You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2058 lines
64 KiB
2058 lines
64 KiB
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
// |
|
// Purpose: |
|
// |
|
// $NoKeywords: $ |
|
// |
|
//=============================================================================// |
|
// |
|
// VMatrix always postmultiply vectors as in Ax = b. |
|
// Given a set of basis vectors ((F)orward, (L)eft, (U)p), and a (T)ranslation, |
|
// a matrix to transform a vector into that space looks like this: |
|
// Fx Lx Ux Tx |
|
// Fy Ly Uy Ty |
|
// Fz Lz Uz Tz |
|
// 0 0 0 1 |
|
|
|
// Note that concatenating matrices needs to multiply them in reverse order. |
|
// ie: if I want to apply matrix A, B, then C, the equation needs to look like this: |
|
// C * B * A * v |
|
// ie: |
|
// v = A * v; |
|
// v = B * v; |
|
// v = C * v; |
|
//============================================================================= |
|
|
|
#ifndef VMATRIX_H |
|
#define VMATRIX_H |
|
|
|
#ifdef _WIN32 |
|
#pragma once |
|
#endif |
|
|
|
#include <math.h> |
|
#include <string.h> |
|
#include "mathlib/vector.h" |
|
#include "mathlib/vplane.h" |
|
#include "mathlib/vector4d.h" |
|
#include "mathlib/mathlib.h" |
|
|
|
struct cplane_t; |
|
|
|
#ifndef M_PI |
|
#define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h |
|
#endif |
|
|
|
class alignas(16) VMatrix |
|
{ |
|
public: |
|
|
|
VMatrix(); |
|
VMatrix( |
|
vec_t m00, vec_t m01, vec_t m02, vec_t m03, |
|
vec_t m10, vec_t m11, vec_t m12, vec_t m13, |
|
vec_t m20, vec_t m21, vec_t m22, vec_t m23, |
|
vec_t m30, vec_t m31, vec_t m32, vec_t m33 |
|
); |
|
|
|
// Creates a matrix where the X axis = forward |
|
// the Y axis = left, and the Z axis = up |
|
VMatrix( const Vector& forward, const Vector& left, const Vector& up ); |
|
VMatrix( const Vector& forward, const Vector& left, const Vector& up, const Vector& translation ); |
|
|
|
// Construct from a 3x4 matrix |
|
VMatrix( const matrix3x4_t& matrix3x4 ); |
|
VMatrix( const VMatrix& ) = default; |
|
|
|
// Set the values in the matrix. |
|
void Init( |
|
vec_t m00, vec_t m01, vec_t m02, vec_t m03, |
|
vec_t m10, vec_t m11, vec_t m12, vec_t m13, |
|
vec_t m20, vec_t m21, vec_t m22, vec_t m23, |
|
vec_t m30, vec_t m31, vec_t m32, vec_t m33 |
|
); |
|
|
|
|
|
// Initialize from a 3x4 |
|
void Init( const matrix3x4_t& matrix3x4 ); |
|
|
|
// array access |
|
inline float* operator[](int i) |
|
{ |
|
return m[i]; |
|
} |
|
|
|
inline const float* operator[](int i) const |
|
{ |
|
return m[i]; |
|
} |
|
|
|
// Get a pointer to m[0][0] |
|
inline float *Base() |
|
{ |
|
return &m[0][0]; |
|
} |
|
|
|
inline const float *Base() const |
|
{ |
|
return &m[0][0]; |
|
} |
|
|
|
void SetLeft(const Vector &vLeft); |
|
void SetUp(const Vector &vUp); |
|
void SetForward(const Vector &vForward); |
|
|
|
void GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const; |
|
void SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp); |
|
|
|
// Get/set the translation. |
|
Vector & GetTranslation( Vector &vTrans ) const; |
|
void SetTranslation(const Vector &vTrans); |
|
|
|
void PreTranslate(const Vector &vTrans); |
|
void PostTranslate(const Vector &vTrans); |
|
|
|
const matrix3x4_t& As3x4() const; |
|
void CopyFrom3x4( const matrix3x4_t &m3x4 ); |
|
void Set3x4( const matrix3x4_t& matrix3x4 ); |
|
|
|
bool operator==( const VMatrix& src ) const { |
|
return src.m[0][0] == m[0][0] && src.m[0][1] == m[0][1] && src.m[0][2] == m[0][2] && src.m[0][3] == m[0][3] && |
|
src.m[1][0] == m[1][0] && src.m[1][1] == m[1][1] && src.m[1][2] == m[1][2] && src.m[1][3] == m[1][3] && |
|
src.m[2][0] == m[2][0] && src.m[2][1] == m[2][1] && src.m[2][2] == m[2][2] && src.m[2][3] == m[2][3] && |
|
src.m[3][0] == m[3][0] && src.m[3][1] == m[3][1] && src.m[3][2] == m[3][2] && src.m[3][3] == m[3][3]; |
|
} |
|
|
|
bool operator!=( const VMatrix& src ) const { return !( *this == src ); } |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
// Access the basis vectors. |
|
Vector GetLeft() const; |
|
Vector GetUp() const; |
|
Vector GetForward() const; |
|
Vector GetTranslation() const; |
|
#endif |
|
|
|
|
|
// Matrix->vector operations. |
|
public: |
|
// Multiply by a 3D vector (same as operator*). |
|
void V3Mul(const Vector &vIn, Vector &vOut) const; |
|
|
|
// Multiply by a 4D vector. |
|
void V4Mul(const Vector4D &vIn, Vector4D &vOut) const; |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
// Applies the rotation (ignores translation in the matrix). (This just calls VMul3x3). |
|
Vector ApplyRotation(const Vector &vVec) const; |
|
|
|
// Multiply by a vector (divides by w, assumes input w is 1). |
|
Vector operator*(const Vector &vVec) const; |
|
|
|
// Multiply by the upper 3x3 part of the matrix (ie: only apply rotation). |
|
Vector VMul3x3(const Vector &vVec) const; |
|
|
|
// Apply the inverse (transposed) rotation (only works on pure rotation matrix) |
|
Vector VMul3x3Transpose(const Vector &vVec) const; |
|
|
|
// Multiply by the upper 3 rows. |
|
Vector VMul4x3(const Vector &vVec) const; |
|
|
|
// Apply the inverse (transposed) transformation (only works on pure rotation/translation) |
|
Vector VMul4x3Transpose(const Vector &vVec) const; |
|
#endif |
|
|
|
|
|
// Matrix->plane operations. |
|
public: |
|
// Transform the plane. The matrix can only contain translation and rotation. |
|
void TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const; |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
// Just calls TransformPlane and returns the result. |
|
VPlane operator*(const VPlane &thePlane) const; |
|
#endif |
|
|
|
// Matrix->matrix operations. |
|
public: |
|
|
|
VMatrix& operator=(const VMatrix &mOther); |
|
|
|
// Multiply two matrices (out = this * vm). |
|
void MatrixMul( const VMatrix &vm, VMatrix &out ) const; |
|
|
|
// Add two matrices. |
|
const VMatrix& operator+=(const VMatrix &other); |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
// Just calls MatrixMul and returns the result. |
|
VMatrix operator*(const VMatrix &mOther) const; |
|
|
|
// Add/Subtract two matrices. |
|
VMatrix operator+(const VMatrix &other) const; |
|
VMatrix operator-(const VMatrix &other) const; |
|
|
|
// Negation. |
|
VMatrix operator-() const; |
|
|
|
// Return inverse matrix. Be careful because the results are undefined |
|
// if the matrix doesn't have an inverse (ie: InverseGeneral returns false). |
|
VMatrix operator~() const; |
|
#endif |
|
|
|
// Matrix operations. |
|
public: |
|
// Set to identity. |
|
void Identity(); |
|
|
|
bool IsIdentity() const; |
|
|
|
// Setup a matrix for origin and angles. |
|
void SetupMatrixOrgAngles( const Vector &origin, const QAngle &vAngles ); |
|
|
|
// Setup a matrix for angles and no translation. |
|
void SetupMatrixAngles( const QAngle &vAngles ); |
|
|
|
// General inverse. This may fail so check the return! |
|
bool InverseGeneral(VMatrix &vInverse) const; |
|
|
|
// Does a fast inverse, assuming the matrix only contains translation and rotation. |
|
void InverseTR( VMatrix &mRet ) const; |
|
|
|
// Usually used for debug checks. Returns true if the upper 3x3 contains |
|
// unit vectors and they are all orthogonal. |
|
bool IsRotationMatrix() const; |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
// This calls the other InverseTR and returns the result. |
|
VMatrix InverseTR() const; |
|
|
|
// Get the scale of the matrix's basis vectors. |
|
Vector GetScale() const; |
|
|
|
// (Fast) multiply by a scaling matrix setup from vScale. |
|
VMatrix Scale(const Vector &vScale); |
|
|
|
// Normalize the basis vectors. |
|
VMatrix NormalizeBasisVectors() const; |
|
|
|
// Transpose. |
|
VMatrix Transpose() const; |
|
|
|
// Transpose upper-left 3x3. |
|
VMatrix Transpose3x3() const; |
|
#endif |
|
|
|
public: |
|
// The matrix. |
|
vec_t m[4][4]; |
|
}; |
|
|
|
inline void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column ) |
|
{ |
|
Assert( (nCol >= 0) && (nCol <= 3) ); |
|
|
|
src.m[0][nCol] = column.x; |
|
src.m[1][nCol] = column.y; |
|
src.m[2][nCol] = column.z; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation) |
|
//----------------------------------------------------------------------------- |
|
// NJS: src2 is passed in as a full vector rather than a reference to prevent the need |
|
// for 2 branches and a potential copy in the body. (ie, handling the case when the src2 |
|
// reference is the same as the dst reference ). |
