You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
656 lines
18 KiB
656 lines
18 KiB
//===== Copyright 1996-2005, Valve Corporation, All rights reserved. ======// |
|
// |
|
// Purpose: |
|
// |
|
// $Workfile: $ |
|
// $Date: $ |
|
// |
|
//----------------------------------------------------------------------------- |
|
// $Log: $ |
|
// |
|
// $NoKeywords: $ |
|
//===========================================================================// |
|
|
|
#ifndef MEMPOOL_H |
|
#define MEMPOOL_H |
|
|
|
#ifdef _WIN32 |
|
#pragma once |
|
#endif |
|
|
|
#include "tier0/memalloc.h" |
|
#include "tier0/tslist.h" |
|
#include "tier0/platform.h" |
|
#include "tier1/utlvector.h" |
|
#include "tier1/utlrbtree.h" |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Optimized pool memory allocator |
|
//----------------------------------------------------------------------------- |
|
|
|
typedef void (*MemoryPoolReportFunc_t)( PRINTF_FORMAT_STRING char const* pMsg, ... ); |
|
|
|
class CUtlMemoryPool |
|
{ |
|
public: |
|
// Ways the memory pool can grow when it needs to make a new blob. |
|
enum MemoryPoolGrowType_t |
|
{ |
|
GROW_NONE=0, // Don't allow new blobs. |
|
GROW_FAST=1, // New blob size is numElements * (i+1) (ie: the blocks it allocates |
|
// get larger and larger each time it allocates one). |
|
GROW_SLOW=2 // New blob size is numElements. |
|
}; |
|
|
|
CUtlMemoryPool( int blockSize, int numElements, int growMode = GROW_FAST, const char *pszAllocOwner = NULL, int nAlignment = 0 ); |
|
~CUtlMemoryPool(); |
|
|
|
void* Alloc(); // Allocate the element size you specified in the constructor. |
|
void* Alloc( size_t amount ); |
|
void* AllocZero(); // Allocate the element size you specified in the constructor, zero the memory before construction |
|
void* AllocZero( size_t amount ); |
|
void Free(void *pMem); |
|
|
|
// Frees everything |
|
void Clear(); |
|
|
|
// Error reporting... |
|
static void SetErrorReportFunc( MemoryPoolReportFunc_t func ); |
|
|
|
// returns number of allocated blocks |
|
int Count() const { return m_BlocksAllocated; } |
|
int PeakCount() const { return m_PeakAlloc; } |
|
int BlockSize() const { return m_BlockSize; } |
|
int Size() const; |
|
|
|
bool IsAllocationWithinPool( void *pMem ) const; |
|
|
|
protected: |
|
class CBlob |
|
{ |
|
public: |
|
CBlob *m_pPrev, *m_pNext; |
|
int m_NumBytes; // Number of bytes in this blob. |
|
char m_Data[1]; |
|
char m_Padding[3]; // to int align the struct |
|
}; |
|
|
|
// Resets the pool |
|
void Init(); |
|
void AddNewBlob(); |
|
void ReportLeaks(); |
|
|
|
int m_BlockSize; |
|
int m_BlocksPerBlob; |
|
|
|
int m_GrowMode; // GROW_ enum. |
|
|
|
int m_BlocksAllocated; |
|
int m_PeakAlloc; |
|
unsigned short m_nAlignment; |
|
unsigned short m_NumBlobs; |
|
// Group up pointers at the end of the class to avoid padding bloat |
|
// FIXME: Change m_ppMemBlob into a growable array? |
|
void *m_pHeadOfFreeList; |
|
const char * m_pszAllocOwner; |
|
// CBlob could be not a multiple of 4 bytes so stuff it at the end here to keep us otherwise aligned |
