Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3467 lines
92 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "stdafx.h"
#include "collisionutils.h"
#include "mainfrm.h"
#include "MapDefs.h"
#include "MapFace.h"
#include "MapDisp.h"
#include "MapWorld.h"
#include "fgdlib/WCKeyValues.h"
#include "GlobalFunctions.h"
#include "Render3D.h"
#include "Render2D.h"
#include "SaveInfo.h"
#include "TextureSystem.h"
#include "MapDoc.h"
#include "materialsystem/imesh.h"
#include "Material.h"
#include "utlrbtree.h"
#include "mathlib/vector.h"
#include "camera.h"
#include "options.h"
#include "hammer.h"
// memdbgon must be the last include file in a .cpp file!!!
#include <tier0/memdbgon.h>
//#define DEBUGPTS
#define TEXTURE_AXIS_LENGTH 10 // Rendered texture axis length in world units.
//
// Components of the texture axes are rounded to integers within this tolerance. This tolerance corresponds
// to an angle of about 0.06 degrees.
//
#define TEXTURE_AXIS_ROUND_EPSILON 0.001
//
// For passing into LoadKeyCallback. Collects key value data while loading.
//
struct LoadFace_t
{
CMapFace *pFace;
char szTexName[MAX_PATH];
};
BOOL CheckFace(Vector *Points, int nPoints, Vector *normal, float dist, CCheckFaceInfo *pInfo);
LPCTSTR GetDefaultTextureName();
#pragma warning(disable:4244)
//
// Static member data initialization.
//
bool CMapFace::m_bShowFaceSelection = true;
IEditorTexture *CMapFace::m_pLightmapGrid = NULL;
//-----------------------------------------------------------------------------
// Purpose: Constructor. Initializes data members and sets the texture to the
// default texture.
//-----------------------------------------------------------------------------
CMapFace::CMapFace(void)
{
memset(&texture, 0, sizeof(texture));
memset(&plane, 0, sizeof(plane));
m_pTexture = NULL;
m_pTangentAxes = NULL;
m_DispHandle = EDITDISPHANDLE_INVALID;
Points = NULL;
nPoints = 0;
m_nFaceID = 0;
m_pTextureCoords = NULL;
m_pLightmapCoords = NULL;
m_uchAlpha = 255;
m_pDetailObjects = NULL;
texture.nLightmapScale = g_pGameConfig->GetDefaultLightmapScale();
texture.scale[0] = g_pGameConfig->GetDefaultTextureScale();
texture.scale[1] = g_pGameConfig->GetDefaultTextureScale();
SetTexture(GetNullTextureName());
if (m_pLightmapGrid == NULL)
{
m_pLightmapGrid = g_Textures.FindActiveTexture("Debug/debugluxelsnoalpha");
}
m_bIgnoreLighting = false;
m_fSmoothingGroups = SMOOTHING_GROUP_DEFAULT;
UpdateFaceFlags();
SignalUpdate( EVTYPE_FACE_CHANGED );
}
//-----------------------------------------------------------------------------
// Purpose: Destructor. Frees points and texture coordinates.
//-----------------------------------------------------------------------------
CMapFace::~CMapFace(void)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
delete [] Points;
Points = NULL;
delete [] m_pTextureCoords;
m_pTextureCoords = NULL;
delete [] m_pLightmapCoords;
m_pLightmapCoords = NULL;
delete m_pDetailObjects;
m_pDetailObjects = NULL;
FreeTangentSpaceAxes();
if( HasDisp() )
{
IWorldEditDispMgr *pDispMgr = GetActiveWorldEditDispManager();
if( pDispMgr )
{
pDispMgr->RemoveFromWorld( GetDisp() );
}
// destroy handle
SetDisp( EDITDISPHANDLE_INVALID );
}
}
//-----------------------------------------------------------------------------
// Purpose: Attempts to fix this face. This is called by the check for problems
// code when a face is reported as invalid.
// Output : Returns TRUE on success, FALSE on failure.
//-----------------------------------------------------------------------------
BOOL CMapFace::Fix(void)
{
CalcPlane();
CalcTextureCoords();
// Create any detail objects if appropriate
DetailObjects::BuildAnyDetailObjects(this);
return(CheckFace());
}
//-----------------------------------------------------------------------------
// Purpose: Returns the short texture name in 'pszName'. Places an empty string
// in 'pszName' if the face has no texture.
//-----------------------------------------------------------------------------
void CMapFace::GetTextureName(char *pszName) const
{
Assert(pszName != NULL);
if (pszName != NULL)
{
if (m_pTexture != NULL)
{
m_pTexture->GetShortName(pszName);
}
else
{
pszName[0] = '\0';
}
}
}
static char *InvisToolTextures[]={
"occluder",
"areaportal",
"invisible",
"skip",
"trigger",
"hint",
"fog",
"origin",
"toolsnodraw",
};
void CMapFace::UpdateFaceFlags( void )
{
char tname[2048];
GetTextureName( tname );
m_nFaceFlags = 0;
if (strstr(tname,"tools"))
{
if ( strstr( tname, "blocklight" ) )
{
m_nFaceFlags |= FACE_FLAGS_NODRAW_IN_LPREVIEW;
}
if ( strstr( tname, "skybox") )
{
m_nFaceFlags |= FACE_FLAGS_NOSHADOW;
}
for(int i=0;i<NELEMS(InvisToolTextures); i++)
if (strstr( tname, InvisToolTextures[i] ) )
{
m_nFaceFlags |= FACE_FLAGS_NODRAW_IN_LPREVIEW | FACE_FLAGS_NOSHADOW;
break;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Populates this face with another face's information.
// Input : pFrom - The face to copy.
// Output : CMapFace
//-----------------------------------------------------------------------------
CMapFace *CMapFace::CopyFrom(const CMapFace *pObject, DWORD dwFlags, bool bUpdateDependencies)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
const CMapFace *pFrom = dynamic_cast<const CMapFace *>(pObject);
Assert(pFrom != NULL);
if (pFrom != NULL)
{
//
// Free our points first.
//
if (Points != NULL)
{
delete [] Points;
Points = NULL;
}
if (m_pTextureCoords != NULL)
{
delete [] m_pTextureCoords;
m_pTextureCoords = NULL;
}
if (m_pLightmapCoords != NULL)
{
delete [] m_pLightmapCoords;
m_pLightmapCoords = NULL;
}
FreeTangentSpaceAxes();
nPoints = 0;
//
// Copy the member data.
//
m_nFaceID = pFrom->m_nFaceID;
m_eSelectionState = pFrom->GetSelectionState();
texture = pFrom->texture;
m_pTexture = pFrom->m_pTexture;
m_bIsCordonFace = pFrom->m_bIsCordonFace;
//
// Allocate points memory.
//
if (dwFlags & COPY_FACE_POINTS)
{
Points = NULL;
nPoints = pFrom->nPoints;
if (pFrom->Points && nPoints)
{
AllocatePoints(nPoints);
AllocTangentSpaceAxes( nPoints );
memcpy(Points, pFrom->Points, sizeof(Vector) * nPoints);
memcpy(m_pTextureCoords, pFrom->m_pTextureCoords, sizeof(Vector2D) * nPoints);
memcpy(m_pLightmapCoords, pFrom->m_pLightmapCoords, sizeof(Vector2D) * nPoints);
memcpy(m_pTangentAxes, pFrom->m_pTangentAxes, sizeof(TangentSpaceAxes_t) * nPoints);
}
}
else
{
Points = NULL;
m_pTextureCoords = 0;
m_pLightmapCoords = 0;
m_pTangentAxes = 0;
nPoints = 0;
}
//
// Copy the plane. You shouldn't copy the points without copying the plane,
// so we do it if either bit is set.
//
if ((dwFlags & COPY_FACE_POINTS) || (dwFlags & COPY_FACE_PLANE))
{
plane = pFrom->plane;
}
else
{
memset(&plane, 0, sizeof(plane));
}
//
// copy the displacement info.
//
// If we do have displacement, then we'll never be asked to become a copy of
// a face that does not have a displacement, because you cannot undo a Generate
// Displacement operation.
//
if( pFrom->HasDisp() )
{
//
// Allocate a new displacement info if we don't already have one.
//
if( !HasDisp() )
{
SetDisp( EditDispMgr()->Create() );
}
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
pDisp->SetParent( this );
CMapDisp *pFromDisp = EditDispMgr()->GetDisp( pFrom->m_DispHandle );
pDisp->CopyFrom( pFromDisp, bUpdateDependencies );
}
else
{
SetDisp( EDITDISPHANDLE_INVALID );
}
// Copy CMapAtom fields. dvs: this should be done in CMapAtom::CopyFrom!
r = pFrom->r;
g = pFrom->g;
b = pFrom->b;
m_uchAlpha = pFrom->m_uchAlpha;
m_bIgnoreLighting = pFrom->m_bIgnoreLighting;
// Copy the smoothing group data.
m_fSmoothingGroups = pFrom->m_fSmoothingGroups;
// Delete any existing and build any new detail objects
delete m_pDetailObjects;
m_pDetailObjects = NULL;
DetailObjects::BuildAnyDetailObjects(this);
}
UpdateFaceFlags();
return(this);
}
//-----------------------------------------------------------------------------
// Called any time this object is modified due to an Undo or Redo.
//-----------------------------------------------------------------------------
void CMapFace::OnUndoRedo()
{
// It's not valid to have selected faces outside of face edit mode.
// If the user modified this face, then closed the texture application
// dialog, then did an Undo, clear our selection state.
if ( !GetMainWnd()->IsInFaceEditMode() )
{
m_eSelectionState = SELECT_NONE;
}
}
//-----------------------------------------------------------------------------
// Purpose: Creates a face from a list of points.
// Input : pPoints - An array of points.
// _nPoints - Number of points. If nPoints < 0, reverse points.
//-----------------------------------------------------------------------------
void CMapFace::CreateFace(Vector *pPoints, int _nPoints, bool bIsCordonFace)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
if (_nPoints > 0)
{
AllocatePoints(_nPoints);
Assert(nPoints > 0);
if (nPoints > 0)
{
memcpy(Points, pPoints, nPoints * sizeof(Vector));
}
}
else
{
AllocatePoints(-_nPoints);
Assert(nPoints > 0);
if (nPoints > 0)
{
int j = 0;
for (int i = nPoints - 1; i >= 0; i--)
{
Points[j++] = pPoints[i];
}
}
}
SetCordonFace( bIsCordonFace );
#ifdef DEBUGPTS
DebugPoints();
#endif
CalcPlaneFromFacePoints();
CalcTextureCoords();
// Create any detail objects if appropriate
DetailObjects::BuildAnyDetailObjects(this);
#if 0
//
// create the displacement map -- if need be
//
if( m_pMapDisp )
{
m_pMapDisp->InitSurfData( this, false );
m_pMapDisp->Create();
}
#endif
}
Vector FaceNormals[6] =
{
Vector(0, 0, 1), // floor
Vector(0, 0, -1), // ceiling
Vector(0, -1, 0), // north wall
Vector(0, 1, 0), // south wall
Vector(-1, 0, 0), // east wall
Vector(1, 0, 0), // west wall
};
Vector DownVectors[6] =
{
Vector(0, -1, 0), // floor
Vector(0, -1, 0), // ceiling
Vector(0, 0, -1), // north wall
Vector(0, 0, -1), // south wall
Vector(0, 0, -1), // east wall
Vector(0, 0, -1), // west wall
};
Vector RightVectors[6] =
{
Vector(1, 0, 0), // floor
Vector(1, 0, 0), // ceiling
Vector(1, 0, 0), // north wall
Vector(1, 0, 0), // south wall
Vector(0, 1, 0), // east wall
Vector(0, 1, 0), // west wall
};
//-----------------------------------------------------------------------------
// Purpose:
// Input : index -
// downVect -
//-----------------------------------------------------------------------------
void CMapFace::GetDownVector( int index, Vector& downVect )
{
downVect = DownVectors[index];
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : Center -
//-----------------------------------------------------------------------------
void CMapFace::GetCenter(Vector& Center)
{
Assert(nPoints > 0);
Center.Init();
if (nPoints != 0)
{
for (int i = 0; i < nPoints; i++)
{
Center[0] += Points[i][0];
Center[1] += Points[i][1];
Center[2] += Points[i][2];
}
Center[0] /= nPoints;
Center[1] /= nPoints;
Center[2] /= nPoints;
}
}
//-----------------------------------------------------------------------------
// Purpose: Determines the general orientation of a face based on its normal vector.
