(bool checkSelfTestStatus = true);
/// \brief Provides the name of this algorithm
/// \return the standard algorithm name
/// \details The standard algorithm name can be a name like <tt>AES</tt> or <tt>AES/GCM</tt>.
/// Some algorithms do not have standard names yet. For example, there is no standard
/// algorithm name for Shoup's ECIES.
/// \note AlgorithmName is not universally implemented yet.
virtual std::string AlgorithmName() const {return "unknown";}
/// \brief Retrieve the provider of this algorithm
/// \return the algorithm provider
/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
/// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
/// usually indicate a specialized implementation using instructions from a higher
/// instruction set architecture (ISA). Future labels may include external hardware
/// like a hardware security module (HSM).
/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
/// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
/// instead of ASM.
/// \details Algorithms which combine different instructions or ISAs provide the
/// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
/// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
/// \note Provider is not universally implemented yet.
/// \since Crypto++ 8.0
virtual std::string AlgorithmProvider() const {return "C++";}
};
/// \brief Interface for algorithms that take byte strings as keys
/// \sa FixedKeyLength(), VariableKeyLength(), SameKeyLengthAs(), SimpleKeyingInterfaceImpl()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyingInterface
{
public:
virtual ~SimpleKeyingInterface() {}
/// \brief Returns smallest valid key length
/// \return the minimum key length, in bytes
virtual size_t MinKeyLength() const =0;
/// \brief Returns largest valid key length
/// \return the maximum key length, in bytes
virtual size_t MaxKeyLength() const =0;
/// \brief Returns default key length
/// \return the default key length, in bytes
virtual size_t DefaultKeyLength() const =0;
/// \brief Returns a valid key length for the algorithm
/// \param keylength the size of the key, in bytes
/// \return the valid key length, in bytes
/// \details keylength is provided in bytes, not bits. If keylength is less than MIN_KEYLENGTH,
/// then the function returns MIN_KEYLENGTH. If keylength is greater than MAX_KEYLENGTH,
/// then the function returns MAX_KEYLENGTH. if If keylength is a multiple of KEYLENGTH_MULTIPLE,
/// then keylength is returned. Otherwise, the function returns a \a lower multiple of
/// KEYLENGTH_MULTIPLE.
virtual size_t GetValidKeyLength(size_t keylength) const =0;
/// \brief Returns whether keylength is a valid key length
/// \param keylength the requested keylength
/// \return true if keylength is valid, false otherwise
/// \details Internally the function calls GetValidKeyLength()
virtual bool IsValidKeyLength(size_t keylength) const
{return keylength == GetValidKeyLength(keylength);}
/// \brief Sets or reset the key of this object
/// \param key the key to use when keying the object
/// \param length the size of the key, in bytes
/// \param params additional initialization parameters to configure this object
virtual void SetKey(const byte *key, size_t length, const NameValuePairs &params = g_nullNameValuePairs);
/// \brief Sets or reset the key of this object
/// \param key the key to use when keying the object
/// \param length the size of the key, in bytes
/// \param rounds the number of rounds to apply the transformation function,
/// if applicable
/// \details SetKeyWithRounds() calls SetKey() with a NameValuePairs
/// object that only specifies rounds. rounds is an integer parameter,
/// and <tt>-1</tt> means use the default number of rounds.
void SetKeyWithRounds(const byte *key, size_t length, int rounds);
/// \brief Sets or reset the key of this object
/// \param key the key to use when keying the object
/// \param length the size of the key, in bytes
/// \param iv the initialization vector to use when keying the object
/// \param ivLength the size of the iv, in bytes
/// \details SetKeyWithIV() calls SetKey() with a NameValuePairs
/// that only specifies IV. The IV is a byte buffer with size ivLength.
/// ivLength is an integer parameter, and <tt>-1</tt> means use IVSize().
void SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength);
/// \brief Sets or reset the key of this object
/// \param key the key to use when keying the object
/// \param length the size of the key, in bytes
/// \param iv the initialization vector to use when keying the object
/// \details SetKeyWithIV() calls SetKey() with a NameValuePairs() object
/// that only specifies iv. iv is a byte buffer, and it must have
/// a size IVSize().
void SetKeyWithIV(const byte *key, size_t length, const byte *iv)
{SetKeyWithIV(key, length, iv, IVSize());}
/// \brief Secure IVs requirements as enumerated values.
/// \details Provides secure IV requirements as a monotonically increasing enumerated values.
/// Requirements can be compared using less than (&lt;) and greater than (&gt;). For example,
/// <tt>UNIQUE_IV &lt; RANDOM_IV</tt> and <tt>UNPREDICTABLE_RANDOM_IV &gt; RANDOM_IV</tt>.
/// \details Objects that use SimpleKeyingInterface do not support an optional IV. That is,
/// an IV must be present or it must be absent. If you wish to support an optional IV then
/// provide two classes - one with an IV and one without an IV.
/// \sa IsResynchronizable(), CanUseRandomIVs(), CanUsePredictableIVs(), CanUseStructuredIVs()
enum IV_Requirement {
/// \brief The IV must be unique
UNIQUE_IV = 0,
/// \brief The IV must be random and possibly predictable
RANDOM_IV,
/// \brief The IV must be random and unpredictable
UNPREDICTABLE_RANDOM_IV,
/// \brief The IV is set by the object
INTERNALLY_GENERATED_IV,
/// \brief The object does not use an IV
NOT_RESYNCHRONIZABLE
};
/// \brief Minimal requirement for secure IVs
/// \return the secure IV requirement of the algorithm
virtual IV_Requirement IVRequirement() const =0;
/// \brief Determines if the object can be resynchronized
/// \return true if the object can be resynchronized (i.e. supports initialization vectors), false otherwise
/// \note If this function returns true, and no IV is passed to SetKey() and <tt>CanUseStructuredIVs()==true</tt>,
/// an IV of all 0's will be assumed.
bool IsResynchronizable() const {return IVRequirement() < NOT_RESYNCHRONIZABLE;}
/// \brief Determines if the object can use random IVs
/// \return true if the object can use random IVs (in addition to ones returned by GetNextIV), false otherwise
bool CanUseRandomIVs() const {return IVRequirement() <= UNPREDICTABLE_RANDOM_IV;}
/// \brief Determines if the object can use random but possibly predictable IVs
/// \return true if the object can use random but possibly predictable IVs (in addition to ones returned by
/// GetNextIV), false otherwise
bool CanUsePredictableIVs() const {return IVRequirement() <= RANDOM_IV;}
/// \brief Determines if the object can use structured IVs
/// \return true if the object can use structured IVs, false otherwise
/// \details CanUseStructuredIVs() indicates whether the object can use structured IVs; for example a counter
/// (in addition to ones returned by GetNextIV).
bool CanUseStructuredIVs() const {return IVRequirement() <= UNIQUE_IV;}
/// \brief Returns length of the IV accepted by this object
/// \return the size of an IV, in bytes
/// \throws NotImplemented() if the object does not support resynchronization
/// \details The default implementation throws NotImplemented
virtual unsigned int IVSize() const
{throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");}
/// \brief Provides the default size of an IV
/// \return default length of IVs accepted by this object, in bytes
unsigned int DefaultIVLength() const {return IVSize();}
/// \brief Provides the minimum size of an IV
/// \return minimal length of IVs accepted by this object, in bytes
/// \throws NotImplemented() if the object does not support resynchronization
virtual unsigned int MinIVLength() const {return IVSize();}
/// \brief Provides the maximum size of an IV
/// \return maximal length of IVs accepted by this object, in bytes
/// \throws NotImplemented() if the object does not support resynchronization
virtual unsigned int MaxIVLength() const {return IVSize();}
/// \brief Resynchronize with an IV
/// \param iv the initialization vector
/// \param ivLength the size of the initialization vector, in bytes
/// \details Resynchronize() resynchronizes with an IV provided by the caller. <tt>ivLength=-1</tt> means use IVSize().
/// \throws NotImplemented() if the object does not support resynchronization
virtual void Resynchronize(const byte *iv, int ivLength=-1) {
CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(ivLength);
throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");
}
/// \brief Retrieves a secure IV for the next message
/// \param rng a RandomNumberGenerator to produce keying material
/// \param iv a block of bytes to receive the IV
/// \details The IV must be at least IVSize() in length.
/// \details This method should be called after you finish encrypting one message and are ready
/// to start the next one. After calling it, you must call SetKey() or Resynchronize().
/// before using this object again.
/// \details Internally, the base class implementation calls RandomNumberGenerator's GenerateBlock()
/// \note This method is not implemented on decryption objects.
virtual void GetNextIV(RandomNumberGenerator &rng, byte *iv);
protected:
/// \brief Returns the base class Algorithm
/// \return the base class Algorithm
virtual const Algorithm & GetAlgorithm() const =0;
/// \brief Sets the key for this object without performing parameter validation
/// \param key a byte buffer used to key the cipher
/// \param length the length of the byte buffer
/// \param params additional parameters passed as NameValuePairs
/// \details key must be at least DEFAULT_KEYLENGTH in length.
virtual void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params) =0;
/// \brief Validates the key length
/// \param length the size of the keying material, in bytes
/// \throws InvalidKeyLength if the key length is invalid
void ThrowIfInvalidKeyLength(size_t length);
/// \brief Validates the object
/// \throws InvalidArgument if the IV is present
/// \details Internally, the default implementation calls IsResynchronizable() and throws
/// InvalidArgument if the function returns true.
/// \note called when no IV is passed
void ThrowIfResynchronizable();
/// \brief Validates the IV
/// \param iv the IV with a length of IVSize, in bytes
/// \throws InvalidArgument on failure
/// \details Internally, the default implementation checks the iv. If iv is not NULL or nullptr,
/// then the function succeeds. If iv is NULL, then IVRequirement is checked against
/// UNPREDICTABLE_RANDOM_IV. If IVRequirement is UNPREDICTABLE_RANDOM_IV, then
/// then the function succeeds. Otherwise, an exception is thrown.
void ThrowIfInvalidIV(const byte *iv);
/// \brief Validates the IV length
/// \param length the size of an IV, in bytes
/// \throws InvalidArgument if the IV length is invalid
size_t ThrowIfInvalidIVLength(int length);
/// \brief Retrieves and validates the IV
/// \param params NameValuePairs with the IV supplied as a ConstByteArrayParameter
/// \param size the length of the IV, in bytes
/// \return a pointer to the first byte of the IV
/// \throws InvalidArgument if the number of rounds are invalid
const byte * GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size);
/// \brief Validates the key length
/// \param length the size of the keying material, in bytes
inline void AssertValidKeyLength(size_t length) const
{CRYPTOPP_UNUSED(length); CRYPTOPP_ASSERT(IsValidKeyLength(length));}
};
/// \brief Interface for the data processing part of block ciphers
/// \details Classes derived from BlockTransformation are block ciphers
/// in ECB mode (for example the DES::Encryption class), which are stateless.
/// These classes should not be used directly, but only in combination with
/// a mode class (see CipherModeDocumentation in modes.h).
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockTransformation : public Algorithm
{
public:
virtual ~BlockTransformation() {}
/// \brief Encrypt or decrypt a block
/// \param inBlock the input message before processing
/// \param outBlock the output message after processing
/// \param xorBlock an optional XOR mask
/// \details ProcessAndXorBlock encrypts or decrypts inBlock, xor with xorBlock, and write to outBlock.
/// \details The size of the block is determined by the block cipher and its documentation. Use
/// BLOCKSIZE at compile time, or BlockSize() at runtime.
/// \note The message can be transformed in-place, or the buffers must \a not overlap
/// \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
virtual void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const =0;
/// \brief Encrypt or decrypt a block
/// \param inBlock the input message before processing
/// \param outBlock the output message after processing
/// \details ProcessBlock encrypts or decrypts inBlock and write to outBlock.
/// \details The size of the block is determined by the block cipher and its documentation.
/// Use BLOCKSIZE at compile time, or BlockSize() at runtime.
/// \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
/// \note The message can be transformed in-place, or the buffers must \a not overlap
void ProcessBlock(const byte *inBlock, byte *outBlock) const
{ProcessAndXorBlock(inBlock, NULLPTR, outBlock);}
/// \brief Encrypt or decrypt a block in place
/// \param inoutBlock the input message before processing
/// \details ProcessBlock encrypts or decrypts inoutBlock in-place.
/// \details The size of the block is determined by the block cipher and its documentation.
/// Use BLOCKSIZE at compile time, or BlockSize() at runtime.
/// \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
void ProcessBlock(byte *inoutBlock) const
{ProcessAndXorBlock(inoutBlock, NULLPTR, inoutBlock);}
/// Provides the block size of the cipher
/// \return the block size of the cipher, in bytes
virtual unsigned int BlockSize() const =0;
/// \brief Provides input and output data alignment for optimal performance.
/// \return the input data alignment that provides optimal performance
/// \sa GetAlignment() and OptimalBlockSize()
virtual unsigned int OptimalDataAlignment() const;
/// \brief Determines if the transformation is a permutation
/// \return true if this is a permutation (i.e. there is an inverse transformation)
virtual bool IsPermutation() const {return true;}
/// \brief Determines if the cipher is being operated in its forward direction
/// \return true if DIR is ENCRYPTION, false otherwise
/// \sa IsForwardTransformation(), IsPermutation(), GetCipherDirection()
virtual bool IsForwardTransformation() const =0;
/// \brief Determines the number of blocks that can be processed in parallel
/// \return the number of blocks that can be processed in parallel, for bit-slicing implementations
/// \details Bit-slicing is often used to improve throughput and minimize timing attacks.
virtual unsigned int OptimalNumberOfParallelBlocks() const {return 1;}
/// \brief Bit flags that control AdvancedProcessBlocks() behavior
enum FlagsForAdvancedProcessBlocks {
/// \brief inBlock is a counter
BT_InBlockIsCounter=1,
/// \brief should not modify block pointers
BT_DontIncrementInOutPointers=2,
/// \brief Xor inputs before transformation
BT_XorInput=4,
/// \brief perform the transformation in reverse
BT_ReverseDirection=8,
/// \brief Allow parallel transformations
BT_AllowParallel=16};
/// \brief Encrypt and xor multiple blocks using additional flags
/// \param inBlocks the input message before processing
/// \param xorBlocks an optional XOR mask
/// \param outBlocks the output message after processing
/// \param length the size of the blocks, in bytes
/// \param flags additional flags to control processing
/// \details Encrypt and xor multiple blocks according to FlagsForAdvancedProcessBlocks flags.