|
inline void Vector3DMultiplyPosition( const VMatrix& src1, const VectorByValue src2, Vector& dst ) |
|
{ |
|
dst[0] = src1[0][0] * src2.x + src1[0][1] * src2.y + src1[0][2] * src2.z + src1[0][3]; |
|
dst[1] = src1[1][0] * src2.x + src1[1][1] * src2.y + src1[1][2] * src2.z + src1[1][3]; |
|
dst[2] = src1[2][0] * src2.x + src1[2][1] * src2.y + src1[2][2] * src2.z + src1[2][3]; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Sets matrix to identity |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixSetIdentity( VMatrix &dst ) |
|
{ |
|
dst[0][0] = 1.0f; dst[0][1] = 0.0f; dst[0][2] = 0.0f; dst[0][3] = 0.0f; |
|
dst[1][0] = 0.0f; dst[1][1] = 1.0f; dst[1][2] = 0.0f; dst[1][3] = 0.0f; |
|
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = 1.0f; dst[2][3] = 0.0f; |
|
dst[3][0] = 0.0f; dst[3][1] = 0.0f; dst[3][2] = 0.0f; dst[3][3] = 1.0f; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix/vector multiply |
|
//----------------------------------------------------------------------------- |
|
inline void Vector3DMultiply( const VMatrix &src1, const Vector &src2, Vector &dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
Vector tmp; |
|
const Vector &v = (&src2 == &dst) ? static_cast<const Vector&>(tmp) : src2; |
|
|
|
if( &src2 == &dst ) |
|
VectorCopy( src2, tmp ); |
|
|
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2]; |
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2]; |
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2]; |
|
} |
|
|
|
|
|
inline bool MatrixInverseGeneral(const VMatrix& src, VMatrix& dst) |
|
{ |
|
int iRow, i, j, iTemp, iTest; |
|
vec_t mul, fTest, fLargest; |
|
vec_t mat[4][8]; |
|
int rowMap[4], iLargest; |
|
vec_t *pOut, *pRow, *pScaleRow; |
|
|
|
|
|
// How it's done. |
|
// AX = I |
|
// A = this |
|
// X = the matrix we're looking for |
|
// I = identity |
|
|
|
// Setup AI |
|
for(i=0; i < 4; i++) |
|
{ |
|
const vec_t *pIn = src[i]; |
|
pOut = mat[i]; |
|
|
|
for(j=0; j < 4; j++) |
|
{ |
|
pOut[j] = pIn[j]; |
|
} |
|
|
|
pOut[4] = 0.0f; |
|
pOut[5] = 0.0f; |
|
pOut[6] = 0.0f; |
|
pOut[7] = 0.0f; |
|
pOut[i+4] = 1.0f; |
|
|
|
rowMap[i] = i; |
|
} |
|
|
|
// Use row operations to get to reduced row-echelon form using these rules: |
|
// 1. Multiply or divide a row by a nonzero number. |
|
// 2. Add a multiple of one row to another. |
|
// 3. Interchange two rows. |
|
|
|
for(iRow=0; iRow < 4; iRow++) |
|
{ |
|
// Find the row with the largest element in this column. |
|
fLargest = 0.00001f; |
|
iLargest = -1; |
|
for(iTest=iRow; iTest < 4; iTest++) |
|
{ |
|
fTest = (vec_t)FloatMakePositive(mat[rowMap[iTest]][iRow]); |
|
if(fTest > fLargest) |
|
{ |
|
iLargest = iTest; |
|
fLargest = fTest; |
|
} |
|
} |
|
|
|
// They're all too small.. sorry. |
|
if(iLargest == -1) |
|
{ |
|
return false; |
|
} |
|
|
|
// Swap the rows. |
|
iTemp = rowMap[iLargest]; |
|
rowMap[iLargest] = rowMap[iRow]; |
|
rowMap[iRow] = iTemp; |
|
|
|
pRow = mat[rowMap[iRow]]; |
|
|
|
// Divide this row by the element. |
|
mul = 1.0f / pRow[iRow]; |
|
for(j=0; j < 8; j++) |
|
pRow[j] *= mul; |
|
|
|
pRow[iRow] = 1.0f; // Preserve accuracy... |
|
|
|
// Eliminate this element from the other rows using operation 2. |
|
for(i=0; i < 4; i++) |
|
{ |
|
if(i == iRow) |
|
continue; |
|
|
|
pScaleRow = mat[rowMap[i]]; |
|
|
|
// Multiply this row by -(iRow*the element). |
|
mul = -pScaleRow[iRow]; |
|
for(j=0; j < 8; j++) |
|
{ |
|
pScaleRow[j] += pRow[j] * mul; |
|
} |
|
|
|
pScaleRow[iRow] = 0.0f; // Preserve accuracy... |
|
} |
|
} |
|
|
|
// The inverse is on the right side of AX now (the identity is on the left). |
|
for(i=0; i < 4; i++) |
|
{ |
|
const vec_t *pIn = mat[rowMap[i]] + 4; |
|
pOut = dst.m[i]; |
|
|
|
for(j=0; j < 4; j++) |
|
{ |
|
pOut[j] = pIn[j]; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static inline void SetupMatrixAnglesInternal( vec_t m[4][4], const QAngle & vAngles ) |
|
{ |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
SinCos( DEG2RAD( vAngles[YAW] ), &sy, &cy ); |
|
SinCos( DEG2RAD( vAngles[PITCH] ), &sp, &cp ); |
|
SinCos( DEG2RAD( vAngles[ROLL] ), &sr, &cr ); |
|
|
|
// matrix = (YAW * PITCH) * ROLL |
|
m[0][0] = cp*cy; |
|
m[1][0] = cp*sy; |
|
m[2][0] = -sp; |
|
m[0][1] = sr*sp*cy+cr*-sy; |
|
m[1][1] = sr*sp*sy+cr*cy; |
|
m[2][1] = sr*cp; |
|
m[0][2] = (cr*sp*cy+-sr*-sy); |
|
m[1][2] = (cr*sp*sy+-sr*cy); |
|
m[2][2] = cr*cp; |
|
m[0][3] = 0.f; |
|
m[1][3] = 0.f; |
|
m[2][3] = 0.f; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Transpose |
|
//----------------------------------------------------------------------------- |
|
inline void Swap( float& a, float& b ) |
|
{ |
|
float tmp = a; |
|
a = b; |
|
b = tmp; |
|
} |
|
|
|
inline void MatrixTranspose( const VMatrix& src, VMatrix& dst ) |
|
{ |
|
if (&src == &dst) |
|
{ |
|
Swap( dst[0][1], dst[1][0] ); |
|
Swap( dst[0][2], dst[2][0] ); |
|
Swap( dst[0][3], dst[3][0] ); |
|
Swap( dst[1][2], dst[2][1] ); |
|
Swap( dst[1][3], dst[3][1] ); |
|
Swap( dst[2][3], dst[3][2] ); |
|
} |
|
else |
|
{ |
|
dst[0][0] = src[0][0]; dst[0][1] = src[1][0]; dst[0][2] = src[2][0]; dst[0][3] = src[3][0]; |
|
dst[1][0] = src[0][1]; dst[1][1] = src[1][1]; dst[1][2] = src[2][1]; dst[1][3] = src[3][1]; |
|
dst[2][0] = src[0][2]; dst[2][1] = src[1][2]; dst[2][2] = src[2][2]; dst[2][3] = src[3][2]; |
|
dst[3][0] = src[0][3]; dst[3][1] = src[1][3]; dst[3][2] = src[2][3]; dst[3][3] = src[3][3]; |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Does a fast inverse, assuming the matrix only contains translation and rotation. |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixInverseTR( const VMatrix& src, VMatrix &dst ) |
|
{ |
|
Vector vTrans, vNewTrans; |
|
|
|
// Transpose the upper 3x3. |
|
dst.m[0][0] = src.m[0][0]; dst.m[0][1] = src.m[1][0]; dst.m[0][2] = src.m[2][0]; |
|
dst.m[1][0] = src.m[0][1]; dst.m[1][1] = src.m[1][1]; dst.m[1][2] = src.m[2][1]; |
|
dst.m[2][0] = src.m[0][2]; dst.m[2][1] = src.m[1][2]; dst.m[2][2] = src.m[2][2]; |
|
|
|
// Transform the translation. |
|
vTrans.Init( -src.m[0][3], -src.m[1][3], -src.m[2][3] ); |
|
Vector3DMultiply( dst, vTrans, vNewTrans ); |
|
MatrixSetColumn( dst, 3, vNewTrans ); |
|
|
|
// Fill in the bottom row. |
|
dst.m[3][0] = dst.m[3][1] = dst.m[3][2] = 0.0f; |
|
dst.m[3][3] = 1.0f; |
|
} |
|
|
|
inline void VMatrix::Init( |
|
vec_t m00, vec_t m01, vec_t m02, vec_t m03, |
|
vec_t m10, vec_t m11, vec_t m12, vec_t m13, |
|
vec_t m20, vec_t m21, vec_t m22, vec_t m23, |
|
vec_t m30, vec_t m31, vec_t m32, vec_t m33 |
|
) |
|
{ |
|
m[0][0] = m00; |
|
m[0][1] = m01; |
|
m[0][2] = m02; |
|
m[0][3] = m03; |
|
|
|
m[1][0] = m10; |
|
m[1][1] = m11; |
|
m[1][2] = m12; |
|
m[1][3] = m13; |
|
|
|
m[2][0] = m20; |
|
m[2][1] = m21; |
|
m[2][2] = m22; |
|
m[2][3] = m23; |
|
|
|
m[3][0] = m30; |
|
m[3][1] = m31; |
|
m[3][2] = m32; |
|
m[3][3] = m33; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Initialize from a 3x4 |
|
//----------------------------------------------------------------------------- |
|
inline void VMatrix::Init( const matrix3x4_t& _m ) |
|
{ |
|
m[0][0] = _m[0][0]; m[0][1] = _m[0][1]; m[0][2] = _m[0][2]; m[0][3] = _m[0][3]; |
|
m[1][0] = _m[1][0]; m[1][1] = _m[1][1]; m[1][2] = _m[1][2]; m[1][3] = _m[1][3]; |
|
m[2][0] = _m[2][0]; m[2][1] = _m[2][1]; m[2][2] = _m[2][2]; m[2][3] = _m[2][3]; |
|
m[3][0] = 0.0f; m[3][1] = 0.0f; m[3][2] = 0.0f; m[3][3] = 1.0f; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// VMatrix inlines. |
|
//----------------------------------------------------------------------------- |
|
inline VMatrix::VMatrix() |
|
{ |
|
Init( |
|
0.f, 0.f, 0.f, 0.f, |
|
0.f, 0.f, 0.f, 0.f, |
|
0.f, 0.f, 0.f, 0.f, |
|
0.f, 0.f, 0.f, 0.f |
|
); |
|
} |
|
|
|
inline VMatrix::VMatrix( |
|
vec_t m00, vec_t m01, vec_t m02, vec_t m03, |
|
vec_t m10, vec_t m11, vec_t m12, vec_t m13, |
|
vec_t m20, vec_t m21, vec_t m22, vec_t m23, |
|
vec_t m30, vec_t m31, vec_t m32, vec_t m33) |
|
{ |
|
Init( |
|
m00, m01, m02, m03, |
|
m10, m11, m12, m13, |
|
m20, m21, m22, m23, |
|
m30, m31, m32, m33 |
|
); |
|
} |
|
|
|
|
|
inline VMatrix::VMatrix( const matrix3x4_t& matrix3x4 ) |
|
{ |
|
Init( matrix3x4 ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Creates a matrix where the X axis = forward |
|
// the Y axis = left, and the Z axis = up |
|
//----------------------------------------------------------------------------- |
|
inline VMatrix::VMatrix( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis ) |