|
CBlob m_BlobHead; |
|
|
|
static MemoryPoolReportFunc_t g_ReportFunc; |
|
}; |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Multi-thread/Thread Safe Memory Class |
|
//----------------------------------------------------------------------------- |
|
class CMemoryPoolMT : public CUtlMemoryPool |
|
{ |
|
public: |
|
CMemoryPoolMT( int blockSize, int numElements, int growMode = GROW_FAST, const char *pszAllocOwner = NULL, int nAlignment = 0) : CUtlMemoryPool( blockSize, numElements, growMode, pszAllocOwner, nAlignment ) {} |
|
|
|
|
|
void* Alloc() { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::Alloc(); } |
|
void* Alloc( size_t amount ) { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::Alloc( amount ); } |
|
void* AllocZero() { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::AllocZero(); } |
|
void* AllocZero( size_t amount ) { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::AllocZero( amount ); } |
|
void Free(void *pMem) { AUTO_LOCK( m_mutex ); CUtlMemoryPool::Free( pMem ); } |
|
|
|
// Frees everything |
|
void Clear() { AUTO_LOCK( m_mutex ); return CUtlMemoryPool::Clear(); } |
|
private: |
|
CThreadFastMutex m_mutex; // @TODO: Rework to use tslist (toml 7/6/2007) |
|
}; |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Wrapper macro to make an allocator that returns particular typed allocations |
|
// and construction and destruction of objects. |
|
//----------------------------------------------------------------------------- |
|
template< class T > |
|
class CClassMemoryPool : public CUtlMemoryPool |
|
{ |
|
public: |
|
CClassMemoryPool(int numElements, int growMode = GROW_FAST, int nAlignment = 0 ) : |
|
CUtlMemoryPool( sizeof(T), numElements, growMode, MEM_ALLOC_CLASSNAME(T), nAlignment ) {} |
|
|
|
T* Alloc(); |
|
T* AllocZero(); |
|
void Free( T *pMem ); |
|
|
|
void Clear(); |
|
}; |
|
|
|
//----------------------------------------------------------------------------- |
|
// Specialized pool for aligned data management (e.g., Xbox textures) |
|
//----------------------------------------------------------------------------- |
|
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE = false, int COMPACT_THRESHOLD = 4 > |
|
class CAlignedMemPool |
|
{ |
|
enum |
|
{ |
|
BLOCK_SIZE = COMPILETIME_MAX( ALIGN_VALUE( ITEM_SIZE, ALIGNMENT ), 8 ), |
|
}; |
|
|
|
public: |
|
CAlignedMemPool(); |
|
|
|
void *Alloc(); |
|
void Free( void *p ); |
|
|
|
static int __cdecl CompareChunk( void * const *ppLeft, void * const *ppRight ); |
|
void Compact(); |
|
|
|
int NumTotal() { AUTO_LOCK( m_mutex ); return m_Chunks.Count() * ( CHUNK_SIZE / BLOCK_SIZE ); } |
|
int NumAllocated() { AUTO_LOCK( m_mutex ); return NumTotal() - m_nFree; } |
|
int NumFree() { AUTO_LOCK( m_mutex ); return m_nFree; } |
|
|
|
int BytesTotal() { AUTO_LOCK( m_mutex ); return NumTotal() * BLOCK_SIZE; } |
|
int BytesAllocated() { AUTO_LOCK( m_mutex ); return NumAllocated() * BLOCK_SIZE; } |
|
int BytesFree() { AUTO_LOCK( m_mutex ); return NumFree() * BLOCK_SIZE; } |
|
|
|