/// \note If BT_InBlockIsCounter is set, then the last byte of inBlocks may be modified.
virtual size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
/// \brief Provides the direction of the cipher
/// \return ENCRYPTION if IsForwardTransformation() is true, DECRYPTION otherwise
/// \sa IsForwardTransformation(), IsPermutation()
inline CipherDir GetCipherDirection() const {return IsForwardTransformation() ? ENCRYPTION : DECRYPTION;}
};
/// \brief Interface for the data processing portion of stream ciphers
/// \sa StreamTransformationFilter()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE StreamTransformation : public Algorithm
{
public:
virtual ~StreamTransformation() {}
/// \brief Provides a reference to this object
/// \return A reference to this object
/// \details Useful for passing a temporary object to a function that takes a non-const reference
StreamTransformation& Ref() {return *this;}
/// \brief Provides the mandatory block size of the cipher
/// \return The block size of the cipher if input must be processed in blocks, 1 otherwise
/// \details Stream ciphers and some block ciphers modes of operation return 1. Modes that
/// return 1 must be able to process a single byte at a time, like counter mode. If a
/// mode of operation or block cipher cannot stream then it must not return 1.
/// \details When filters operate the mode or cipher, ProcessData will be called with a
/// string of bytes that is determined by MandatoryBlockSize and OptimalBlockSize. When a
/// policy is set, like 16-byte strings for a 16-byte block cipher, the filter will buffer
/// bytes until the specified number of bytes is available to the object.
/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
virtual unsigned int MandatoryBlockSize() const {return 1;}
/// \brief Provides the input block size most efficient for this cipher
/// \return The input block size that is most efficient for the cipher
/// \details The base class implementation returns MandatoryBlockSize().
/// \note Optimal input length is
/// <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
virtual unsigned int OptimalBlockSize() const {return MandatoryBlockSize();}
/// \brief Provides the number of bytes used in the current block when processing at optimal block size.
/// \return the number of bytes used in the current block when processing at the optimal block size
virtual unsigned int GetOptimalBlockSizeUsed() const {return 0;}
/// \brief Provides input and output data alignment for optimal performance
/// \return the input data alignment that provides optimal performance
/// \sa GetAlignment() and OptimalBlockSize()
virtual unsigned int OptimalDataAlignment() const;
/// \brief Encrypt or decrypt an array of bytes
/// \param outString the output byte buffer
/// \param inString the input byte buffer
/// \param length the size of the input and output byte buffers, in bytes
/// \details ProcessData is called with a string of bytes whose size depends on MandatoryBlockSize.
/// Either <tt>inString == outString</tt>, or they must not overlap.
/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
virtual void ProcessData(byte *outString, const byte *inString, size_t length) =0;
/// \brief Encrypt or decrypt the last block of data
/// \param outString the output byte buffer
/// \param outLength the size of the output byte buffer, in bytes
/// \param inString the input byte buffer
/// \param inLength the size of the input byte buffer, in bytes
/// \return the number of bytes used in outString
/// \details ProcessLastBlock is used when the last block of data is special and requires handling
/// by the cipher. The current implementation provides an output buffer with a size
/// <tt>inLength+2*MandatoryBlockSize()</tt>. The return value allows the cipher to expand cipher
/// text during encryption or shrink plain text during decryption.
/// \details This member function is used by CBC-CTS and OCB modes.
/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
virtual size_t ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);
/// \brief Provides the size of the last block
/// \return the minimum size of the last block
/// \details MinLastBlockSize() returns the minimum size of the last block. 0 indicates the last
/// block is not special.
/// \details MandatoryBlockSize() enlists one of two behaviors. First, if MandatoryBlockSize()
/// returns 1, then the cipher can be streamed and ProcessData() is called with the tail bytes.
/// Second, if MandatoryBlockSize() returns non-0, then the string of bytes is padded to
/// MandatoryBlockSize() according to the padding mode. Then, ProcessData() is called with the
/// padded string of bytes.
/// \details Some authenticated encryption modes are not expressed well with MandatoryBlockSize()
/// and MinLastBlockSize(). For example, AES/OCB uses 16-byte blocks (MandatoryBlockSize = 16)
/// and the last block requires special processing (MinLastBlockSize = 0). However, 0 is a valid
/// last block size for OCB and the special processing is custom padding, and not standard PKCS
/// padding. In response an unambiguous IsLastBlockSpecial() was added.
/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
virtual unsigned int MinLastBlockSize() const {return 0;}
/// \brief Determines if the last block receives special processing
/// \return true if the last block reveives special processing, false otherwise.
/// \details Some authenticated encryption modes are not expressed well with
/// MandatoryBlockSize() and MinLastBlockSize(). For example, AES/OCB uses
/// 16-byte blocks (MandatoryBlockSize = 16) and the last block requires special processing
/// (MinLastBlockSize = 0). However, 0 is a valid last block size for OCB and the special
/// processing is custom padding, and not standard PKCS padding. In response an
/// unambiguous IsLastBlockSpecial() was added.
/// \details When IsLastBlockSpecial() returns false nothing special happens. All the former
/// rules and behaviors apply. This is the default behavior of IsLastBlockSpecial().
/// \details When IsLastBlockSpecial() returns true four things happen. First, MinLastBlockSize = 0
/// means 0 is a valid block size that should be processed. Second, standard block cipher padding is
/// \a not \a applied. Third, the caller supplies an outString is larger than inString by
/// <tt>2*MandatoryBlockSize()</tt>. That is, there's a reserve available when processing the last block.
/// Fourth, the cipher is responsible for finalization like custom padding. The cipher will tell
/// the library how many bytes were processed or used by returning the appropriate value from
/// ProcessLastBlock().
/// \details The return value of ProcessLastBlock() indicates how many bytes were written to
/// <tt>outString</tt>. A filter pipelining data will send <tt>outString</tt> and up to <tt>outLength</tt>
/// to an <tt>AttachedTransformation()</tt> for additional processing. Below is an example of the code
/// used in <tt>StreamTransformationFilter::LastPut</tt>.
/// <pre> if (m_cipher.IsLastBlockSpecial())
/// {
/// size_t reserve = 2*m_cipher.MandatoryBlockSize();
/// space = HelpCreatePutSpace(*AttachedTransformation(), DEFAULT_CHANNEL, length+reserve);
/// length = m_cipher.ProcessLastBlock(space, length+reserve, inString, length);
/// AttachedTransformation()->Put(space, length);
/// return;
/// }</pre>
/// \sa ProcessData, ProcessLastBlock, MandatoryBlockSize, MinLastBlockSize, BlockPaddingSchemeDef, IsLastBlockSpecial
/// \since Crypto++ 6.0
virtual bool IsLastBlockSpecial() const {return false;}
/// \brief Encrypt or decrypt a string of bytes
/// \param inoutString the string to process
/// \param length the size of the inoutString, in bytes
/// \details Internally, the base class implementation calls ProcessData().
inline void ProcessString(byte *inoutString, size_t length)
{ProcessData(inoutString, inoutString, length);}
/// \brief Encrypt or decrypt a string of bytes
/// \param outString the output string to process
/// \param inString the input string to process
/// \param length the size of the input and output strings, in bytes
/// \details Internally, the base class implementation calls ProcessData().
inline void ProcessString(byte *outString, const byte *inString, size_t length)
{ProcessData(outString, inString, length);}
/// \brief Encrypt or decrypt a byte
/// \param input the input byte to process
/// \details Internally, the base class implementation calls ProcessData() with a size of 1.
inline byte ProcessByte(byte input)
{ProcessData(&input, &input, 1); return input;}
/// \brief Determines whether the cipher supports random access
/// \return true if the cipher supports random access, false otherwise
virtual bool IsRandomAccess() const =0;
/// \brief Seek to an absolute position
/// \param pos position to seek
/// \throws NotImplemented
/// \details The base class implementation throws NotImplemented. The function
/// \ref CRYPTOPP_ASSERT "asserts" IsRandomAccess() in debug builds.
virtual void Seek(lword pos)
{
CRYPTOPP_UNUSED(pos);
CRYPTOPP_ASSERT(!IsRandomAccess());
throw NotImplemented("StreamTransformation: this object doesn't support random access");
}
/// \brief Determines whether the cipher is self-inverting
/// \return true if the cipher is self-inverting, false otherwise
/// \details IsSelfInverting determines whether this transformation is
/// self-inverting (e.g. xor with a keystream).
virtual bool IsSelfInverting() const =0;
/// \brief Determines if the cipher is being operated in its forward direction
/// \return true if DIR is ENCRYPTION, false otherwise
/// \sa IsForwardTransformation(), IsPermutation(), GetCipherDirection()
virtual bool IsForwardTransformation() const =0;
};
/// \brief Interface for hash functions and data processing part of MACs
/// \details HashTransformation objects are stateful. They are created in an initial state,
/// change state as Update() is called, and return to the initial
/// state when Final() is called. This interface allows a large message to
/// be hashed in pieces by calling Update() on each piece followed by
/// calling Final().
/// \sa HashFilter(), HashVerificationFilter()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE HashTransformation : public Algorithm
{
public:
virtual ~HashTransformation() {}
/// \brief Provides a reference to this object
/// \return A reference to this object
/// \details Useful for passing a temporary object to a function that takes a non-const reference
HashTransformation& Ref() {return *this;}
/// \brief Updates a hash with additional input
/// \param input the additional input as a buffer
/// \param length the size of the buffer, in bytes
virtual void Update(const byte *input, size_t length) =0;
/// \brief Request space which can be written into by the caller
/// \param size the requested size of the buffer
/// \details The purpose of this method is to help avoid extra memory allocations.
/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
/// size is the requested size of the buffer. When the call returns, size is the size of
/// the array returned to the caller.
/// \details The base class implementation sets size to 0 and returns NULL or nullptr.
/// \note Some objects, like ArraySink, cannot create a space because its fixed.
virtual byte * CreateUpdateSpace(size_t &size) {size=0; return NULLPTR;}
/// \brief Computes the hash of the current message
/// \param digest a pointer to the buffer to receive the hash
/// \details Final() restarts the hash for a new message.
/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
/// the output byte buffer is large enough for the digest.
virtual void Final(byte *digest)
{TruncatedFinal(digest, DigestSize());}
/// \brief Restart the hash
/// \details Discards the current state, and restart for a new message
virtual void Restart()
{TruncatedFinal(NULLPTR, 0);}
/// Provides the digest size of the hash
/// \return the digest size of the hash.
virtual unsigned int DigestSize() const =0;
/// Provides the tag size of the hash
/// \return the tag size of the hash.
/// \details Same as DigestSize().
unsigned int TagSize() const {return DigestSize();}
/// \brief Provides the block size of the compression function
/// \return block size of the compression function, in bytes
/// \details BlockSize() will return 0 if the hash is not block based
/// or does not have an equivalent block size. For example, Keccak
/// and SHA-3 do not have a block size, but they do have an equivalent
/// block size called rate expressed as <tt>r</tt>.
virtual unsigned int BlockSize() const {return 0;}
/// \brief Provides the input block size most efficient for this hash.
/// \return The input block size that is most efficient for the cipher
/// \details The base class implementation returns MandatoryBlockSize().
/// \details Optimal input length is
/// <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
virtual unsigned int OptimalBlockSize() const {return 1;}
/// \brief Provides input and output data alignment for optimal performance
/// \return the input data alignment that provides optimal performance
/// \sa GetAlignment() and OptimalBlockSize()
virtual unsigned int OptimalDataAlignment() const;
/// \brief Updates the hash with additional input and computes the hash of the current message
/// \param digest a pointer to the buffer to receive the hash
/// \param input the additional input as a buffer
/// \param length the size of the buffer, in bytes
/// \details Use this if your input is in one piece and you don't want to call Update()
/// and Final() separately
/// \details CalculateDigest() restarts the hash for the next message.
/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
/// the output byte buffer is large enough for the digest.
virtual void CalculateDigest(byte *digest, const byte *input, size_t length)
{Update(input, length); Final(digest);}
/// \brief Verifies the hash of the current message
/// \param digest a pointer to the buffer of an \a existing hash
/// \return \p true if the existing hash matches the computed hash, \p false otherwise
/// \throws ThrowIfInvalidTruncatedSize() if the existing hash's size exceeds DigestSize()
/// \details Verify() performs a bitwise compare on the buffers using VerifyBufsEqual(), which is
/// a constant time comparison function. digestLength cannot exceed DigestSize().
/// \details Verify() restarts the hash for the next message.
/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
/// the output byte buffer is large enough for the digest.
virtual bool Verify(const byte *digest)
{return TruncatedVerify(digest, DigestSize());}
/// \brief Updates the hash with additional input and verifies the hash of the current message
/// \param digest a pointer to the buffer of an \a existing hash
/// \param input the additional input as a buffer
/// \param length the size of the buffer, in bytes
/// \return \p true if the existing hash matches the computed hash, \p false otherwise
/// \throws ThrowIfInvalidTruncatedSize() if the existing hash's size exceeds DigestSize()
/// \details Use this if your input is in one piece and you don't want to call Update()
/// and Verify() separately
/// \details VerifyDigest() performs a bitwise compare on the buffers using VerifyBufsEqual(),
/// which is a constant time comparison function. digestLength cannot exceed DigestSize().
/// \details VerifyDigest() restarts the hash for the next message.
/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
/// the output byte buffer is large enough for the digest.
virtual bool VerifyDigest(const byte *digest, const byte *input, size_t length)
{Update(input, length); return Verify(digest);}
/// \brief Computes the hash of the current message
/// \param digest a pointer to the buffer to receive the hash
/// \param digestSize the size of the truncated digest, in bytes
/// \details TruncatedFinal() call Final() and then copies digestSize bytes to digest.
/// The hash is restarted the hash for the next message.
virtual void TruncatedFinal(byte *digest, size_t digestSize) =0;
/// \brief Updates the hash with additional input and computes the hash of the current message
/// \param digest a pointer to the buffer to receive the hash
/// \param digestSize the length of the truncated hash, in bytes
/// \param input the additional input as a buffer
/// \param length the size of the buffer, in bytes
/// \details Use this if your input is in one piece and you don't want to call Update()
/// and CalculateDigest() separately.
/// \details CalculateTruncatedDigest() restarts the hash for the next message.