// Output : FaceOrientation_t
//-----------------------------------------------------------------------------
FaceOrientation_t CMapFace::GetOrientation(void) const
{
// The normal must have a nonzero length!
if ((plane.normal[0] == 0) && (plane.normal[1] == 0) && (plane.normal[2] == 0))
{
return(FACE_ORIENTATION_INVALID);
}
//
// Find the axis that the surface normal has the greatest projection onto.
//
float fDot;
float fMaxDot;
Vector Normal;
FaceOrientation_t eOrientation = FACE_ORIENTATION_INVALID;
Normal = plane.normal;
VectorNormalize(Normal);
fMaxDot = 0;
for (int i = 0; i < 6; i++)
{
fDot = DotProduct(Normal, FaceNormals[i]);
if (fDot >= fMaxDot)
{
fMaxDot = fDot;
eOrientation = (FaceOrientation_t)i;
}
}
return(eOrientation);
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : eAlignment -
// dwFlags -
//-----------------------------------------------------------------------------
void CMapFace::InitializeTextureAxes(TextureAlignment_t eAlignment, DWORD dwFlags)
{
FaceOrientation_t eOrientation;
//
// If the texture axis information has been initialized, don't reinitialize unless
// the FORCE flag is set.
//
if ((!(dwFlags & INIT_TEXTURE_FORCE)) &&
((texture.UAxis[0] != 0) || (texture.UAxis[1] != 0) || (texture.UAxis[2] != 0) ||
(texture.VAxis[0] != 0) || (texture.VAxis[1] != 0) || (texture.VAxis[2] != 0)))
{
return;
}
if (dwFlags & INIT_TEXTURE_ROTATION)
{
texture.rotate = 0;
}
if (dwFlags & INIT_TEXTURE_SHIFT)
{
texture.UAxis[3] = 0;
texture.VAxis[3] = 0;
}
if (dwFlags & INIT_TEXTURE_SCALE)
{
texture.scale[0] = g_pGameConfig->GetDefaultTextureScale();
texture.scale[1] = g_pGameConfig->GetDefaultTextureScale();
}
if (dwFlags & INIT_TEXTURE_AXES)
{
// don't reset the shift component [3]
texture.UAxis.AsVector3D().Init();
texture.VAxis.AsVector3D().Init();
// Determine the general orientation of this face (floor, ceiling, n wall, etc.)
eOrientation = GetOrientation();
if (eOrientation == FACE_ORIENTATION_INVALID)
{
CalcTextureCoords();
return;
}
// Pick a world axis aligned V axis based on the face orientation.
texture.VAxis.AsVector3D() = DownVectors[eOrientation];
//
// If we are using face aligned textures, calculate the texture axes.
//
if (eAlignment == TEXTURE_ALIGN_FACE)
{
// Using that axis-aligned V axis, calculate the true U axis
CrossProduct(plane.normal, texture.VAxis.AsVector3D(), texture.UAxis.AsVector3D());
VectorNormalize(texture.UAxis.AsVector3D());
// Now use the true U axis to calculate the true V axis.
CrossProduct(texture.UAxis.AsVector3D(), plane.normal, texture.VAxis.AsVector3D());
VectorNormalize(texture.VAxis.AsVector3D());
}
//
// If we are using world (or "natural") aligned textures, use the V axis as is
// and pick the corresponding U axis from the table.
//
else if (eAlignment == TEXTURE_ALIGN_WORLD)
{
texture.UAxis.AsVector3D() = RightVectors[eOrientation];
}
//
// Quake-style texture alignment used a different axis convention.
//
else
{
InitializeQuakeStyleTextureAxes(texture.UAxis, texture.VAxis);
}
if (texture.rotate != 0)
{
RotateTextureAxes(texture.rotate);
}
}
CalcTextureCoords();
// Create any detail objects if appropriate
DetailObjects::BuildAnyDetailObjects(this);
}
//-----------------------------------------------------------------------------
// Purpose: Checks for a texture axis perpendicular to the face.
// Output : Returns TRUE on success, FALSE on failure.
//-----------------------------------------------------------------------------
BOOL CMapFace::IsTextureAxisValid(void) const
{
//
// Generate the texture normal axis, which may be different from the
// face normal, depending on texture alignment.
//
Vector TexNormalAxis;
CrossProduct(texture.VAxis.AsVector3D(), texture.UAxis.AsVector3D(), TexNormalAxis);
return(DotProduct(plane.normal, TexNormalAxis) != 0);
}
//-----------------------------------------------------------------------------
// Purpose: Normalize the U/V shift values to be less than the texture width/height.
//-----------------------------------------------------------------------------
void CMapFace::NormalizeTextureShifts(void)
{
//
// HACK: this should really be elsewhere, but it can live here for now.
// Round all components of our texture axes within an epsilon.
//
for (int nDim = 0; nDim < 4; nDim++)
{
int nValue = V_rint(texture.UAxis[nDim]);
if (fabs(texture.UAxis[nDim] - nValue) < TEXTURE_AXIS_ROUND_EPSILON)
{
texture.UAxis[nDim] = nValue;
}
nValue = V_rint(texture.VAxis[nDim]);
if (fabs(texture.VAxis[nDim] - nValue) < TEXTURE_AXIS_ROUND_EPSILON)
{
texture.VAxis[nDim] = nValue;
}
}
if (m_pTexture == NULL)
{
return;
}
if (m_pTexture->GetWidth() != 0)
{
texture.UAxis[3] = fmod(texture.UAxis[3], m_pTexture->GetWidth());
}
if (m_pTexture->GetHeight() != 0)
{
texture.VAxis[3] = fmod(texture.VAxis[3], m_pTexture->GetHeight());
}
}
//-----------------------------------------------------------------------------
// Purpose: Determines the bounding box of a face in world space.
// Input : pfMins - Receives the face X, Y, Z minima.
// pfMaxs - Receives the face X, Y, Z maxima.
//-----------------------------------------------------------------------------
void CMapFace::GetFaceBounds(Vector& pfMins, Vector& pfMaxs) const
{
for (int nPoint = 0; nPoint < nPoints; nPoint++)
{
if ((Points[nPoint][0] < pfMins[0]) || (nPoint == 0))
{
pfMins[0] = Points[nPoint][0];
}
if ((Points[nPoint][1] < pfMins[1]) || (nPoint == 0))
{
pfMins[1] = Points[nPoint][1];
}
if ((Points[nPoint][2] < pfMins[2]) || (nPoint == 0))
{
pfMins[2] = Points[nPoint][2];
}
if ((Points[nPoint][0] > pfMaxs[0]) || (nPoint == 0))
{
pfMaxs[0] = Points[nPoint][0];
}
if ((Points[nPoint][1] > pfMaxs[1]) || (nPoint == 0))
{
pfMaxs[1] = Points[nPoint][1];
}
if ((Points[nPoint][2] > pfMaxs[2]) || (nPoint == 0))
{
pfMaxs[2] = Points[nPoint][2];
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Finds the top left and bottom right points on the face in texture space.
// These points are returned in texture space, not world space.
// Input : TopLeft -
// BottomRight -
//-----------------------------------------------------------------------------
void CMapFace::GetFaceTextureExtents(Vector2D & TopLeft, Vector2D & BottomRight) const
{
BOOL bFirst = TRUE;
for (int nPoint = 0; nPoint < nPoints; nPoint++)
{
Vector2D Test;
Test[0] = DotProduct(Points[nPoint], texture.UAxis.AsVector3D()) / texture.scale[0];
Test[1] = DotProduct(Points[nPoint], texture.VAxis.AsVector3D()) / texture.scale[1];
if ((Test[0] < TopLeft[0]) || (bFirst))
{
TopLeft[0] = Test[0];
}
if ((Test[1] < TopLeft[1]) || (bFirst))
{
TopLeft[1] = Test[1];
}
if ((Test[0] > BottomRight[0]) || (bFirst))
{
BottomRight[0] = Test[0];
}
if ((Test[1] > BottomRight[1]) || (bFirst))
{
BottomRight[1] = Test[1];
}
bFirst = FALSE;
}
}
//-----------------------------------------------------------------------------
// Purpose: Returns the distance along the face normal of a given point. The
// distance will be negative if the point is behind the face, positive
// if the point is in front of the face.
// Input : fPoint - Point to calculate normal distance.
//-----------------------------------------------------------------------------
float CMapFace::GetNormalDistance(Vector& fPoint)
{
float fDot = DotProduct(fPoint, plane.normal);
return(fDot - plane.dist);
}
//-----------------------------------------------------------------------------
// Purpose: Determines the texture alignment(s) of this face. The alignments are
// are returned as TextureAlignment_t values OR'ed together.
//
// Output : Returns an integer with any of the following flags set:
//
// TEXTURE_ALIGN_FACE - the texture axes are face aligned.
// TEXTURE_ALIGN_WORLD - the texture axes are world aligned.
//
// If the returned value is zero (TEXTURE_ALIGN_NONE), the texture axes
// are neither face aligned nor world aligned.
//-----------------------------------------------------------------------------
int CMapFace::GetTextureAlignment(void) const
{
Vector TexNormalAxis;
int nAlignment = TEXTURE_ALIGN_NONE;
//
// Generate the texture normal axis, which may be different from the
// face normal, depending on texture alignment.
//
CrossProduct(texture.VAxis.AsVector3D(), texture.UAxis.AsVector3D(), TexNormalAxis);
VectorNormalize(TexNormalAxis);
//
// Check for face alignment.
//
if (DotProduct(TexNormalAxis, plane.normal) > 0.9999)
{
nAlignment |= TEXTURE_ALIGN_FACE;
}
//
// Check for world alignment.
//
FaceOrientation_t eOrientation = GetOrientation();
if (eOrientation != FACE_ORIENTATION_INVALID)
{
Vector WorldTexNormal;
CrossProduct(DownVectors[eOrientation], RightVectors[eOrientation], WorldTexNormal);
if (DotProduct(TexNormalAxis, WorldTexNormal) > 0.9999)
{
nAlignment |= TEXTURE_ALIGN_WORLD;
}
}
return(nAlignment);
}
//-----------------------------------------------------------------------------
// Purpose: Finds the top left and bottom right points of the given world extents
// in texture space. These points are returned in texture space, not world space,
// so a simple rectangle will suffice.
// Input : Extents -
// TopLeft -
// BottomRight -
//-----------------------------------------------------------------------------
void CMapFace::GetTextureExtents(Extents_t Extents, Vector2D & TopLeft, Vector2D & BottomRight) const
{
BOOL bFirst = TRUE;
for (int nPoint = 0; nPoint < NUM_EXTENTS_DIMS; nPoint++)
{
Vector2D Test;
Test[0] = DotProduct(Extents[nPoint], texture.UAxis.AsVector3D()) / texture.scale[0];
Test[1] = DotProduct(Extents[nPoint], texture.VAxis.AsVector3D()) / texture.scale[1];
if ((Test[0] < TopLeft[0]) || (bFirst))
{
TopLeft[0] = Test[0];
}
if ((Test[1] < TopLeft[1]) || (bFirst))
{
TopLeft[1] = Test[1];
}
if ((Test[0] > BottomRight[0]) || (bFirst))
{
BottomRight[0] = Test[0];
}
if ((Test[1] > BottomRight[1]) || (bFirst))
{
BottomRight[1] = Test[1];
}
bFirst = FALSE;
}
}
//-----------------------------------------------------------------------------
// Purpose: Determines the world extents of the face. Different from a bounding
// box in that each point in the returned extents is actually on the face.