int ItemSize() { return ITEM_SIZE; } |
|
int BlockSize() { return BLOCK_SIZE; } |
|
int ChunkSize() { return CHUNK_SIZE; } |
|
|
|
private: |
|
struct FreeBlock_t |
|
{ |
|
FreeBlock_t *pNext; |
|
byte reserved[ BLOCK_SIZE - sizeof( FreeBlock_t *) ]; |
|
}; |
|
|
|
CUtlVector<void *> m_Chunks; // Chunks are tracked outside blocks (unlike CUtlMemoryPool) to simplify alignment issues |
|
FreeBlock_t * m_pFirstFree; |
|
int m_nFree; |
|
CAllocator m_Allocator; |
|
double m_TimeLastCompact; |
|
|
|
CThreadFastMutex m_mutex; |
|
}; |
|
|
|
//----------------------------------------------------------------------------- |
|
// Pool variant using standard allocation |
|
//----------------------------------------------------------------------------- |
|
template <typename T, int nInitialCount = 0, bool bDefCreateNewIfEmpty = true > |
|
class CObjectPool |
|
{ |
|
public: |
|
CObjectPool() |
|
{ |
|
int i = nInitialCount; |
|
while ( i-- > 0 ) |
|
{ |
|
m_AvailableObjects.PushItem( new T ); |
|
} |
|
} |
|
|
|
~CObjectPool() |
|
{ |
|
Purge(); |
|
} |
|
|
|
int NumAvailable() |
|
{ |
|
return m_AvailableObjects.Count(); |
|
} |
|
|
|
void Purge() |
|
{ |
|
T *p = NULL; |
|
while ( m_AvailableObjects.PopItem( &p ) ) |
|
{ |
|
delete p; |
|
} |
|
} |
|
|
|
T *GetObject( bool bCreateNewIfEmpty = bDefCreateNewIfEmpty ) |
|
{ |
|
T *p = NULL; |
|
if ( !m_AvailableObjects.PopItem( &p ) ) |
|
{ |
|
p = ( bCreateNewIfEmpty ) ? new T : NULL; |
|
} |
|
return p; |
|
} |
|
|
|
void PutObject( T *p ) |
|
{ |
|
m_AvailableObjects.PushItem( p ); |
|
} |
|
|
|
private: |
|
CTSList<T *> m_AvailableObjects; |
|
}; |
|
|
|
//----------------------------------------------------------------------------- |
|
// Fixed budget pool with overflow to malloc |
|
//----------------------------------------------------------------------------- |
|
template <size_t PROVIDED_ITEM_SIZE, int ITEM_COUNT> |
|
class CFixedBudgetMemoryPool |
|
{ |
|
public: |
|
CFixedBudgetMemoryPool() |
|
{ |
|
m_pBase = m_pLimit = 0; |
|
COMPILE_TIME_ASSERT( ITEM_SIZE % 4 == 0 ); |
|
} |
|
|
|
bool Owns( void *p ) |
|
{ |
|
return ( p >= m_pBase && p < m_pLimit ); |
|
} |
|
|
|
void *Alloc() |
|
{ |
|
MEM_ALLOC_CREDIT_CLASS(); |
|
#ifndef USE_MEM_DEBUG |
|
if ( !m_pBase ) |
|
{ |
|
LOCAL_THREAD_LOCK(); |
|
if ( !m_pBase ) |
|
{ |
|
byte *pMemory = m_pBase = (byte *)malloc( ITEM_COUNT * ITEM_SIZE ); |
|
m_pLimit = m_pBase + ( ITEM_COUNT * ITEM_SIZE ); |
|
|
|
for ( int i = 0; i < ITEM_COUNT; i++ ) |
|
{ |
|
m_freeList.Push( (TSLNodeBase_t *)pMemory ); |
|
pMemory += ITEM_SIZE; |
|
} |
|
} |
|
} |
|
|
|
void *p = m_freeList.Pop(); |
|
if ( p ) |
|
return p; |
|
#endif |
|
return malloc( ITEM_SIZE ); |
|
} |
|
|
|
void Free( void *p ) |
|
{ |
|
#ifndef USE_MEM_DEBUG |
|
if ( Owns( p ) ) |
|
m_freeList.Push( (TSLNodeBase_t *)p ); |
|
else |
|
#endif |
|
free( p ); |
|
} |
|
|
|
void Clear() |
|
{ |
|
#ifndef USE_MEM_DEBUG |
|
if ( m_pBase ) |
|
{ |
|
free( m_pBase ); |
|
} |
|
m_pBase = m_pLimit = 0; |
|
Construct( &m_freeList ); |
|
#endif |
|
} |
|
|
|
bool IsEmpty() |
|