/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
/// the output byte buffer is large enough for the digest.
virtual void CalculateTruncatedDigest(byte *digest, size_t digestSize, const byte *input, size_t length)
{Update(input, length); TruncatedFinal(digest, digestSize);}
/// \brief Verifies the hash of the current message
/// \param digest a pointer to the buffer of an \a existing hash
/// \param digestLength the size of the truncated hash, in bytes
/// \return \p true if the existing hash matches the computed hash, \p false otherwise
/// \throws ThrowIfInvalidTruncatedSize() if digestLength exceeds DigestSize()
/// \details TruncatedVerify() is a truncated version of Verify(). It can operate on a
/// buffer smaller than DigestSize(). However, digestLength cannot exceed DigestSize().
/// \details Verify() performs a bitwise compare on the buffers using VerifyBufsEqual(), which is
/// a constant time comparison function. digestLength cannot exceed DigestSize().
/// \details TruncatedVerify() restarts the hash for the next message.
virtual bool TruncatedVerify(const byte *digest, size_t digestLength);
/// \brief Updates the hash with additional input and verifies the hash of the current message
/// \param digest a pointer to the buffer of an \a existing hash
/// \param digestLength the size of the truncated hash, in bytes
/// \param input the additional input as a buffer
/// \param length the size of the buffer, in bytes
/// \return \p true if the existing hash matches the computed hash, \p false otherwise
/// \throws ThrowIfInvalidTruncatedSize() if digestLength exceeds DigestSize()
/// \details Use this if your input is in one piece and you don't want to call Update()
/// and TruncatedVerify() separately.
/// \details VerifyTruncatedDigest() is a truncated version of VerifyDigest(). It can operate
/// on a buffer smaller than DigestSize(). However, digestLength cannot exceed DigestSize().
/// \details VerifyTruncatedDigest() restarts the hash for the next message.
/// \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
/// the output byte buffer is large enough for the digest.
virtual bool VerifyTruncatedDigest(const byte *digest, size_t digestLength, const byte *input, size_t length)
{Update(input, length); return TruncatedVerify(digest, digestLength);}
protected:
/// \brief Validates a truncated digest size
/// \param size the requested digest size
/// \throws InvalidArgument if the algorithm's digest size cannot be truncated to the requested size
/// \details Throws an exception when the truncated digest size is greater than DigestSize()
void ThrowIfInvalidTruncatedSize(size_t size) const;
};
/// \brief Interface for one direction (encryption or decryption) of a block cipher
/// \details These objects usually should not be used directly. See BlockTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockCipher : public SimpleKeyingInterface, public BlockTransformation
{
protected:
const Algorithm & GetAlgorithm() const {return *this;}
};
/// \brief Interface for one direction (encryption or decryption) of a stream cipher or cipher mode
/// \details These objects usually should not be used directly. See StreamTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SymmetricCipher : public SimpleKeyingInterface, public StreamTransformation
{
protected:
const Algorithm & GetAlgorithm() const {return *this;}
};
/// \brief Interface for message authentication codes
/// \details These objects usually should not be used directly. See HashTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE MessageAuthenticationCode : public SimpleKeyingInterface, public HashTransformation
{
protected:
const Algorithm & GetAlgorithm() const {return *this;}
};
/// \brief Interface for authenticated encryption modes of operation
/// \details AuthenticatedSymmetricCipher() provides the interface for one direction
/// (encryption or decryption) of a stream cipher or block cipher mode with authentication. The
/// StreamTransformation() part of this interface is used to encrypt or decrypt the data. The
/// MessageAuthenticationCode() part of the interface is used to input additional authenticated
/// data (AAD), which is MAC'ed but not encrypted. The MessageAuthenticationCode() part is also
/// used to generate and verify the MAC.
/// \details Crypto++ provides four authenticated encryption modes of operation - CCM, EAX, GCM
/// and OCB mode. All modes implement AuthenticatedSymmetricCipher() and the motivation for
/// the API, like calling AAD a &quot;header&quot;, can be found in Bellare, Rogaway and
/// Wagner's <A HREF="http://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf">The EAX Mode of
/// Operation</A>. The EAX paper suggested a basic API to help standardize AEAD schemes in
/// software and promote adoption of the modes.
/// \sa <A HREF="http://www.cryptopp.com/wiki/Authenticated_Encryption">Authenticated
/// Encryption</A> on the Crypto++ wiki.
/// \since Crypto++ 5.6.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedSymmetricCipher : public MessageAuthenticationCode, public StreamTransformation
{
public:
virtual ~AuthenticatedSymmetricCipher() {}
/// \brief Exception thrown when the object is in the wrong state for the operation
/// \details this indicates that a member function was called in the wrong state, for example trying to encrypt
/// a message before having set the key or IV
class BadState : public Exception
{
public:
explicit BadState(const std::string &name, const char *message) : Exception(OTHER_ERROR, name + ": " + message) {}
explicit BadState(const std::string &name, const char *function, const char *state) : Exception(OTHER_ERROR, name + ": " + function + " was called before " + state) {}
};
/// \brief Provides the maximum length of AAD that can be input
/// \return the maximum length of AAD that can be input before the encrypted data
virtual lword MaxHeaderLength() const =0;
/// \brief Provides the maximum length of encrypted data
/// \return the maximum length of encrypted data
virtual lword MaxMessageLength() const =0;
/// \brief Provides the the maximum length of AAD
/// \return the maximum length of AAD that can be input after the encrypted data
virtual lword MaxFooterLength() const {return 0;}
/// \brief Determines if data lengths must be specified prior to inputting data
/// \return true if the data lengths are required before inputting data, false otherwise
/// \details if this function returns true, SpecifyDataLengths() must be called before attempting to input data.
/// This is the case for some schemes, such as CCM.
/// \sa SpecifyDataLengths()
virtual bool NeedsPrespecifiedDataLengths() const {return false;}
/// \brief Prescribes the data lengths
/// \param headerLength size of data before message is input, in bytes
/// \param messageLength size of the message, in bytes
/// \param footerLength size of data after message is input, in bytes
/// \details SpecifyDataLengths() only needs to be called if NeedsPrespecifiedDataLengths() returns <tt>true</tt>.
/// If <tt>true</tt>, then <tt>headerLength</tt> will be validated against <tt>MaxHeaderLength()</tt>,
/// <tt>messageLength</tt> will be validated against <tt>MaxMessageLength()</tt>, and
/// <tt>footerLength</tt> will be validated against <tt>MaxFooterLength()</tt>.
/// \sa NeedsPrespecifiedDataLengths()
void SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength=0);
/// \brief Encrypts and calculates a MAC in one call
/// \param ciphertext the encryption buffer
/// \param mac the mac buffer
/// \param macSize the size of the MAC buffer, in bytes
/// \param iv the iv buffer
/// \param ivLength the size of the IV buffer, in bytes
/// \param header the AAD buffer
/// \param headerLength the size of the AAD buffer, in bytes
/// \param message the message buffer
/// \param messageLength the size of the messagetext buffer, in bytes
/// \details EncryptAndAuthenticate() encrypts and generates the MAC in one call. The function
/// truncates the MAC if <tt>macSize < TagSize()</tt>.
virtual void EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength);
/// \brief Decrypts and verifies a MAC in one call
/// \param message the decryption buffer
/// \param mac the mac buffer
/// \param macSize the size of the MAC buffer, in bytes
/// \param iv the iv buffer
/// \param ivLength the size of the IV buffer, in bytes
/// \param header the AAD buffer
/// \param headerLength the size of the AAD buffer, in bytes
/// \param ciphertext the ciphertext buffer
/// \param ciphertextLength the size of the ciphertext buffer, in bytes
/// \return true if the MAC is valid and the decoding succeeded, false otherwise
/// \details DecryptAndVerify() decrypts and verifies the MAC in one call.
/// <tt>message</tt> is a decryption buffer and should be at least as large as the ciphertext buffer.
/// \details The function returns true iff MAC is valid. DecryptAndVerify() assumes the MAC
/// is truncated if <tt>macLength < TagSize()</tt>.
virtual bool DecryptAndVerify(byte *message, const byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength);
/// \brief Provides the name of this algorithm
/// \return the standard algorithm name
/// \details The standard algorithm name can be a name like \a AES or \a AES/GCM. Some algorithms
/// do not have standard names yet. For example, there is no standard algorithm name for
/// Shoup's ECIES.
virtual std::string AlgorithmName() const;
protected:
const Algorithm & GetAlgorithm() const
{return *static_cast<const MessageAuthenticationCode *>(this);}
virtual void UncheckedSpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
{CRYPTOPP_UNUSED(headerLength); CRYPTOPP_UNUSED(messageLength); CRYPTOPP_UNUSED(footerLength);}
};
/// \brief Interface for random number generators
/// \details The library provides a number of random number generators, from software based
/// to hardware based generators.
/// \details All generated values are uniformly distributed over the range specified.
/// \since Crypto++ 3.1
/// \sa <A HREF="https://www.cryptopp.com/wiki/RandomNumberGenerator">RandomNumberGenerator</A>
/// on the Crypto++ wiki
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomNumberGenerator : public Algorithm
{
public:
virtual ~RandomNumberGenerator() {}
/// \brief Update RNG state with additional unpredictable values
/// \param input the entropy to add to the generator
/// \param length the size of the input buffer
/// \throws NotImplemented
/// \details A generator may or may not accept additional entropy. Call CanIncorporateEntropy()
/// to test for the ability to use additional entropy.
/// \details If a derived class does not override IncorporateEntropy(), then the base class
/// throws NotImplemented.
virtual void IncorporateEntropy(const byte *input, size_t length)
{
CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(length);
throw NotImplemented("RandomNumberGenerator: IncorporateEntropy not implemented");
}
/// \brief Determines if a generator can accept additional entropy
/// \return true if IncorporateEntropy() is implemented
virtual bool CanIncorporateEntropy() const {return false;}
/// \brief Generate new random byte and return it
/// \return a random 8-bit byte
/// \details Default implementation calls GenerateBlock() with one byte.
/// \details All generated values are uniformly distributed over the range specified within the
/// the constraints of a particular generator.
virtual byte GenerateByte();
/// \brief Generate new random bit and return it
/// \return a random bit
/// \details The default implementation calls GenerateByte() and return its lowest bit.
/// \details All generated values are uniformly distributed over the range specified within the
/// the constraints of a particular generator.
virtual unsigned int GenerateBit();
/// \brief Generate a random 32 bit word in the range min to max, inclusive
/// \param min the lower bound of the range
/// \param max the upper bound of the range
/// \return a random 32-bit word
/// \details The default implementation calls Crop() on the difference between max and
/// min, and then returns the result added to min.
/// \details All generated values are uniformly distributed over the range specified within the
/// the constraints of a particular generator.
virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL);
/// \brief Generate random array of bytes
/// \param output the byte buffer
/// \param size the length of the buffer, in bytes
/// \details All generated values are uniformly distributed over the range specified within the
/// the constraints of a particular generator.
/// \note A derived generator \a must override either GenerateBlock() or
/// GenerateIntoBufferedTransformation(). They can override both, or have one call the other.
virtual void GenerateBlock(byte *output, size_t size);
/// \brief Generate random bytes into a BufferedTransformation
/// \param target the BufferedTransformation object which receives the bytes
/// \param channel the channel on which the bytes should be pumped
/// \param length the number of bytes to generate
/// \details The default implementation calls GenerateBlock() and pumps the result into
/// the DEFAULT_CHANNEL of the target.
/// \details All generated values are uniformly distributed over the range specified within the
/// the constraints of a particular generator.
/// \note A derived generator \a must override either GenerateBlock() or
/// GenerateIntoBufferedTransformation(). They can override both, or have one call the other.
virtual void GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length);
/// \brief Generate and discard n bytes
/// \param n the number of bytes to generate and discard
virtual void DiscardBytes(size_t n);
/// \brief Randomly shuffle the specified array
/// \param begin an iterator to the first element in the array
/// \param end an iterator beyond the last element in the array
/// \details The resulting permutation is uniformly distributed.
template <class IT> void Shuffle(IT begin, IT end)
{
// TODO: What happens if there are more than 2^32 elements?
for (; begin != end; ++begin)
std::iter_swap(begin, begin + GenerateWord32(0, static_cast<word32>(end-begin-1)));
}
};
/// \brief Interface for key derivation functions
/// \since Crypto++ 7.0
/// \sa <A HREF="https://www.cryptopp.com/wiki/KeyDerivationFunction">KeyDerivationFunction</A>
/// on the Crypto++ wiki
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE KeyDerivationFunction : public Algorithm
{
public:
virtual ~KeyDerivationFunction() {}
/// \brief Provides the name of this algorithm
/// \return the standard algorithm name
virtual std::string AlgorithmName() const =0;
/// \brief Determine minimum number of bytes
/// \return Minimum number of bytes which can be derived
virtual size_t MinDerivedKeyLength() const;
/// \brief Determine maximum number of bytes
/// \return Maximum number of bytes which can be derived
virtual size_t MaxDerivedKeyLength() const;
/// \brief Returns a valid key length for the derivation function
/// \param keylength the size of the derived key, in bytes
/// \return the valid key length, in bytes
virtual size_t GetValidDerivedLength(size_t keylength) const =0;
/// \brief Returns whether keylength is a valid key length
/// \param keylength the requested keylength
/// \return true if the derived keylength is valid, false otherwise
/// \details Internally the function calls GetValidKeyLength()
virtual bool IsValidDerivedLength(size_t keylength) const {
return keylength == GetValidDerivedLength(keylength);
}
/// \brief Derive a key from a seed
/// \param derived the derived output buffer
/// \param derivedLen the size of the derived buffer, in bytes
/// \param secret the seed input buffer
/// \param secretLen the size of the secret buffer, in bytes
/// \param params additional initialization parameters to configure this object
/// \return the number of iterations performed
/// \throws InvalidDerivedKeyLength if <tt>derivedLen</tt> is invalid for the scheme
/// \details DeriveKey() provides a standard interface to derive a key from
/// a secret seed and other parameters. Each class that derives from KeyDerivationFunction
/// provides an overload that accepts most parameters used by the derivation function.