|
{ |
|
Init( |
|
xAxis.x, yAxis.x, zAxis.x, 0.0f, |
|
xAxis.y, yAxis.y, zAxis.y, 0.0f, |
|
xAxis.z, yAxis.z, zAxis.z, 0.0f, |
|
0.0f, 0.0f, 0.0f, 1.0f |
|
); |
|
} |
|
|
|
inline VMatrix::VMatrix( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis, const Vector& translation ) |
|
{ |
|
Init( |
|
xAxis.x, yAxis.x, zAxis.x, translation.x, |
|
xAxis.y, yAxis.y, zAxis.y, translation.y, |
|
xAxis.z, yAxis.z, zAxis.z, translation.z, |
|
0.0f, 0.0f, 0.0f, 1.0f |
|
); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Methods related to the basis vectors of the matrix |
|
//----------------------------------------------------------------------------- |
|
|
|
inline VMatrix& VMatrix::operator=(const VMatrix &mOther) |
|
{ |
|
m[0][0] = mOther.m[0][0]; |
|
m[0][1] = mOther.m[0][1]; |
|
m[0][2] = mOther.m[0][2]; |
|
m[0][3] = mOther.m[0][3]; |
|
|
|
m[1][0] = mOther.m[1][0]; |
|
m[1][1] = mOther.m[1][1]; |
|
m[1][2] = mOther.m[1][2]; |
|
m[1][3] = mOther.m[1][3]; |
|
|
|
m[2][0] = mOther.m[2][0]; |
|
m[2][1] = mOther.m[2][1]; |
|
m[2][2] = mOther.m[2][2]; |
|
m[2][3] = mOther.m[2][3]; |
|
|
|
m[3][0] = mOther.m[3][0]; |
|
m[3][1] = mOther.m[3][1]; |
|
m[3][2] = mOther.m[3][2]; |
|
m[3][3] = mOther.m[3][3]; |
|
|
|
return *this; |
|
} |
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
inline VMatrix VMatrix::operator+(const VMatrix &other) const |
|
{ |
|
VMatrix ret; |
|
for(int i=0; i < 16; i++) |
|
{ |
|
((float*)ret.m)[i] = ((float*)m)[i] + ((float*)other.m)[i]; |
|
} |
|
return ret; |
|
} |
|
|
|
inline VMatrix VMatrix::operator-(const VMatrix &other) const |
|
{ |
|
VMatrix ret; |
|
for(int i=0; i < 16; i++) |
|
{ |
|
((float*)ret.m)[i] = ((float*)m)[i] - ((float*)other.m)[i]; |
|
} |
|
return ret; |
|
} |
|
|
|
inline VMatrix VMatrix::operator-() const |
|
{ |
|
VMatrix ret; |
|
for( int i=0; i < 16; i++ ) |
|
{ |
|
((float*)ret.m)[i] = ((float*)m)[i]; |
|
} |
|
return ret; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix math operations |
|
//----------------------------------------------------------------------------- |
|
inline const VMatrix& VMatrix::operator+=(const VMatrix &other) |
|
{ |
|
for(int i=0; i < 16; i++) |
|
{ |
|
((float*)m)[i] += ((float*)other.m)[i]; |
|
} |
|
return *this; |
|
} |
|
|
|
|
|
inline Vector VMatrix::operator*(const Vector &vVec) const |
|
{ |
|
Vector vRet; |
|
vRet.x = m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z + m[0][3]; |
|
vRet.y = m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z + m[1][3]; |
|
vRet.z = m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z + m[2][3]; |
|
|
|
return vRet; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Plane transformation |
|
//----------------------------------------------------------------------------- |
|
inline void VMatrix::TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const |
|
{ |
|
Vector vTrans; |
|
Vector3DMultiply( *this, inPlane.m_Normal, outPlane.m_Normal ); |
|
outPlane.m_Dist = inPlane.m_Dist * DotProduct( outPlane.m_Normal, outPlane.m_Normal ); |
|
outPlane.m_Dist += DotProduct( outPlane.m_Normal, GetTranslation( vTrans ) ); |
|
} |
|
|
|
inline VPlane VMatrix::operator*(const VPlane &thePlane) const |
|
{ |
|
VPlane ret; |
|
TransformPlane( thePlane, ret ); |
|
return ret; |
|
} |
|
|
|
inline bool VMatrix::InverseGeneral(VMatrix &vInverse) const |
|
{ |
|
return MatrixInverseGeneral( *this, vInverse ); |
|
} |
|
|
|
inline VMatrix VMatrix::operator~() const |
|
{ |
|
VMatrix mRet; |
|
InverseGeneral(mRet); |
|
return mRet; |
|
} |
|
|
|
inline void VMatrix::MatrixMul( const VMatrix &vm, VMatrix &out ) const |
|
{ |
|
out.Init( |
|
m[0][0]*vm.m[0][0] + m[0][1]*vm.m[1][0] + m[0][2]*vm.m[2][0] + m[0][3]*vm.m[3][0], |
|
m[0][0]*vm.m[0][1] + m[0][1]*vm.m[1][1] + m[0][2]*vm.m[2][1] + m[0][3]*vm.m[3][1], |
|
m[0][0]*vm.m[0][2] + m[0][1]*vm.m[1][2] + m[0][2]*vm.m[2][2] + m[0][3]*vm.m[3][2], |
|
m[0][0]*vm.m[0][3] + m[0][1]*vm.m[1][3] + m[0][2]*vm.m[2][3] + m[0][3]*vm.m[3][3], |
|
|
|
m[1][0]*vm.m[0][0] + m[1][1]*vm.m[1][0] + m[1][2]*vm.m[2][0] + m[1][3]*vm.m[3][0], |
|
m[1][0]*vm.m[0][1] + m[1][1]*vm.m[1][1] + m[1][2]*vm.m[2][1] + m[1][3]*vm.m[3][1], |
|
m[1][0]*vm.m[0][2] + m[1][1]*vm.m[1][2] + m[1][2]*vm.m[2][2] + m[1][3]*vm.m[3][2], |
|
m[1][0]*vm.m[0][3] + m[1][1]*vm.m[1][3] + m[1][2]*vm.m[2][3] + m[1][3]*vm.m[3][3], |
|
|
|
m[2][0]*vm.m[0][0] + m[2][1]*vm.m[1][0] + m[2][2]*vm.m[2][0] + m[2][3]*vm.m[3][0], |
|
m[2][0]*vm.m[0][1] + m[2][1]*vm.m[1][1] + m[2][2]*vm.m[2][1] + m[2][3]*vm.m[3][1], |
|
m[2][0]*vm.m[0][2] + m[2][1]*vm.m[1][2] + m[2][2]*vm.m[2][2] + m[2][3]*vm.m[3][2], |
|
m[2][0]*vm.m[0][3] + m[2][1]*vm.m[1][3] + m[2][2]*vm.m[2][3] + m[2][3]*vm.m[3][3], |
|
|
|
m[3][0]*vm.m[0][0] + m[3][1]*vm.m[1][0] + m[3][2]*vm.m[2][0] + m[3][3]*vm.m[3][0], |
|
m[3][0]*vm.m[0][1] + m[3][1]*vm.m[1][1] + m[3][2]*vm.m[2][1] + m[3][3]*vm.m[3][1], |
|
m[3][0]*vm.m[0][2] + m[3][1]*vm.m[1][2] + m[3][2]*vm.m[2][2] + m[3][3]*vm.m[3][2], |
|
m[3][0]*vm.m[0][3] + m[3][1]*vm.m[1][3] + m[3][2]*vm.m[2][3] + m[3][3]*vm.m[3][3] |
|
); |
|
} |
|
|
|
inline VMatrix VMatrix::operator*(const VMatrix &vm) const |
|
{ |
|
VMatrix ret; |
|
MatrixMul( vm, ret ); |
|
return ret; |
|
} |
|
|
|
inline Vector VMatrix::GetForward() const |
|
{ |
|
return Vector(m[0][0], m[1][0], m[2][0]); |
|
} |
|
|
|
inline Vector VMatrix::GetLeft() const |
|
{ |
|
return Vector(m[0][1], m[1][1], m[2][1]); |
|
} |
|
|
|
inline Vector VMatrix::GetUp() const |
|
{ |
|
return Vector(m[0][2], m[1][2], m[2][2]); |
|
} |
|
|
|
#endif |
|
|
|
inline void VMatrix::SetForward(const Vector &vForward) |
|
{ |
|
m[0][0] = vForward.x; |
|
m[1][0] = vForward.y; |
|
m[2][0] = vForward.z; |
|
} |
|
|
|
inline void VMatrix::SetLeft(const Vector &vLeft) |
|
{ |
|
m[0][1] = vLeft.x; |
|
m[1][1] = vLeft.y; |
|
m[2][1] = vLeft.z; |
|
} |
|
|
|
inline void VMatrix::SetUp(const Vector &vUp) |
|
{ |
|
m[0][2] = vUp.x; |
|
m[1][2] = vUp.y; |
|
m[2][2] = vUp.z; |
|
} |
|
|
|
inline void VMatrix::GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const |
|
{ |
|
vForward.Init( m[0][0], m[1][0], m[2][0] ); |
|
vLeft.Init( m[0][1], m[1][1], m[2][1] ); |
|
vUp.Init( m[0][2], m[1][2], m[2][2] ); |
|
} |
|
|
|
inline void VMatrix::SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp) |
|
{ |
|
SetForward(vForward); |
|
SetLeft(vLeft); |
|
SetUp(vUp); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Methods related to the translation component of the matrix |
|
//----------------------------------------------------------------------------- |
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
inline Vector VMatrix::GetTranslation() const |
|
{ |
|
return Vector(m[0][3], m[1][3], m[2][3]); |
|
} |
|
|
|
#endif |
|
|
|
inline Vector& VMatrix::GetTranslation( Vector &vTrans ) const |
|
{ |
|
vTrans.x = m[0][3]; |
|
vTrans.y = m[1][3]; |
|
vTrans.z = m[2][3]; |
|
return vTrans; |
|
} |
|
|
|
inline void VMatrix::SetTranslation(const Vector &vTrans) |
|
{ |
|
m[0][3] = vTrans.x; |
|
m[1][3] = vTrans.y; |
|
m[2][3] = vTrans.z; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// appply translation to this matrix in the input space |
|
//----------------------------------------------------------------------------- |
|
inline void VMatrix::PreTranslate(const Vector &vTrans) |
|
{ |
|
Vector tmp; |
|
Vector3DMultiplyPosition( *this, vTrans, tmp ); |
|
m[0][3] = tmp.x; |
|
m[1][3] = tmp.y; |
|
m[2][3] = tmp.z; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// appply translation to this matrix in the output space |
|
//----------------------------------------------------------------------------- |
|
inline void VMatrix::PostTranslate(const Vector &vTrans) |
|
{ |
|
m[0][3] += vTrans.x; |
|
m[1][3] += vTrans.y; |
|
m[2][3] += vTrans.z; |
|
} |
|
|
|
inline const matrix3x4_t& VMatrix::As3x4() const |
|
{ |
|
return *((const matrix3x4_t*)this); |
|
} |
|
|
|
inline void VMatrix::CopyFrom3x4( const matrix3x4_t &m3x4 ) |
|
{ |
|
Init(m3x4); |
|
} |
|
|
|
inline void VMatrix::Set3x4( const matrix3x4_t& _m ) |
|
{ |
|
m[0][0] = _m[0][0]; m[0][1] = _m[0][1]; m[0][2] = _m[0][2]; m[0][3] = _m[0][3]; |
|
m[1][0] = _m[1][0]; m[1][1] = _m[1][1]; m[1][2] = _m[1][2]; m[1][3] = _m[1][3]; |
|
m[2][0] = _m[2][0]; m[2][1] = _m[2][1]; m[2][2] = _m[2][2]; m[2][3] = _m[2][3]; |
|
} |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
inline Vector VMatrix::VMul4x3(const Vector &vVec) const |