{ |
|
#ifndef USE_MEM_DEBUG |
|
if ( m_pBase && m_freeList.Count() != ITEM_COUNT ) |
|
return false; |
|
#endif |
|
return true; |
|
} |
|
|
|
enum |
|
{ |
|
ITEM_SIZE = ALIGN_VALUE( PROVIDED_ITEM_SIZE, TSLIST_NODE_ALIGNMENT ) |
|
}; |
|
|
|
CTSListBase m_freeList; |
|
byte *m_pBase; |
|
byte *m_pLimit; |
|
}; |
|
|
|
#define BIND_TO_FIXED_BUDGET_POOL( poolName ) \ |
|
inline void* operator new( size_t size ) { return poolName.Alloc(); } \ |
|
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { return poolName.Alloc(); } \ |
|
inline void operator delete( void* p ) { poolName.Free(p); } \ |
|
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { poolName.Free(p); } |
|
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template< class T > |
|
inline T* CClassMemoryPool<T>::Alloc() |
|
{ |
|
T *pRet; |
|
|
|
{ |
|
MEM_ALLOC_CREDIT_CLASS(); |
|
pRet = (T*)CUtlMemoryPool::Alloc(); |
|
} |
|
|
|
if ( pRet ) |
|
{ |
|
Construct( pRet ); |
|
} |
|
return pRet; |
|
} |
|
|
|
template< class T > |
|
inline T* CClassMemoryPool<T>::AllocZero() |
|
{ |
|
T *pRet; |
|
|
|
{ |
|
MEM_ALLOC_CREDIT_CLASS(); |
|
pRet = (T*)CUtlMemoryPool::AllocZero(); |
|
} |
|
|
|
if ( pRet ) |
|
{ |
|
Construct( pRet ); |
|
} |
|
return pRet; |
|
} |
|
|
|
template< class T > |
|
inline void CClassMemoryPool<T>::Free(T *pMem) |
|
{ |
|
if ( pMem ) |
|
{ |
|
Destruct( pMem ); |
|
} |
|
|
|
CUtlMemoryPool::Free( pMem ); |
|
} |
|
|
|
template< class T > |
|
inline void CClassMemoryPool<T>::Clear() |
|
{ |
|
CUtlRBTree<void *, int> freeBlocks; |
|
SetDefLessFunc( freeBlocks ); |
|
|
|
void *pCurFree = m_pHeadOfFreeList; |
|
while ( pCurFree != NULL ) |
|
{ |
|
freeBlocks.Insert( pCurFree ); |
|
pCurFree = *((void**)pCurFree); |
|
} |
|
|
|
for( CBlob *pCur=m_BlobHead.m_pNext; pCur != &m_BlobHead; pCur=pCur->m_pNext ) |
|
{ |
|
int nElements = pCur->m_NumBytes / this->m_BlockSize; |
|
T *p = ( T * ) AlignValue( pCur->m_Data, this->m_nAlignment ); |
|
T *pLimit = p + nElements; |
|
while ( p < pLimit ) |
|
{ |
|
if ( freeBlocks.Find( p ) == freeBlocks.InvalidIndex() ) |
|
{ |
|
Destruct( p ); |
|
} |
|
p++; |
|
} |
|
} |
|
|
|
CUtlMemoryPool::Clear(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Macros that make it simple to make a class use a fixed-size allocator |
|
// Put DECLARE_FIXEDSIZE_ALLOCATOR in the private section of a class, |
|
// Put DEFINE_FIXEDSIZE_ALLOCATOR in the CPP file |
|
//----------------------------------------------------------------------------- |
|
#define DECLARE_FIXEDSIZE_ALLOCATOR( _class ) \ |
|
public: \ |
|
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \ |
|
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \ |
|
inline void operator delete( void* p ) { s_Allocator.Free(p); } \ |
|
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { s_Allocator.Free(p); } \ |
|
private: \ |
|
static CUtlMemoryPool s_Allocator |
|
|
|
#define DEFINE_FIXEDSIZE_ALLOCATOR( _class, _initsize, _grow ) \ |
|
CUtlMemoryPool _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool", alignof(_class)) |
|