/// \details the number of iterations performed by DeriveKey() may be 1. For example, a
/// scheme like HKDF does not use the iteration count so it returns 1.
virtual size_t DeriveKey(byte *derived, size_t derivedLen, const byte *secret, size_t secretLen, const NameValuePairs& params = g_nullNameValuePairs) const =0;
/// \brief Set or change parameters
/// \param params additional initialization parameters to configure this object
/// \details SetParameters() is useful for setting common parameters when an object is
/// reused. Some derivation function classes may choose to implement it.
virtual void SetParameters(const NameValuePairs& params);
protected:
/// \brief Returns the base class Algorithm
/// \return the base class Algorithm
virtual const Algorithm & GetAlgorithm() const =0;
/// \brief Validates the derived key length
/// \param length the size of the derived key material, in bytes
/// \throws InvalidKeyLength if the key length is invalid
void ThrowIfInvalidDerivedKeyLength(size_t length) const;
};
/// \brief Interface for password based key derivation functions
/// \since Crypto++ 7.0
struct PasswordBasedKeyDerivationFunction : public KeyDerivationFunction
{
};
/// \brief Random Number Generator that does not produce random numbers
/// \return reference that can be passed to functions that require a RandomNumberGenerator
/// \details NullRNG() returns a reference that can be passed to functions that require a
/// RandomNumberGenerator but don't actually use it. The NullRNG() throws NotImplemented
/// when a generation function is called.
/// \sa ClassNullRNG, PK_SignatureScheme::IsProbabilistic()
CRYPTOPP_DLL RandomNumberGenerator & CRYPTOPP_API NullRNG();
class WaitObjectContainer;
class CallStack;
/// \brief Interface for objects that can be waited on.
class CRYPTOPP_NO_VTABLE Waitable
{
public:
virtual ~Waitable() {}
/// \brief Maximum number of wait objects that this object can return
/// \return the maximum number of wait objects
virtual unsigned int GetMaxWaitObjectCount() const =0;
/// \brief Retrieves waitable objects
/// \param container the wait container to receive the references to the objects.
/// \param callStack CallStack() object used to select waitable objects
/// \details GetWaitObjects() is usually called in one of two ways. First, it can
/// be called like <tt>something.GetWaitObjects(c, CallStack("my func after X", 0));</tt>.
/// Second, if in an outer GetWaitObjects() method that itself takes a callStack
/// parameter, it can be called like
/// <tt>innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack));</tt>.
virtual void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack) =0;
/// \brief Wait on this object
/// \return true if the wait succeeded, false otherwise
/// \details Wait() is the same as creating an empty container, calling GetWaitObjects(), and then calling
/// Wait() on the container.
bool Wait(unsigned long milliseconds, CallStack const& callStack);
};
/// \brief Interface for buffered transformations
/// \details BufferedTransformation is a generalization of BlockTransformation,
/// StreamTransformation and HashTransformation.
/// \details A buffered transformation is an object that takes a stream of bytes as input (this may
/// be done in stages), does some computation on them, and then places the result into an internal
/// buffer for later retrieval. Any partial result already in the output buffer is not modified
/// by further input.
/// \details If a method takes a "blocking" parameter, and you pass false for it, then the method
/// will return before all input has been processed if the input cannot be processed without waiting
/// (for network buffers to become available, for example). In this case the method will return true
/// or a non-zero integer value. When this happens you must continue to call the method with the same
/// parameters until it returns false or zero, before calling any other method on it or attached
/// BufferedTransformation. The integer return value in this case is approximately
/// the number of bytes left to be processed, and can be used to implement a progress bar.
/// \details For functions that take a "propagation" parameter, <tt>propagation != 0</tt> means pass on
/// the signal to attached BufferedTransformation objects, with propagation decremented at each
/// step until it reaches <tt>0</tt>. <tt>-1</tt> means unlimited propagation.
/// \details \a All of the retrieval functions, like Get() and GetWord32(), return the actual
/// number of bytes retrieved, which is the lesser of the request number and MaxRetrievable().
/// \details \a Most of the input functions, like Put() and PutWord32(), return the number of
/// bytes remaining to be processed. A 0 value means all bytes were processed, and a non-0 value
/// means bytes remain to be processed.
/// \nosubgrouping
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BufferedTransformation : public Algorithm, public Waitable
{
public:
virtual ~BufferedTransformation() {}
/// \brief Construct a BufferedTransformation
BufferedTransformation() : Algorithm(false) {}
/// \brief Provides a reference to this object
/// \return A reference to this object
/// \details Useful for passing a temporary object to a function that takes a non-const reference
BufferedTransformation& Ref() {return *this;}
/// \name INPUT
//@{
/// \brief Input a byte for processing
/// \param inByte the 8-bit byte (octet) to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
/// 0 indicates all bytes were processed.
/// \details <tt>Put(byte)</tt> calls <tt>Put(byte*, size_t)</tt>.
size_t Put(byte inByte, bool blocking=true)
{return Put(&inByte, 1, blocking);}
/// \brief Input a byte buffer for processing
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
/// 0 indicates all bytes were processed.
/// \details Internally, Put() calls Put2().
size_t Put(const byte *inString, size_t length, bool blocking=true)
{return Put2(inString, length, 0, blocking);}
/// Input a 16-bit word for processing.
/// \param value the 16-bit value to be processed
/// \param order the ByteOrder of the value to be processed.
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
/// 0 indicates all bytes were processed.
size_t PutWord16(word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
/// Input a 32-bit word for processing.
/// \param value the 32-bit value to be processed.
/// \param order the ByteOrder of the value to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
/// 0 indicates all bytes were processed.
size_t PutWord32(word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
/// Input a 64-bit word for processing.
/// \param value the 64-bit value to be processed.
/// \param order the ByteOrder of the value to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return the number of bytes that remain to be processed (i.e., bytes not processed).
/// 0 indicates all bytes were processed.
size_t PutWord64(word64 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
/// \brief Request space which can be written into by the caller
/// \param size the requested size of the buffer
/// \return byte pointer to the space to input data
/// \details The purpose of this method is to help avoid extra memory allocations.
/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
/// size is the requested size of the buffer. When the call returns, size is the size of
/// the array returned to the caller.
/// \details The base class implementation sets size to 0 and returns NULL.
/// \note Some objects, like ArraySink, cannot create a space because its fixed. In the case of
/// an ArraySink, the pointer to the array is returned and the size is remaining size.
virtual byte * CreatePutSpace(size_t &size)
{size=0; return NULLPTR;}
/// \brief Determines whether input can be modified by the callee
/// \return true if input can be modified, false otherwise
/// \details The base class implementation returns false.
virtual bool CanModifyInput() const
{return false;}
/// \brief Input multiple bytes that may be modified by callee.
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
/// bytes were processed.
size_t PutModifiable(byte *inString, size_t length, bool blocking=true)
{return PutModifiable2(inString, length, 0, blocking);}
/// \brief Signals the end of messages to the object
/// \param propagation the number of attached transformations the MessageEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
bool MessageEnd(int propagation=-1, bool blocking=true)
{return !!Put2(NULLPTR, 0, propagation < 0 ? -1 : propagation+1, blocking);}
/// \brief Input multiple bytes for processing and signal the end of a message
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param propagation the number of attached transformations the MessageEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
/// bytes were processed.
/// \details Internally, PutMessageEnd() calls Put2() with a modified propagation to
/// ensure all attached transformations finish processing the message.
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
size_t PutMessageEnd(const byte *inString, size_t length, int propagation=-1, bool blocking=true)
{return Put2(inString, length, propagation < 0 ? -1 : propagation+1, blocking);}
/// \brief Input multiple bytes for processing
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
/// bytes were processed.
/// \details Derived classes must implement Put2().
virtual size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) =0;
/// \brief Input multiple bytes that may be modified by callee.
/// \param inString the byte buffer to process.
/// \param length the size of the string, in bytes.
/// \param messageEnd means how many filters to signal MessageEnd() to, including this one.
/// \param blocking specifies whether the object should block when processing input.
/// \return the number of bytes that remain to be processed (i.e., bytes not processed). 0 indicates all
/// bytes were processed.
/// \details Internally, PutModifiable2() calls Put2().
virtual size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
{return Put2(inString, length, messageEnd, blocking);}
/// \brief Exception thrown by objects that have \a not implemented nonblocking input processing
/// \details BlockingInputOnly inherits from NotImplemented
struct BlockingInputOnly : public NotImplemented
{BlockingInputOnly(const std::string &s) : NotImplemented(s + ": Nonblocking input is not implemented by this object.") {}};
//@}
/// \name WAITING
//@{
/// \brief Retrieves the maximum number of waitable objects
unsigned int GetMaxWaitObjectCount() const;
/// \brief Retrieves waitable objects
/// \param container the wait container to receive the references to the objects
/// \param callStack CallStack() object used to select waitable objects
/// \details GetWaitObjects is usually called in one of two ways. First, it can
/// be called like <tt>something.GetWaitObjects(c, CallStack("my func after X", 0));</tt>.
/// Second, if in an outer GetWaitObjects() method that itself takes a callStack
/// parameter, it can be called like
/// <tt>innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack));</tt>.
void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack);
//@} // WAITING
/// \name SIGNALS
//@{
/// \brief Initialize or reinitialize this object, without signal propagation
/// \param parameters a set of NameValuePairs to initialize this object
/// \throws NotImplemented
/// \details IsolatedInitialize() is used to initialize or reinitialize an object using a variable
/// number of arbitrarily typed arguments. The function avoids the need for multiple constructors providing
/// all possible combintations of configurable parameters.
/// \details IsolatedInitialize() does not call Initialize() on attached transformations. If initialization
/// should be propagated, then use the Initialize() function.
/// \details If a derived class does not override IsolatedInitialize(), then the base class throws
/// NotImplemented.
virtual void IsolatedInitialize(const NameValuePairs &parameters) {
CRYPTOPP_UNUSED(parameters);
throw NotImplemented("BufferedTransformation: this object can't be reinitialized");
}
/// \brief Flushes data buffered by this object, without signal propagation
/// \param hardFlush indicates whether all data should be flushed
/// \param blocking specifies whether the object should block when processing input
/// \return true if the flush was successful, false otherwise
/// \note hardFlush must be used with care
virtual bool IsolatedFlush(bool hardFlush, bool blocking) =0;
/// \brief Marks the end of a series of messages, without signal propagation
/// \param blocking specifies whether the object should block when completing the processing on
/// the current series of messages
/// \return true if the message was successful, false otherwise
virtual bool IsolatedMessageSeriesEnd(bool blocking)
{CRYPTOPP_UNUSED(blocking); return false;}
/// \brief Initialize or reinitialize this object, with signal propagation
/// \param parameters a set of NameValuePairs to initialize or reinitialize this object
/// \param propagation the number of attached transformations the Initialize() signal should be passed
/// \details Initialize() is used to initialize or reinitialize an object using a variable number of
/// arbitrarily typed arguments. The function avoids the need for multiple constructors providing
/// all possible combintations of configurable parameters.
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
virtual void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1);
/// \brief Flush buffered input and/or output, with signal propagation
/// \param hardFlush is used to indicate whether all data should be flushed
/// \param propagation the number of attached transformations the Flush()
/// signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return true if the flush was successful, false otherwise
/// \details propagation count includes this object. Setting propagation to
/// <tt>1</tt> means this object only. Setting propagation to <tt>-1</tt>
/// means unlimited propagation.
/// \note Hard flushes must be used with care. It means try to process and
/// output everything, even if there may not be enough data to complete the
/// action. For example, hard flushing a HexDecoder would cause an error if
/// you do it after inputing an odd number of hex encoded characters.
/// \note For some types of filters, like ZlibDecompressor, hard flushes can
/// only be done at "synchronization points". These synchronization points
/// are positions in the data stream that are created by hard flushes on the
/// corresponding reverse filters, in this example ZlibCompressor. This is
/// useful when zlib compressed data is moved across a network in packets
/// and compression state is preserved across packets, as in the SSH2 protocol.
virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true);
/// \brief Marks the end of a series of messages, with signal propagation
/// \param propagation the number of attached transformations the MessageSeriesEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return true if the message was successful, false otherwise
/// \details Each object that receives the signal will perform its processing, decrement
/// propagation, and then pass the signal on to attached transformations if the value is not 0.
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
/// \note There should be a MessageEnd() immediately before MessageSeriesEnd().
virtual bool MessageSeriesEnd(int propagation=-1, bool blocking=true);
/// \brief Set propagation of automatically generated and transferred signals
/// \param propagation then new value
/// \details Setting propagation to <tt>0</tt> means do not automatically generate signals. Setting
/// propagation to <tt>-1</tt> means unlimited propagation.
virtual void SetAutoSignalPropagation(int propagation)
{CRYPTOPP_UNUSED(propagation);}
/// \brief Retrieve automatic signal propagation value
/// \return the number of attached transformations the signal is propagated to. 0 indicates
/// the signal is only witnessed by this object
virtual int GetAutoSignalPropagation() const {return 0;}
public:
/// \name RETRIEVAL OF ONE MESSAGE
//@{
/// \brief Provides the number of bytes ready for retrieval
/// \return the number of bytes ready for retrieval
/// \details The number of bytes available are dependent on the source. If an exact value is
/// available, then the exact value is returned. The exact value can include 0 if the source
/// is exhausted.
/// \details Some stream-based sources do not allow seeking() on the underlying stream, such
/// as some FileSource(). If the stream does not allow seeking() then MaxRetrievable()
/// returns LWORD_MAX to indicate there are still bytes to be retrieved.
virtual lword MaxRetrievable() const;
/// \brief Determines whether bytes are ready for retrieval
/// \return true if bytes are available for retrieval, false otherwise
virtual bool AnyRetrievable() const;
/// \brief Retrieve a 8-bit byte
/// \param outByte the 8-bit value to be retrieved
/// \return the number of bytes consumed during the call.
/// \details Use the return value of Get to detect short reads.
virtual size_t Get(byte &outByte);
/// \brief Retrieve a block of bytes
/// \param outString a block of bytes
/// \param getMax the number of bytes to Get
/// \return the number of bytes consumed during the call.
/// \details Use the return value of Get to detect short reads.
virtual size_t Get(byte *outString, size_t getMax);
/// \brief Peek a 8-bit byte
/// \param outByte the 8-bit value to be retrieved
/// \return the number of bytes read during the call.
/// \details Peek does not remove bytes from the object. Use the return value of
/// Get() to detect short reads.
virtual size_t Peek(byte &outByte) const;
/// \brief Peek a block of bytes
/// \param outString a block of bytes
/// \param peekMax the number of bytes to Peek
/// \return the number of bytes read during the call.
/// \details Peek does not remove bytes from the object. Use the return value of
/// Peek() to detect short reads.
virtual size_t Peek(byte *outString, size_t peekMax) const;
/// \brief Retrieve a 16-bit word
/// \param value the 16-bit value to be retrieved
/// \param order the ByteOrder of the value to be processed.