// Input : Extents -
//-----------------------------------------------------------------------------
void CMapFace::GetFaceExtents(Extents_t Extents) const
{
BOOL bFirst = TRUE;
for (int nPoint = 0; nPoint < nPoints; nPoint++)
{
if ((Points[nPoint][0] < Extents[EXTENTS_XMIN][0]) || (bFirst))
{
Extents[EXTENTS_XMIN] = Points[nPoint];
}
if ((Points[nPoint][0] > Extents[EXTENTS_XMAX][0]) || (bFirst))
{
Extents[EXTENTS_XMAX] = Points[nPoint];
}
if ((Points[nPoint][1] < Extents[EXTENTS_YMIN][1]) || (bFirst))
{
Extents[EXTENTS_YMIN] = Points[nPoint];
}
if ((Points[nPoint][1] > Extents[EXTENTS_YMAX][1]) || (bFirst))
{
Extents[EXTENTS_YMAX] = Points[nPoint];
}
if ((Points[nPoint][2] < Extents[EXTENTS_ZMIN][2]) || (bFirst))
{
Extents[EXTENTS_ZMIN] = Points[nPoint];
}
if ((Points[nPoint][2] > Extents[EXTENTS_ZMAX][2]) || (bFirst))
{
Extents[EXTENTS_ZMAX] = Points[nPoint];
}
bFirst = FALSE;
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : eJustification -
// Extents -
//-----------------------------------------------------------------------------
void CMapFace::JustifyTextureUsingExtents(TextureJustification_t eJustification, Extents_t Extents)
{
Vector2D Center;
if (!texture.scale[0])
{
texture.scale[0] = g_pGameConfig->GetDefaultTextureScale();
}
if (!texture.scale[1])
{
texture.scale[1] = g_pGameConfig->GetDefaultTextureScale();
}
// Skip all the mucking about for a justification of NONE.
if (eJustification == TEXTURE_JUSTIFY_NONE)
{
texture.UAxis[3] = 0;
texture.VAxis[3] = 0;
CalcTextureCoords();
return;
}
// For fit justification, use a scale of 1 for initial calculations.
if (eJustification == TEXTURE_JUSTIFY_FIT)
{
texture.scale[0] = 1.0;
texture.scale[1] = 1.0;
}
Vector2D TopLeft;
Vector2D BottomRight;
GetTextureExtents(Extents, TopLeft, BottomRight);
// Find the face center in U/V space.
Center[0] = (TopLeft[0] + BottomRight[0]) / 2;
Center[1] = (TopLeft[1] + BottomRight[1]) / 2;
//
// Perform the justification.
//
switch (eJustification)
{
// Align the top left corner of the texture with the top left corner of the face.
case TEXTURE_JUSTIFY_TOP:
{
texture.VAxis[3] = -TopLeft[1];
break;
}
// Align the top left corner of the texture with the top left corner of the face.
case TEXTURE_JUSTIFY_BOTTOM:
{
texture.VAxis[3] = -BottomRight[1] + m_pTexture->GetHeight();
break;
}
// Align the left side of the texture with the left side of the face.
case TEXTURE_JUSTIFY_LEFT:
{
texture.UAxis[3] = -TopLeft[0];
break;
}
// Align the right side of the texture with the right side of the face.
case TEXTURE_JUSTIFY_RIGHT:
{
texture.UAxis[3] = -BottomRight[0] + m_pTexture->GetWidth();
break;
}
// Center the texture on the face.
case TEXTURE_JUSTIFY_CENTER:
{
texture.UAxis[3] = -Center[0] + (m_pTexture->GetWidth() / 2);
texture.VAxis[3] = -Center[1] + (m_pTexture->GetHeight() / 2);
break;
}
// Scale the texture to exactly fit the face.
case TEXTURE_JUSTIFY_FIT:
{
// Calculate the appropriate scale.
if (m_pTexture && m_pTexture->GetWidth() && m_pTexture->GetHeight())
{
texture.scale[0] = (BottomRight[0] - TopLeft[0]) / m_pTexture->GetWidth();
texture.scale[1] = (BottomRight[1] - TopLeft[1]) / m_pTexture->GetHeight();
}
else
{
texture.scale[0] = g_pGameConfig->GetDefaultTextureScale();
texture.scale[1] = g_pGameConfig->GetDefaultTextureScale();
}
// Justify top left.
JustifyTextureUsingExtents(TEXTURE_JUSTIFY_TOP, Extents);
JustifyTextureUsingExtents(TEXTURE_JUSTIFY_LEFT, Extents);
break;
}
}
NormalizeTextureShifts();
CalcTextureCoords();
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : eJustification -
//-----------------------------------------------------------------------------
void CMapFace::JustifyTexture(TextureJustification_t eJustification)
{
Extents_t Extents;
GetFaceExtents(Extents);
JustifyTextureUsingExtents(eJustification, Extents);
}
//-----------------------------------------------------------------------------
// Purpose: Offsets a texture due to texture locking when moving a face.
// Input : Delta - The x, y, z translation that was applied to the face points.
//-----------------------------------------------------------------------------
void CMapFace::OffsetTexture(const Vector &Delta)
{
//
// Find the projection in U/V space of this movement
// and shift the textures by that.
//
texture.UAxis[3] -= DotProduct(Delta, texture.UAxis.AsVector3D()) / texture.scale[0];
texture.VAxis[3] -= DotProduct(Delta, texture.VAxis.AsVector3D()) / texture.scale[1];
NormalizeTextureShifts();
}
//-----------------------------------------------------------------------------
// Purpose: Rotates the texture axes fDegrees counterclockwise around the
// texture normal axis.
// Input : fDegrees - Degrees to rotate the texture axes.
//-----------------------------------------------------------------------------
void CMapFace::RotateTextureAxes(float fDegrees)
{
VMatrix Matrix;
Vector TexNormalAxis;
Vector4D UAxis;
Vector4D VAxis;
// Generate the texture normal axis, which may be different from the
// face normal, depending on texture alignment.
CrossProduct(texture.VAxis.AsVector3D(), texture.UAxis.AsVector3D(), TexNormalAxis);
// Rotate the texture axes around the texture normal.
AxisAngleMatrix(Matrix, TexNormalAxis, fDegrees);
Matrix.V4Mul( texture.UAxis, UAxis );
Matrix.V4Mul( texture.VAxis, VAxis );
texture.UAxis = UAxis;
texture.VAxis = VAxis;
}
//-----------------------------------------------------------------------------
// Purpose: Rebuilds the plane normal and distance from the plane points.
//-----------------------------------------------------------------------------
void CMapFace::CalcPlane(void)
{
//
// Build the plane normal and distance from the three plane points.
//
plane.normal = GetNormalFromPoints( plane.planepts[0], plane.planepts[1], plane.planepts[2] );
plane.dist = DotProduct(plane.planepts[0], plane.normal);
}
//-----------------------------------------------------------------------------
// Purpose: Rebuilds the plane points from our face points.
//-----------------------------------------------------------------------------
void CMapFace::CalcPlaneFromFacePoints(void)
{
if ((nPoints >= 3) && (Points != NULL))
{
//
// Use the face points as a preliminary set of plane points.
//
memcpy(plane.planepts, Points, sizeof(Vector) * 3);
//
// Generate the plane normal and distance from the plane points.
//
CalcPlane();
//
// Now project large coordinates onto the plane to generate new
// plane points that will be less prone to error creep.
//
// UNDONE: push out the points along the plane for better precision
}
}
void CMapFace::AddShadowingTriangles( CUtlVector<Vector> &tri_list )
{
// create a fan
if (! (m_nFaceFlags & FACE_FLAGS_NOSHADOW ))
for(int i=2;i<nPoints;i++)
{
tri_list.AddToTail( Points[0] );
tri_list.AddToTail( Points[i-1] );
tri_list.AddToTail( Points[i] );
}
}
#ifdef DEBUGPTS
void CMapFace::DebugPoints(void)
{
// check for dup points
for(i = 0; i < nPoints; i++)
{
for(int j = 0; j < nPoints; j++)
{
if(j == i)
continue;
if(Points[j][0] == Points[i][0] &&
Points[j][1] == Points[i][1] &&
Points[j][2] == Points[i][2])
{
AfxMessageBox("Dup Points in CMapFace::Create(winding_t*)");
break;
}
}
}
}
#endif
//-----------------------------------------------------------------------------
// Purpose: Create the face from a winding type.
// w - Winding from which to create the face.
// nFlags -
// CREATE_FACE_PRESERVE_PLANE:
// CREATE_FACE_CLIPPING: the new face is a clipped version of this face
//-----------------------------------------------------------------------------
void CMapFace::CreateFace(winding_t *w, int nFlags)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
AllocatePoints(w->numpoints);
for (int i = 0; i < nPoints; i++)
{
Points[i][0] = w->p[i][0];
Points[i][1] = w->p[i][1];
Points[i][2] = w->p[i][2];
}
if (!(nFlags & CREATE_FACE_PRESERVE_PLANE))
{
CalcPlaneFromFacePoints();
}
//
// Create a new displacement surface if the clipped surfaces is a quad.
//
// This assumes it is being called by the clipper!!! (Bad assumption).
//
if( HasDisp() && ( nFlags & CREATE_FACE_CLIPPING ) )
{
if ( nPoints == 4 )
{
// Setup new displacement surface.
EditDispHandle_t hClipDisp = EditDispMgr()->Create();
CMapDisp *pClipDisp = EditDispMgr()->GetDisp( hClipDisp );
// Get older displacement surface.
EditDispHandle_t hDisp = GetDisp();
CMapDisp *pDisp = EditDispMgr()->GetDisp( hDisp );
// Init new displacement surface.
pClipDisp->SetParent( this );
// Apply the new displacement to this face, but keep the old one
// around -- we need it for the split operation.
SetDisp( hClipDisp, false );
pClipDisp->InitData( pDisp->GetPower() );
// Calculate texture coordinates before splitting because we
// need the texture coords during the split.
CalcTextureCoords();
// Split the old displacement and put the results into hClipDisp.
pDisp->Split( hClipDisp );
// Delete the old displacement that was on this face.
EditDispMgr()->Destroy( hDisp );
}
else
{
SetDisp( EDITDISPHANDLE_INVALID );
}
}
else
{
CalcTextureCoords();
}
#ifdef ENSUREDETAILS
// Create any detail objects if appropriate
DetailObjects::BuildAnyDetailObjects(this);
#endif
#ifdef DEBUGPTS
DebugPoints();
#endif
}
//-----------------------------------------------------------------------------
// Purpose: Allocates space in Points array for nPoints worth of Vectors and
// the corresponding texture and lightmap coordinates (Vector2D's). Frees
// current points if there are any.
// Input : _nPoints - number of points needed.
// Output : Total size of memory used by the points, texture, and lightmap coordinates.
//-----------------------------------------------------------------------------
size_t CMapFace::AllocatePoints(int _nPoints)
{
//
// If we have already allocated this many points, do nothing.
//
if ((Points != NULL) && (_nPoints == nPoints))
{
return(nPoints * (sizeof(Vector) + sizeof(Vector2D) + sizeof(Vector2D)));
}
//
// If we have the wrong number of points allocated, free the memory.
//
if (Points != NULL)
{
delete [] Points;
Points = NULL;
delete [] m_pTextureCoords;
m_pTextureCoords = NULL;
delete [] m_pLightmapCoords;
m_pLightmapCoords = NULL;
}
Assert( nPoints == 0 || nPoints > 2 );
nPoints = _nPoints;
if (!_nPoints)
{
return(0);
}
//
// Allocate the correct number of points, texture coords, and lightmap coords.
//
Points = new Vector[nPoints];
m_pTextureCoords = new Vector2D[nPoints];
m_pLightmapCoords = new Vector2D[nPoints];
// dvs: check for failure here and report an out of memory error
Assert(Points != NULL);
Assert(m_pTextureCoords != NULL);
Assert(m_pLightmapCoords != NULL);
return(nPoints * (sizeof(Vector) + sizeof(Vector2D) + sizeof(Vector2D)));
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pTexture -
//-----------------------------------------------------------------------------
void CMapFace::SetTexture(IEditorTexture *pTexture, bool bRescaleTextureCoordinates)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
if ( m_pTexture && pTexture && bRescaleTextureCoordinates )
{
float flXFactor = (float)m_pTexture->GetWidth() / pTexture->GetWidth();
float flYFactor = (float)m_pTexture->GetHeight() / pTexture->GetHeight();
texture.scale[0] *= flXFactor;
texture.scale[1] *= flYFactor;
texture.UAxis[3] /= flXFactor;
texture.VAxis[3] /= flYFactor;
}
m_pTexture = pTexture;
// Copy other things from m_pTexture.
m_pTexture->GetShortName(texture.texture);
texture.q2surface = m_pTexture->GetSurfaceAttributes();
texture.q2contents = m_pTexture->GetSurfaceContents();
BOOL bTexValid = FALSE;
if (m_pTexture != NULL)
{
// Insure that the texture is loaded.
m_pTexture->Load();
bTexValid = !(
m_pTexture->GetWidth() == 0 ||
m_pTexture->GetHeight() == 0 ||
m_pTexture->GetImageWidth() == 0 ||
m_pTexture->GetImageHeight() == 0 ||
!m_pTexture->HasData()
);
}
if (bTexValid)
{
CalcTextureCoords();
}
UpdateFaceFlags();
}
//-----------------------------------------------------------------------------
// Purpose: Sets this face's texture by name.
// Input : pszNewTex - Short name of texture to apply to this face.