|
|
#define DEFINE_FIXEDSIZE_ALLOCATOR_ALIGNED( _class, _initsize, _grow, _alignment ) \ |
|
CUtlMemoryPool _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool", _alignment ) |
|
|
|
#define DECLARE_FIXEDSIZE_ALLOCATOR_MT( _class ) \ |
|
public: \ |
|
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \ |
|
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \ |
|
inline void operator delete( void* p ) { s_Allocator.Free(p); } \ |
|
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { s_Allocator.Free(p); } \ |
|
private: \ |
|
static CMemoryPoolMT s_Allocator |
|
|
|
#define DEFINE_FIXEDSIZE_ALLOCATOR_MT( _class, _initsize, _grow ) \ |
|
CMemoryPoolMT _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool", alignof(_class)) |
|
|
|
//----------------------------------------------------------------------------- |
|
// Macros that make it simple to make a class use a fixed-size allocator |
|
// This version allows us to use a memory pool which is externally defined... |
|
// Put DECLARE_FIXEDSIZE_ALLOCATOR_EXTERNAL in the private section of a class, |
|
// Put DEFINE_FIXEDSIZE_ALLOCATOR_EXTERNAL in the CPP file |
|
//----------------------------------------------------------------------------- |
|
|
|
#define DECLARE_FIXEDSIZE_ALLOCATOR_EXTERNAL( _class ) \ |
|
public: \ |
|
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_pAllocator->Alloc(size); } \ |
|
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_pAllocator->Alloc(size); } \ |
|
inline void operator delete( void* p ) { s_pAllocator->Free(p); } \ |
|
private: \ |
|
static CUtlMemoryPool* s_pAllocator |
|
|
|
#define DEFINE_FIXEDSIZE_ALLOCATOR_EXTERNAL( _class, _allocator ) \ |
|
CUtlMemoryPool* _class::s_pAllocator = _allocator |
|
|
|
|
|
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD > |
|
inline CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::CAlignedMemPool() |
|
: m_pFirstFree( 0 ), |
|
m_nFree( 0 ), |
|
m_TimeLastCompact( 0 ) |
|
{ |
|
// These COMPILE_TIME_ASSERT checks need to be in individual scopes to avoid build breaks |
|
// on MacOS and Linux due to a gcc bug. |
|
{ COMPILE_TIME_ASSERT( sizeof( FreeBlock_t ) >= BLOCK_SIZE ); } |
|
{ COMPILE_TIME_ASSERT( ALIGN_VALUE( sizeof( FreeBlock_t ), ALIGNMENT ) == sizeof( FreeBlock_t ) ); } |
|
} |
|
|
|
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD > |
|
inline void *CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::Alloc() |
|
{ |
|
AUTO_LOCK( m_mutex ); |
|
|
|
if ( !m_pFirstFree ) |
|
{ |
|
if ( !GROWMODE && m_Chunks.Count() ) |
|
{ |
|
return NULL; |
|
} |
|
|
|
FreeBlock_t *pNew = (FreeBlock_t *)m_Allocator.Alloc( CHUNK_SIZE ); |
|
Assert( (unsigned)pNew % ALIGNMENT == 0 ); |
|
m_Chunks.AddToTail( pNew ); |
|
m_nFree = CHUNK_SIZE / BLOCK_SIZE; |
|
m_pFirstFree = pNew; |
|
for ( int i = 0; i < m_nFree - 1; i++ ) |
|
{ |
|
pNew->pNext = pNew + 1; |
|
pNew++; |
|
} |
|
pNew->pNext = NULL; |
|
} |
|
|
|
void *p = m_pFirstFree; |
|
m_pFirstFree = m_pFirstFree->pNext; |
|
m_nFree--; |
|
|
|
return p; |
|
} |
|
|
|
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD > |
|
inline void CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::Free( void *p ) |
|
{ |
|
AUTO_LOCK( m_mutex ); |
|
|
|
// Insertion sort to encourage allocation clusters in chunks |
|
FreeBlock_t *pFree = ((FreeBlock_t *)p); |
|
FreeBlock_t *pCur = m_pFirstFree; |
|
FreeBlock_t *pPrev = NULL; |
|
|
|
while ( pCur && pFree > pCur ) |
|
{ |
|
pPrev = pCur; |
|
pCur = pCur->pNext; |
|
} |
|
|
|
pFree->pNext = pCur; |
|
|
|
if ( pPrev ) |
|
{ |
|
pPrev->pNext = pFree; |
|
} |
|
else |
|
{ |
|
m_pFirstFree = pFree; |
|
} |
|
m_nFree++; |
|
|
|
if ( m_nFree >= ( CHUNK_SIZE / BLOCK_SIZE ) * COMPACT_THRESHOLD ) |
|
{ |
|
double time = Plat_FloatTime(); |
|
double compactTime = ( m_nFree >= ( CHUNK_SIZE / BLOCK_SIZE ) * COMPACT_THRESHOLD * 4 ) ? 15.0 : 30.0; |
|
if ( m_TimeLastCompact > time || m_TimeLastCompact + compactTime < time ) |
|
{ |
|
Compact(); |
|
m_TimeLastCompact = time; |
|
} |
|
} |
|
} |
|
|
|
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD > |
|
inline int __cdecl CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::CompareChunk( void * const *ppLeft, void * const *ppRight ) |
|
{ |
|
return static_cast<int>( (intp)*ppLeft - (intp)*ppRight ); |
|
} |
|
|
|
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD > |
|
inline void CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::Compact() |
|
{ |
|
FreeBlock_t *pCur = m_pFirstFree; |
|
FreeBlock_t *pPrev = NULL; |
|
|
|
m_Chunks.Sort( CompareChunk ); |
|
|
|
#ifdef VALIDATE_ALIGNED_MEM_POOL |
|
{ |
|
FreeBlock_t *p = m_pFirstFree; |
|
while ( p ) |
|
{ |
|
if ( p->pNext && p > p->pNext ) |
|
{ |
|
__asm { int 3 } |
|
} |
|
p = p->pNext; |
|
} |
|
|
|
for ( int i = 0; i < m_Chunks.Count(); i++ ) |
|
{ |
|
if ( i + 1 < m_Chunks.Count() ) |
|
{ |
|
if ( m_Chunks[i] > m_Chunks[i + 1] ) |
|
{ |
|
__asm { int 3 } |
|
} |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
int i; |
|
|
|
for ( i = 0; i < m_Chunks.Count(); i++ ) |
|
{ |
|
int nBlocksPerChunk = CHUNK_SIZE / BLOCK_SIZE; |
|
FreeBlock_t *pChunkLimit = ((FreeBlock_t *)m_Chunks[i]) + nBlocksPerChunk; |
|
int nFromChunk = 0; |
|
if ( pCur == m_Chunks[i] ) |
|
{ |
|
FreeBlock_t *pFirst = pCur; |
|
while ( pCur && pCur >= m_Chunks[i] && pCur < pChunkLimit ) |
|
{ |
|
pCur = pCur->pNext; |
|
nFromChunk++; |
|
} |
|
pCur = pFirst; |
|
|
|
} |
|
|
|
while ( pCur && pCur >= m_Chunks[i] && pCur < pChunkLimit ) |
|
{ |
|
if ( nFromChunk != nBlocksPerChunk ) |
|
{ |
|
if ( pPrev ) |
|
{ |
|
pPrev->pNext = pCur; |
|
} |
|
else |
|
{ |
|
m_pFirstFree = pCur; |
|
} |
|
pPrev = pCur; |
|
} |
|
else if ( pPrev ) |
|
{ |
|
pPrev->pNext = NULL; |
|
} |
|
else |
|
{ |
|
m_pFirstFree = NULL; |
|
} |
|
|
|
pCur = pCur->pNext; |
|
} |
|
|
|
if ( nFromChunk == nBlocksPerChunk ) |
|
{ |
|
m_Allocator.Free( m_Chunks[i] ); |
|
m_nFree -= nBlocksPerChunk; |
|
m_Chunks[i] = 0; |
|
} |
|
} |
|
|
|
for ( i = m_Chunks.Count() - 1; i >= 0 ; i-- ) |
|
{ |
|
if ( !m_Chunks[i] ) |
|
{ |
|
m_Chunks.FastRemove( i ); |
|
} |
|
} |
|
} |
|
|
|
#endif // MEMPOOL_H
|
|
|