/// \return the number of bytes consumed during the call.
/// \details Use the return value of GetWord16() to detect short reads.
size_t GetWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER);
/// \brief Retrieve a 32-bit word
/// \param value the 32-bit value to be retrieved
/// \param order the ByteOrder of the value to be processed.
/// \return the number of bytes consumed during the call.
/// \details Use the return value of GetWord32() to detect short reads.
size_t GetWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER);
/// \brief Retrieve a 64-bit word
/// \param value the 64-bit value to be retrieved
/// \param order the ByteOrder of the value to be processed.
/// \return the number of bytes consumed during the call.
/// \details Use the return value of GetWord64() to detect short reads.
/// \since Crypto++ 8.3
size_t GetWord64(word64 &value, ByteOrder order=BIG_ENDIAN_ORDER);
/// \brief Peek a 16-bit word
/// \param value the 16-bit value to be retrieved
/// \param order the ByteOrder of the value to be processed.
/// \return the number of bytes consumed during the call.
/// \details Peek does not consume bytes in the stream. Use the return value
/// of PeekWord16() to detect short reads.
size_t PeekWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
/// \brief Peek a 32-bit word
/// \param value the 32-bit value to be retrieved
/// \param order the ByteOrder of the value to be processed.
/// \return the number of bytes consumed during the call.
/// \details Peek does not consume bytes in the stream. Use the return value
/// of PeekWord32() to detect short reads.
size_t PeekWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
/// \brief Peek a 64-bit word
/// \param value the 64-bit value to be retrieved
/// \param order the ByteOrder of the value to be processed.
/// \return the number of bytes consumed during the call.
/// \details Peek does not consume bytes in the stream. Use the return value
/// of PeekWord64() to detect short reads.
/// \since Crypto++ 8.3
size_t PeekWord64(word64 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
/// move transferMax bytes of the buffered output to target as input
/// \brief Transfer bytes from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param transferMax the number of bytes to transfer
/// \param channel the channel on which the transfer should occur
/// \return the number of bytes transferred during the call.
/// \details TransferTo removes bytes from this object and moves them to the destination.
/// \details The function always returns transferMax. If an accurate count is needed, then use TransferTo2().
lword TransferTo(BufferedTransformation &target, lword transferMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL)
{TransferTo2(target, transferMax, channel); return transferMax;}
/// \brief Discard skipMax bytes from the output buffer
/// \param skipMax the number of bytes to discard
/// \details Skip() discards bytes from the output buffer, which is the AttachedTransformation(), if present.
/// The function always returns the parameter <tt>skipMax</tt>.
/// \details If you want to skip bytes from a Source, then perform the following.
/// <pre> StringSource ss(str, false, new Redirector(TheBitBucket()));
/// ss.Pump(10); // Skip 10 bytes from Source
/// ss.Detach(new FilterChain(...));
/// ss.PumpAll();
/// </pre>
virtual lword Skip(lword skipMax=LWORD_MAX);
/// \brief Copy bytes from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param copyMax the number of bytes to copy
/// \param channel the channel on which the transfer should occur
/// \return the number of bytes copied during the call.
/// \details CopyTo copies bytes from this object to the destination. The bytes are not removed from this object.
/// \details The function always returns copyMax. If an accurate count is needed, then use CopyRangeTo2().
lword CopyTo(BufferedTransformation &target, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
{return CopyRangeTo(target, 0, copyMax, channel);}
/// \brief Copy bytes from this object using an index to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param position the 0-based index of the byte stream to begin the copying
/// \param copyMax the number of bytes to copy
/// \param channel the channel on which the transfer should occur
/// \return the number of bytes copied during the call.
/// \details CopyTo copies bytes from this object to the destination. The bytes remain in this
/// object. Copying begins at the index position in the current stream, and not from an absolute
/// position in the stream.
/// \details The function returns the new position in the stream after transferring the bytes starting at the index.
lword CopyRangeTo(BufferedTransformation &target, lword position, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
{lword i = position; CopyRangeTo2(target, i, i+copyMax, channel); return i-position;}
//@}
/// \name RETRIEVAL OF MULTIPLE MESSAGES
//@{
/// \brief Provides the number of bytes ready for retrieval
/// \return the number of bytes ready for retrieval
virtual lword TotalBytesRetrievable() const;
/// \brief Provides the number of meesages processed by this object
/// \return the number of meesages processed by this object
/// \details NumberOfMessages returns number of times MessageEnd() has been
/// received minus messages retrieved or skipped
virtual unsigned int NumberOfMessages() const;
/// \brief Determines if any messages are available for retrieval
/// \return true if <tt>NumberOfMessages() &gt; 0</tt>, false otherwise
/// \details AnyMessages returns true if <tt>NumberOfMessages() &gt; 0</tt>
virtual bool AnyMessages() const;
/// \brief Start retrieving the next message
/// \return true if a message is ready for retrieval
/// \details GetNextMessage() returns true if a message is ready for retrieval; false
/// if no more messages exist or this message is not completely retrieved.
virtual bool GetNextMessage();
/// \brief Skip a number of meessages
/// \param count number of messages to skip
/// \return 0 if the requested number of messages was skipped, non-0 otherwise
/// \details SkipMessages() skips count number of messages. If there is an AttachedTransformation()
/// then SkipMessages() is called on the attached transformation. If there is no attached
/// transformation, then count number of messages are sent to TheBitBucket() using TransferMessagesTo().
virtual unsigned int SkipMessages(unsigned int count=UINT_MAX);
/// \brief Transfer messages from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param count the number of messages to transfer
/// \param channel the channel on which the transfer should occur
/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
/// If all bytes are not transferred for a message, then processing stops and the number of remaining
/// bytes is returned. TransferMessagesTo() does not proceed to the next message.
/// \details A return value of 0 indicates all messages were successfully transferred.
unsigned int TransferMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL)
{TransferMessagesTo2(target, count, channel); return count;}
/// \brief Copy messages from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param count the number of messages to copy
/// \param channel the channel on which the copy should occur
/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
/// \details CopyMessagesTo copies messages from this object to the destination.
/// If all bytes are not transferred for a message, then processing stops and the number of remaining
/// bytes is returned. CopyMessagesTo() does not proceed to the next message.
/// \details A return value of 0 indicates all messages were successfully copied.
unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const;
/// \brief Skip all messages in the series
virtual void SkipAll();
/// \brief Transfer all bytes from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param channel the channel on which the transfer should occur
/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
/// Internally TransferAllTo() calls TransferAllTo2().
void TransferAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL)
{TransferAllTo2(target, channel);}
/// \brief Copy messages from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param channel the channel on which the transfer should occur
/// \details CopyAllTo copies messages from this object and copies them to the destination.
void CopyAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL) const;
/// \brief Retrieve the next message in a series
/// \return true if a message was retreved, false otherwise
/// \details Internally, the base class implementation returns false.
virtual bool GetNextMessageSeries() {return false;}
/// \brief Provides the number of messages in a series
/// \return the number of messages in this series
virtual unsigned int NumberOfMessagesInThisSeries() const {return NumberOfMessages();}
/// \brief Provides the number of messages in a series
/// \return the number of messages in this series
virtual unsigned int NumberOfMessageSeries() const {return 0;}
//@}
/// \name NON-BLOCKING TRANSFER OF OUTPUT
//@{
// upon return, byteCount contains number of bytes that have finished being transferred,
// and returns the number of bytes left in the current transfer block
/// \brief Transfer bytes from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param byteCount the number of bytes to transfer
/// \param channel the channel on which the transfer should occur
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain in the transfer block (i.e., bytes not transferred)
/// \details TransferTo2() removes bytes from this object and moves them to the destination.
/// Transfer begins at the index position in the current stream, and not from an absolute
/// position in the stream.
/// \details byteCount is an \a IN and \a OUT parameter. When the call is made,
/// byteCount is the requested size of the transfer. When the call returns, byteCount is
/// the number of bytes that were transferred.
virtual size_t TransferTo2(BufferedTransformation &target, lword &byteCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) =0;
// upon return, begin contains the start position of data yet to be finished copying,
// and returns the number of bytes left in the current transfer block
/// \brief Copy bytes from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param begin the 0-based index of the first byte to copy in the stream
/// \param end the 0-based index of the last byte to copy in the stream
/// \param channel the channel on which the transfer should occur
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain in the copy block (i.e., bytes not copied)
/// \details CopyRangeTo2 copies bytes from this object to the destination. The bytes are not
/// removed from this object. Copying begins at the index position in the current stream, and
/// not from an absolute position in the stream.
/// \details begin is an \a IN and \a OUT parameter. When the call is made, begin is the
/// starting position of the copy. When the call returns, begin is the position of the first
/// byte that was \a not copied (which may be different than end). begin can be used for
/// subsequent calls to CopyRangeTo2().
virtual size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const =0;
// upon return, messageCount contains number of messages that have finished being transferred,
// and returns the number of bytes left in the current transfer block
/// \brief Transfer messages from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param messageCount the number of messages to transfer
/// \param channel the channel on which the transfer should occur
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
/// \details messageCount is an \a IN and \a OUT parameter. When the call is made, messageCount is the
/// the number of messages requested to be transferred. When the call returns, messageCount is the
/// number of messages actually transferred.
size_t TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
// returns the number of bytes left in the current transfer block
/// \brief Transfer all bytes from this object to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param channel the channel on which the transfer should occur
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
/// \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
size_t TransferAllTo2(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
//@}
/// \name CHANNELS
//@{
/// \brief Exception thrown when a filter does not support named channels
struct NoChannelSupport : public NotImplemented
{NoChannelSupport(const std::string &name) : NotImplemented(name + ": this object doesn't support multiple channels") {}};
/// \brief Exception thrown when a filter does not recognize a named channel
struct InvalidChannelName : public InvalidArgument
{InvalidChannelName(const std::string &name, const std::string &channel) : InvalidArgument(name + ": unexpected channel name \"" + channel + "\"") {}};
/// \brief Input a byte for processing on a channel
/// \param channel the channel to process the data.
/// \param inByte the 8-bit byte (octet) to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
size_t ChannelPut(const std::string &channel, byte inByte, bool blocking=true)
{return ChannelPut(channel, &inByte, 1, blocking);}
/// \brief Input a byte buffer for processing on a channel
/// \param channel the channel to process the data
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param blocking specifies whether the object should block when processing input
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
size_t ChannelPut(const std::string &channel, const byte *inString, size_t length, bool blocking=true)
{return ChannelPut2(channel, inString, length, 0, blocking);}
/// \brief Input multiple bytes that may be modified by callee on a channel
/// \param channel the channel to process the data.
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param blocking specifies whether the object should block when processing input
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
size_t ChannelPutModifiable(const std::string &channel, byte *inString, size_t length, bool blocking=true)
{return ChannelPutModifiable2(channel, inString, length, 0, blocking);}
/// \brief Input a 16-bit word for processing on a channel.
/// \param channel the channel to process the data.
/// \param value the 16-bit value to be processed.
/// \param order the ByteOrder of the value to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
size_t ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
/// \brief Input a 32-bit word for processing on a channel.
/// \param channel the channel to process the data.
/// \param value the 32-bit value to be processed.
/// \param order the ByteOrder of the value to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
size_t ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
/// \brief Input a 64-bit word for processing on a channel.
/// \param channel the channel to process the data.
/// \param value the 64-bit value to be processed.
/// \param order the ByteOrder of the value to be processed.
/// \param blocking specifies whether the object should block when processing input.
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
size_t ChannelPutWord64(const std::string &channel, word64 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
/// \brief Signal the end of a message
/// \param channel the channel to process the data.
/// \param propagation the number of attached transformations the ChannelMessageEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return 0 indicates all bytes were processed during the call. Non-0 indicates the
/// number of bytes that were not processed.
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
bool ChannelMessageEnd(const std::string &channel, int propagation=-1, bool blocking=true)
{return !!ChannelPut2(channel, NULLPTR, 0, propagation < 0 ? -1 : propagation+1, blocking);}
/// \brief Input multiple bytes for processing and signal the end of a message
/// \param channel the channel to process the data.
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param propagation the number of attached transformations the ChannelPutMessageEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed)
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
size_t ChannelPutMessageEnd(const std::string &channel, const byte *inString, size_t length, int propagation=-1, bool blocking=true)
{return ChannelPut2(channel, inString, length, propagation < 0 ? -1 : propagation+1, blocking);}
/// \brief Request space which can be written into by the caller
/// \param channel the channel to process the data
/// \param size the requested size of the buffer
/// \return a pointer to a memory block with length size
/// \details The purpose of this method is to help avoid extra memory allocations.
/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
/// size is the requested size of the buffer. When the call returns, size is the size of
/// the array returned to the caller.
/// \details The base class implementation sets size to 0 and returns NULL.
/// \note Some objects, like ArraySink(), cannot create a space because its fixed. In the case of
/// an ArraySink(), the pointer to the array is returned and the size is remaining size.
virtual byte * ChannelCreatePutSpace(const std::string &channel, size_t &size);
/// \brief Input multiple bytes for processing on a channel.
/// \param channel the channel to process the data.
/// \param inString the byte buffer to process.
/// \param length the size of the string, in bytes.
/// \param messageEnd means how many filters to signal MessageEnd() to, including this one.
/// \param blocking specifies whether the object should block when processing input.
/// \return the number of bytes that remain to be processed (i.e., bytes not processed)
virtual size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking);
/// \brief Input multiple bytes that may be modified by callee on a channel
/// \param channel the channel to process the data
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
/// \param blocking specifies whether the object should block when processing input
/// \return the number of bytes that remain to be processed (i.e., bytes not processed)
virtual size_t ChannelPutModifiable2(const std::string &channel, byte *inString, size_t length, int messageEnd, bool blocking);
/// \brief Flush buffered input and/or output on a channel
/// \param channel the channel to flush the data
/// \param hardFlush is used to indicate whether all data should be flushed
/// \param propagation the number of attached transformations the ChannelFlush() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return true of the Flush was successful
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true);
/// \brief Marks the end of a series of messages on a channel
/// \param channel the channel to signal the end of a series of messages
/// \param propagation the number of attached transformations the ChannelMessageSeriesEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \return true if the message was successful, false otherwise
/// \details Each object that receives the signal will perform its processing, decrement
/// propagation, and then pass the signal on to attached transformations if the value is not 0.