//-----------------------------------------------------------------------------
void CMapFace::SetTexture(const char *pszNewTex, bool bRescaleTextureCoordinates)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
IEditorTexture *pTexture = g_Textures.FindActiveTexture(pszNewTex);
SetTexture(pTexture, bRescaleTextureCoordinates);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapFace::CalcTextureCoordAtPoint( const Vector& pt, Vector2D &texCoord )
{
// sanity check
if( m_pTexture == NULL )
return;
//
// projected s, t (u, v) texture coordinates
//
float s = DotProduct( texture.UAxis.AsVector3D(), pt ) / texture.scale[0] + texture.UAxis[3];
float t = DotProduct( texture.VAxis.AsVector3D(), pt ) / texture.scale[1] + texture.VAxis[3];
//
// "normalize" the texture coordinates
//
if (m_pTexture->GetWidth())
texCoord[0] = s / ( float )m_pTexture->GetWidth();
else
texCoord[0] = 0.0;
if (m_pTexture->GetHeight())
texCoord[1] = t / ( float )m_pTexture->GetHeight();
else
texCoord[1] = 0.0;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapFace::CalcLightmapCoordAtPoint( const Vector& pt, Vector2D &lightCoord )
{
lightCoord[0] = DotProduct( texture.UAxis.AsVector3D(), pt ) / texture.nLightmapScale + 0.5f;
lightCoord[1] = DotProduct( texture.VAxis.AsVector3D(), pt ) / texture.nLightmapScale + 0.5f;
}
//-----------------------------------------------------------------------------
// Purpose: Calculates the U,V texture coordinates of all points on this face.
//-----------------------------------------------------------------------------
void CMapFace::CalcTextureCoords(void)
{
float s, t;
int i;
if (m_pTexture == NULL)
{
return;
}
//
// Make sure that scales are nonzero.
//
if (texture.scale[0] == 0)
{
texture.scale[0] = g_pGameConfig->GetDefaultTextureScale();
}
if (texture.scale[1] == 0)
{
texture.scale[1] = g_pGameConfig->GetDefaultTextureScale();
}
//
// Recalculate U,V coordinates for all points.
//
for (i = 0; i < nPoints; i++)
{
//
// Generate texture coordinates.
//
s = DotProduct(texture.UAxis.AsVector3D(), Points[i]) / texture.scale[0] + texture.UAxis[3];
t = DotProduct(texture.VAxis.AsVector3D(), Points[i]) / texture.scale[1] + texture.VAxis[3];
if (m_pTexture->GetWidth())
m_pTextureCoords[i][0] = s / (float)m_pTexture->GetWidth();
else
m_pTextureCoords[i][0] = 0.0f;
if (m_pTexture->GetHeight())
m_pTextureCoords[i][1] = t / (float)m_pTexture->GetHeight();
else
m_pTextureCoords[i][1] = 0.0f;
//
// Generate lightmap coordinates. Lightmap coordinates for displacements happens below.
//
if ( m_DispHandle == EDITDISPHANDLE_INVALID )
{
float shiftScaleU = texture.scale[0] / (float)texture.nLightmapScale;
float shiftScaleV = texture.scale[1] / (float)texture.nLightmapScale;
m_pLightmapCoords[i][0] = DotProduct(texture.UAxis.AsVector3D(), Points[i]) / texture.nLightmapScale + texture.UAxis[3] * shiftScaleU + 0.5;
m_pLightmapCoords[i][1] = DotProduct(texture.VAxis.AsVector3D(), Points[i]) / texture.nLightmapScale + texture.VAxis[3] * shiftScaleV + 0.5;
}
}
//
// update the displacement map with new texture coordinates and calculate lightmap coordinates
//
if( ( m_DispHandle != EDITDISPHANDLE_INVALID ) && nPoints == 4 )
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
pDisp->InitDispSurfaceData( this, false );
pDisp->Create();
}
// re-calculate the tangent space
CalcTangentSpaceAxes();
}
//-----------------------------------------------------------------------------
// Returns the max lightmap size for this face
//-----------------------------------------------------------------------------
int CMapFace::MaxLightmapSize() const
{
return HasDisp() ? MAX_DISP_LIGHTMAP_DIM_WITHOUT_BORDER : MAX_BRUSH_LIGHTMAP_DIM_WITHOUT_BORDER;
}
//-----------------------------------------------------------------------------
// Purpose: Checks the validity of this face.
// Input : pInfo -
// Output : Returns TRUE on success, FALSE on failure.
//-----------------------------------------------------------------------------
BOOL CMapFace::CheckFace(CCheckFaceInfo *pInfo)
{
if (!::CheckFace(Points, nPoints, &plane.normal, plane.dist, pInfo))
{
return(FALSE);
}
//
// Check for duplicate plane points. All three plane points must be unique
// or it isn't a valid plane.
//
for (int nPlane = 0; nPlane < 3; nPlane++)
{
for (int nPlaneCheck = 0; nPlaneCheck < 3; nPlaneCheck++)
{
if (nPlane != nPlaneCheck)
{
if (VectorCompare(plane.planepts[nPlane], plane.planepts[nPlaneCheck]))
{
if (pInfo != NULL)
{
strcpy(pInfo->szDescription, "face has duplicate plane points");
}
return(FALSE);
}
}
}
}
return(TRUE);
}
//-----------------------------------------------------------------------------
// Purpose: Included for loading old (quake-style) maps. This sets up the texture axes
// the same way QCSG and pre-2.2 Hammer did.
// Input : UAxis -
// VAxis -
//-----------------------------------------------------------------------------
void CMapFace::InitializeQuakeStyleTextureAxes(Vector4D& UAxis, Vector4D& VAxis)
{
static Vector baseaxis[18] =
{
Vector(0,0,1), Vector(1,0,0), Vector(0,-1,0), // floor
Vector(0,0,-1), Vector(1,0,0), Vector(0,-1,0), // ceiling
Vector(1,0,0), Vector(0,1,0), Vector(0,0,-1), // west wall
Vector(-1,0,0), Vector(0,1,0), Vector(0,0,-1), // east wall
Vector(0,1,0), Vector(1,0,0), Vector(0,0,-1), // south wall
Vector(0,-1,0), Vector(1,0,0), Vector(0,0,-1) // north wall
};
int bestaxis;
vec_t dot,best;
int i;
best = 0;
bestaxis = 0;
for (i=0 ; i<6 ; i++)
{
dot = DotProduct(plane.normal, baseaxis[i*3]);
if (dot > best)
{
best = dot;
bestaxis = i;
}
}
UAxis.AsVector3D() = baseaxis[bestaxis * 3 + 1];
VAxis.AsVector3D() = baseaxis[bestaxis * 3 + 2];
}
//-----------------------------------------------------------------------------
// Should we render this lit or not
//-----------------------------------------------------------------------------
void CMapFace::RenderUnlit( bool enable )
{
m_bIgnoreLighting = enable;
}
inline void Modulate( Color &pColor, float f )
{
pColor[0] *= f;
pColor[1] *= f;
pColor[2] *= f;
}
//-----------------------------------------------------------------------------
// Computes the color and texture to use
//-----------------------------------------------------------------------------
void CMapFace::ComputeColor( CRender3D* pRender, bool bRenderAsSelected,
SelectionState_t faceSelectionState,
bool ignoreLighting, Color &pColor )
{
EditorRenderMode_t eCurrentRenderMode = pRender->GetCurrentRenderMode();
// White w/alpha by default
pColor[0] = pColor[1] = pColor[2] = 255;
pColor[3] = m_uchAlpha;
float fShade;
if (!ignoreLighting)
fShade = pRender->LightPlane(plane.normal);
else
fShade = 1.0;
switch (eCurrentRenderMode)
{
case RENDER_MODE_TEXTURED:
case RENDER_MODE_TEXTURED_SHADED:
case RENDER_MODE_LIGHT_PREVIEW2:
case RENDER_MODE_LIGHT_PREVIEW_RAYTRACED:
Modulate( pColor, fShade );
break;
case RENDER_MODE_SELECTION_OVERLAY:
if( faceSelectionState == SELECT_MULTI_PARTIAL )
{
pColor[2] = 100;
pColor[3] = 64;
}
else if( ( faceSelectionState == SELECT_NORMAL ) || bRenderAsSelected )
{
SelectFaceColor( pColor );
pColor[3] = 64;
}
break;
case RENDER_MODE_LIGHTMAP_GRID:
if (bRenderAsSelected)
{
SelectFaceColor( pColor );
}
else if (texture.nLightmapScale > DEFAULT_LIGHTMAP_SCALE)
{
pColor[0] = 150;
}
else if (texture.nLightmapScale < DEFAULT_LIGHTMAP_SCALE)
{
pColor[2] = 100;
}
Modulate( pColor, fShade );
break;
case RENDER_MODE_TRANSLUCENT_FLAT:
case RENDER_MODE_FLAT:
if (bRenderAsSelected)
SelectFaceColor( pColor );
else
pColor.SetColor( r,g,b,m_uchAlpha );
Modulate( pColor, fShade );
break;
case RENDER_MODE_WIREFRAME:
if (bRenderAsSelected)
SelectEdgeColor( pColor );
else
pColor.SetColor( r,g,b,m_uchAlpha );
break;
case RENDER_MODE_SMOOTHING_GROUP:
{
// Render the non-smoothing group faces in white, yellow for the others.
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc();
if ( pDoc )
{
int iGroup = pDoc->GetSmoothingGroupVisual();
if ( InSmoothingGroup( iGroup ) )
{
pColor[2] = 0;
}
}
Modulate( pColor, fShade );
break;
}
default:
assert(0);
break;
}
}
static bool ModeUsesTextureCoords(EditorRenderMode_t mode)
{
return (
(mode == RENDER_MODE_TEXTURED) ||
(mode == RENDER_MODE_LIGHTMAP_GRID) ||
(mode == RENDER_MODE_TEXTURED_SHADED) ||
(mode == RENDER_MODE_LIGHT_PREVIEW2) ||
(mode == RENDER_MODE_LIGHT_PREVIEW_RAYTRACED)
);
}
//-----------------------------------------------------------------------------
// Draws the face using the material system material
//-----------------------------------------------------------------------------
void CMapFace::DrawFace( Color &pColor, EditorRenderMode_t mode )
{
// retrieve the coordinate frame to render into
// (most likely just the identity, unless we're animating)
VMatrix frame;
bool hasParent = GetTransformMatrix( frame );
// don't do this -- if you use the material system to rotate and/or translate
// this will cull the locally spaced object!! -- need to pass around a flag!
#if 0
// A little culling....
float fEyeDot = DotProduct(plane.normal, ViewPoint);
if ((fEyeDot < plane.dist) && (mode != RENDER_MODE_WIREFRAME) && !hasParent &&
(m_uchAlpha == 255))
{
return;
}
#endif
// don't draw no draws in ray tracced mode
if ( mode == RENDER_MODE_LIGHT_PREVIEW_RAYTRACED )
{
if ( m_nFaceFlags & FACE_FLAGS_NODRAW_IN_LPREVIEW )
return;
}
MaterialPrimitiveType_t type = (mode == RENDER_MODE_WIREFRAME) ?
MATERIAL_LINE_LOOP : MATERIAL_POLYGON;
CMeshBuilder meshBuilder;
CMatRenderContextPtr pRenderContext( MaterialSystemInterface() );
IMesh *pMesh = pRenderContext->GetDynamicMesh();
meshBuilder.Begin( pMesh, type, nPoints );
for (int nPoint = 0; nPoint < nPoints; nPoint++)
{
if (ModeUsesTextureCoords(mode))
{
meshBuilder.TexCoord2f( 0, m_pTextureCoords[nPoint][0], m_pTextureCoords[nPoint][1] );
meshBuilder.TexCoord2f( 1, m_pLightmapCoords[nPoint][0], m_pLightmapCoords[nPoint][1]);
}
meshBuilder.Color4ubv( (byte*)&pColor );
// transform into absolute space
if ( hasParent )
{
Vector point;
VectorTransform( Points[nPoint], frame.As3x4(), point );
meshBuilder.Position3f(point[0], point[1], point[2]);
}
else
{
meshBuilder.Position3f(Points[nPoint][0], Points[nPoint][1], Points[nPoint][2]);
}
// FIXME: no smoothing group information
meshBuilder.Normal3fv(plane.normal.Base());
meshBuilder.TangentS3fv( m_pTangentAxes[nPoint].tangent.Base() );
meshBuilder.TangentT3fv( m_pTangentAxes[nPoint].binormal.Base() );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
}
//-----------------------------------------------------------------------------
// Renders the grid on the face
//-----------------------------------------------------------------------------
void CMapFace::RenderGridIfCloseEnough( CRender3D* pRender )
{
CMapFace *pThis = this;
RenderGridsIfCloseEnough( pRender, 1, &pThis );
}
//-----------------------------------------------------------------------------
// renders the texture axes
//-----------------------------------------------------------------------------
void CMapFace::RenderTextureAxes( CRender3D* pRender )
{
CMapFace *pThis = this;
RenderTextureAxes( pRender, 1, &pThis );
}
//-----------------------------------------------------------------------------
// for sorting
//-----------------------------------------------------------------------------
bool CMapFace::ShouldRenderLast()
{
if (!m_pTexture || !m_pTexture->GetMaterial())
return false;
return m_pTexture->GetMaterial()->IsTranslucent() || (m_uchAlpha != 255) ;
}
//-----------------------------------------------------------------------------
// render texture axes
//-----------------------------------------------------------------------------
void CMapFace::RenderTextureAxes( CRender3D* pRender, int nCount, CMapFace **ppFaces )
{
// Render the world axes.
pRender->PushRenderMode( RENDER_MODE_WIREFRAME );
CMeshBuilder meshBuilder;
CMatRenderContextPtr pRenderContext( MaterialSystemInterface() );
IMesh *pMesh = pRenderContext->GetDynamicMesh();
meshBuilder.Begin( pMesh, MATERIAL_LINES, 2 * nCount );
Vector Center;
for ( int i = 0; i < nCount; ++i )
{
ppFaces[i]->GetCenter(Center);
meshBuilder.Color3ub(255, 255, 0);
meshBuilder.Position3f(Center[0], Center[1], Center[2]);
meshBuilder.AdvanceVertex();
meshBuilder.Color3ub(255, 255, 0);
meshBuilder.Position3f(Center[0] + ppFaces[i]->texture.UAxis[0] * TEXTURE_AXIS_LENGTH,
Center[1] + ppFaces[i]->texture.UAxis[1] * TEXTURE_AXIS_LENGTH,
Center[2] + ppFaces[i]->texture.UAxis[2] * TEXTURE_AXIS_LENGTH);
meshBuilder.AdvanceVertex();
meshBuilder.Color3ub(0, 255, 0);
meshBuilder.Position3f(Center[0], Center[1], Center[2]);
meshBuilder.AdvanceVertex();
meshBuilder.Color3ub(0, 255, 0);
meshBuilder.Position3f(Center[0] + ppFaces[i]->texture.VAxis[0] * TEXTURE_AXIS_LENGTH,
Center[1] + ppFaces[i]->texture.VAxis[1] * TEXTURE_AXIS_LENGTH,
Center[2] + ppFaces[i]->texture.VAxis[2] * TEXTURE_AXIS_LENGTH);
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
pRender->PopRenderMode();
}
//-----------------------------------------------------------------------------
// Render grids
//-----------------------------------------------------------------------------
void CMapFace::Render3DGrids( CRender3D *pRender, int nCount, CMapFace **ppFaces )
{
// FIXME: Optimize this to render all of them in a single call
for ( int i = 0; i < nCount; ++i )
{
ppFaces[i]->Render3DGrid( pRender );
}
}
//-----------------------------------------------------------------------------
// Render grids
//-----------------------------------------------------------------------------
void CMapFace::RenderGridsIfCloseEnough( CRender3D* pRender, int nCount, CMapFace **ppFaces )
{
// If the 3D grid is enabled and we aren't picking,
// render the grid on this face.
if ( (!pRender->IsEnabled(RENDER_GRID)) || pRender->IsPicking() )
return;
Vector Maxs;
Vector Mins;
float fGridSize = pRender->GetGridDistance();
Vector viewPoint; pRender->GetCamera()->GetViewPoint( viewPoint );
CMapFace **ppFinalList = (CMapFace**)_alloca( nCount * sizeof(CMapFace*) );
int nFinalCount = 0;
for ( int i = 0; i < nCount; ++i )
{
ppFaces[i]->GetFaceBounds(Mins, Maxs);
for ( int j = 0; j < 3; j++)
{
Mins[j] -= fGridSize;
Maxs[j] += fGridSize;
}
// Only render the grid if the face is close enough to the camera.
if ( IsPointInBox(viewPoint, Mins, Maxs) )
{
ppFinalList[nFinalCount++] = ppFaces[i];
}
}
Render3DGrids( pRender, nFinalCount, ppFinalList );
}
//-----------------------------------------------------------------------------
// Adds a face's vertices to the meshbuilder
//-----------------------------------------------------------------------------
void CMapFace::AddFaceVertices( CMeshBuilder &meshBuilder, CRender3D* pRender, bool bRenderSelected, SelectionState_t faceSelectionState)
{
Vector point;
VMatrix frame;
Color color;
bool bHasParent = GetTransformMatrix( frame );
ComputeColor( pRender, bRenderSelected, faceSelectionState, m_bIgnoreLighting, color );
for ( int nPoint = 0; nPoint < nPoints; nPoint++ )
{
if ( bHasParent )
{
// transform into absolute space
VectorTransform( Points[nPoint], frame.As3x4(), point );
meshBuilder.Position3fv( point.Base() );
}
else
{
meshBuilder.Position3fv( Points[nPoint].Base() );
}
meshBuilder.Normal3fv( plane.normal.Base() );
meshBuilder.Color4ubv( (byte*)&color );
meshBuilder.TexCoord2fv( 0, m_pTextureCoords[nPoint].Base() );
meshBuilder.TexCoord2fv( 1, m_pLightmapCoords[nPoint].Base() );
meshBuilder.TangentS3fv( m_pTangentAxes[nPoint].tangent.Base() );
meshBuilder.TangentT3fv( m_pTangentAxes[nPoint].binormal.Base() );
meshBuilder.AdvanceVertex();
}
}
struct MapFaceRender_t
{
bool m_RenderSelected;
EditorRenderMode_t m_RenderMode;
IEditorTexture* m_pTexture;
CMapFace* m_pMapFace;
SelectionState_t m_FaceSelectionState;
};
typedef CUtlRBTree<MapFaceRender_t, int> FaceQueue_t;
//-----------------------------------------------------------------------------
// draws a list of faces in wireframe
//-----------------------------------------------------------------------------
void CMapFace::RenderWireframeFaces( CRender3D* pRender, int nCount, MapFaceRender_t **ppFaces )
{
// Draw the texture axes
int nAxesCount = 0;
CMapFace **ppAxesFaces = (CMapFace**)_alloca( nCount * sizeof(CMapFace*) );
for ( int i = 0; i < nCount; ++i )
{
if ( ppFaces[i]->m_FaceSelectionState != SELECT_NONE )
{
ppAxesFaces[ nAxesCount++ ] = ppFaces[i]->m_pMapFace;
}
}
if ( nAxesCount != 0 )
{
RenderTextureAxes( pRender, nAxesCount, ppAxesFaces );
}
if ( pRender->IsEnabled(RENDER_GRID) )
{
// Draw the grid
CMapFace **ppGridFaces = (CMapFace**)_alloca( nCount * sizeof(CMapFace*) );
for ( int i = 0; i < nCount; ++i )
{
ppGridFaces[i] = ppFaces[i]->m_pMapFace;
}
RenderGridsIfCloseEnough( pRender, nCount, ppGridFaces );
}
}
//-----------------------------------------------------------------------------
// Draws a batch of faces.
//-----------------------------------------------------------------------------
void CMapFace::RenderFacesBatch( CMeshBuilder &meshBuilder, IMesh* pMesh, CRender3D* pRender, MapFaceRender_t **ppFaces, int nFaceCount, int nVertexCount, int nIndexCount, bool bWireframe )
{
if ( bWireframe )
{
meshBuilder.Begin( pMesh, MATERIAL_LINES, nVertexCount, nIndexCount );
}
else
{
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertexCount, nIndexCount );
}
int nFirstVertex = 0;
for ( int i = 0; i < nFaceCount; ++i )
{
CMapFace *pMapFace = ppFaces[i]->m_pMapFace;
pMapFace->AddFaceVertices( meshBuilder, pRender, ppFaces[i]->m_RenderSelected, ppFaces[i]->m_FaceSelectionState );
int nPoints = pMapFace->GetPointCount();
if ( bWireframe )
{
meshBuilder.FastIndex( nFirstVertex );
for ( int j = 1; j < nPoints; ++j )
{
meshBuilder.FastIndex( nFirstVertex + j );
meshBuilder.FastIndex( nFirstVertex + j );
}
meshBuilder.FastIndex( nFirstVertex );
}
else
{
for ( int j = 2; j < nPoints; ++j )
{
meshBuilder.FastIndex( nFirstVertex );
meshBuilder.FastIndex( nFirstVertex + j - 1 );
meshBuilder.FastIndex( nFirstVertex + j );
}
}
nFirstVertex += nPoints;
}
meshBuilder.End();
pMesh->Draw();
}
//-----------------------------------------------------------------------------
// Draws a list of faces, breaking them up into batches if necessary.
//-----------------------------------------------------------------------------
void CMapFace::RenderFaces( CRender3D* pRender, int nCount, MapFaceRender_t **ppFaces )
{
if ( nCount == 0 )
return;
bool bWireframe = ppFaces[0]->m_RenderMode == RENDER_MODE_WIREFRAME;
if ( RenderingModeIsTextured(ppFaces[0]->m_RenderMode))
{
pRender->BindTexture( ppFaces[0]->m_pTexture );
}
pRender->PushRenderMode( ppFaces[0]->m_RenderMode );
int nBatchStart = 0;
int nIndexCount = 0;
int nVertexCount = 0;
int nMaxVerts, nMaxIndices;
CMatRenderContextPtr pRenderContext( MaterialSystemInterface() );
IMesh *pMesh = pRenderContext->GetDynamicMesh();
pRenderContext->GetMaxToRender( pMesh, true, &nMaxVerts, &nMaxIndices );
// Make sure we have enough for at least one triangle...
int nMinVerts = ppFaces[0]->m_pMapFace->GetPointCount();
int nMinIndices = max( nMinVerts*2, (nMinVerts-2)*3 );
if ( nMaxVerts < nMinVerts || nMaxIndices < nMinIndices )
{
pRenderContext->GetMaxToRender( pMesh, false, &nMaxVerts, &nMaxIndices );
}
CMeshBuilder meshBuilder;
for ( int nFace = 0; nFace < nCount; nFace++ )
{
Assert( ppFaces[nFace]->m_RenderMode == ppFaces[0]->m_RenderMode );
Assert( ppFaces[nFace]->m_pTexture == ppFaces[0]->m_pTexture );
int newIndices, newVertices = ppFaces[nFace]->m_pMapFace->GetPointCount();
if( bWireframe )
{
newIndices = newVertices*2;
}
else
{
newIndices = (newVertices-2) * 3;
}
if ( ( ( nVertexCount + newVertices ) > nMaxVerts ) || ( ( nIndexCount + newIndices ) > nMaxIndices ) )
{
// If we hit this assert, there's a single face that's too big for the meshbuilder to handle!
Assert( ( nFace - nBatchStart ) > 0 );
// We have a full batch, render it.
RenderFacesBatch( meshBuilder, pMesh, pRender, &ppFaces[nBatchStart], nFace - nBatchStart, nVertexCount, nIndexCount, bWireframe );
pRenderContext->GetMaxToRender( pMesh, false, &nMaxVerts, &nMaxIndices );
nBatchStart = nFace;
nVertexCount = 0;
nIndexCount = 0;
}
nVertexCount += newVertices;
nIndexCount += newIndices;
}
// Render whatever is left over.