|
{ |
|
Vector vResult; |
|
Vector3DMultiplyPosition( *this, vVec, vResult ); |
|
return vResult; |
|
} |
|
|
|
|
|
inline Vector VMatrix::VMul4x3Transpose(const Vector &vVec) const |
|
{ |
|
Vector tmp = vVec; |
|
tmp.x -= m[0][3]; |
|
tmp.y -= m[1][3]; |
|
tmp.z -= m[2][3]; |
|
|
|
return Vector( |
|
m[0][0]*tmp.x + m[1][0]*tmp.y + m[2][0]*tmp.z, |
|
m[0][1]*tmp.x + m[1][1]*tmp.y + m[2][1]*tmp.z, |
|
m[0][2]*tmp.x + m[1][2]*tmp.y + m[2][2]*tmp.z |
|
); |
|
} |
|
|
|
inline Vector VMatrix::VMul3x3(const Vector &vVec) const |
|
{ |
|
return Vector( |
|
m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z, |
|
m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z, |
|
m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z |
|
); |
|
} |
|
|
|
inline Vector VMatrix::VMul3x3Transpose(const Vector &vVec) const |
|
{ |
|
return Vector( |
|
m[0][0]*vVec.x + m[1][0]*vVec.y + m[2][0]*vVec.z, |
|
m[0][1]*vVec.x + m[1][1]*vVec.y + m[2][1]*vVec.z, |
|
m[0][2]*vVec.x + m[1][2]*vVec.y + m[2][2]*vVec.z |
|
); |
|
} |
|
|
|
#endif // VECTOR_NO_SLOW_OPERATIONS |
|
|
|
|
|
inline void VMatrix::V3Mul(const Vector &vIn, Vector &vOut) const |
|
{ |
|
vec_t rw; |
|
|
|
rw = 1.0f / (m[3][0]*vIn.x + m[3][1]*vIn.y + m[3][2]*vIn.z + m[3][3]); |
|
vOut.x = (m[0][0]*vIn.x + m[0][1]*vIn.y + m[0][2]*vIn.z + m[0][3]) * rw; |
|
vOut.y = (m[1][0]*vIn.x + m[1][1]*vIn.y + m[1][2]*vIn.z + m[1][3]) * rw; |
|
vOut.z = (m[2][0]*vIn.x + m[2][1]*vIn.y + m[2][2]*vIn.z + m[2][3]) * rw; |
|
} |
|
|
|
inline void VMatrix::V4Mul(const Vector4D &vIn, Vector4D &vOut) const |
|
{ |
|
vOut[0] = m[0][0]*vIn[0] + m[0][1]*vIn[1] + m[0][2]*vIn[2] + m[0][3]*vIn[3]; |
|
vOut[1] = m[1][0]*vIn[0] + m[1][1]*vIn[1] + m[1][2]*vIn[2] + m[1][3]*vIn[3]; |
|
vOut[2] = m[2][0]*vIn[0] + m[2][1]*vIn[1] + m[2][2]*vIn[2] + m[2][3]*vIn[3]; |
|
vOut[3] = m[3][0]*vIn[0] + m[3][1]*vIn[1] + m[3][2]*vIn[2] + m[3][3]*vIn[3]; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Other random stuff |
|
//----------------------------------------------------------------------------- |
|
inline void VMatrix::Identity() |
|
{ |
|
MatrixSetIdentity( *this ); |
|
} |
|
|
|
|
|
inline bool VMatrix::IsIdentity() const |
|
{ |
|
return |
|
m[0][0] == 1.0f && m[0][1] == 0.0f && m[0][2] == 0.0f && m[0][3] == 0.0f && |
|
m[1][0] == 0.0f && m[1][1] == 1.0f && m[1][2] == 0.0f && m[1][3] == 0.0f && |
|
m[2][0] == 0.0f && m[2][1] == 0.0f && m[2][2] == 1.0f && m[2][3] == 0.0f && |
|
m[3][0] == 0.0f && m[3][1] == 0.0f && m[3][2] == 0.0f && m[3][3] == 1.0f; |
|
} |
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
inline Vector VMatrix::ApplyRotation(const Vector &vVec) const |
|
{ |
|
return VMul3x3(vVec); |
|
} |
|
|
|
#endif |
|
|
|
inline void VMatrix::InverseTR( VMatrix &ret ) const |
|
{ |
|
MatrixInverseTR( *this, ret ); |
|
} |
|
|
|
inline void MatrixInverseTranspose( const VMatrix& src, VMatrix& dst ) |
|
{ |
|
src.InverseGeneral( dst ); |
|
MatrixTranspose( dst, dst ); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Computes the inverse transpose |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixInverseTranspose( const matrix3x4_t& src, matrix3x4_t& dst ) |
|
{ |
|
VMatrix tmp, out; |
|
tmp.CopyFrom3x4( src ); |
|
::MatrixInverseTranspose( tmp, out ); |
|
out.Set3x4( dst ); |
|
} |
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
inline VMatrix VMatrix::InverseTR() const |
|
{ |
|
VMatrix ret; |
|
MatrixInverseTR( *this, ret ); |
|
return ret; |
|
} |
|
|
|
inline Vector VMatrix::GetScale() const |
|
{ |
|
Vector vecs[3]; |
|
|
|
GetBasisVectors(vecs[0], vecs[1], vecs[2]); |
|
|
|
return Vector( |
|
vecs[0].Length(), |
|
vecs[1].Length(), |
|
vecs[2].Length() |
|
); |
|
} |
|
|
|
inline VMatrix VMatrix::Scale(const Vector &vScale) |
|
{ |
|
return VMatrix( |
|
m[0][0]*vScale.x, m[0][1]*vScale.y, m[0][2]*vScale.z, m[0][3], |
|
m[1][0]*vScale.x, m[1][1]*vScale.y, m[1][2]*vScale.z, m[1][3], |
|
m[2][0]*vScale.x, m[2][1]*vScale.y, m[2][2]*vScale.z, m[2][3], |
|
m[3][0]*vScale.x, m[3][1]*vScale.y, m[3][2]*vScale.z, 1.0f |
|
); |
|
} |
|
|
|
inline VMatrix VMatrix::NormalizeBasisVectors() const |
|
{ |
|
Vector vecs[3]; |
|
VMatrix mRet; |
|
|
|
GetBasisVectors(vecs[0], vecs[1], vecs[2]); |
|
|
|
VectorNormalize( vecs[0] ); |
|
VectorNormalize( vecs[1] ); |
|
VectorNormalize( vecs[2] ); |
|
|
|
mRet.SetBasisVectors(vecs[0], vecs[1], vecs[2]); |
|
|
|
// Set everything but basis vectors to identity. |
|
mRet.m[3][0] = mRet.m[3][1] = mRet.m[3][2] = 0.0f; |
|
mRet.m[3][3] = 1.0f; |
|
|
|
return mRet; |
|
} |
|
|
|
inline VMatrix VMatrix::Transpose() const |
|
{ |
|
return VMatrix( |
|
m[0][0], m[1][0], m[2][0], m[3][0], |
|
m[0][1], m[1][1], m[2][1], m[3][1], |
|
m[0][2], m[1][2], m[2][2], m[3][2], |
|
m[0][3], m[1][3], m[2][3], m[3][3]); |
|
} |
|
|
|
// Transpose upper-left 3x3. |
|
inline VMatrix VMatrix::Transpose3x3() const |
|
{ |
|
return VMatrix( |
|
m[0][0], m[1][0], m[2][0], m[0][3], |
|
m[0][1], m[1][1], m[2][1], m[1][3], |
|
m[0][2], m[1][2], m[2][2], m[2][3], |
|
m[3][0], m[3][1], m[3][2], m[3][3]); |
|
} |
|
|
|
#endif // VECTOR_NO_SLOW_OPERATIONS |
|
|
|
|
|
inline bool VMatrix::IsRotationMatrix() const |
|
{ |
|
Vector &v1 = (Vector&)m[0][0]; |
|
Vector &v2 = (Vector&)m[1][0]; |
|
Vector &v3 = (Vector&)m[2][0]; |
|
|
|
return |
|
FloatMakePositive( 1 - v1.Length() ) < 0.01f && |
|
FloatMakePositive( 1 - v2.Length() ) < 0.01f && |
|
FloatMakePositive( 1 - v3.Length() ) < 0.01f && |
|
FloatMakePositive( v1.Dot(v2) ) < 0.01f && |
|
FloatMakePositive( v1.Dot(v3) ) < 0.01f && |
|
FloatMakePositive( v2.Dot(v3) ) < 0.01f; |
|
} |
|
|
|
inline void VMatrix::SetupMatrixOrgAngles( const Vector &origin, const QAngle &vAngles ) |
|
{ |
|
SetupMatrixAnglesInternal( m, vAngles ); |
|
|
|
// Add translation |
|
m[0][3] = origin.x; |
|
m[1][3] = origin.y; |
|
m[2][3] = origin.z; |
|
m[3][0] = 0.0f; |
|
m[3][1] = 0.0f; |
|
m[3][2] = 0.0f; |
|
m[3][3] = 1.0f; |
|
} |
|
|
|
|
|
inline void VMatrix::SetupMatrixAngles( const QAngle &vAngles ) |
|
{ |
|
SetupMatrixAnglesInternal( m, vAngles ); |
|
|
|
// Zero everything else |
|
m[0][3] = 0.0f; |
|
m[1][3] = 0.0f; |
|
m[2][3] = 0.0f; |
|
m[3][0] = 0.0f; |
|
m[3][1] = 0.0f; |
|
m[3][2] = 0.0f; |
|
m[3][3] = 1.0f; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Creates euler angles from a matrix |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixToAngles( const VMatrix& src, QAngle& vAngles ) |
|
{ |
|
float forward[3]; |
|
float left[3]; |
|
float up[3]; |
|
|
|
// Extract the basis vectors from the matrix. Since we only need the Z |
|
// component of the up vector, we don't get X and Y. |
|
forward[0] = src[0][0]; |
|
forward[1] = src[1][0]; |
|
forward[2] = src[2][0]; |
|
left[0] = src[0][1]; |
|
left[1] = src[1][1]; |
|
left[2] = src[2][1]; |
|
up[2] = src[2][2]; |
|
|
|
float xyDist = sqrtf( forward[0] * forward[0] + forward[1] * forward[1] ); |
|
|
|
// enough here to get angles? |
|
if ( xyDist > 0.001f ) |
|
{ |
|
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis |
|
vAngles[1] = RAD2DEG( atan2f( forward[1], forward[0] ) ); |
|
|
|
// The engine does pitch inverted from this, but we always end up negating it in the DLL |
|
// UNDONE: Fix the engine to make it consistent |
|
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) ); |
|
vAngles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) ); |
|
|
|
// (roll) z = ATAN( left.z, up.z ); |
|
vAngles[2] = RAD2DEG( atan2f( left[2], up[2] ) ); |
|
} |
|
else // forward is mostly Z, gimbal lock- |
|
{ |
|
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw |
|
vAngles[1] = RAD2DEG( atan2f( -left[0], left[1] ) ); |
|
|
|
// The engine does pitch inverted from this, but we always end up negating it in the DLL |
|
// UNDONE: Fix the engine to make it consistent |
|
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) ); |
|
vAngles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) ); |
|
|
|
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll) |
|
vAngles[2] = 0; |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Transform a plane |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixTransformPlane( const VMatrix &src, const cplane_t &inPlane, cplane_t &outPlane ) |
|
{ |
|
// What we want to do is the following: |
|
// 1) transform the normal into the new space. |
|
// 2) Determine a point on the old plane given by plane dist * plane normal |
|
// 3) Transform that point into the new space |
|
// 4) Plane dist = DotProduct( new normal, new point ) |
|
|
|
// An optimized version, which works if the plane is orthogonal. |
|
// 1) Transform the normal into the new space |
|
// 2) Realize that transforming the old plane point into the new space |
|
// is given by [ d * n'x + Tx, d * n'y + Ty, d * n'z + Tz ] |
|
// where d = old plane dist, n' = transformed normal, Tn = translational component of transform |
|
// 3) Compute the new plane dist using the dot product of the normal result of #2 |
|
|
|
// For a correct result, this should be an inverse-transpose matrix |
|
// but that only matters if there are nonuniform scale or skew factors in this matrix. |
|
Vector vTrans; |
|
Vector3DMultiply( src, inPlane.normal, outPlane.normal ); |
|
outPlane.dist = inPlane.dist * DotProduct( outPlane.normal, outPlane.normal ); |
|
outPlane.dist += DotProduct( outPlane.normal, src.GetTranslation(vTrans) ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Helper functions. |
|
//----------------------------------------------------------------------------- |
|
|
|
#define VMatToString(mat) (static_cast<const char *>(CFmtStr("[ (%f, %f, %f), (%f, %f, %f), (%f, %f, %f), (%f, %f, %f) ]", mat.m[0][0], mat.m[0][1], mat.m[0][2], mat.m[0][3], mat.m[1][0], mat.m[1][1], mat.m[1][2], mat.m[1][3], mat.m[2][0], mat.m[2][1], mat.m[2][2], mat.m[2][3], mat.m[3][0], mat.m[3][1], mat.m[3][2], mat.m[3][3] ))) // ** Note: this generates a temporary, don't hold reference! |
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix multiply |
|
//----------------------------------------------------------------------------- |
|
typedef ALIGN16 float VMatrixRaw_t[4]; |
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix/vector multiply |
|
//----------------------------------------------------------------------------- |
|
|
|
inline void Vector4DMultiply( const VMatrix& src1, Vector4D const& src2, Vector4D& dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
Vector4D tmp; |
|
Vector4D const&v = (&src2 == &dst) ? tmp : src2; |
|
|
|
if (&src2 == &dst) |
|
{ |
|
Vector4DCopy( src2, tmp ); |
|
} |
|
|
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2] + src1[0][3] * v[3]; |
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2] + src1[1][3] * v[3]; |
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2] + src1[2][3] * v[3]; |
|
dst[3] = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2] + src1[3][3] * v[3]; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix/vector multiply |
|
//----------------------------------------------------------------------------- |
|
|
|
inline void Vector4DMultiplyPosition( const VMatrix& src1, Vector const& src2, Vector4D& dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
Vector tmp; |
|
Vector const&v = ( &src2 == &dst.AsVector3D() ) ? static_cast<const Vector&>(tmp) : src2; |
|
|
|
if (&src2 == &dst.AsVector3D()) |
|
{ |
|
VectorCopy( src2, tmp ); |
|
} |
|
|
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2] + src1[0][3]; |
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2] + src1[1][3]; |
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2] + src1[2][3]; |
|
dst[3] = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2] + src1[3][3]; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Vector3DMultiplyPositionProjective treats src2 as if it's a point |
|
// and does the perspective divide at the end |
|
//----------------------------------------------------------------------------- |
|
inline void Vector3DMultiplyPositionProjective( const VMatrix& src1, const Vector &src2, Vector& dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
Vector tmp; |
|
const Vector &v = (&src2 == &dst) ? static_cast<const Vector&>(tmp): src2; |
|
if( &src2 == &dst ) |
|
{ |
|
VectorCopy( src2, tmp ); |
|
} |
|
|
|
float w = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2] + src1[3][3]; |
|
if ( w != 0.0f ) |
|
{ |
|
w = 1.0f / w; |
|
} |
|
|
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2] + src1[0][3]; |
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2] + src1[1][3]; |
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2] + src1[2][3]; |
|
dst *= w; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Vector3DMultiplyProjective treats src2 as if it's a direction |
|
// and does the perspective divide at the end |
|
//----------------------------------------------------------------------------- |
|
inline void Vector3DMultiplyProjective( const VMatrix& src1, const Vector &src2, Vector& dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
Vector tmp; |
|
const Vector &v = (&src2 == &dst) ? static_cast<const Vector&>(tmp) : src2; |
|
if( &src2 == &dst ) |
|
{ |
|
VectorCopy( src2, tmp ); |
|
} |
|
|
|
float w; |
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2]; |
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2]; |
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2]; |
|
w = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2]; |
|
if (w != 0.0f) |
|
{ |
|
dst /= w; |
|
} |
|
else |
|
{ |
|
dst = vec3_origin; |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Multiplies the vector by the transpose of the matrix |
|
//----------------------------------------------------------------------------- |
|
inline void Vector4DMultiplyTranspose( const VMatrix& src1, Vector4D const& src2, Vector4D& dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
bool srcEqualsDst = (&src2 == &dst); |
|
|
|
Vector4D tmp; |
|
Vector4D const&v = srcEqualsDst ? tmp : src2; |
|
|
|
if (srcEqualsDst) |
|
{ |
|
Vector4DCopy( src2, tmp ); |
|
} |
|
|
|
dst[0] = src1[0][0] * v[0] + src1[1][0] * v[1] + src1[2][0] * v[2] + src1[3][0] * v[3]; |
|
dst[1] = src1[0][1] * v[0] + src1[1][1] * v[1] + src1[2][1] * v[2] + src1[3][1] * v[3]; |
|
dst[2] = src1[0][2] * v[0] + src1[1][2] * v[1] + src1[2][2] * v[2] + src1[3][2] * v[3]; |
|
dst[3] = src1[0][3] * v[0] + src1[1][3] * v[1] + src1[2][3] * v[2] + src1[3][3] * v[3]; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Multiplies the vector by the transpose of the matrix |
|
//----------------------------------------------------------------------------- |
|
inline void Vector3DMultiplyTranspose( const VMatrix& src1, const Vector& src2, Vector& dst ) |
|
{ |
|
// Make sure it works if src2 == dst |
|
bool srcEqualsDst = (&src2 == &dst); |
|
|
|
Vector tmp; |
|
const Vector&v = srcEqualsDst ? static_cast<const Vector&>(tmp) : src2; |
|
|
|
if (srcEqualsDst) |
|
{ |
|
VectorCopy( src2, tmp ); |
|
} |
|
|
|
dst[0] = src1[0][0] * v[0] + src1[1][0] * v[1] + src1[2][0] * v[2]; |
|
dst[1] = src1[0][1] * v[0] + src1[1][1] * v[1] + src1[2][1] * v[2]; |
|
dst[2] = src1[0][2] * v[0] + src1[1][2] * v[1] + src1[2][2] * v[2]; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix copy |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixCopy( const VMatrix& src, VMatrix& dst ) |
|
{ |
|
if (&src != &dst) |
|
dst = src; |
|
} |
|
|
|
inline void MatrixMultiply( const VMatrix& src1, const VMatrix& src2, VMatrix& dst ) |
|
{ |
|
// Make sure it works if src1 == dst or src2 == dst |
|
VMatrix tmp1, tmp2; |
|
const VMatrixRaw_t* s1 = (&src1 == &dst) ? tmp1.m : src1.m; |
|
const VMatrixRaw_t* s2 = (&src2 == &dst) ? tmp2.m : src2.m; |
|
|
|
if (&src1 == &dst) |
|
MatrixCopy( src1, tmp1 ); |
|
|
|
if (&src2 == &dst) |
|
MatrixCopy( src2, tmp2 ); |
|
|
|
dst[0][0] = s1[0][0] * s2[0][0] + s1[0][1] * s2[1][0] + s1[0][2] * s2[2][0] + s1[0][3] * s2[3][0]; |
|
dst[0][1] = s1[0][0] * s2[0][1] + s1[0][1] * s2[1][1] + s1[0][2] * s2[2][1] + s1[0][3] * s2[3][1]; |
|
dst[0][2] = s1[0][0] * s2[0][2] + s1[0][1] * s2[1][2] + s1[0][2] * s2[2][2] + s1[0][3] * s2[3][2]; |
|
dst[0][3] = s1[0][0] * s2[0][3] + s1[0][1] * s2[1][3] + s1[0][2] * s2[2][3] + s1[0][3] * s2[3][3]; |
|
|
|
dst[1][0] = s1[1][0] * s2[0][0] + s1[1][1] * s2[1][0] + s1[1][2] * s2[2][0] + s1[1][3] * s2[3][0]; |
|
dst[1][1] = s1[1][0] * s2[0][1] + s1[1][1] * s2[1][1] + s1[1][2] * s2[2][1] + s1[1][3] * s2[3][1]; |
|
dst[1][2] = s1[1][0] * s2[0][2] + s1[1][1] * s2[1][2] + s1[1][2] * s2[2][2] + s1[1][3] * s2[3][2]; |
|
dst[1][3] = s1[1][0] * s2[0][3] + s1[1][1] * s2[1][3] + s1[1][2] * s2[2][3] + s1[1][3] * s2[3][3]; |
|
|
|
dst[2][0] = s1[2][0] * s2[0][0] + s1[2][1] * s2[1][0] + s1[2][2] * s2[2][0] + s1[2][3] * s2[3][0]; |
|
dst[2][1] = s1[2][0] * s2[0][1] + s1[2][1] * s2[1][1] + s1[2][2] * s2[2][1] + s1[2][3] * s2[3][1]; |
|
dst[2][2] = s1[2][0] * s2[0][2] + s1[2][1] * s2[1][2] + s1[2][2] * s2[2][2] + s1[2][3] * s2[3][2]; |
|
dst[2][3] = s1[2][0] * s2[0][3] + s1[2][1] * s2[1][3] + s1[2][2] * s2[2][3] + s1[2][3] * s2[3][3]; |
|
|
|
dst[3][0] = s1[3][0] * s2[0][0] + s1[3][1] * s2[1][0] + s1[3][2] * s2[2][0] + s1[3][3] * s2[3][0]; |
|
dst[3][1] = s1[3][0] * s2[0][1] + s1[3][1] * s2[1][1] + s1[3][2] * s2[2][1] + s1[3][3] * s2[3][1]; |
|
dst[3][2] = s1[3][0] * s2[0][2] + s1[3][1] * s2[1][2] + s1[3][2] * s2[2][2] + s1[3][3] * s2[3][2]; |
|
dst[3][3] = s1[3][0] * s2[0][3] + s1[3][1] * s2[1][3] + s1[3][2] * s2[2][3] + s1[3][3] * s2[3][3]; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis. |
|
// |
|
// | ax2 + (1 - ax2)cosQ axay(1 - cosQ) - azsinQ azax(1 - cosQ) + aysinQ | |
|
// Ra(Q) = | axay(1 - cosQ) + azsinQ ay2 + (1 - ay2)cosQ ayaz(1 - cosQ) - axsinQ | |
|
// | azax(1 - cosQ) - aysinQ ayaz(1 - cosQ) + axsinQ az2 + (1 - az2)cosQ | |
|
// |
|
// Input : mat - |
|
// vAxisOrRot - |
|
// angle - |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixBuildRotationAboutAxis( const Vector &vAxisOfRot, float angleDegrees, matrix3x4_t &dst ) |
|
{ |
|
float radians; |
|
float axisXSquared; |
|
float axisYSquared; |
|
float axisZSquared; |
|
float fSin; |
|
float fCos; |
|
|
|
radians = angleDegrees * ( M_PI / 180.0 ); |
|
fSin = sinf( radians ); |
|
fCos = cosf( radians ); |
|
|
|
axisXSquared = vAxisOfRot[0] * vAxisOfRot[0]; |
|
axisYSquared = vAxisOfRot[1] * vAxisOfRot[1]; |
|
axisZSquared = vAxisOfRot[2] * vAxisOfRot[2]; |
|
|
|
// Column 0: |
|
dst[0][0] = axisXSquared + (1 - axisXSquared) * fCos; |
|
dst[1][0] = vAxisOfRot[0] * vAxisOfRot[1] * (1 - fCos) + vAxisOfRot[2] * fSin; |
|
dst[2][0] = vAxisOfRot[2] * vAxisOfRot[0] * (1 - fCos) - vAxisOfRot[1] * fSin; |
|
|
|
// Column 1: |
|
dst[0][1] = vAxisOfRot[0] * vAxisOfRot[1] * (1 - fCos) - vAxisOfRot[2] * fSin; |
|
dst[1][1] = axisYSquared + (1 - axisYSquared) * fCos; |
|
dst[2][1] = vAxisOfRot[1] * vAxisOfRot[2] * (1 - fCos) + vAxisOfRot[0] * fSin; |
|
|
|
// Column 2: |
|
dst[0][2] = vAxisOfRot[2] * vAxisOfRot[0] * (1 - fCos) + vAxisOfRot[1] * fSin; |
|
dst[1][2] = vAxisOfRot[1] * vAxisOfRot[2] * (1 - fCos) - vAxisOfRot[0] * fSin; |
|
dst[2][2] = axisZSquared + (1 - axisZSquared) * fCos; |
|
|
|
// Column 3: |
|
dst[0][3] = 0; |
|
dst[1][3] = 0; |
|
dst[2][3] = 0; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis. |
|
// |
|
// | ax2 + (1 - ax2)cosQ axay(1 - cosQ) - azsinQ azax(1 - cosQ) + aysinQ | |
|
// Ra(Q) = | axay(1 - cosQ) + azsinQ ay2 + (1 - ay2)cosQ ayaz(1 - cosQ) - axsinQ | |
|
// | azax(1 - cosQ) - aysinQ ayaz(1 - cosQ) + axsinQ az2 + (1 - az2)cosQ | |
|
// |
|
// Input : mat - |
|
// vAxisOrRot - |
|
// angle - |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixBuildRotationAboutAxis( VMatrix &dst, const Vector &vAxisOfRot, float angleDegrees ) |
|
{ |
|
MatrixBuildRotationAboutAxis( vAxisOfRot, angleDegrees, const_cast< matrix3x4_t &> ( dst.As3x4() ) ); |
|
dst[3][0] = 0; |
|
dst[3][1] = 0; |
|
dst[3][2] = 0; |
|
dst[3][3] = 1; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Builds a rotation matrix that rotates one direction vector into another |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixBuildTranslation( VMatrix& dst, float x, float y, float z ) |
|
{ |
|
MatrixSetIdentity( dst ); |
|
dst[0][3] = x; |
|
dst[1][3] = y; |
|
dst[2][3] = z; |
|
} |
|
|
|
inline void MatrixBuildTranslation( VMatrix& dst, const Vector &translation ) |
|
{ |
|
MatrixSetIdentity( dst ); |
|
dst[0][3] = translation[0]; |
|
dst[1][3] = translation[1]; |
|
dst[2][3] = translation[2]; |
|
} |
|
|
|
|
|
inline void MatrixTranslate( VMatrix& dst, const Vector &translation ) |
|
{ |
|
VMatrix matTranslation, temp; |
|
MatrixBuildTranslation( matTranslation, translation ); |
|
MatrixMultiply( dst, matTranslation, temp ); |
|
dst = temp; |
|
} |
|
|
|
inline void MatrixRotate( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees ) |
|
{ |
|
VMatrix rotation, temp; |
|
MatrixBuildRotationAboutAxis( rotation, vAxisOfRot, angleDegrees ); |
|
MatrixMultiply( dst, rotation, temp ); |
|
dst = temp; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Accessors |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn ) |
|
{ |
|
Assert( (nCol >= 0) && (nCol <= 3) ); |
|
|
|
pColumn->x = src[0][nCol]; |
|
pColumn->y = src[1][nCol]; |
|
pColumn->z = src[2][nCol]; |
|
} |
|
|
|
inline void MatrixGetRow( const VMatrix &src, int nRow, Vector *pRow ) |
|
{ |
|
Assert( (nRow >= 0) && (nRow <= 3) ); |
|
*pRow = *(Vector*)src[nRow]; |
|
} |
|
|
|
inline void MatrixSetRow( VMatrix &dst, int nRow, const Vector &row ) |
|
{ |
|
Assert( (nRow >= 0) && (nRow <= 3) ); |
|
*(Vector*)dst[nRow] = row; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Transform a plane that has an axis-aligned normal |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixTransformAxisAlignedPlane( const VMatrix &src, int nDim, float flSign, float flDist, cplane_t &outPlane ) |
|
{ |
|
// See MatrixTransformPlane in the .cpp file for an explanation of the algorithm. |
|
MatrixGetColumn( src, nDim, &outPlane.normal ); |
|
outPlane.normal *= flSign; |
|
outPlane.dist = flDist * DotProduct( outPlane.normal, outPlane.normal ); |
|
|
|
// NOTE: Writing this out by hand because it doesn't inline (inline depth isn't large enough) |
|
// This should read outPlane.dist += DotProduct( outPlane.normal, src.GetTranslation ); |
|
outPlane.dist += outPlane.normal.x * src.m[0][3] + outPlane.normal.y * src.m[1][3] + outPlane.normal.z * src.m[2][3]; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Matrix equality test |
|
//----------------------------------------------------------------------------- |
|
inline bool MatricesAreEqual( const VMatrix &src1, const VMatrix &src2, float flTolerance ) |
|
{ |
|
for ( int i = 0; i < 3; ++i ) |
|
{ |
|
for ( int j = 0; j < 3; ++j ) |
|
{ |
|
if ( fabs( src1[i][j] - src2[i][j] ) > flTolerance ) |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// |
|
//----------------------------------------------------------------------------- |
|
void MatrixBuildOrtho( VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar ); |
|
void MatrixBuildPerspectiveX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar ); |
|
void MatrixBuildPerspectiveOffCenterX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ); |
|
void MatrixBuildPerspectiveZRange( VMatrix& dst, double flZNear, double flZFar ); |
|
|
|
inline void MatrixOrtho( VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar ) |
|
{ |
|
VMatrix mat; |
|
MatrixBuildOrtho( mat, left, top, right, bottom, zNear, zFar ); |
|
|
|
VMatrix temp; |
|
MatrixMultiply( dst, mat, temp ); |
|
dst = temp; |
|
} |
|
|
|
inline void MatrixPerspectiveX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar ) |
|
{ |
|
VMatrix mat; |
|
MatrixBuildPerspectiveX( mat, flFovX, flAspect, flZNear, flZFar ); |
|
|
|
VMatrix temp; |
|
MatrixMultiply( dst, mat, temp ); |
|
dst = temp; |
|
} |
|
|
|
inline void MatrixPerspectiveOffCenterX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) |
|
{ |
|
VMatrix mat; |
|
MatrixBuildPerspectiveOffCenterX( mat, flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); |
|
|
|
VMatrix temp; |
|
MatrixMultiply( dst, mat, temp ); |
|
dst = temp; |
|
} |
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
inline VMatrix SetupMatrixIdentity() |
|
{ |
|
return VMatrix( |
|
1.0f, 0.0f, 0.0f, 0.0f, |
|
0.0f, 1.0f, 0.0f, 0.0f, |
|
0.0f, 0.0f, 1.0f, 0.0f, |
|
0.0f, 0.0f, 0.0f, 1.0f); |
|
} |
|
|
|
inline VMatrix SetupMatrixTranslation(const Vector &vTranslation) |
|
{ |
|
return VMatrix( |
|
1.0f, 0.0f, 0.0f, vTranslation.x, |
|
0.0f, 1.0f, 0.0f, vTranslation.y, |
|
0.0f, 0.0f, 1.0f, vTranslation.z, |
|
0.0f, 0.0f, 0.0f, 1.0f |
|
); |
|
} |
|
|
|
inline VMatrix SetupMatrixScale(const Vector &vScale) |
|
{ |
|
return VMatrix( |
|
vScale.x, 0.0f, 0.0f, 0.0f, |
|
0.0f, vScale.y, 0.0f, 0.0f, |
|
0.0f, 0.0f, vScale.z, 0.0f, |
|
0.0f, 0.0f, 0.0f, 1.0f |
|
); |
|
} |
|
|
|
inline VMatrix SetupMatrixReflection(const VPlane &thePlane) |
|
{ |
|
VMatrix mReflect, mBack, mForward; |
|
Vector vOrigin, N; |
|
|
|
N = thePlane.m_Normal; |
|
|
|
mReflect.Init( |
|
-2.0f*N.x*N.x + 1.0f, -2.0f*N.x*N.y, -2.0f*N.x*N.z, 0.0f, |
|
-2.0f*N.y*N.x, -2.0f*N.y*N.y + 1.0f, -2.0f*N.y*N.z, 0.0f, |
|
-2.0f*N.z*N.x, -2.0f*N.z*N.y, -2.0f*N.z*N.z + 1.0f, 0.0f, |
|
0.0f, 0.0f, 0.0f, 1.0f |
|
); |
|
|
|
vOrigin = thePlane.GetPointOnPlane(); |
|
|
|
mBack.Identity(); |
|
mBack.SetTranslation(-vOrigin); |
|
|
|
mForward.Identity(); |
|
mForward.SetTranslation(vOrigin); |
|
|
|
// (multiplied in reverse order, so it translates to the origin point, |
|
// reflects, and translates back). |
|
return mForward * mReflect * mBack; |
|
} |
|
|
|
inline VMatrix SetupMatrixProjection(const Vector &vOrigin, const VPlane &thePlane) |
|
{ |
|
vec_t dot; |
|
VMatrix mRet; |
|
|
|
|
|
#define PN thePlane.m_Normal |
|
#define PD thePlane.m_Dist; |
|
|
|
dot = PN[0]*vOrigin.x + PN[1]*vOrigin.y + PN[2]*vOrigin.z - PD; |
|
|
|
mRet.m[0][0] = dot - vOrigin.x * PN[0]; |
|
mRet.m[0][1] = -vOrigin.x * PN[1]; |
|
mRet.m[0][2] = -vOrigin.x * PN[2]; |
|
mRet.m[0][3] = -vOrigin.x * -PD; |
|
|
|
mRet.m[1][0] = -vOrigin.y * PN[0]; |
|
mRet.m[1][1] = dot - vOrigin.y * PN[1]; |
|
mRet.m[1][2] = -vOrigin.y * PN[2]; |
|
mRet.m[1][3] = -vOrigin.y * -PD; |
|
|
|
mRet.m[2][0] = -vOrigin.z * PN[0]; |
|
mRet.m[2][1] = -vOrigin.z * PN[1]; |
|
mRet.m[2][2] = dot - vOrigin.z * PN[2]; |
|
mRet.m[2][3] = -vOrigin.z * -PD; |
|
|
|
mRet.m[3][0] = -PN[0]; |
|
mRet.m[3][1] = -PN[1]; |
|
mRet.m[3][2] = -PN[2]; |
|
mRet.m[3][3] = dot + PD; |
|
|
|
#undef PN |
|
#undef PD |
|
|
|
return mRet; |
|
} |
|
|
|
inline VMatrix SetupMatrixAxisRot(const Vector &vAxis, vec_t fDegrees) |
|
{ |
|
vec_t s, c, t; |
|
vec_t tx, ty, tz; |
|
vec_t sx, sy, sz; |
|
vec_t fRadians; |
|
|
|
|
|
fRadians = fDegrees * (M_PI / 180.0f); |
|
|
|
s = (vec_t)sin(fRadians); |
|
c = (vec_t)cos(fRadians); |
|
t = 1.0f - c; |
|
|
|
tx = t * vAxis.x; ty = t * vAxis.y; tz = t * vAxis.z; |
|
sx = s * vAxis.x; sy = s * vAxis.y; sz = s * vAxis.z; |
|
|
|
return VMatrix( |
|
tx*vAxis.x + c, tx*vAxis.y - sz, tx*vAxis.z + sy, 0.0f, |
|
tx*vAxis.y + sz, ty*vAxis.y + c, ty*vAxis.z - sx, 0.0f, |
|
tx*vAxis.z - sy, ty*vAxis.z + sx, tz*vAxis.z + c, 0.0f, |
|
0.0f, 0.0f, 0.0f, 1.0f); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Setup a matrix from euler angles. |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixFromAngles( const QAngle& vAngles, VMatrix& dst ) |
|
{ |
|
dst.SetupMatrixOrgAngles( vec3_origin, vAngles ); |
|
} |
|
|
|
inline VMatrix SetupMatrixAngles(const QAngle &vAngles) |
|
{ |
|
VMatrix mRet; |
|
MatrixFromAngles( vAngles, mRet ); |
|
return mRet; |
|
} |
|
|
|
inline VMatrix SetupMatrixOrgAngles(const Vector &origin, const QAngle &vAngles) |
|
{ |
|
VMatrix mRet; |
|
mRet.SetupMatrixOrgAngles( origin, vAngles ); |
|
return mRet; |
|
} |
|
|
|
#endif // VECTOR_NO_SLOW_OPERATIONS |
|
|
|
|
|
inline bool PlaneIntersection( const VPlane &vp1, const VPlane &vp2, const VPlane &vp3, Vector &vOut ) |
|
{ |
|
VMatrix mMat, mInverse; |
|
|
|
mMat.Init( |
|
vp1.m_Normal.x, vp1.m_Normal.y, vp1.m_Normal.z, -vp1.m_Dist, |
|
vp2.m_Normal.x, vp2.m_Normal.y, vp2.m_Normal.z, -vp2.m_Dist, |
|
vp3.m_Normal.x, vp3.m_Normal.y, vp3.m_Normal.z, -vp3.m_Dist, |
|
0.0f, 0.0f, 0.0f, 1.0f |
|
); |
|
|
|
if(mMat.InverseGeneral(mInverse)) |
|
{ |
|
//vOut = mInverse * Vector(0.0f, 0.0f, 0.0f); |
|
mInverse.GetTranslation( vOut ); |
|
return true; |
|
} |
|
else |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Builds a rotation matrix that rotates one direction vector into another |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixBuildRotation( VMatrix &dst, const Vector& initialDirection, const Vector& finalDirection ) |
|
{ |
|
float angle = DotProduct( initialDirection, finalDirection ); |
|
Assert( IsFinite(angle) ); |
|
|
|
Vector axis; |
|
|
|
// No rotation required |
|
if (angle - 1.0 > -1e-3) |
|
{ |
|
// parallel case |
|
MatrixSetIdentity(dst); |
|
return; |
|
} |
|
else if (angle + 1.0 < 1e-3) |
|
{ |
|
// antiparallel case, pick any axis in the plane |
|
// perpendicular to the final direction. Choose the direction (x,y,z) |
|
// which has the minimum component of the final direction, use that |
|
// as an initial guess, then subtract out the component which is |
|
// parallel to the final direction |
|
int idx = 0; |
|
if (FloatMakePositive(finalDirection[1]) < FloatMakePositive(finalDirection[idx])) |
|
idx = 1; |
|
if (FloatMakePositive(finalDirection[2]) < FloatMakePositive(finalDirection[idx])) |
|
idx = 2; |
|
|
|
axis.Init( 0, 0, 0 ); |
|
axis[idx] = 1.0f; |
|
VectorMA( axis, -DotProduct( axis, finalDirection ), finalDirection, axis ); |
|
VectorNormalize(axis); |
|
angle = 180.0f; |
|
} |
|
else |
|
{ |
|
CrossProduct( initialDirection, finalDirection, axis ); |
|
VectorNormalize( axis ); |
|
angle = acos(angle) * 180 / M_PI; |
|
} |
|
|
|
MatrixBuildRotationAboutAxis( dst, axis, angle ); |
|
|
|
#ifdef _DEBUG |
|
Vector test; |
|
Vector3DMultiply( dst, initialDirection, test ); |
|
test -= finalDirection; |
|
Assert( test.LengthSqr() < 1e-3 ); |
|
#endif |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
//----------------------------------------------------------------------------- |
|
inline void MatrixBuildRotateZ( VMatrix &dst, float angleDegrees ) |
|
{ |
|
float radians = angleDegrees * ( M_PI / 180.0f ); |
|
|
|
float fSin = ( float )sin( radians ); |
|
float fCos = ( float )cos( radians ); |
|
|
|
dst[0][0] = fCos; dst[0][1] = -fSin; dst[0][2] = 0.0f; dst[0][3] = 0.0f; |
|
dst[1][0] = fSin; dst[1][1] = fCos; dst[1][2] = 0.0f; dst[1][3] = 0.0f; |
|
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = 1.0f; dst[2][3] = 0.0f; |
|
dst[3][0] = 0.0f; dst[3][1] = 0.0f; dst[3][2] = 0.0f; dst[3][3] = 1.0f; |
|
} |
|
|
|
// Builds a scale matrix |
|
inline void MatrixBuildScale( VMatrix &dst, float x, float y, float z ) |
|
{ |
|
dst[0][0] = x; dst[0][1] = 0.0f; dst[0][2] = 0.0f; dst[0][3] = 0.0f; |
|
dst[1][0] = 0.0f; dst[1][1] = y; dst[1][2] = 0.0f; dst[1][3] = 0.0f; |
|
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = z; dst[2][3] = 0.0f; |
|
dst[3][0] = 0.0f; dst[3][1] = 0.0f; dst[3][2] = 0.0f; dst[3][3] = 1.0f; |
|
} |
|
|
|
inline void MatrixBuildScale( VMatrix &dst, const Vector& scale ) |
|
{ |
|
MatrixBuildScale( dst, scale.x, scale.y, scale.z ); |
|
} |
|
|
|
// nillerusr: optimize this bruh later |
|
inline void MatrixBuildPerspective( VMatrix &dst, float fovX, float fovY, float zNear, float zFar ) |
|
{ |
|
// FIXME: collapse all of this into one matrix after we figure out what all should be in here. |
|
float width = 2 * zNear * tan( fovX * ( M_PI/180.0f ) * 0.5f ); |
|
float height = 2 * zNear * tan( fovY * ( M_PI/180.0f ) * 0.5f ); |
|
|
|
dst. Init( |
|
2.0f * zNear / width, 0.f, 0.f, 0.f, |
|
0.f, 2.0f * zNear / height, 0.f, 0.f, |
|
0.f, 0.f, -zFar / ( zNear - zFar ), zNear * zFar / ( zNear - zFar ), |
|
0.f, 0.f, 1.f, 0.f |
|
); |
|
|
|
// negate X and Y so that X points right, and Y points up. |
|
VMatrix negateXY; |
|
negateXY.Identity(); |
|
negateXY[0][0] = -1.0f; |
|
negateXY[1][1] = -1.0f; |
|
MatrixMultiply( negateXY, dst, dst ); |
|
|
|
VMatrix addW; |
|
addW.Identity(); |
|
addW[0][3] = 1.0f; |
|
addW[1][3] = 1.0f; |
|
addW[2][3] = 0.0f; |
|
MatrixMultiply( addW, dst, dst ); |
|
|
|
VMatrix scaleHalf; |
|
scaleHalf.Identity(); |
|
scaleHalf[0][0] = 0.5f; |
|
scaleHalf[1][1] = 0.5f; |
|
MatrixMultiply( scaleHalf, dst, dst ); |
|
} |
|
|
|
static inline void CalculateAABBForNormalizedFrustum_Helper( float x, float y, float z, const VMatrix &volumeToWorld, Vector &mins, Vector &maxs ) |
|
{ |
|
Vector volumeSpacePos( x, y, z ); |
|
|
|
// Make sure it's been clipped |
|
Assert( volumeSpacePos[0] >= -1e-3f ); |
|
Assert( volumeSpacePos[0] - 1.0f <= 1e-3f ); |
|
Assert( volumeSpacePos[1] >= -1e-3f ); |
|
Assert( volumeSpacePos[1] - 1.0f <= 1e-3f ); |
|
Assert( volumeSpacePos[2] >= -1e-3f ); |
|
Assert( volumeSpacePos[2] - 1.0f <= 1e-3f ); |
|
|
|
Vector worldPos; |
|
Vector3DMultiplyPositionProjective( volumeToWorld, volumeSpacePos, worldPos ); |
|
AddPointToBounds( worldPos, mins, maxs ); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and |
|
// get a bounding box. |
|
//----------------------------------------------------------------------------- |
|
inline void CalculateAABBFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pMins, Vector *pMaxs ) |
|
{ |
|
// FIXME: Could maybe do better than the compile with all of these multiplies by 0 and 1. |
|
ClearBounds( *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 0, 0, 0, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 0, 0, 1, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 0, 1, 0, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 0, 1, 1, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 1, 0, 0, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 1, 0, 1, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 1, 1, 0, volumeToWorld, *pMins, *pMaxs ); |
|
CalculateAABBForNormalizedFrustum_Helper( 1, 1, 1, volumeToWorld, *pMins, *pMaxs ); |
|
} |
|
|
|
inline void CalculateAABBFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pMins, Vector *pMaxs ) |
|
{ |
|
VMatrix volumeToWorld; |
|
MatrixInverseGeneral( worldToVolume, volumeToWorld ); |
|
CalculateAABBFromProjectionMatrixInverse( volumeToWorld, pMins, pMaxs ); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and |
|
// get a bounding sphere. |
|
//----------------------------------------------------------------------------- |
|
inline void CalculateSphereFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pCenter, float *pflRadius ) |
|
{ |
|
// FIXME: Could maybe do better than the compile with all of these multiplies by 0 and 1. |
|
|
|
// Need 3 points: the endpoint of the line through the center of the near + far planes, |
|
// and one point on the far plane. From that, we can derive a point somewhere on the center line |
|
// which would produce the smallest bounding sphere. |
|
Vector vecCenterNear, vecCenterFar, vecNearEdge, vecFarEdge; |
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.5f, 0.5f, 0.0f ), vecCenterNear ); |
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.5f, 0.5f, 1.0f ), vecCenterFar ); |
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.0f, 0.0f, 0.0f ), vecNearEdge ); |
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.0f, 0.0f, 1.0f ), vecFarEdge ); |
|
|
|
// Let the distance between the near + far center points = l |
|
// Let the distance between the near center point + near edge point = h1 |
|
// Let the distance between the far center point + far edge point = h2 |
|
// Let the distance along the center line from the near point to the sphere center point = x |
|
// Then let the distance between the sphere center point + near edge point == |
|
// the distance between the sphere center point + far edge point == r == radius of sphere |
|
// Then h1^2 + x^2 == r^2 == (l-x)^2 + h2^2 |
|
// h1^x + x^2 = l^2 - 2 * l * x + x^2 + h2^2 |
|
// 2 * l * x = l^2 + h2^2 - h1^2 |
|
// x = (l^2 + h2^2 - h1^2) / (2 * l) |
|
// r = sqrt( hl^1 + x^2 ) |
|
Vector vecDelta; |
|
VectorSubtract( vecCenterFar, vecCenterNear, vecDelta ); |
|
float l = vecDelta.Length(); |
|
float h1Sqr = vecCenterNear.DistToSqr( vecNearEdge ); |
|
float h2Sqr = vecCenterFar.DistToSqr( vecFarEdge ); |
|
float x = (l*l + h2Sqr - h1Sqr) / (2.0f * l); |
|
VectorMA( vecCenterNear, (x / l), vecDelta, *pCenter ); |
|
*pflRadius = sqrt( h1Sqr + x*x ); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Given a projection matrix, take the extremes of the space in transformed into world space and |
|
// get a bounding sphere. |
|
//----------------------------------------------------------------------------- |
|
inline void CalculateSphereFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pCenter, float *pflRadius ) |
|
{ |
|
VMatrix volumeToWorld; |
|
MatrixInverseGeneral( worldToVolume, volumeToWorld ); |
|
CalculateSphereFromProjectionMatrixInverse( volumeToWorld, pCenter, pflRadius ); |
|
} |
|
|
|
|
|
static inline void FrustumPlanesFromMatrixHelper( const VMatrix &shadowToWorld, const Vector &p1, const Vector &p2, const Vector &p3, |
|
Vector &normal, float &dist ) |
|
{ |
|
Vector world1, world2, world3; |
|
Vector3DMultiplyPositionProjective( shadowToWorld, p1, world1 ); |
|
Vector3DMultiplyPositionProjective( shadowToWorld, p2, world2 ); |
|
Vector3DMultiplyPositionProjective( shadowToWorld, p3, world3 ); |
|
|
|
Vector v1, v2; |
|
VectorSubtract( world2, world1, v1 ); |
|
VectorSubtract( world3, world1, v2 ); |
|
|
|
CrossProduct( v1, v2, normal ); |
|
VectorNormalize( normal ); |
|
dist = DotProduct( normal, world1 ); |
|
} |
|
|
|
inline void FrustumPlanesFromMatrix( const VMatrix &clipToWorld, Frustum_t &frustum ) |
|
{ |
|
Vector normal; |
|
float dist; |
|
|
|
FrustumPlanesFromMatrixHelper( clipToWorld, |
|
Vector( 0.0f, 0.0f, 0.0f ), Vector( 1.0f, 0.0f, 0.0f ), Vector( 0.0f, 1.0f, 0.0f ), normal, dist ); |
|
frustum.SetPlane( FRUSTUM_NEARZ, PLANE_ANYZ, normal, dist ); |
|
|
|
FrustumPlanesFromMatrixHelper( clipToWorld, |
|
Vector( 0.0f, 0.0f, 1.0f ), Vector( 0.0f, 1.0f, 1.0f ), Vector( 1.0f, 0.0f, 1.0f ), normal, dist ); |
|
frustum.SetPlane( FRUSTUM_FARZ, PLANE_ANYZ, normal, dist ); |
|
|
|
FrustumPlanesFromMatrixHelper( clipToWorld, |
|
Vector( 1.0f, 0.0f, 0.0f ), Vector( 1.0f, 1.0f, 1.0f ), Vector( 1.0f, 1.0f, 0.0f ), normal, dist ); |
|
frustum.SetPlane( FRUSTUM_RIGHT, PLANE_ANYZ, normal, dist ); |
|
|
|
FrustumPlanesFromMatrixHelper( clipToWorld, |
|
Vector( 0.0f, 0.0f, 0.0f ), Vector( 0.0f, 1.0f, 1.0f ), Vector( 0.0f, 0.0f, 1.0f ), normal, dist ); |
|
frustum.SetPlane( FRUSTUM_LEFT, PLANE_ANYZ, normal, dist ); |
|
|
|
FrustumPlanesFromMatrixHelper( clipToWorld, |
|
Vector( 1.0f, 1.0f, 0.0f ), Vector( 1.0f, 1.0f, 1.0f ), Vector( 0.0f, 1.0f, 1.0f ), normal, dist ); |
|
frustum.SetPlane( FRUSTUM_TOP, PLANE_ANYZ, normal, dist ); |
|
|
|
FrustumPlanesFromMatrixHelper( clipToWorld, |
|
Vector( 1.0f, 0.0f, 0.0f ), Vector( 0.0f, 0.0f, 1.0f ), Vector( 1.0f, 0.0f, 1.0f ), normal, dist ); |
|
frustum.SetPlane( FRUSTUM_BOTTOM, PLANE_ANYZ, normal, dist ); |
|
} |
|
|
|
inline void MatrixBuildOrtho( VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar ) |
|
{ |
|
// FIXME: This is being used incorrectly! Should read: |
|
// D3DXMatrixOrthoOffCenterRH( &matrix, left, right, bottom, top, zNear, zFar ); |
|
// Which is certainly why we need these extra -1 scales in y. Bleah |
|
|
|
// NOTE: The camera can be imagined as the following diagram: |
|
// /z |
|
// / |
|
// /____ x Z is going into the screen |
|
// | |
|
// | |
|
// |y |
|
// |
|
// (0,0,z) represents the upper-left corner of the screen. |
|
// Our projection transform needs to transform from this space to a LH coordinate |
|
// system that looks thusly: |
|
// |
|
// y| /z |
|
// | / |
|
// |/____ x Z is going into the screen |
|
// |
|
// Where x,y lies between -1 and 1, and z lies from 0 to 1 |
|
// This is because the viewport transformation from projection space to pixels |
|
// introduces a -1 scale in the y coordinates |
|
// D3DXMatrixOrthoOffCenterRH( &matrix, left, right, top, bottom, zNear, zFar ); |
|
|
|
dst.Init( 2.0f / ( right - left ), 0.0f, 0.0f, ( left + right ) / ( left - right ), |
|
0.0f, 2.0f / ( bottom - top ), 0.0f, ( bottom + top ) / ( top - bottom ), |
|
0.0f, 0.0f, 1.0f / ( zNear - zFar ), zNear / ( zNear - zFar ), |
|
0.0f, 0.0f, 0.0f, 1.0f ); |
|
} |
|
|
|
inline void MatrixBuildPerspectiveZRange( VMatrix& dst, double flZNear, double flZFar ) |
|
{ |
|
dst.m[2][0] = 0.0f; |
|
dst.m[2][1] = 0.0f; |
|
dst.m[2][2] = flZFar / ( flZNear - flZFar ); |
|
dst.m[2][3] = flZNear * flZFar / ( flZNear - flZFar ); |
|
} |
|
|
|
inline void MatrixBuildPerspectiveX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar ) |
|
{ |
|
float flWidthScale = 1.0f / tanf( flFovX * M_PI / 360.0f ); |
|
float flHeightScale = flAspect * flWidthScale; |
|
dst.Init( flWidthScale, 0.0f, 0.0f, 0.0f, |
|
0.0f, flHeightScale, 0.0f, 0.0f, |
|
0.0f, 0.0f, 0.0f, 0.0f, |
|
0.0f, 0.0f, -1.0f, 0.0f ); |
|
|
|
MatrixBuildPerspectiveZRange ( dst, flZNear, flZFar ); |
|
} |
|
|
|
inline void MatrixBuildPerspectiveOffCenterX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) |
|
{ |
|
float flWidth = tanf( flFovX * M_PI / 360.0f ); |
|
float flHeight = flWidth / flAspect; |
|
|
|
// bottom, top, left, right are 0..1 so convert to -<val>/2..<val>/2 |
|
float flLeft = -(flWidth/2.0f) * (1.0f - left) + left * (flWidth/2.0f); |
|
float flRight = -(flWidth/2.0f) * (1.0f - right) + right * (flWidth/2.0f); |
|
float flBottom = -(flHeight/2.0f) * (1.0f - bottom) + bottom * (flHeight/2.0f); |
|
float flTop = -(flHeight/2.0f) * (1.0f - top) + top * (flHeight/2.0f); |
|
|
|
dst.Init( 1.0f / (flRight-flLeft), 0.0f, (flLeft+flRight)/(flRight-flLeft), 0.0f, |
|
0.0f, 1.0f /(flTop-flBottom), (flTop+flBottom)/(flTop-flBottom), 0.0f, |
|
0.0f, 0.0f, 0.0f, 0.0f, |
|
0.0f, 0.0f, -1.0f, 0.0f ); |
|
|
|
MatrixBuildPerspectiveZRange ( dst, flZNear, flZFar ); |
|
} |
|
|
|
#endif |
|
|
|
|
|
|