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
/// \note There should be a MessageEnd() immediately before MessageSeriesEnd().
virtual bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true);
/// \brief Sets the default retrieval channel
/// \param channel the channel to signal the end of a series of messages
/// \note this function may not be implemented in all objects that should support it.
virtual void SetRetrievalChannel(const std::string &channel);
//@}
/// \name ATTACHMENT
/// \details Some BufferedTransformation objects (e.g. Filter objects) allow other BufferedTransformation objects to be
/// attached. When this is done, the first object instead of buffering its output, sends that output to the attached
/// object as input. The entire attachment chain is deleted when the anchor object is destructed.
//@{
/// \brief Determines whether the object allows attachment
/// \return true if the object allows an attachment, false otherwise
/// \details Sources and Filters will returns true, while Sinks and other objects will return false.
virtual bool Attachable() {return false;}
/// \brief Returns the object immediately attached to this object
/// \return the attached transformation
/// \details AttachedTransformation() returns NULL if there is no attachment. The non-const
/// version of AttachedTransformation() always returns NULL.
virtual BufferedTransformation *AttachedTransformation() {CRYPTOPP_ASSERT(!Attachable()); return NULLPTR;}
/// \brief Returns the object immediately attached to this object
/// \return the attached transformation
/// \details AttachedTransformation() returns NULL if there is no attachment. The non-const
/// version of AttachedTransformation() always returns NULL.
virtual const BufferedTransformation *AttachedTransformation() const
{return const_cast<BufferedTransformation *>(this)->AttachedTransformation();}
/// \brief Delete the current attachment chain and attach a new one
/// \param newAttachment the new BufferedTransformation to attach
/// \throws NotImplemented
/// \details Detach() deletes the current attachment chain and replace it with an optional newAttachment
/// \details If a derived class does not override Detach(), then the base class throws
/// NotImplemented.
virtual void Detach(BufferedTransformation *newAttachment = NULLPTR) {
CRYPTOPP_UNUSED(newAttachment); CRYPTOPP_ASSERT(!Attachable());
throw NotImplemented("BufferedTransformation: this object is not attachable");
}
/// \brief Add newAttachment to the end of attachment chain
/// \param newAttachment the attachment to add to the end of the chain
virtual void Attach(BufferedTransformation *newAttachment);
//@}
protected:
/// \brief Decrements the propagation count while clamping at 0
/// \return the decremented propagation or 0
static int DecrementPropagation(int propagation)
{return propagation != 0 ? propagation - 1 : 0;}
private:
// for ChannelPutWord16, ChannelPutWord32 and ChannelPutWord64,
// to ensure the buffer isn't deallocated before non-blocking
// operation completes
byte m_buf[8];
};
/// \brief An input discarding BufferedTransformation
/// \return a reference to a BufferedTransformation object that discards all input
CRYPTOPP_DLL BufferedTransformation & TheBitBucket();
/// \brief Interface for crypto material
/// \details CryptoMaterial() is an interface for crypto material, such as
/// public keys, private keys and crypto parameters. Derived classes generally
/// do not offer public methods such as GenerateRandom() and
/// GenerateRandomWithKeySize().
/// \sa GeneratableCryptoMaterial()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoMaterial : public NameValuePairs
{
public:
/// Exception thrown when invalid crypto material is detected
class CRYPTOPP_DLL InvalidMaterial : public InvalidDataFormat
{
public:
explicit InvalidMaterial(const std::string &s) : InvalidDataFormat(s) {}
};
virtual ~CryptoMaterial() {}
/// \brief Assign values to this object
/// \details This function can be used to create a public key from a private key.
virtual void AssignFrom(const NameValuePairs &source) =0;
/// \brief Check this object for errors
/// \param rng a RandomNumberGenerator for objects which use randomized testing
/// \param level the level of thoroughness
/// \return true if the tests succeed, false otherwise
/// \details There are four levels of thoroughness:
/// <ul>
/// <li>0 - using this object won't cause a crash or exception
/// <li>1 - this object will probably function, and encrypt, sign, other operations correctly
/// <li>2 - ensure this object will function correctly, and perform reasonable security checks
/// <li>3 - perform reasonable security checks, and do checks that may take a long time
/// </ul>
/// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
/// Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
/// \sa ThrowIfInvalid()
virtual bool Validate(RandomNumberGenerator &rng, unsigned int level) const =0;
/// \brief Check this object for errors
/// \param rng a RandomNumberGenerator for objects which use randomized testing
/// \param level the level of thoroughness
/// \throws InvalidMaterial
/// \details Internally, ThrowIfInvalid() calls Validate() and throws InvalidMaterial() if validation fails.
/// \sa Validate()
virtual void ThrowIfInvalid(RandomNumberGenerator &rng, unsigned int level) const
{if (!Validate(rng, level)) throw InvalidMaterial("CryptoMaterial: this object contains invalid values");}
/// \brief Saves a key to a BufferedTransformation
/// \param bt the destination BufferedTransformation
/// \throws NotImplemented
/// \details Save() writes the material to a BufferedTransformation.
/// \details If the material is a key, then the key is written with ASN.1 DER encoding. The key
/// includes an object identifier with an algorthm id, like a subjectPublicKeyInfo.
/// \details A "raw" key without the "key info" can be saved using a key's DEREncode() method.
/// \details If a derived class does not override Save(), then the base class throws
/// NotImplemented().
virtual void Save(BufferedTransformation &bt) const
{CRYPTOPP_UNUSED(bt); throw NotImplemented("CryptoMaterial: this object does not support saving");}
/// \brief Loads a key from a BufferedTransformation
/// \param bt the source BufferedTransformation
/// \throws KeyingErr
/// \details Load() attempts to read material from a BufferedTransformation. If the
/// material is a key that was generated outside the library, then the following
/// usually applies:
/// <ul>
/// <li>the key should be ASN.1 BER encoded
/// <li>the key should be a "key info"
/// </ul>
/// \details "key info" means the key should have an object identifier with an algorthm id,
/// like a subjectPublicKeyInfo.
/// \details To read a "raw" key without the "key info", then call the key's BERDecode() method.
/// \note Load() generally does not check that the key is valid. Call Validate(), if needed.
virtual void Load(BufferedTransformation &bt)
{CRYPTOPP_UNUSED(bt); throw NotImplemented("CryptoMaterial: this object does not support loading");}
/// \brief Determines whether the object supports precomputation
/// \return true if the object supports precomputation, false otherwise
/// \sa Precompute()
virtual bool SupportsPrecomputation() const {return false;}
/// \brief Perform precomputation
/// \param precomputationStorage the suggested number of objects for the precompute table
/// \throws NotImplemented
/// \details The exact semantics of Precompute() varies, but it typically means calculate
/// a table of n objects that can be used later to speed up computation.
/// \details If a derived class does not override Precompute(), then the base class throws
/// NotImplemented.
/// \sa SupportsPrecomputation(), LoadPrecomputation(), SavePrecomputation()
virtual void Precompute(unsigned int precomputationStorage) {
CRYPTOPP_UNUSED(precomputationStorage); CRYPTOPP_ASSERT(!SupportsPrecomputation());
throw NotImplemented("CryptoMaterial: this object does not support precomputation");
}
/// \brief Retrieve previously saved precomputation
/// \param storedPrecomputation BufferedTransformation with the saved precomputation
/// \throws NotImplemented
/// \sa SupportsPrecomputation(), Precompute()
virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
{CRYPTOPP_UNUSED(storedPrecomputation); CRYPTOPP_ASSERT(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
/// \brief Save precomputation for later use
/// \param storedPrecomputation BufferedTransformation to write the precomputation
/// \throws NotImplemented
/// \sa SupportsPrecomputation(), Precompute()
virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
{CRYPTOPP_UNUSED(storedPrecomputation); CRYPTOPP_ASSERT(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
/// \brief Perform a quick sanity check
/// \details DoQuickSanityCheck() is for internal library use, and it should not be called by library users.
void DoQuickSanityCheck() const {ThrowIfInvalid(NullRNG(), 0);}
#if defined(__SUNPRO_CC)
// Sun Studio 11/CC 5.8 workaround: it generates incorrect code
// when casting to an empty virtual base class. JW, 2018: It is
// still a problem in Sun Studio 12.6/CC 5.15 on i386. Just enable
// it everywhere in case it affects SPARC (which we don't test).
char m_sunCCworkaround;
#endif
};
/// \brief Interface for crypto material
/// \details GeneratableCryptoMaterial() is an interface for crypto material,
/// such as private keys and crypto parameters. Derived classes offer public
/// methods such as GenerateRandom() and GenerateRandomWithKeySize().
/// \sa CryptoMaterial()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE GeneratableCryptoMaterial : virtual public CryptoMaterial
{
public:
virtual ~GeneratableCryptoMaterial() {}
/// \brief Generate a random key or crypto parameters
/// \param rng a RandomNumberGenerator to produce keying material
/// \param params additional initialization parameters
/// \throws KeyingErr if a key can't be generated or algorithm parameters are invalid
/// \details If a derived class does not override GenerateRandom(), then the base class throws
/// NotImplemented.
virtual void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs) {
CRYPTOPP_UNUSED(rng); CRYPTOPP_UNUSED(params);
throw NotImplemented("GeneratableCryptoMaterial: this object does not support key/parameter generation");
}
/// \brief Generate a random key or crypto parameters
/// \param rng a RandomNumberGenerator to produce keying material
/// \param keySize the size of the key, in bits
/// \throws KeyingErr if a key can't be generated or algorithm parameters are invalid
/// \details GenerateRandomWithKeySize calls GenerateRandom() with a NameValuePairs
/// object with only "KeySize"
void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize);
};
/// \brief Interface for public keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKey : virtual public CryptoMaterial
{
};
/// \brief Interface for private keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKey : public GeneratableCryptoMaterial
{
};
/// \brief Interface for crypto prameters
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoParameters : public GeneratableCryptoMaterial
{
};
/// \brief Interface for certificates
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Certificate : virtual public CryptoMaterial
{
};
/// \brief Interface for asymmetric algorithms
/// \details BERDecode() and DEREncode() were removed under Issue 569
/// and Commit 9b174e84de7a. Programs should use <tt>AccessMaterial().Load(bt)</tt>
/// or <tt>AccessMaterial().Save(bt)</tt> instead.
/// \sa <A HREF="https://github.com/weidai11/cryptopp/issues/569">Issue 569</A>
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AsymmetricAlgorithm : public Algorithm
{
public:
virtual ~AsymmetricAlgorithm() {}
/// \brief Retrieves a reference to CryptoMaterial
/// \return a reference to the crypto material
virtual CryptoMaterial & AccessMaterial() =0;
/// \brief Retrieves a reference to CryptoMaterial
/// \return a const reference to the crypto material
virtual const CryptoMaterial & GetMaterial() const =0;
#if 0
/// \brief Loads this object from a BufferedTransformation
/// \param bt a BufferedTransformation object
/// \details Use of BERDecode() changed to Load() at Issue 569.
/// \deprecated for backwards compatibility, calls <tt>AccessMaterial().Load(bt)</tt>
void BERDecode(BufferedTransformation &bt)
{AccessMaterial().Load(bt);}
/// \brief Saves this object to a BufferedTransformation
/// \param bt a BufferedTransformation object
/// \details Use of DEREncode() changed to Save() at Issue 569.
/// \deprecated for backwards compatibility, calls GetMaterial().Save(bt)
void DEREncode(BufferedTransformation &bt) const
{GetMaterial().Save(bt);}
#endif
};
/// \brief Interface for asymmetric algorithms using public keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKeyAlgorithm : public AsymmetricAlgorithm
{
public:
virtual ~PublicKeyAlgorithm() {}
// VC60 workaround: no co-variant return type
/// \brief Retrieves a reference to a Public Key
/// \return a reference to the public key
CryptoMaterial & AccessMaterial()
{return AccessPublicKey();}
/// \brief Retrieves a reference to a Public Key
/// \return a const reference the public key
const CryptoMaterial & GetMaterial() const
{return GetPublicKey();}
/// \brief Retrieves a reference to a Public Key
/// \return a reference to the public key
virtual PublicKey & AccessPublicKey() =0;
/// \brief Retrieves a reference to a Public Key
/// \return a const reference the public key
virtual const PublicKey & GetPublicKey() const
{return const_cast<PublicKeyAlgorithm *>(this)->AccessPublicKey();}
};
/// \brief Interface for asymmetric algorithms using private keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKeyAlgorithm : public AsymmetricAlgorithm
{
public:
virtual ~PrivateKeyAlgorithm() {}
/// \brief Retrieves a reference to a Private Key
/// \return a reference the private key
CryptoMaterial & AccessMaterial() {return AccessPrivateKey();}
/// \brief Retrieves a reference to a Private Key
/// \return a const reference the private key
const CryptoMaterial & GetMaterial() const {return GetPrivateKey();}
/// \brief Retrieves a reference to a Private Key
/// \return a reference the private key
virtual PrivateKey & AccessPrivateKey() =0;
/// \brief Retrieves a reference to a Private Key
/// \return a const reference the private key
virtual const PrivateKey & GetPrivateKey() const {return const_cast<PrivateKeyAlgorithm *>(this)->AccessPrivateKey();}
};
/// \brief Interface for key agreement algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE KeyAgreementAlgorithm : public AsymmetricAlgorithm
{
public:
virtual ~KeyAgreementAlgorithm() {}
/// \brief Retrieves a reference to Crypto Parameters
/// \return a reference the crypto parameters
CryptoMaterial & AccessMaterial() {return AccessCryptoParameters();}
/// \brief Retrieves a reference to Crypto Parameters
/// \return a const reference the crypto parameters
const CryptoMaterial & GetMaterial() const {return GetCryptoParameters();}
/// \brief Retrieves a reference to Crypto Parameters
/// \return a reference the crypto parameters
virtual CryptoParameters & AccessCryptoParameters() =0;
/// \brief Retrieves a reference to Crypto Parameters
/// \return a const reference the crypto parameters
virtual const CryptoParameters & GetCryptoParameters() const {return const_cast<KeyAgreementAlgorithm *>(this)->AccessCryptoParameters();}
};
/// \brief Interface for public-key encryptors and decryptors
/// \details This class provides an interface common to encryptors and decryptors
/// for querying their plaintext and ciphertext lengths.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_CryptoSystem
{
public:
virtual ~PK_CryptoSystem() {}
/// \brief Provides the maximum length of plaintext for a given ciphertext length
/// \return the maximum size of the plaintext, in bytes
/// \details This function returns 0 if ciphertextLength is not valid (too long or too short).
virtual size_t MaxPlaintextLength(size_t ciphertextLength) const =0;
/// \brief Calculate the length of ciphertext given length of plaintext
/// \return the maximum size of the ciphertext, in bytes
/// \details This function returns 0 if plaintextLength is not valid (too long).
virtual size_t CiphertextLength(size_t plaintextLength) const =0;
/// \brief Determines whether this object supports the use of a named parameter
/// \param name the name of the parameter
/// \return true if the parameter name is supported, false otherwise
/// \details Some possible parameter names: EncodingParameters(), KeyDerivationParameters()
/// and others Parameters listed in argnames.h
virtual bool ParameterSupported(const char *name) const =0;
/// \brief Provides the fixed ciphertext length, if one exists
/// \return the fixed ciphertext length if one exists, otherwise 0
/// \details "Fixed" here means length of ciphertext does not depend on length of plaintext.