RenderFacesBatch( meshBuilder, pMesh, pRender, &ppFaces[nBatchStart], nCount - nBatchStart, nVertexCount, nIndexCount, bWireframe );
//render additional wireframe stuff
if ( bWireframe )
{
RenderWireframeFaces( pRender, nCount, ppFaces );
}
pRender->PopRenderMode();
}
//-----------------------------------------------------------------------------
// draws a single face (displacement or normal)
//-----------------------------------------------------------------------------
void CMapFace::RenderFace3D( CRender3D* pRender, EditorRenderMode_t renderMode, bool renderSelected, SelectionState_t faceSelectionState )
{
pRender->PushRenderMode( renderMode );
if ( HasDisp() && CMapDoc::GetActiveMapDoc() && CMapDoc::GetActiveMapDoc()->IsDispDraw3D() )
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
pDisp->Render3D( pRender, renderSelected, faceSelectionState );
}
else
{
Color color;
ComputeColor( pRender, renderSelected, faceSelectionState, m_bIgnoreLighting, color );
DrawFace( color, renderMode );
}
// Draw the texture axes
if( renderMode == RENDER_MODE_WIREFRAME )
{
if (faceSelectionState != SELECT_NONE)
RenderTextureAxes(pRender);
// Draw the grid
RenderGridIfCloseEnough( pRender );
}
else if ( m_pDetailObjects && Options.general.bShowDetailObjects )
{
// Only draw the detailed objects if the displacement/face is not currently selected.
pRender->AddTranslucentDeferredRendering( m_pDetailObjects );
}
pRender->PopRenderMode();
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : mode -
//-----------------------------------------------------------------------------
static int SortVal(EditorRenderMode_t mode)
{
if (mode == RENDER_MODE_WIREFRAME)
return 2;
if ( mode == RENDER_MODE_SELECTION_OVERLAY )
return 1;
return 0;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : s1 -
// s2 -
// Output :
//-----------------------------------------------------------------------------
static bool OpaqueFacesLessFunc( const MapFaceRender_t &s1, const MapFaceRender_t &s2 )
{
// Render texture first, overlay second, wireframe 3rd
int nSort1 = SortVal(s1.m_RenderMode);
int nSort2 = SortVal(s2.m_RenderMode);
if (nSort1 < nSort2)
return true;
if (nSort1 > nSort2)
return false;
return s1.m_pTexture < s2.m_pTexture;
}
static FaceQueue_t g_OpaqueFaces(0, 0, OpaqueFacesLessFunc);
static CUtlVector< FaceQueue_t * > g_OpaqueInstanceFaces;
static FaceQueue_t *g_CurrentOpaqueFaces = &g_OpaqueFaces;
//-----------------------------------------------------------------------------
// Purpose: this function will add the face to the sorted current queue
// Input : pMapFace - the face to be added
// pTexture - the texture of the face
// renderMode - what type of rendering mode
// selected - if it is selected or not ( selected appears on top )
// faceSelectionState - if the face is individual selected
//-----------------------------------------------------------------------------
void CMapFace::AddFaceToQueue( CMapFace* pMapFace, IEditorTexture* pTexture, EditorRenderMode_t renderMode, bool selected, SelectionState_t faceSelectionState )
{
MapFaceRender_t newEntry;
newEntry.m_RenderMode = renderMode;
newEntry.m_pTexture = pTexture;
newEntry.m_RenderSelected = selected;
newEntry.m_pMapFace = pMapFace;
newEntry.m_FaceSelectionState = faceSelectionState;
g_CurrentOpaqueFaces->Insert( newEntry );
}
//-----------------------------------------------------------------------------
// Purpose: this function will add a new face queue to the top of the list and
// make it active
//-----------------------------------------------------------------------------
void CMapFace::PushFaceQueue( void )
{
g_OpaqueInstanceFaces.AddToHead( new FaceQueue_t( 0, 0, OpaqueFacesLessFunc ) );
g_CurrentOpaqueFaces = g_OpaqueInstanceFaces.Head();
}
//-----------------------------------------------------------------------------
// Purpose: this function will pop the top face queue off the list
//-----------------------------------------------------------------------------
void CMapFace::PopFaceQueue( void )
{
Assert( g_OpaqueInstanceFaces.Count() > 0 );
FaceQueue_t *pHead = g_OpaqueInstanceFaces.Head();
g_OpaqueInstanceFaces.Remove( 0 );
delete pHead;
if ( g_OpaqueInstanceFaces.Count() )
{
g_CurrentOpaqueFaces = g_OpaqueInstanceFaces.Head();
}
else
{
g_CurrentOpaqueFaces = &g_OpaqueFaces;
}
}
//-----------------------------------------------------------------------------
// renders queued up opaque faces, sorted by material
//-----------------------------------------------------------------------------
void CMapFace::RenderOpaqueFaces( CRender3D* pRender )
{
CMatRenderContextPtr pRenderContext( MaterialSystemInterface() );
MapFaceRender_t **ppMapFaces = (MapFaceRender_t**)_alloca( g_CurrentOpaqueFaces->Count() * sizeof( MapFaceRender_t* ) );
int nFaceCount = 0;
int nLastRenderMode = RENDER_MODE_NONE;
IEditorTexture *pLastTexture = NULL;
for ( int i = g_CurrentOpaqueFaces->FirstInorder(); i != g_CurrentOpaqueFaces->InvalidIndex(); i = g_CurrentOpaqueFaces->NextInorder(i) )
{
MapFaceRender_t& mapFace = ( *g_CurrentOpaqueFaces)[i];
if ( ( mapFace.m_RenderMode != nLastRenderMode ) || ( mapFace.m_pTexture != pLastTexture ) )
{
RenderFaces( pRender, nFaceCount, ppMapFaces );
nFaceCount = 0;
}
if ( mapFace.m_pMapFace->HasDisp() )
{
if ( RenderingModeIsTextured( mapFace.m_RenderMode ))
{
pRender->BindTexture( mapFace.m_pTexture );
}
mapFace.m_pMapFace->RenderFace3D( pRender, mapFace.m_RenderMode, mapFace.m_RenderSelected, mapFace.m_FaceSelectionState );
}
else
{
ppMapFaces[ nFaceCount++ ] = &mapFace;
nLastRenderMode = mapFace.m_RenderMode;
pLastTexture = mapFace.m_pTexture;
}
}
RenderFaces( pRender, nFaceCount, ppMapFaces );
g_CurrentOpaqueFaces->RemoveAll();
}
void CMapFace::Render2D(CRender2D *pRender)
{
SelectionState_t eFaceSelectionState = GetSelectionState();
SelectionState_t eSolidSelectionState;
if (m_pParent != NULL)
{
eSolidSelectionState = m_pParent->GetSelectionState();
}
else
{
eSolidSelectionState = eFaceSelectionState;
}
bool bRenderSelected = ( eSolidSelectionState != SELECT_NONE );
bRenderSelected = bRenderSelected || ( ( eFaceSelectionState != SELECT_NONE ) && (CMapFace::m_bShowFaceSelection) );
Vector vViewNormal; pRender->GetCamera()->GetViewForward( vViewNormal );
Vector vNormal; GetFaceNormal( vNormal );
// if face is parallel to view axis, skip it
bool bIsParallel = ( fabs( vViewNormal.Dot( vNormal) ) < 0.0001f );
if ( HasDisp() && ( bIsParallel || bRenderSelected ) )
{
Vector mins,maxs;
GetRender2DBox( mins,maxs );
Vector2D pt,pt2;
pRender->TransformPoint(pt, mins );
pRender->TransformPoint(pt2, maxs );
int sizeX = abs(pt2.x-pt.x);
int sizeY = abs(pt2.y-pt.y);
bool bDrawDispMap = Options.view2d.bDrawModels && ( (sizeX+sizeY) > 50 || bRenderSelected );
if ( bDrawDispMap )
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
pDisp->Render2D( pRender, bRenderSelected, eFaceSelectionState );
return;
}
}
if ( !bIsParallel )
{
pRender->DrawPolyLine( nPoints, Points );
}
}
void CMapFace::RenderVertices(CRender *pRender)
{
for ( int i=0; i< nPoints;i++ )
pRender->DrawHandle( Points[i] );
}
//-----------------------------------------------------------------------------
// Purpose: Renders this face using the given 3D renderer.
// Input : pRender - Renderer to draw with.
//-----------------------------------------------------------------------------
void CMapFace::Render3D( CRender3D *pRender )
{
if (nPoints == 0)
{
return;
}
//
// Skip back faces unless rendering in wireframe.
//
EditorRenderMode_t eCurrentRenderMode = pRender->GetCurrentRenderMode();
if ( eCurrentRenderMode == RENDER_MODE_LIGHT_PREVIEW_RAYTRACED )
{
if ( m_nFaceFlags & FACE_FLAGS_NODRAW_IN_LPREVIEW )
return;
}
SelectionState_t eFaceSelectionState = GetSelectionState();
SelectionState_t eSolidSelectionState;
if (m_pParent != NULL)
{
eSolidSelectionState = m_pParent->GetSelectionState();
}
else
{
eSolidSelectionState = eFaceSelectionState;
}
if ( !Options.general.bShowNoDrawBrushes && eSolidSelectionState == SELECT_NONE && m_pTexture == g_Textures.GetNoDrawTexture() )
return;
//
// Draw the face.
//
bool renderSelected = ( ( eSolidSelectionState != SELECT_NONE ) );
renderSelected = renderSelected || ( ( eFaceSelectionState != SELECT_NONE ) && (CMapFace::m_bShowFaceSelection) );
if (pRender->DeferRendering())
{
AddFaceToQueue( this, m_pTexture, eCurrentRenderMode, renderSelected, eFaceSelectionState );
if ( ( renderSelected && pRender->NeedsOverlay() ) )
{
AddFaceToQueue( this, m_pTexture, RENDER_MODE_SELECTION_OVERLAY, renderSelected, eFaceSelectionState );
}
}
else
{
// Set up the texture to use
pRender->BindTexture( m_pTexture );
RenderFace3D( pRender, eCurrentRenderMode, renderSelected, eFaceSelectionState );
if ( ( renderSelected && pRender->NeedsOverlay() ) )
{
RenderFace3D( pRender, RENDER_MODE_SELECTION_OVERLAY, renderSelected, eFaceSelectionState );
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Renders the world grid projected onto the given face.
// Input : pFace - The face onto which the grid will be projected.
//-----------------------------------------------------------------------------
void CMapFace::Render3DGrid(CRender3D *pRender)
{
//
// Determine the extents of this face.
//
Extents_t Extents;
float fDelta[3];
float fGridSpacing = pRender->GetGridSize();
GetFaceExtents(Extents);
fDelta[0] = Extents[EXTENTS_XMAX][0] - Extents[EXTENTS_XMIN][0];
fDelta[1] = Extents[EXTENTS_YMAX][1] - Extents[EXTENTS_YMIN][1];
fDelta[2] = Extents[EXTENTS_ZMAX][2] - Extents[EXTENTS_ZMIN][2];
//
// Render the grid lines with wireframe material.
//
pRender->PushRenderMode( RENDER_MODE_WIREFRAME );
CMeshBuilder meshBuilder;
CMatRenderContextPtr pRenderContext( MaterialSystemInterface() );
IMesh *pMesh = pRenderContext->GetDynamicMesh();
//
// For every dimension in which this face has a nonzero projection.
//
for (int nDim = 0; nDim < 3; nDim++)
{
if (fDelta[nDim] != 0)
{
Vector Normal;
Normal[0] = (float)((nDim % 3) == 0);
Normal[1] = (float)((nDim % 3) == 1);
Normal[2] = (float)((nDim % 3) == 2);
float fMin = Extents[nDim * 2][nDim];
float fMax = Extents[(nDim * 2) + 1][nDim];
float fStart = (float)(floor(fMin / fGridSpacing) * fGridSpacing);
float fEnd = (float)(ceil(fMax / fGridSpacing) * fGridSpacing);
float fGridPoint = fStart;
while (fGridPoint < fEnd)
{
int nPointsFound = 0;
//
// For every edge.
//
for (int nPoint = 0; nPoint < nPoints; nPoint++)
{
Vector PointFound[2];
//
// Get the start and end points of the edge.
//
Vector Point1 = Points[nPoint];
Vector Point2;
if (nPoint < nPoints - 1)
{
Point2 = Points[nPoint + 1];
}
else
{
Point2 = Points[0];
}
//
// If there is a projection of the normal vector along this edge.
//
if (Point2[nDim] != Point1[nDim])
{
//
// Solve for the point along this edge that intersects the grid line
// as a parameter from zero to one.
//
float fScale = (fGridPoint - Point1[nDim]) / (Point2[nDim] - Point1[nDim]);
if ((fScale >= 0) && (fScale <= 1))
{
PointFound[nPointsFound][0] = Point1[0] + (Point2[0] - Point1[0]) * fScale;
PointFound[nPointsFound][1] = Point1[1] + (Point2[1] - Point1[1]) * fScale;
PointFound[nPointsFound][2] = Point1[2] + (Point2[2] - Point1[2]) * fScale;
nPointsFound++;
if (nPointsFound == 2)
{
Vector RenderPoint;
meshBuilder.Begin( pMesh, MATERIAL_LINES, 1 );
VectorMA(PointFound[0], 0.2, plane.normal, RenderPoint);
meshBuilder.Position3f(RenderPoint[0], RenderPoint[1], RenderPoint[2]);
meshBuilder.Color3ub(Normal[0] * 255, Normal[1] * 255, Normal[2] * 255);
meshBuilder.AdvanceVertex();
VectorMA(PointFound[1], 0.2, plane.normal, RenderPoint);
meshBuilder.Position3f(RenderPoint[0], RenderPoint[1], RenderPoint[2]);
meshBuilder.Color3ub(Normal[0] * 255, Normal[1] * 255, Normal[2] * 255);
meshBuilder.AdvanceVertex();
meshBuilder.End();
pMesh->Draw();
nPointsFound = 0;
}
}
}
}
fGridPoint += fGridSpacing;
}
}
}
pRender->PopRenderMode();
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : pLoadInfo -
// pFace -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapFace::LoadDispInfoCallback(CChunkFile *pFile, CMapFace *pFace)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
// allocate a displacement (for the face)
EditDispHandle_t dispHandle = EditDispMgr()->Create();
CMapDisp *pDisp = EditDispMgr()->GetDisp( dispHandle );
//
// load the displacement info and set relationships
//
ChunkFileResult_t eResult = pDisp->LoadVMF( pFile );
if( eResult == ChunkFile_Ok )
{
pDisp->SetParent( pFace );
pFace->SetDisp( dispHandle );
CMapWorld *pWorld = GetActiveWorld();
if( pWorld )
{
IWorldEditDispMgr *pDispMgr = pWorld->GetWorldEditDispManager();
if( pDispMgr )
{
pDispMgr->AddToWorld( dispHandle );
}
}
}
return( eResult );
}
//-----------------------------------------------------------------------------
// Purpose: Handles key values when loading a VMF file.
// Input : szKey - Key being handled.
// szValue - Value of the key in the VMF file.
// Output : Returns ChunkFile_Ok or an error if there was a parsing error.
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapFace::LoadKeyCallback(const char *szKey, const char *szValue, LoadFace_t *pLoadFace)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
CMapFace *pFace = pLoadFace->pFace;
if (!stricmp(szKey, "id"))
{
CChunkFile::ReadKeyValueInt(szValue, pFace->m_nFaceID);
}
else if (!stricmp(szKey, "rotation"))
{
pFace->texture.rotate = atof(szValue);
}
else if (!stricmp(szKey, "plane"))
{
int nRead = sscanf(szValue, "(%f %f %f) (%f %f %f) (%f %f %f)",
&pFace->plane.planepts[0][0], &pFace->plane.planepts[0][1], &pFace->plane.planepts[0][2],
&pFace->plane.planepts[1][0], &pFace->plane.planepts[1][1], &pFace->plane.planepts[1][2],
&pFace->plane.planepts[2][0], &pFace->plane.planepts[2][1], &pFace->plane.planepts[2][2]);
if (nRead != 9)
{
// TODO: need specific error message
return(ChunkFile_Fail);
}
}
else if (!stricmp(szKey, "material"))
{
strcpy(pLoadFace->szTexName, szValue);
}
else if (!stricmp(szKey, "uaxis"))
{
int nRead = sscanf(szValue, "[%f %f %f %f] %f",
&pFace->texture.UAxis[0], &pFace->texture.UAxis[1], &pFace->texture.UAxis[2], &pFace->texture.UAxis[3], &pFace->texture.scale[0]);
if (nRead != 5)
{
// TODO: need specific error message
return(ChunkFile_Fail);
}
}
else if (!stricmp(szKey, "vaxis"))
{
int nRead = sscanf(szValue, "[%f %f %f %f] %f",
&pFace->texture.VAxis[0], &pFace->texture.VAxis[1], &pFace->texture.VAxis[2], &pFace->texture.VAxis[3], &pFace->texture.scale[1]);
if (nRead != 5)
{
// TODO: need specific error message
return(ChunkFile_Fail);
}
}
else if (!stricmp(szKey, "lightmapscale"))
{
pFace->texture.nLightmapScale = atoi(szValue);
}
else if (!stricmp(szKey, "smoothing_groups"))
{
pFace->m_fSmoothingGroups = atoi(szValue);
}
return(ChunkFile_Ok);
}
//-----------------------------------------------------------------------------
// Purpose: Loads a face chunk from the VMF file.
// Input : pFile - Chunk file being loaded.
// Output : Returns ChunkFile_Ok or an error if there was a parsing error.
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapFace::LoadVMF(CChunkFile *pFile)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
//
// Set up handlers for the subchunks that we are interested in.
//
CChunkHandlerMap Handlers;
Handlers.AddHandler("dispinfo", (ChunkHandler_t)LoadDispInfoCallback, this);
//
// Read the keys and sub-chunks.
//
LoadFace_t LoadFace;
memset(&LoadFace, 0, sizeof(LoadFace));
LoadFace.pFace = this;
pFile->PushHandlers(&Handlers);
ChunkFileResult_t eResult = pFile->ReadChunk((KeyHandler_t)LoadKeyCallback, &LoadFace);
pFile->PopHandlers();
if (eResult == ChunkFile_Ok)
{
CalcPlane();
SetTexture(LoadFace.szTexName);
}
return(eResult);
}
//-----------------------------------------------------------------------------
// Purpose: Called after this object is added to the world.
//
// NOTE: This function is NOT called during serialization. Use PostloadWorld
// to do similar bookkeeping after map load.
//
// Input : pWorld - The world that we have been added to.
//-----------------------------------------------------------------------------
void CMapFace::OnAddToWorld(CMapWorld *pWorld)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
if (HasDisp())
{
//
// Add it to the world displacement list.
//
IWorldEditDispMgr *pDispMgr = GetActiveWorldEditDispManager();
if (pDispMgr != NULL)
{
pDispMgr->AddToWorld( m_DispHandle );
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Called just after this object has been removed from the world so
// that it can unlink itself from other objects in the world.
// Input : pWorld - The world that we were just removed from.
// bNotifyChildren - Whether we should forward notification to our children.
//-----------------------------------------------------------------------------
void CMapFace::OnRemoveFromWorld(void)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
if (HasDisp())
{
//
// Add it to the world displacement list.
//
IWorldEditDispMgr *pDispMgr = GetActiveWorldEditDispManager();
if (pDispMgr != NULL)
{
pDispMgr->RemoveFromWorld( m_DispHandle );
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapFace::SaveVMF(CChunkFile *pFile, CSaveInfo *pSaveInfo)
{
NormalizeTextureShifts();
//
// Check for duplicate plane points. All three plane points must be unique
// or it isn't a valid plane. Try to fix it if it isn't valid.
//
if (!CheckFace())
{
Fix();
}
ChunkFileResult_t eResult = pFile->BeginChunk("side");
char szBuf[512];
//
// Write our unique face ID.
//
if (eResult == ChunkFile_Ok)
{
eResult = pFile->WriteKeyValueInt("id", m_nFaceID);
}
//
// Write the plane information.
//
if (eResult == ChunkFile_Ok)
{
sprintf(szBuf, "(%g %g %g) (%g %g %g) (%g %g %g)",
(double)plane.planepts[0][0], (double)plane.planepts[0][1], (double)plane.planepts[0][2],
(double)plane.planepts[1][0], (double)plane.planepts[1][1], (double)plane.planepts[1][2],
(double)plane.planepts[2][0], (double)plane.planepts[2][1], (double)plane.planepts[2][2]);
eResult = pFile->WriteKeyValue("plane", szBuf);
}
if (eResult == ChunkFile_Ok)
{
char szTexture[MAX_PATH];
strcpy(szTexture, texture.texture);
strupr(szTexture);
eResult = pFile->WriteKeyValue("material", szTexture);
}
if (eResult == ChunkFile_Ok)
{
sprintf(szBuf, "[%g %g %g %g] %g", (double)texture.UAxis[0], (double)texture.UAxis[1], (double)texture.UAxis[2], (double)texture.UAxis[3], (double)texture.scale[0]);
eResult = pFile->WriteKeyValue("uaxis", szBuf);
}
if (eResult == ChunkFile_Ok)
{
sprintf(szBuf, "[%g %g %g %g] %g", (double)texture.VAxis[0], (double)texture.VAxis[1], (double)texture.VAxis[2], (double)texture.VAxis[3], (double)texture.scale[1]);
eResult = pFile->WriteKeyValue("vaxis", szBuf);
}
if (eResult == ChunkFile_Ok)
{
eResult = pFile->WriteKeyValueFloat("rotation", texture.rotate);
}
if (eResult == ChunkFile_Ok)
{
eResult = pFile->WriteKeyValueFloat("lightmapscale", texture.nLightmapScale);
}
// Save smoothing group data.
if (eResult == ChunkFile_Ok)
{
eResult = pFile->WriteKeyValueInt("smoothing_groups", m_fSmoothingGroups );
}
//
// Write the displacement chunk.
//
if ((eResult == ChunkFile_Ok) && (HasDisp()))
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
eResult = pDisp->SaveVMF(pFile, pSaveInfo);
}
if (eResult == ChunkFile_Ok)
{
eResult = pFile->EndChunk();
}
return(eResult);
}
//-----------------------------------------------------------------------------
// Purpose: Enables or disables the special rendering of selected faces.
// Input : bShowSelection - true to enable, false to disable.
//-----------------------------------------------------------------------------
void CMapFace::SetShowSelection(bool bShowSelection)
{
CMapFace::m_bShowFaceSelection = bShowSelection;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : nPoint -
// u -
// v -
//-----------------------------------------------------------------------------
void CMapFace::SetTextureCoords(int nPoint, float u, float v)
{
if (nPoint < nPoints)
{
m_pTextureCoords[nPoint][0] = u;
m_pTextureCoords[nPoint][1] = v;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
size_t CMapFace::GetDataSize( void )
{
// get base map class size
size_t size = sizeof( CMapFace );
//
// better approximate by added in verts, texture coordinates,
// and lightmap coordinates
//
size += ( sizeof( Vector ) * nPoints );
size += ( sizeof( Vector2D ) * ( nPoints * 2 ) );
// add displacement size if necessary
if( HasDisp() )
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
size += pDisp->GetSize();
}
return size;
}
//-----------------------------------------------------------------------------
// Purpose: Returns our bounds for 2D rendering. These bounds do not consider
// any displacement information.
// Input : boundMin -
// boundMax -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CMapFace::GetRender2DBox( Vector& boundMin, Vector& boundMax )
{
// valid face?
if( nPoints == 0 )
return false;
//
// find min and maximum points on face
//
VectorFill( boundMin, COORD_NOTINIT );
VectorFill( boundMax, -COORD_NOTINIT );
for( int i = 0; i < nPoints; i++ )
{
if( Points[i][0] < boundMin[0] ) { boundMin[0] = Points[i][0]; }
if( Points[i][1] < boundMin[1] ) { boundMin[1] = Points[i][1]; }
if( Points[i][2] < boundMin[2] ) { boundMin[2] = Points[i][2]; }
if( Points[i][0] > boundMax[0] ) { boundMax[0] = Points[i][0]; }
if( Points[i][1] > boundMax[1] ) { boundMax[1] = Points[i][1]; }
if( Points[i][2] > boundMax[2] ) { boundMax[2] = Points[i][2]; }
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Returns our bounds for frustum culling, including the bounds of
// any displacement information.
// Input : boundMin -
// boundMax -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CMapFace::GetCullBox( Vector& boundMin, Vector& boundMax )
{
// get the face bounds
if( !GetRender2DBox( boundMin, boundMax ) )
return false;
//
// add displacement to bounds
//
if( HasDisp() )
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
Vector bbox[2];
pDisp->GetBoundingBox( bbox[0], bbox[1] );
for( int i = 0; i < 2; i++ )
{
if( bbox[i][0] < boundMin[0] ) { boundMin[0] = bbox[i][0]; }
if( bbox[i][1] < boundMin[1] ) { boundMin[1] = bbox[i][1]; }
if( bbox[i][2] < boundMin[2] ) { boundMin[2] = bbox[i][2]; }
if( bbox[i][0] > boundMax[0] ) { boundMax[0] = bbox[i][0]; }
if( bbox[i][1] > boundMax[1] ) { boundMax[1] = bbox[i][1]; }
if( bbox[i][2] > boundMax[2] ) { boundMax[2] = bbox[i][2]; }
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : HitPos -
// Start -
// End -
// Output : Returns true if the ray intersected the face, false if not.
//-----------------------------------------------------------------------------
bool CMapFace::TraceLine(Vector &HitPos, Vector &HitNormal, Vector const &Start, Vector const &End )
{
if (HasDisp())
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
return( pDisp->TraceLine( HitPos, HitNormal, Start, End ) );
}
//
// Find the point of intersection of the ray with the given plane.
//
float t = Start.Dot(plane.normal) - plane.dist;
t = t / -(End - Start).Dot(plane.normal);
HitPos = Start + (t * (End - Start));
HitNormal = plane.normal;
return(true);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapFace::TraceLineInside( Vector &HitPos, Vector &HitNormal,
Vector const &Start, Vector const &End, bool bNoDisp )
{
// if the face is displaced -- collide with that
if( HasDisp() && !bNoDisp )
{
CMapDisp *pDisp = EditDispMgr()->GetDisp( m_DispHandle );
return( pDisp->TraceLine( HitPos, HitNormal, Start, End ) );
}
//
// Find the point of intersection of the ray with the given plane.
//
float t = Start.Dot( plane.normal ) - plane.dist;
if ( -( End - Start ).Dot( plane.normal ) != 0.0f )
{
t = t / -( End - Start ).Dot( plane.normal );
}
HitPos = Start + ( t * ( End - Start ) );
//
// determine if the plane point lies behind all of the polygon planes (edges)
//
for( int ndxEdge = 0; ndxEdge < nPoints; ndxEdge++ )
{
// create the edge and cross it with the face plane normal
Vector edge;
edge = Points[(ndxEdge+1)%nPoints] - Points[ndxEdge];
PLANE edgePlane;
edgePlane.normal = edge.Cross( plane.normal );
VectorNormalize( edgePlane.normal );
edgePlane.dist = edgePlane.normal.Dot( Points[ndxEdge] );
// determine if the facing is correct
float dist = edgePlane.normal.Dot( Points[(ndxEdge+2)%nPoints] ) - edgePlane.dist;
if( dist > 0.0f )
{
// flip
edgePlane.normal.Negate();
edgePlane.dist = -edgePlane.dist;
}
// check to see if plane point lives behind the plane
dist = edgePlane.normal.Dot( HitPos ) - edgePlane.dist;
if( dist > 0.0f )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// NOTE: actually this could be calculated once for the face since only the
// face normal is being used (no smoothing groups, etc.), but that may
// change????
//-----------------------------------------------------------------------------
void CMapFace::CalcTangentSpaceAxes( void )
{
// destroy old axes if need be
FreeTangentSpaceAxes();
// allocate memory for tangent space axes
if( !AllocTangentSpaceAxes( nPoints ) )
return;
//
// get the texture space axes
//
Vector4D& uVect = texture.UAxis;
Vector4D& vVect = texture.VAxis;
//
// calculate the tangent space per polygon point
//
for( int ptIndex = 0; ptIndex < nPoints; ptIndex++ )
{
// get the current tangent space axes
TangentSpaceAxes_t *pAxis = &m_pTangentAxes[ptIndex];
//
// create the axes
//
pAxis->binormal = vVect.AsVector3D();
VectorNormalize( pAxis->binormal );
CrossProduct( plane.normal, pAxis->binormal, pAxis->tangent );
VectorNormalize( pAxis->tangent );
CrossProduct( pAxis->tangent, plane.normal, pAxis->binormal );
VectorNormalize( pAxis->binormal );
//
// adjust tangent for "backwards" mapping if need be
//
Vector tmpVect;
CrossProduct( uVect.AsVector3D(), vVect.AsVector3D(), tmpVect );
if( DotProduct( plane.normal, tmpVect ) > 0.0f )
{
VectorScale( pAxis->tangent, -1.0f, pAxis->tangent );
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapFace::AllocTangentSpaceAxes( int count )
{
if( count < 1 )
return false;
m_pTangentAxes = new TangentSpaceAxes_t[count];
if( !m_pTangentAxes )
return false;
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapFace::FreeTangentSpaceAxes( void )
{
if( m_pTangentAxes )
{
delete [] m_pTangentAxes;
m_pTangentAxes = NULL;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CMapFace::SmoothingGroupCount( void )
{
int nCount = 0;
for ( int iGroup = 0; iGroup < SMOOTHING_GROUP_MAX_COUNT; ++iGroup )
{
if ( ( m_fSmoothingGroups & ( 1 << iGroup ) ) != 0 )
{
nCount++;
}
}
return nCount;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapFace::AddSmoothingGroup( int iGroup )
{
Assert( iGroup >= 0 );
Assert( iGroup < SMOOTHING_GROUP_MAX_COUNT );
m_fSmoothingGroups |= ( 1 << ( iGroup - 1 ) );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapFace::RemoveSmoothingGroup( int iGroup )
{
Assert( iGroup >= 0 );
Assert( iGroup < SMOOTHING_GROUP_MAX_COUNT );
m_fSmoothingGroups &= ~( 1 << ( iGroup - 1 ) );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapFace::InSmoothingGroup( int iGroup )
{
if ( ( m_fSmoothingGroups & ( 1 << ( iGroup - 1 ) ) ) != 0 )
return true;
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Performs an intersection of this list with another.
// Input : IntersectWith - the list to intersect with.
// In - the list of items that were in both lists
// Out - the list of items that were in one list but not the other.
//-----------------------------------------------------------------------------
void CMapFaceList::Intersect(CMapFaceList &IntersectWith, CMapFaceList &In, CMapFaceList &Out)
{
//
// See what we items have that are in the other list.
//
for (int i = 0; i < Count(); i++)
{
CMapFace *pFace = Element(i);
if (IntersectWith.Find(pFace) != -1)
{
if (In.Find(pFace) == -1)
{
In.AddToTail(pFace);
}
}
else
{
if (Out.Find(pFace) == -1)
{
Out.AddToTail(pFace);
}
}
}
//
// Now go the other way.
//
for (int i = 0; i < IntersectWith.Count(); i++)
{
CMapFace *pFace = IntersectWith.Element(i);
if (Find(pFace) != -1)
{
if (In.Find(pFace) == -1)
{
In.AddToTail(pFace);
}
}
else
{
if (Out.Find(pFace) == -1)
{
Out.AddToTail(pFace);
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Performs an intersection of this list with another.
// Input : IntersectWith - the list to intersect with.
// In - the list of items that were in both lists
// Out - the list of items that were in one list but not the other.
//-----------------------------------------------------------------------------
void CMapFaceIDList::Intersect(CMapFaceIDList &IntersectWith, CMapFaceIDList &In, CMapFaceIDList &Out)
{
//
// See what we items have that are in the other list.
//
for (int i = 0; i < Count(); i++)
{
int nFaceID = Element(i);
if (IntersectWith.Find(nFaceID) != -1)
{
if (In.Find(nFaceID) == -1)
{
In.AddToTail(nFaceID);
}
}
else
{
if (Out.Find(nFaceID) == -1)
{
Out.AddToTail(nFaceID);
}
}
}
//
// Now go the other way.
//
for (int i = 0; i < IntersectWith.Count(); i++)
{
int nFaceID = IntersectWith.Element(i);
if (Find(nFaceID) != -1)
{
if (In.Find(nFaceID) == -1)
{
In.AddToTail(nFaceID);
}
}
else
{
if (Out.Find(nFaceID) == -1)
{
Out.AddToTail(nFaceID);
}
}
}
}
void CMapFace::DoTransform(const VMatrix &matrix)
{
SignalUpdate( EVTYPE_FACE_CHANGED );
if( nPoints < 3 )
{
Assert( nPoints > 2 );
return;
}
CMapDisp *pDisp = NULL;
Vector bbDispOld[2]; // Old bbox for the disp.
if( HasDisp() )
{
EditDispHandle_t handle = GetDisp();
pDisp = EditDispMgr()->GetDisp( handle );
if ( pDisp )
pDisp->GetBoundingBox( bbDispOld[0], bbDispOld[1] );
}
Vector oldPoint = Points[0];
// Transform the face points.
for (int i = 0; i < nPoints; i++)
{
TransformPoint( matrix, Points[i] );
}
bool bFlip = (matrix[0][0]*matrix[1][1]*matrix[2][2]) < 0;
if ( bFlip )
{
// mirror transformation would break CCW culling, so revert point order
PointsRevertOrder( Points, nPoints );
}
CalcPlaneFromFacePoints();
// ok, now apply all changes to texture & displacment too
VMatrix mTrans = matrix;
QAngle rotateAngles;
Vector moveDelta;
MatrixAngles( matrix.As3x4(), rotateAngles, moveDelta );
bool bIsLocking = Options.IsLockingTextures()!=0;
bool bIsMoving = moveDelta.LengthSqr() > 0.00001;
// erase move component from matrix
mTrans.SetTranslation( vec3_origin );
// check if new matrix is simple identity matrix
if ( mTrans.IsIdentity() )
{
if ( GetTexture() )
{
if ( bIsMoving && bIsLocking )
{
// Offset texture coordinates if we're moving and texture locking.
OffsetTexture(moveDelta);
}
// Recalculate the texture coordinates for this face.
CalcTextureCoords();
}
if ( pDisp )
{
pDisp->UpdateSurfData( this );
// Update the neighbors of displacements that intersect the old as well as the new bbox.
// Without this, there can be errors if you drag > 2 edges to interset each other, then
// move one of the intersectors (cloning can easily cause this case to happen).
Vector bbDispNew[2];
pDisp->GetBoundingBox( bbDispNew[0], bbDispNew[1] );
CMapDisp::UpdateNeighborsOfDispsIntersectingBox( bbDispOld[0], bbDispOld[1], 1.0 );
CMapDisp::UpdateNeighborsOfDispsIntersectingBox( bbDispNew[0], bbDispNew[1], 1.0 );
}
// Create any detail objects if appropriate
DetailObjects::BuildAnyDetailObjects(this);
return;
}
// ok, transformation is more complex then a simple move
if ( GetTexture() )
{
Vector vU = texture.UAxis.AsVector3D();
Vector vV = texture.VAxis.AsVector3D();
// store original length
float fScaleU = vU.Length();
float fScaleV = vV.Length();
if ( fScaleU <= 0 )
fScaleU = 1;
if ( fScaleV <=0 )
fScaleV = 1;
// transform UV axis
TransformPoint( mTrans, vU );
TransformPoint( mTrans, vV );
// get scaling factor for both axes
fScaleU = vU.Length()/fScaleU;
fScaleV = vV.Length()/fScaleV;
if ( fScaleU <= 0 )
fScaleU = 1;
if ( fScaleV <=0 )
fScaleV = 1;
// check is the transformation would destory the UV axis (both normals & perpendicular)
bool bUVAxisSameScale = fequal(fScaleV,1,0.0001) && fequal(fScaleU,1,0.0001);
bool bUVAxisPerpendicular = fequal(DotProduct( vU, vV ),0,0.0025);
// Rotate the U/V axes to keep them oriented the same relative
// to this face.
if ( bIsLocking && bUVAxisPerpendicular )
{
// make sure UV axes are normals & perpendicalur
texture.UAxis.AsVector3D() = vU/fScaleU;
texture.VAxis.AsVector3D() = vV/fScaleV;
}
if ( bUVAxisSameScale )
{
// scale is fine
if ( !bIsLocking )
{
// If we are not texture locking, recalculate the texture axes based on current
// texture alignment setting. This prevents the axes from becoming normal to the face.
InitializeTextureAxes(Options.GetTextureAlignment(), INIT_TEXTURE_AXES | INIT_TEXTURE_FORCE);
}
}
else // we stretch/scale axes
{
// operation changes scale of textures, check if we really want that:
bIsLocking = Options.IsScaleLockingTextures()!=0;
if ( bIsLocking )
{
texture.scale[0] *= fScaleU;
texture.scale[1] *= fScaleV;
}
}
if ( bIsMoving && bIsLocking )
{
// Offset texture coordinates if we're moving and texture locking.
OffsetTexture(moveDelta);
}
// Recalculate the texture coordinates for this face.
CalcTextureCoords();
}
// rotate the displacement field data - if any!
if( pDisp )
{
pDisp->DoTransform( mTrans );
// Update the neighbors of displacements that intersect the old as well as the new bbox.
// Without this, there can be errors if you drag > 2 edges to interset each other, then
// move one of the intersectors (cloning can easily cause this case to happen).
Vector bbDispNew[2];
pDisp->GetBoundingBox( bbDispNew[0], bbDispNew[1] );
CMapDisp::UpdateNeighborsOfDispsIntersectingBox( bbDispOld[0], bbDispOld[1], 1.0 );
CMapDisp::UpdateNeighborsOfDispsIntersectingBox( bbDispNew[0], bbDispNew[1], 1.0 );
}
// Create any detail objects if appropriate
DetailObjects::BuildAnyDetailObjects(this);
}