/// In this case, it usually does depend on the key length.
virtual size_t FixedCiphertextLength() const {return 0;}
/// \brief Provides the maximum plaintext length given a fixed ciphertext length
/// \return maximum plaintext length given the fixed ciphertext length, if one exists,
/// otherwise return 0.
/// \details FixedMaxPlaintextLength(0 returns the maximum plaintext length given the fixed ciphertext
/// length, if one exists, otherwise return 0.
virtual size_t FixedMaxPlaintextLength() const {return 0;}
};
/// \brief Interface for public-key encryptors
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Encryptor : public PK_CryptoSystem, public PublicKeyAlgorithm
{
public:
/// \brief Exception thrown when trying to encrypt plaintext of invalid length
class CRYPTOPP_DLL InvalidPlaintextLength : public Exception
{
public:
InvalidPlaintextLength() : Exception(OTHER_ERROR, "PK_Encryptor: invalid plaintext length") {}
};
/// \brief Encrypt a byte string
/// \param rng a RandomNumberGenerator derived class
/// \param plaintext the plaintext byte buffer
/// \param plaintextLength the size of the plaintext byte buffer
/// \param ciphertext a byte buffer to hold the encrypted string
/// \param parameters a set of NameValuePairs to initialize this object
/// \pre <tt>CiphertextLength(plaintextLength) != 0</tt> ensures the plaintext isn't too large
/// \pre <tt>COUNTOF(ciphertext) == CiphertextLength(plaintextLength)</tt> ensures the output
/// byte buffer is large enough.
/// \sa PK_Decryptor
virtual void Encrypt(RandomNumberGenerator &rng,
const byte *plaintext, size_t plaintextLength,
byte *ciphertext, const NameValuePairs &parameters = g_nullNameValuePairs) const =0;
/// \brief Create a new encryption filter
/// \param rng a RandomNumberGenerator derived class
/// \param attachment an attached transformation
/// \param parameters a set of NameValuePairs to initialize this object
/// \details \p attachment can be \p NULL. The caller is responsible for deleting the returned pointer.
/// Encoding parameters should be passed in the "EP" channel.
virtual BufferedTransformation * CreateEncryptionFilter(RandomNumberGenerator &rng,
BufferedTransformation *attachment=NULLPTR, const NameValuePairs &parameters = g_nullNameValuePairs) const;
};
/// \brief Interface for public-key decryptors
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Decryptor : public PK_CryptoSystem, public PrivateKeyAlgorithm
{
public:
virtual ~PK_Decryptor() {}
/// \brief Decrypt a byte string
/// \param rng a RandomNumberGenerator derived class
/// \param ciphertext the encrypted byte buffer
/// \param ciphertextLength the size of the encrypted byte buffer
/// \param plaintext a byte buffer to hold the decrypted string
/// \param parameters a set of NameValuePairs to initialize this object
/// \return the result of the decryption operation
/// \details If DecodingResult::isValidCoding is true, then DecodingResult::messageLength
/// is valid and holds the the actual length of the plaintext recovered. The result is undefined
/// if decryption failed. If DecodingResult::isValidCoding is false, then DecodingResult::messageLength
/// is undefined.
/// \pre <tt>COUNTOF(plaintext) == MaxPlaintextLength(ciphertextLength)</tt> ensures the output
/// byte buffer is large enough
/// \sa PK_Encryptor
virtual DecodingResult Decrypt(RandomNumberGenerator &rng,
const byte *ciphertext, size_t ciphertextLength,
byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const =0;
/// \brief Create a new decryption filter
/// \param rng a RandomNumberGenerator derived class
/// \param attachment an attached transformation
/// \param parameters a set of NameValuePairs to initialize this object
/// \return the newly created decryption filter
/// \note the caller is responsible for deleting the returned pointer
virtual BufferedTransformation * CreateDecryptionFilter(RandomNumberGenerator &rng,
BufferedTransformation *attachment=NULLPTR, const NameValuePairs &parameters = g_nullNameValuePairs) const;
/// \brief Decrypt a fixed size ciphertext
/// \param rng a RandomNumberGenerator derived class
/// \param ciphertext the encrypted byte buffer
/// \param plaintext a byte buffer to hold the decrypted string
/// \param parameters a set of NameValuePairs to initialize this object
/// \return the result of the decryption operation
/// \details If DecodingResult::isValidCoding is true, then DecodingResult::messageLength
/// is valid and holds the the actual length of the plaintext recovered. The result is undefined
/// if decryption failed. If DecodingResult::isValidCoding is false, then DecodingResult::messageLength
/// is undefined.
/// \pre <tt>COUNTOF(plaintext) == MaxPlaintextLength(ciphertextLength)</tt> ensures the output
/// byte buffer is large enough
/// \sa PK_Encryptor
DecodingResult FixedLengthDecrypt(RandomNumberGenerator &rng, const byte *ciphertext, byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const
{return Decrypt(rng, ciphertext, FixedCiphertextLength(), plaintext, parameters);}
};
/// \brief Interface for public-key signers and verifiers
/// \details This class provides an interface common to signers and verifiers for querying scheme properties
/// \sa DL_SignatureSchemeBase, TF_SignatureSchemeBase, DL_SignerBase, TF_SignerBase
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_SignatureScheme
{
public:
/// \brief Exception throw when the private or public key has a length that can't be used
/// \details InvalidKeyLength() may be thrown by any function in this class if the private
/// or public key has a length that can't be used
class CRYPTOPP_DLL InvalidKeyLength : public Exception
{
public:
InvalidKeyLength(const std::string &message) : Exception(OTHER_ERROR, message) {}
};
/// \brief Exception throw when the private or public key is too short to sign or verify
/// \details KeyTooShort() may be thrown by any function in this class if the private or public
/// key is too short to sign or verify anything
class CRYPTOPP_DLL KeyTooShort : public InvalidKeyLength
{
public:
KeyTooShort() : InvalidKeyLength("PK_Signer: key too short for this signature scheme") {}
};
virtual ~PK_SignatureScheme() {}
/// \brief Provides the signature length if it only depends on the key
/// \return the signature length if it only depends on the key, in bytes
/// \details SignatureLength() returns the signature length if it only depends on the key, otherwise 0.
virtual size_t SignatureLength() const =0;
/// \brief Provides the maximum signature length produced given the length of the recoverable message part
/// \param recoverablePartLength the length of the recoverable message part, in bytes
/// \return the maximum signature length produced for a given length of recoverable message part, in bytes
/// \details MaxSignatureLength() returns the maximum signature length produced given the length of the
/// recoverable message part.
virtual size_t MaxSignatureLength(size_t recoverablePartLength = 0) const
{CRYPTOPP_UNUSED(recoverablePartLength); return SignatureLength();}
/// \brief Provides the length of longest message that can be recovered
/// \return the length of longest message that can be recovered, in bytes
/// \details MaxRecoverableLength() returns the length of longest message that can be recovered, or 0 if
/// this signature scheme does not support message recovery.
virtual size_t MaxRecoverableLength() const =0;
/// \brief Provides the length of longest message that can be recovered from a signature of given length
/// \param signatureLength the length of the signature, in bytes
/// \return the length of longest message that can be recovered from a signature of given length, in bytes
/// \details MaxRecoverableLengthFromSignatureLength() returns the length of longest message that can be
/// recovered from a signature of given length, or 0 if this signature scheme does not support message
/// recovery.
virtual size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const =0;
/// \brief Determines whether a signature scheme requires a random number generator
/// \return true if the signature scheme requires a RandomNumberGenerator() to sign
/// \details if IsProbabilistic() returns false, then NullRNG() can be passed to functions that take
/// RandomNumberGenerator().
virtual bool IsProbabilistic() const =0;
/// \brief Determines whether the non-recoverable message part can be signed
/// \return true if the non-recoverable message part can be signed
virtual bool AllowNonrecoverablePart() const =0;
/// \brief Determines whether the signature must be input before the message
/// \return true if the signature must be input before the message during verifcation
/// \details if SignatureUpfront() returns true, then you must input the signature before the message
/// during verification. Otherwise you can input the signature at anytime.
virtual bool SignatureUpfront() const {return false;}
/// \brief Determines whether the recoverable part must be input before the non-recoverable part
/// \return true if the recoverable part must be input before the non-recoverable part during signing
/// \details RecoverablePartFirst() determines whether you must input the recoverable part before the
/// non-recoverable part during signing
virtual bool RecoverablePartFirst() const =0;
};
/// \brief Interface for accumulating messages to be signed or verified
/// \details Only Update() should be called from the PK_MessageAccumulator() class. No other functions
/// inherited from HashTransformation, like DigestSize() and TruncatedFinal(), should be called.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_MessageAccumulator : public HashTransformation
{
public:
/// \warning DigestSize() should not be called on PK_MessageAccumulator
unsigned int DigestSize() const
{throw NotImplemented("PK_MessageAccumulator: DigestSize() should not be called");}
/// \warning TruncatedFinal() should not be called on PK_MessageAccumulator
void TruncatedFinal(byte *digest, size_t digestSize)
{
CRYPTOPP_UNUSED(digest); CRYPTOPP_UNUSED(digestSize);
throw NotImplemented("PK_MessageAccumulator: TruncatedFinal() should not be called");
}
};
/// \brief Interface for public-key signers
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Signer : public PK_SignatureScheme, public PrivateKeyAlgorithm
{
public:
virtual ~PK_Signer() {}
/// \brief Create a new HashTransformation to accumulate the message to be signed
/// \param rng a RandomNumberGenerator derived class
/// \return a pointer to a PK_MessageAccumulator
/// \details NewSignatureAccumulator() can be used with all signing methods. Sign() will autimatically delete the
/// accumulator pointer. The caller is responsible for deletion if a method is called that takes a reference.
virtual PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const =0;
/// \brief Input a recoverable message to an accumulator
/// \param messageAccumulator a reference to a PK_MessageAccumulator
/// \param recoverableMessage a pointer to the recoverable message part to be signed
/// \param recoverableMessageLength the size of the recoverable message part
virtual void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const =0;
/// \brief Sign and delete the messageAccumulator
/// \param rng a RandomNumberGenerator derived class
/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
/// \param signature a block of bytes for the signature
/// \return actual signature length
/// \details Sign() deletes the messageAccumulator, even if an exception is thrown.
/// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
virtual size_t Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const;
/// \brief Sign and restart messageAccumulator
/// \param rng a RandomNumberGenerator derived class
/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
/// \param signature a block of bytes for the signature
/// \param restart flag indicating whether the messageAccumulator should be restarted
/// \return actual signature length
/// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
virtual size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const =0;
/// \brief Sign a message
/// \param rng a RandomNumberGenerator derived class
/// \param message a pointer to the message
/// \param messageLen the size of the message to be signed
/// \param signature a block of bytes for the signature
/// \return actual signature length
/// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
virtual size_t SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const;
/// \brief Sign a recoverable message
/// \param rng a RandomNumberGenerator derived class
/// \param recoverableMessage a pointer to the recoverable message part to be signed
/// \param recoverableMessageLength the size of the recoverable message part
/// \param nonrecoverableMessage a pointer to the non-recoverable message part to be signed
/// \param nonrecoverableMessageLength the size of the non-recoverable message part
/// \param signature a block of bytes for the signature
/// \return actual signature length
/// \pre <tt>COUNTOF(signature) == MaxSignatureLength(recoverableMessageLength)</tt>
virtual size_t SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const;
};
/// \brief Interface for public-key signature verifiers
/// \details The Recover* functions throw NotImplemented if the signature scheme does not support
/// message recovery.
/// \details The Verify* functions throw InvalidDataFormat if the scheme does support message
/// recovery and the signature contains a non-empty recoverable message part. The
/// Recover* functions should be used in that case.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Verifier : public PK_SignatureScheme, public PublicKeyAlgorithm
{
public:
virtual ~PK_Verifier() {}
/// \brief Create a new HashTransformation to accumulate the message to be verified
/// \return a pointer to a PK_MessageAccumulator
/// \details NewVerificationAccumulator() can be used with all verification methods. Verify() will autimatically delete
/// the accumulator pointer. The caller is responsible for deletion if a method is called that takes a reference.
virtual PK_MessageAccumulator * NewVerificationAccumulator() const =0;
/// \brief Input signature into a message accumulator
/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
/// \param signature the signature on the message
/// \param signatureLength the size of the signature
virtual void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const =0;
/// \brief Check whether messageAccumulator contains a valid signature and message
/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
/// \return true if the signature is valid, false otherwise
/// \details Verify() deletes the messageAccumulator, even if an exception is thrown.
virtual bool Verify(PK_MessageAccumulator *messageAccumulator) const;
/// \brief Check whether messageAccumulator contains a valid signature and message, and restart messageAccumulator
/// \param messageAccumulator a reference to a PK_MessageAccumulator derived class
/// \return true if the signature is valid, false otherwise
/// \details VerifyAndRestart() restarts the messageAccumulator
virtual bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const =0;
/// \brief Check whether input signature is a valid signature for input message
/// \param message a pointer to the message to be verified
/// \param messageLen the size of the message
/// \param signature a pointer to the signature over the message
/// \param signatureLen the size of the signature
/// \return true if the signature is valid, false otherwise
virtual bool VerifyMessage(const byte *message, size_t messageLen,
const byte *signature, size_t signatureLen) const;
/// \brief Recover a message from its signature
/// \param recoveredMessage a pointer to the recoverable message part to be verified
/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
/// \return the result of the verification operation
/// \details Recover() deletes the messageAccumulator, even if an exception is thrown.
/// \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
virtual DecodingResult Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const;
/// \brief Recover a message from its signature
/// \param recoveredMessage a pointer to the recoverable message part to be verified
/// \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
/// \return the result of the verification operation
/// \details RecoverAndRestart() restarts the messageAccumulator
/// \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
virtual DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const =0;
/// \brief Recover a message from its signature
/// \param recoveredMessage a pointer for the recovered message
/// \param nonrecoverableMessage a pointer to the non-recoverable message part to be signed
/// \param nonrecoverableMessageLength the size of the non-recoverable message part
/// \param signature the signature on the message
/// \param signatureLength the size of the signature
/// \return the result of the verification operation
/// \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
virtual DecodingResult RecoverMessage(byte *recoveredMessage,
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
const byte *signature, size_t signatureLength) const;
};
/// \brief Interface for domains of simple key agreement protocols
/// \details A key agreement domain is a set of parameters that must be shared
/// by two parties in a key agreement protocol, along with the algorithms
/// for generating key pairs and deriving agreed values.
/// \since Crypto++ 3.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
virtual ~SimpleKeyAgreementDomain() {}
/// \brief Provides the size of the agreed value
/// \return size of agreed value produced in this domain
virtual unsigned int AgreedValueLength() const =0;
/// \brief Provides the size of the private key
/// \return size of private keys in this domain
virtual unsigned int PrivateKeyLength() const =0;
/// \brief Provides the size of the public key
/// \return size of public keys in this domain
virtual unsigned int PublicKeyLength() const =0;
/// \brief Generate private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
virtual void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
/// \brief Generate a public key from a private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer with the previously generated private key
/// \param publicKey a byte buffer for the generated public key in this domain
/// \pre <tt>COUNTOF(publicKey) == PublicKeyLength()</tt>
virtual void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
/// \brief Generate a private/public key pair
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \param publicKey a byte buffer for the generated public key in this domain
/// \details GenerateKeyPair() is equivalent to calling GeneratePrivateKey() and then GeneratePublicKey().
/// \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
/// \pre <tt>COUNTOF(publicKey) == PublicKeyLength()</tt>
virtual void GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
/// \brief Derive agreed value
/// \param agreedValue a byte buffer for the shared secret
/// \param privateKey a byte buffer with your private key in this domain
/// \param otherPublicKey a byte buffer with the other party's public key in this domain
/// \param validateOtherPublicKey a flag indicating if the other party's public key should be validated
/// \return true upon success, false in case of failure
/// \details Agree() derives an agreed value from your private keys and couterparty's public keys.
/// \details The other party's public key is validated by default. If you have previously validated the
/// static public key, use <tt>validateStaticOtherPublicKey=false</tt> to save time.
/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
/// \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
/// \pre <tt>COUNTOF(otherPublicKey) == PublicKeyLength()</tt>
virtual bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const =0;
};
/// \brief Interface for domains of authenticated key agreement protocols
/// \details In an authenticated key agreement protocol, each party has two
/// key pairs. The long-lived key pair is called the static key pair,
/// and the short-lived key pair is called the ephemeral key pair.
/// \since Crypto++ 3.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
virtual ~AuthenticatedKeyAgreementDomain() {}
/// \brief Provides the size of the agreed value
/// \return size of agreed value produced in this domain
virtual unsigned int AgreedValueLength() const =0;
/// \brief Provides the size of the static private key
/// \return size of static private keys in this domain
virtual unsigned int StaticPrivateKeyLength() const =0;
/// \brief Provides the size of the static public key
/// \return size of static public keys in this domain
virtual unsigned int StaticPublicKeyLength() const =0;
/// \brief Generate static private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
virtual void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
/// \brief Generate a static public key from a private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer with the previously generated private key
/// \param publicKey a byte buffer for the generated public key in this domain
/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
virtual void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
/// \brief Generate a static private/public key pair
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \param publicKey a byte buffer for the generated public key in this domain
/// \details GenerateStaticKeyPair() is equivalent to calling GenerateStaticPrivateKey() and then GenerateStaticPublicKey().
/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
virtual void GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
/// \brief Provides the size of ephemeral private key
/// \return the size of ephemeral private key in this domain
virtual unsigned int EphemeralPrivateKeyLength() const =0;
/// \brief Provides the size of ephemeral public key
/// \return the size of ephemeral public key in this domain
virtual unsigned int EphemeralPublicKeyLength() const =0;
/// \brief Generate ephemeral private key
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \pre <tt>COUNTOF(privateKey) == PrivateEphemeralKeyLength()</tt>
virtual void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
/// \brief Generate ephemeral public key
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \param publicKey a byte buffer for the generated public key in this domain
/// \pre <tt>COUNTOF(publicKey) == PublicEphemeralKeyLength()</tt>
virtual void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
/// \brief Generate private/public key pair
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \param publicKey a byte buffer for the generated public key in this domain
/// \details GenerateEphemeralKeyPair() is equivalent to calling GenerateEphemeralPrivateKey() and then GenerateEphemeralPublicKey()
virtual void GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
/// \brief Derive agreed value
/// \param agreedValue a byte buffer for the shared secret
/// \param staticPrivateKey a byte buffer with your static private key in this domain
/// \param ephemeralPrivateKey a byte buffer with your ephemeral private key in this domain
/// \param staticOtherPublicKey a byte buffer with the other party's static public key in this domain
/// \param ephemeralOtherPublicKey a byte buffer with the other party's ephemeral public key in this domain
/// \param validateStaticOtherPublicKey a flag indicating if the other party's public key should be validated
/// \return true upon success, false in case of failure
/// \details Agree() derives an agreed value from your private keys and couterparty's public keys.
/// \details The other party's ephemeral public key is validated by default. If you have previously validated
/// the static public key, use <tt>validateStaticOtherPublicKey=false</tt> to save time.
/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
/// \pre <tt>COUNTOF(staticPrivateKey) == StaticPrivateKeyLength()</tt>
/// \pre <tt>COUNTOF(ephemeralPrivateKey) == EphemeralPrivateKeyLength()</tt>
/// \pre <tt>COUNTOF(staticOtherPublicKey) == StaticPublicKeyLength()</tt>
/// \pre <tt>COUNTOF(ephemeralOtherPublicKey) == EphemeralPublicKeyLength()</tt>
virtual bool Agree(byte *agreedValue,
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
bool validateStaticOtherPublicKey=true) const =0;
};
// interface for password authenticated key agreement protocols, not implemented yet
#if 0
/// \brief Interface for protocol sessions
/*! The methods should be called in the following order:
InitializeSession(rng, parameters); // or call initialize method in derived class
while (true)
{
if (OutgoingMessageAvailable())
{
length = GetOutgoingMessageLength();
GetOutgoingMessage(message);
; // send outgoing message
}
if (LastMessageProcessed())
break;
; // receive incoming message
ProcessIncomingMessage(message);
}
; // call methods in derived class to obtain result of protocol session
*/
class ProtocolSession
{
public:
/// Exception thrown when an invalid protocol message is processed
class ProtocolError : public Exception
{
public:
ProtocolError(ErrorType errorType, const std::string &s) : Exception(errorType, s) {}
};
/// Exception thrown when a function is called unexpectedly
/*! for example calling ProcessIncomingMessage() when ProcessedLastMessage() == true */
class UnexpectedMethodCall : public Exception
{
public:
UnexpectedMethodCall(const std::string &s) : Exception(OTHER_ERROR, s) {}
};
virtual ~ProtocolSession() {}
ProtocolSession() : m_rng(NULLPTR), m_throwOnProtocolError(true), m_validState(false) {}
virtual void InitializeSession(RandomNumberGenerator &rng, const NameValuePairs &parameters) =0;
bool GetThrowOnProtocolError() const {return m_throwOnProtocolError;}
void SetThrowOnProtocolError(bool throwOnProtocolError) {m_throwOnProtocolError = throwOnProtocolError;}
bool HasValidState() const {return m_validState;}
virtual bool OutgoingMessageAvailable() const =0;
virtual unsigned int GetOutgoingMessageLength() const =0;
virtual void GetOutgoingMessage(byte *message) =0;
virtual bool LastMessageProcessed() const =0;
virtual void ProcessIncomingMessage(const byte *message, unsigned int messageLength) =0;
protected:
void HandleProtocolError(Exception::ErrorType errorType, const std::string &s) const;
void CheckAndHandleInvalidState() const;
void SetValidState(bool valid) {m_validState = valid;}
RandomNumberGenerator *m_rng;
private:
bool m_throwOnProtocolError, m_validState;
};
class KeyAgreementSession : public ProtocolSession
{
public:
virtual ~KeyAgreementSession() {}
virtual unsigned int GetAgreedValueLength() const =0;
virtual void GetAgreedValue(byte *agreedValue) const =0;
};
class PasswordAuthenticatedKeyAgreementSession : public KeyAgreementSession
{
public:
virtual ~PasswordAuthenticatedKeyAgreementSession() {}
void InitializePasswordAuthenticatedKeyAgreementSession(RandomNumberGenerator &rng,
const byte *myId, unsigned int myIdLength,
const byte *counterPartyId, unsigned int counterPartyIdLength,
const byte *passwordOrVerifier, unsigned int passwordOrVerifierLength);
};
/// \brief Password based key agreement domain
/// \since Crypto++ 3.0
class PasswordAuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
virtual ~PasswordAuthenticatedKeyAgreementDomain() {}
/// return whether the domain parameters stored in this object are valid
virtual bool ValidateDomainParameters(RandomNumberGenerator &rng) const
{return GetCryptoParameters().Validate(rng, 2);}
virtual unsigned int GetPasswordVerifierLength(const byte *password, unsigned int passwordLength) const =0;
virtual void GeneratePasswordVerifier(RandomNumberGenerator &rng, const byte *userId, unsigned int userIdLength, const byte *password, unsigned int passwordLength, byte *verifier) const =0;
enum RoleFlags {CLIENT=1, SERVER=2, INITIATOR=4, RESPONDER=8};
virtual bool IsValidRole(unsigned int role) =0;
virtual PasswordAuthenticatedKeyAgreementSession * CreateProtocolSession(unsigned int role) const =0;
};
#endif
/// \brief Exception thrown when an ASN.1 BER decoing error is encountered
class CRYPTOPP_DLL BERDecodeErr : public InvalidArgument
{
public:
BERDecodeErr() : InvalidArgument("BER decode error") {}
BERDecodeErr(const std::string &s) : InvalidArgument(s) {}
};
/// \brief Interface for encoding and decoding ASN1 objects
/// \details Each class that derives from ASN1Object should provide a serialization format
/// that controls subobject layout. Most of the time the serialization format is
/// taken from a standard, like P1363 or an RFC.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE ASN1Object
{
public:
virtual ~ASN1Object() {}
/// \brief Decode this object from a BufferedTransformation
/// \param bt BufferedTransformation object
/// \details Uses Basic Encoding Rules (BER)
virtual void BERDecode(BufferedTransformation &bt) =0;
/// \brief Encode this object into a BufferedTransformation
/// \param bt BufferedTransformation object
/// \details Uses Distinguished Encoding Rules (DER)
virtual void DEREncode(BufferedTransformation &bt) const =0;
/// \brief Encode this object into a BufferedTransformation
/// \param bt BufferedTransformation object
/// \details Uses Basic Encoding Rules (BER).
/// \details This may be useful if DEREncode() would be too inefficient.
virtual void BEREncode(BufferedTransformation &bt) const {DEREncode(bt);}
};
/// \brief Specifies the build-time version of the library
/// \return integer representing the build-time version
/// \details LibraryVersion can help detect inadvertent mixing and matching of library
/// versions. When using Crypto++ distributed by a third party, LibraryVersion()
/// records the version of the shared object that was built by the third party.
/// The LibraryVersion() record resides in <tt>cryptlib.o</tt> on Unix compatibles
/// and <tt>cryptlib.obj</tt> on Windows. It does not change when an app links
/// to the library.
/// \details LibraryVersion() is declared with C linkage (<tt>extern "C"</tt>) within the
/// CryptoPP namespace to help programs locate the symbol. If the symbol is present, then
/// the library version is 5.7 or above. If it is missing, then the library version is
/// 5.6.5 or below.
/// \details The function could be used as shown below.
/// <pre> if (LibraryVersion() != HeaderVersion())
/// {
/// cout << "Potential version mismatch" << endl;
///
/// const int lmaj = (LibraryVersion() / 100U) % 10;
/// const int lmin = (LibraryVersion() / 10U) % 10;
/// const int hmaj = (HeaderVersion() / 100U) % 10;
/// const int hmin = (HeaderVersion() / 10U) % 10;
///
/// if(lmaj != hmaj)
/// cout << "Major version mismatch" << endl;
/// else if(lmin != hmin)
/// cout << "Minor version mismatch" << endl;
/// }
/// </pre>
/// \sa HeaderVersion(), <A HREF="http://github.com/weidai11/cryptopp/issues/371">GitHub Issue 371</A>.
/// \since Crypto++ 6.0
extern "C" {
int LibraryVersion(CRYPTOPP_NOINLINE_DOTDOTDOT);
} // C linkage
/// \brief Specifies the runtime version of the library
/// \return integer representing the runtime version
/// \details HeaderVersion() can help detect inadvertent mixing and matching of library
/// versions. When using Crypto++ distributed by a third party, HeaderVersion()
/// records the version of the headers used by the app when the app is compiled.
/// \details HeaderVersion() is declared with C linkage (<tt>extern "C"</tt>) within the
/// CryptoPP namespace to help programs locate the symbol. If the symbol is present, then
/// the library version is 5.7 or above. If it is missing, then the library version is
/// 5.6.5 or below.
/// \details The function could be used as shown below.
/// <pre> if (LibraryVersion() != HeaderVersion())
/// {
/// cout << "Potential version mismatch" << endl;
///
/// const int lmaj = (LibraryVersion() / 100U) % 10;
/// const int lmin = (LibraryVersion() / 10U) % 10;
/// const int hmaj = (HeaderVersion() / 100U) % 10;
/// const int hmin = (HeaderVersion() / 10U) % 10;
///
/// if(lmaj != hmaj)
/// cout << "Major version mismatch" << endl;
/// else if(lmin != hmin)
/// cout << "Minor version mismatch" << endl;
/// }
/// </pre>
/// \sa LibraryVersion(), <A HREF="http://github.com/weidai11/cryptopp/issues/371">GitHub Issue 371</A>.
/// \since Crypto++ 6.0
extern "C" {
inline int HeaderVersion()
{
return CRYPTOPP_VERSION;
}
} // C linkage
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif