You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1229 lines
36 KiB
1229 lines
36 KiB
#!/usr/bin/env perl |
|
|
|
# ==================================================================== |
|
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
|
# project. The module is, however, dual licensed under OpenSSL and |
|
# CRYPTOGAMS licenses depending on where you obtain it. For further |
|
# details see http://www.openssl.org/~appro/cryptogams/. |
|
# ==================================================================== |
|
|
|
# "[Re]written" was achieved in two major overhauls. In 2004 BODY_* |
|
# functions were re-implemented to address P4 performance issue [see |
|
# commentary below], and in 2006 the rest was rewritten in order to |
|
# gain freedom to liberate licensing terms. |
|
|
|
# January, September 2004. |
|
# |
|
# It was noted that Intel IA-32 C compiler generates code which |
|
# performs ~30% *faster* on P4 CPU than original *hand-coded* |
|
# SHA1 assembler implementation. To address this problem (and |
|
# prove that humans are still better than machines:-), the |
|
# original code was overhauled, which resulted in following |
|
# performance changes: |
|
# |
|
# compared with original compared with Intel cc |
|
# assembler impl. generated code |
|
# Pentium -16% +48% |
|
# PIII/AMD +8% +16% |
|
# P4 +85%(!) +45% |
|
# |
|
# As you can see Pentium came out as looser:-( Yet I reckoned that |
|
# improvement on P4 outweights the loss and incorporate this |
|
# re-tuned code to 0.9.7 and later. |
|
# ---------------------------------------------------------------- |
|
# <appro@fy.chalmers.se> |
|
|
|
# August 2009. |
|
# |
|
# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as |
|
# '(c&d) + (b&(c^d))', which allows to accumulate partial results |
|
# and lighten "pressure" on scratch registers. This resulted in |
|
# >12% performance improvement on contemporary AMD cores (with no |
|
# degradation on other CPUs:-). Also, the code was revised to maximize |
|
# "distance" between instructions producing input to 'lea' instruction |
|
# and the 'lea' instruction itself, which is essential for Intel Atom |
|
# core and resulted in ~15% improvement. |
|
|
|
# October 2010. |
|
# |
|
# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it |
|
# is to offload message schedule denoted by Wt in NIST specification, |
|
# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel, |
|
# and in SSE2 context was first explored by Dean Gaudet in 2004, see |
|
# http://arctic.org/~dean/crypto/sha1.html. Since then several things |
|
# have changed that made it interesting again: |
|
# |
|
# a) XMM units became faster and wider; |
|
# b) instruction set became more versatile; |
|
# c) an important observation was made by Max Locktykhin, which made |
|
# it possible to reduce amount of instructions required to perform |
|
# the operation in question, for further details see |
|
# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/. |
|
|
|
# April 2011. |
|
# |
|
# Add AVX code path, probably most controversial... The thing is that |
|
# switch to AVX alone improves performance by as little as 4% in |
|
# comparison to SSSE3 code path. But below result doesn't look like |
|
# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as |
|
# pair of µ-ops, and it's the additional µ-ops, two per round, that |
|
# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded |
|
# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with |
|
# equivalent 'sh[rl]d' that is responsible for the impressive 5.1 |
|
# cycles per processed byte. But 'sh[rl]d' is not something that used |
|
# to be fast, nor does it appear to be fast in upcoming Bulldozer |
|
# [according to its optimization manual]. Which is why AVX code path |
|
# is guarded by *both* AVX and synthetic bit denoting Intel CPUs. |
|
# One can argue that it's unfair to AMD, but without 'sh[rl]d' it |
|
# makes no sense to keep the AVX code path. If somebody feels that |
|
# strongly, it's probably more appropriate to discuss possibility of |
|
# using vector rotate XOP on AMD... |
|
|
|
###################################################################### |
|
# Current performance is summarized in following table. Numbers are |
|
# CPU clock cycles spent to process single byte (less is better). |
|
# |
|
# x86 SSSE3 AVX |
|
# Pentium 15.7 - |
|
# PIII 11.5 - |
|
# P4 10.6 - |
|
# AMD K8 7.1 - |
|
# Core2 7.3 6.1/+20% - |
|
# Atom 12.5 9.5(*)/+32% - |
|
# Westmere 7.3 5.6/+30% - |
|
# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70% |
|
# |
|
# (*) Loop is 1056 instructions long and expected result is ~8.25. |
|
# It remains mystery [to me] why ILP is limited to 1.7. |
|
# |
|
# (**) As per above comment, the result is for AVX *plus* sh[rl]d. |
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
|
push(@INC,"${dir}","${dir}../../perlasm"); |
|
require "x86asm.pl"; |
|
|
|
&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); |
|
|
|
$xmm=$ymm=0; |
|
for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } |
|
|
|
$ymm=1 if ($xmm && |
|
`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` |
|
=~ /GNU assembler version ([2-9]\.[0-9]+)/ && |
|
$1>=2.19); # first version supporting AVX |
|
|
|
$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && |
|
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && |
|
$1>=2.03); # first version supporting AVX |
|
|
|
&external_label("OPENSSL_ia32cap_P") if ($xmm); |
|
|
|
|
|
$A="eax"; |
|
$B="ebx"; |
|
$C="ecx"; |
|
$D="edx"; |
|
$E="edi"; |
|
$T="esi"; |
|
$tmp1="ebp"; |
|
|
|
@V=($A,$B,$C,$D,$E,$T); |
|
|
|
$alt=0; # 1 denotes alternative IALU implementation, which performs |
|
# 8% *worse* on P4, same on Westmere and Atom, 2% better on |
|
# Sandy Bridge... |
|
|
|
sub BODY_00_15 |
|
{ |
|
local($n,$a,$b,$c,$d,$e,$f)=@_; |
|
|
|
&comment("00_15 $n"); |
|
|
|
&mov($f,$c); # f to hold F_00_19(b,c,d) |
|
if ($n==0) { &mov($tmp1,$a); } |
|
else { &mov($a,$tmp1); } |
|
&rotl($tmp1,5); # tmp1=ROTATE(a,5) |
|
&xor($f,$d); |
|
&add($tmp1,$e); # tmp1+=e; |
|
&mov($e,&swtmp($n%16)); # e becomes volatile and is loaded |
|
# with xi, also note that e becomes |
|
# f in next round... |
|
&and($f,$b); |
|
&rotr($b,2); # b=ROTATE(b,30) |
|
&xor($f,$d); # f holds F_00_19(b,c,d) |
|
&lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi |
|
|
|
if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round |
|
&add($f,$tmp1); } # f+=tmp1 |
|
else { &add($tmp1,$f); } # f becomes a in next round |
|
&mov($tmp1,$a) if ($alt && $n==15); |
|
} |
|
|
|
sub BODY_16_19 |
|
{ |
|
local($n,$a,$b,$c,$d,$e,$f)=@_; |
|
|
|
&comment("16_19 $n"); |
|
|
|
if ($alt) { |
|
&xor($c,$d); |
|
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
|
&and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d |
|
&xor($f,&swtmp(($n+8)%16)); |
|
&xor($tmp1,$d); # tmp1=F_00_19(b,c,d) |
|
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
|
&rotl($f,1); # f=ROTATE(f,1) |
|
&add($e,$tmp1); # e+=F_00_19(b,c,d) |
|
&xor($c,$d); # restore $c |
|
&mov($tmp1,$a); # b in next round |
|
&rotr($b,$n==16?2:7); # b=ROTATE(b,30) |
|
&mov(&swtmp($n%16),$f); # xi=f |
|
&rotl($a,5); # ROTATE(a,5) |
|
&lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e |
|
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
|
&add($f,$a); # f+=ROTATE(a,5) |
|
} else { |
|
&mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) |
|
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
|
&xor($tmp1,$d); |
|
&xor($f,&swtmp(($n+8)%16)); |
|
&and($tmp1,$b); |
|
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
|
&rotl($f,1); # f=ROTATE(f,1) |
|
&xor($tmp1,$d); # tmp1=F_00_19(b,c,d) |
|
&add($e,$tmp1); # e+=F_00_19(b,c,d) |
|
&mov($tmp1,$a); |
|
&rotr($b,2); # b=ROTATE(b,30) |
|
&mov(&swtmp($n%16),$f); # xi=f |
|
&rotl($tmp1,5); # ROTATE(a,5) |
|
&lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e |
|
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
|
&add($f,$tmp1); # f+=ROTATE(a,5) |
|
} |
|
} |
|
|
|
sub BODY_20_39 |
|
{ |
|
local($n,$a,$b,$c,$d,$e,$f)=@_; |
|
local $K=($n<40)?0x6ed9eba1:0xca62c1d6; |
|
|
|
&comment("20_39 $n"); |
|
|
|
if ($alt) { |
|
&xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c |
|
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
|
&xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) |
|
&xor($f,&swtmp(($n+8)%16)); |
|
&add($e,$tmp1); # e+=F_20_39(b,c,d) |
|
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
|
&rotl($f,1); # f=ROTATE(f,1) |
|
&mov($tmp1,$a); # b in next round |
|
&rotr($b,7); # b=ROTATE(b,30) |
|
&mov(&swtmp($n%16),$f) if($n<77);# xi=f |
|
&rotl($a,5); # ROTATE(a,5) |
|
&xor($b,$c) if($n==39);# warm up for BODY_40_59 |
|
&and($tmp1,$b) if($n==39); |
|
&lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY |
|
&mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round |
|
&add($f,$a); # f+=ROTATE(a,5) |
|
&rotr($a,5) if ($n==79); |
|
} else { |
|
&mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) |
|
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
|
&xor($tmp1,$c); |
|
&xor($f,&swtmp(($n+8)%16)); |
|
&xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) |
|
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
|
&rotl($f,1); # f=ROTATE(f,1) |
|
&add($e,$tmp1); # e+=F_20_39(b,c,d) |
|
&rotr($b,2); # b=ROTATE(b,30) |
|
&mov($tmp1,$a); |
|
&rotl($tmp1,5); # ROTATE(a,5) |
|
&mov(&swtmp($n%16),$f) if($n<77);# xi=f |
|
&lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY |
|
&mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round |
|
&add($f,$tmp1); # f+=ROTATE(a,5) |
|
} |
|
} |
|
|
|
sub BODY_40_59 |
|
{ |
|
local($n,$a,$b,$c,$d,$e,$f)=@_; |
|
|
|
&comment("40_59 $n"); |
|
|
|
if ($alt) { |
|
&add($e,$tmp1); # e+=b&(c^d) |
|
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
|
&mov($tmp1,$d); |
|
&xor($f,&swtmp(($n+8)%16)); |
|
&xor($c,$d); # restore $c |
|
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
|
&rotl($f,1); # f=ROTATE(f,1) |
|
&and($tmp1,$c); |
|
&rotr($b,7); # b=ROTATE(b,30) |
|
&add($e,$tmp1); # e+=c&d |
|
&mov($tmp1,$a); # b in next round |
|
&mov(&swtmp($n%16),$f); # xi=f |
|
&rotl($a,5); # ROTATE(a,5) |
|
&xor($b,$c) if ($n<59); |
|
&and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d) |
|
&lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d)) |
|
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
|
&add($f,$a); # f+=ROTATE(a,5) |
|
} else { |
|
&mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d) |
|
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
|
&xor($tmp1,$d); |
|
&xor($f,&swtmp(($n+8)%16)); |
|
&and($tmp1,$b); |
|
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
|
&rotl($f,1); # f=ROTATE(f,1) |
|
&add($tmp1,$e); # b&(c^d)+=e |
|
&rotr($b,2); # b=ROTATE(b,30) |
|
&mov($e,$a); # e becomes volatile |
|
&rotl($e,5); # ROTATE(a,5) |
|
&mov(&swtmp($n%16),$f); # xi=f |
|
&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d)) |
|
&mov($tmp1,$c); |
|
&add($f,$e); # f+=ROTATE(a,5) |
|
&and($tmp1,$d); |
|
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round |
|
&add($f,$tmp1); # f+=c&d |
|
} |
|
} |
|
|
|
&function_begin("sha1_block_data_order"); |
|
if ($xmm) { |
|
&static_label("ssse3_shortcut"); |
|
&static_label("avx_shortcut") if ($ymm); |
|
&static_label("K_XX_XX"); |
|
|
|
&call (&label("pic_point")); # make it PIC! |
|
&set_label("pic_point"); |
|
&blindpop($tmp1); |
|
&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point")); |
|
&lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
|
|
|
&mov ($A,&DWP(0,$T)); |
|
&mov ($D,&DWP(4,$T)); |
|
&test ($D,1<<9); # check SSSE3 bit |
|
&jz (&label("x86")); |
|
&test ($A,1<<24); # check FXSR bit |
|
&jz (&label("x86")); |
|
if ($ymm) { |
|
&and ($D,1<<28); # mask AVX bit |
|
&and ($A,1<<30); # mask "Intel CPU" bit |
|
&or ($A,$D); |
|
&cmp ($A,1<<28|1<<30); |
|
&je (&label("avx_shortcut")); |
|
} |
|
&jmp (&label("ssse3_shortcut")); |
|
&set_label("x86",16); |
|
} |
|
&mov($tmp1,&wparam(0)); # SHA_CTX *c |
|
&mov($T,&wparam(1)); # const void *input |
|
&mov($A,&wparam(2)); # size_t num |
|
&stack_push(16+3); # allocate X[16] |
|
&shl($A,6); |
|
&add($A,$T); |
|
&mov(&wparam(2),$A); # pointer beyond the end of input |
|
&mov($E,&DWP(16,$tmp1));# pre-load E |
|
&jmp(&label("loop")); |
|
|
|
&set_label("loop",16); |
|
|
|
# copy input chunk to X, but reversing byte order! |
|
for ($i=0; $i<16; $i+=4) |
|
{ |
|
&mov($A,&DWP(4*($i+0),$T)); |
|
&mov($B,&DWP(4*($i+1),$T)); |
|
&mov($C,&DWP(4*($i+2),$T)); |
|
&mov($D,&DWP(4*($i+3),$T)); |
|
&bswap($A); |
|
&bswap($B); |
|
&bswap($C); |
|
&bswap($D); |
|
&mov(&swtmp($i+0),$A); |
|
&mov(&swtmp($i+1),$B); |
|
&mov(&swtmp($i+2),$C); |
|
&mov(&swtmp($i+3),$D); |
|
} |
|
&mov(&wparam(1),$T); # redundant in 1st spin |
|
|
|
&mov($A,&DWP(0,$tmp1)); # load SHA_CTX |
|
&mov($B,&DWP(4,$tmp1)); |
|
&mov($C,&DWP(8,$tmp1)); |
|
&mov($D,&DWP(12,$tmp1)); |
|
# E is pre-loaded |
|
|
|
for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } |
|
for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } |
|
for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
|
for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } |
|
for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
|
|
|
(($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check |
|
|
|
&mov($tmp1,&wparam(0)); # re-load SHA_CTX* |
|
&mov($D,&wparam(1)); # D is last "T" and is discarded |
|
|
|
&add($E,&DWP(0,$tmp1)); # E is last "A"... |
|
&add($T,&DWP(4,$tmp1)); |
|
&add($A,&DWP(8,$tmp1)); |
|
&add($B,&DWP(12,$tmp1)); |
|
&add($C,&DWP(16,$tmp1)); |
|
|
|
&mov(&DWP(0,$tmp1),$E); # update SHA_CTX |
|
&add($D,64); # advance input pointer |
|
&mov(&DWP(4,$tmp1),$T); |
|
&cmp($D,&wparam(2)); # have we reached the end yet? |
|
&mov(&DWP(8,$tmp1),$A); |
|
&mov($E,$C); # C is last "E" which needs to be "pre-loaded" |
|
&mov(&DWP(12,$tmp1),$B); |
|
&mov($T,$D); # input pointer |
|
&mov(&DWP(16,$tmp1),$C); |
|
&jb(&label("loop")); |
|
|
|
&stack_pop(16+3); |
|
&function_end("sha1_block_data_order"); |
|
|
|
if ($xmm) { |
|
###################################################################### |
|
# The SSSE3 implementation. |
|
# |
|
# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last |
|
# 32 elements of the message schedule or Xupdate outputs. First 4 |
|
# quadruples are simply byte-swapped input, next 4 are calculated |
|
# according to method originally suggested by Dean Gaudet (modulo |
|
# being implemented in SSSE3). Once 8 quadruples or 32 elements are |
|
# collected, it switches to routine proposed by Max Locktyukhin. |
|
# |
|
# Calculations inevitably require temporary reqisters, and there are |
|
# no %xmm registers left to spare. For this reason part of the ring |
|
# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring |
|
# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] - |
|
# X[-5], and X[4] - X[-4]... |
|
# |
|
# Another notable optimization is aggressive stack frame compression |
|
# aiming to minimize amount of 9-byte instructions... |
|
# |
|
# Yet another notable optimization is "jumping" $B variable. It means |
|
# that there is no register permanently allocated for $B value. This |
|
# allowed to eliminate one instruction from body_20_39... |
|
# |
|
my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded |
|
my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 |
|
my @V=($A,$B,$C,$D,$E); |
|
my $j=0; # hash round |
|
my @T=($T,$tmp1); |
|
my $inp; |
|
|
|
my $_rol=sub { &rol(@_) }; |
|
my $_ror=sub { &ror(@_) }; |
|
|
|
&function_begin("_sha1_block_data_order_ssse3"); |
|
&call (&label("pic_point")); # make it PIC! |
|
&set_label("pic_point"); |
|
&blindpop($tmp1); |
|
&lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
|
&set_label("ssse3_shortcut"); |
|
|
|
&movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19 |
|
&movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39 |
|
&movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59 |
|
&movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79 |
|
&movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask |
|
|
|
&mov ($E,&wparam(0)); # load argument block |
|
&mov ($inp=@T[1],&wparam(1)); |
|
&mov ($D,&wparam(2)); |
|
&mov (@T[0],"esp"); |
|
|
|
# stack frame layout |
|
# |
|
# +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area |
|
# X[4]+K X[5]+K X[6]+K X[7]+K |
|
# X[8]+K X[9]+K X[10]+K X[11]+K |
|
# X[12]+K X[13]+K X[14]+K X[15]+K |
|
# |
|
# +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area |
|
# X[4] X[5] X[6] X[7] |
|
# X[8] X[9] X[10] X[11] # even borrowed for K_00_19 |
|
# |
|
# +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants |
|
# K_40_59 K_40_59 K_40_59 K_40_59 |
|
# K_60_79 K_60_79 K_60_79 K_60_79 |
|
# K_00_19 K_00_19 K_00_19 K_00_19 |
|
# pbswap mask |
|
# |
|
# +192 ctx # argument block |
|
# +196 inp |
|
# +200 end |
|
# +204 esp |
|
&sub ("esp",208); |
|
&and ("esp",-64); |
|
|
|
&movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants |
|
&movdqa (&QWP(112+16,"esp"),@X[5]); |
|
&movdqa (&QWP(112+32,"esp"),@X[6]); |
|
&shl ($D,6); # len*64 |
|
&movdqa (&QWP(112+48,"esp"),@X[3]); |
|
&add ($D,$inp); # end of input |
|
&movdqa (&QWP(112+64,"esp"),@X[2]); |
|
&add ($inp,64); |
|
&mov (&DWP(192+0,"esp"),$E); # save argument block |
|
&mov (&DWP(192+4,"esp"),$inp); |
|
&mov (&DWP(192+8,"esp"),$D); |
|
&mov (&DWP(192+12,"esp"),@T[0]); # save original %esp |
|
|
|
&mov ($A,&DWP(0,$E)); # load context |
|
&mov ($B,&DWP(4,$E)); |
|
&mov ($C,&DWP(8,$E)); |
|
&mov ($D,&DWP(12,$E)); |
|
&mov ($E,&DWP(16,$E)); |
|
&mov (@T[0],$B); # magic seed |
|
|
|
&movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] |
|
&movdqu (@X[-3&7],&QWP(-48,$inp)); |
|
&movdqu (@X[-2&7],&QWP(-32,$inp)); |
|
&movdqu (@X[-1&7],&QWP(-16,$inp)); |
|
&pshufb (@X[-4&7],@X[2]); # byte swap |
|
&pshufb (@X[-3&7],@X[2]); |
|
&pshufb (@X[-2&7],@X[2]); |
|
&movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
|
&pshufb (@X[-1&7],@X[2]); |
|
&paddd (@X[-4&7],@X[3]); # add K_00_19 |
|
&paddd (@X[-3&7],@X[3]); |
|
&paddd (@X[-2&7],@X[3]); |
|
&movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU |
|
&psubd (@X[-4&7],@X[3]); # restore X[] |
|
&movdqa (&QWP(0+16,"esp"),@X[-3&7]); |
|
&psubd (@X[-3&7],@X[3]); |
|
&movdqa (&QWP(0+32,"esp"),@X[-2&7]); |
|
&psubd (@X[-2&7],@X[3]); |
|
&movdqa (@X[0],@X[-3&7]); |
|
&jmp (&label("loop")); |
|
|
|
###################################################################### |
|
# SSE instruction sequence is first broken to groups of indepentent |
|
# instructions, independent in respect to their inputs and shifter |
|
# (not all architectures have more than one). Then IALU instructions |
|
# are "knitted in" between the SSE groups. Distance is maintained for |
|
# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer |
|
# [which allegedly also implements SSSE3]... |
|
# |
|
# Temporary registers usage. X[2] is volatile at the entry and at the |
|
# end is restored from backtrace ring buffer. X[3] is expected to |
|
# contain current K_XX_XX constant and is used to caclulate X[-1]+K |
|
# from previous round, it becomes volatile the moment the value is |
|
# saved to stack for transfer to IALU. X[4] becomes volatile whenever |
|
# X[-4] is accumulated and offloaded to backtrace ring buffer, at the |
|
# end it is loaded with next K_XX_XX [which becomes X[3] in next |
|
# round]... |
|
# |
|
sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4 |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]" |
|
&movdqa (@X[2],@X[-1&7]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&paddd (@X[3],@X[-1&7]); |
|
&movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&psrldq (@X[2],4); # "X[-3]", 3 dwords |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&movdqa (@X[4],@X[0]); |
|
&movdqa (@X[2],@X[0]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&pslldq (@X[4],12); # "X[0]"<<96, extract one dword |
|
&paddd (@X[0],@X[0]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&psrld (@X[2],31); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&movdqa (@X[3],@X[4]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&psrld (@X[4],30); |
|
&por (@X[0],@X[2]); # "X[0]"<<<=1 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&pslld (@X[3],2); |
|
&pxor (@X[0],@X[4]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2 |
|
&movdqa (@X[1],@X[-2&7]) if ($Xi<7); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
foreach (@insns) { eval; } # remaining instructions [if any] |
|
|
|
$Xi++; push(@X,shift(@X)); # "rotate" X[] |
|
} |
|
|
|
sub Xupdate_ssse3_32_79() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
&movdqa (@X[2],@X[-1&7]) if ($Xi==8); |
|
eval(shift(@insns)); # body_20_39 |
|
&pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" |
|
&palignr(@X[2],@X[-2&7],8); # compose "X[-6]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
|
|
&pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" |
|
&movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
if ($Xi%5) { |
|
&movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... |
|
} else { # ... or load next one |
|
&movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); |
|
} |
|
&paddd (@X[3],@X[-1&7]); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
&pxor (@X[0],@X[2]); # "X[0]"^="X[-6]" |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
|
|
&movdqa (@X[2],@X[0]); |
|
&movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
&pslld (@X[0],2); |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
&psrld (@X[2],30); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
&por (@X[0],@X[2]); # "X[0]"<<<=2 |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
&movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # ror |
|
&movdqa (@X[3],@X[0]) if ($Xi<19); |
|
eval(shift(@insns)); |
|
|
|
foreach (@insns) { eval; } # remaining instructions |
|
|
|
$Xi++; push(@X,shift(@X)); # "rotate" X[] |
|
} |
|
|
|
sub Xuplast_ssse3_80() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
eval(shift(@insns)); |
|
&paddd (@X[3],@X[-1&7]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU |
|
|
|
foreach (@insns) { eval; } # remaining instructions |
|
|
|
&mov ($inp=@T[1],&DWP(192+4,"esp")); |
|
&cmp ($inp,&DWP(192+8,"esp")); |
|
&je (&label("done")); |
|
|
|
&movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19 |
|
&movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask |
|
&movdqu (@X[-4&7],&QWP(0,$inp)); # load input |
|
&movdqu (@X[-3&7],&QWP(16,$inp)); |
|
&movdqu (@X[-2&7],&QWP(32,$inp)); |
|
&movdqu (@X[-1&7],&QWP(48,$inp)); |
|
&add ($inp,64); |
|
&pshufb (@X[-4&7],@X[2]); # byte swap |
|
&mov (&DWP(192+4,"esp"),$inp); |
|
&movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
|
|
|
$Xi=0; |
|
} |
|
|
|
sub Xloop_ssse3() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&pshufb (@X[($Xi-3)&7],@X[2]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&paddd (@X[($Xi-4)&7],@X[3]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&psubd (@X[($Xi-4)&7],@X[3]); |
|
|
|
foreach (@insns) { eval; } |
|
$Xi++; |
|
} |
|
|
|
sub Xtail_ssse3() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
foreach (@insns) { eval; } |
|
} |
|
|
|
sub body_00_19 () { |
|
( |
|
'($a,$b,$c,$d,$e)=@V;'. |
|
'&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer |
|
'&xor ($c,$d);', |
|
'&mov (@T[1],$a);', # $b in next round |
|
'&$_rol ($a,5);', |
|
'&and (@T[0],$c);', # ($b&($c^$d)) |
|
'&xor ($c,$d);', # restore $c |
|
'&xor (@T[0],$d);', |
|
'&add ($e,$a);', |
|
'&$_ror ($b,$j?7:2);', # $b>>>2 |
|
'&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
|
); |
|
} |
|
|
|
sub body_20_39 () { |
|
( |
|
'($a,$b,$c,$d,$e)=@V;'. |
|
'&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer |
|
'&xor (@T[0],$d);', # ($b^$d) |
|
'&mov (@T[1],$a);', # $b in next round |
|
'&$_rol ($a,5);', |
|
'&xor (@T[0],$c);', # ($b^$d^$c) |
|
'&add ($e,$a);', |
|
'&$_ror ($b,7);', # $b>>>2 |
|
'&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
|
); |
|
} |
|
|
|
sub body_40_59 () { |
|
( |
|
'($a,$b,$c,$d,$e)=@V;'. |
|
'&mov (@T[1],$c);', |
|
'&xor ($c,$d);', |
|
'&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer |
|
'&and (@T[1],$d);', |
|
'&and (@T[0],$c);', # ($b&($c^$d)) |
|
'&$_ror ($b,7);', # $b>>>2 |
|
'&add ($e,@T[1]);', |
|
'&mov (@T[1],$a);', # $b in next round |
|
'&$_rol ($a,5);', |
|
'&add ($e,@T[0]);', |
|
'&xor ($c,$d);', # restore $c |
|
'&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));' |
|
); |
|
} |
|
|
|
&set_label("loop",16); |
|
&Xupdate_ssse3_16_31(\&body_00_19); |
|
&Xupdate_ssse3_16_31(\&body_00_19); |
|
&Xupdate_ssse3_16_31(\&body_00_19); |
|
&Xupdate_ssse3_16_31(\&body_00_19); |
|
&Xupdate_ssse3_32_79(\&body_00_19); |
|
&Xupdate_ssse3_32_79(\&body_20_39); |
|
&Xupdate_ssse3_32_79(\&body_20_39); |
|
&Xupdate_ssse3_32_79(\&body_20_39); |
|
&Xupdate_ssse3_32_79(\&body_20_39); |
|
&Xupdate_ssse3_32_79(\&body_20_39); |
|
&Xupdate_ssse3_32_79(\&body_40_59); |
|
&Xupdate_ssse3_32_79(\&body_40_59); |
|
&Xupdate_ssse3_32_79(\&body_40_59); |
|
&Xupdate_ssse3_32_79(\&body_40_59); |
|
&Xupdate_ssse3_32_79(\&body_40_59); |
|
&Xupdate_ssse3_32_79(\&body_20_39); |
|
&Xuplast_ssse3_80(\&body_20_39); # can jump to "done" |
|
|
|
$saved_j=$j; @saved_V=@V; |
|
|
|
&Xloop_ssse3(\&body_20_39); |
|
&Xloop_ssse3(\&body_20_39); |
|
&Xloop_ssse3(\&body_20_39); |
|
|
|
&mov (@T[1],&DWP(192,"esp")); # update context |
|
&add ($A,&DWP(0,@T[1])); |
|
&add (@T[0],&DWP(4,@T[1])); # $b |
|
&add ($C,&DWP(8,@T[1])); |
|
&mov (&DWP(0,@T[1]),$A); |
|
&add ($D,&DWP(12,@T[1])); |
|
&mov (&DWP(4,@T[1]),@T[0]); |
|
&add ($E,&DWP(16,@T[1])); |
|
&mov (&DWP(8,@T[1]),$C); |
|
&mov ($B,@T[0]); |
|
&mov (&DWP(12,@T[1]),$D); |
|
&mov (&DWP(16,@T[1]),$E); |
|
&movdqa (@X[0],@X[-3&7]); |
|
|
|
&jmp (&label("loop")); |
|
|
|
&set_label("done",16); $j=$saved_j; @V=@saved_V; |
|
|
|
&Xtail_ssse3(\&body_20_39); |
|
&Xtail_ssse3(\&body_20_39); |
|
&Xtail_ssse3(\&body_20_39); |
|
|
|
&mov (@T[1],&DWP(192,"esp")); # update context |
|
&add ($A,&DWP(0,@T[1])); |
|
&mov ("esp",&DWP(192+12,"esp")); # restore %esp |
|
&add (@T[0],&DWP(4,@T[1])); # $b |
|
&add ($C,&DWP(8,@T[1])); |
|
&mov (&DWP(0,@T[1]),$A); |
|
&add ($D,&DWP(12,@T[1])); |
|
&mov (&DWP(4,@T[1]),@T[0]); |
|
&add ($E,&DWP(16,@T[1])); |
|
&mov (&DWP(8,@T[1]),$C); |
|
&mov (&DWP(12,@T[1]),$D); |
|
&mov (&DWP(16,@T[1]),$E); |
|
|
|
&function_end("_sha1_block_data_order_ssse3"); |
|
|
|
if ($ymm) { |
|
my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded |
|
my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 |
|
my @V=($A,$B,$C,$D,$E); |
|
my $j=0; # hash round |
|
my @T=($T,$tmp1); |
|
my $inp; |
|
|
|
my $_rol=sub { &shld(@_[0],@_) }; |
|
my $_ror=sub { &shrd(@_[0],@_) }; |
|
|
|
&function_begin("_sha1_block_data_order_avx"); |
|
&call (&label("pic_point")); # make it PIC! |
|
&set_label("pic_point"); |
|
&blindpop($tmp1); |
|
&lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); |
|
&set_label("avx_shortcut"); |
|
&vzeroall(); |
|
|
|
&vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19 |
|
&vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39 |
|
&vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59 |
|
&vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79 |
|
&vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask |
|
|
|
&mov ($E,&wparam(0)); # load argument block |
|
&mov ($inp=@T[1],&wparam(1)); |
|
&mov ($D,&wparam(2)); |
|
&mov (@T[0],"esp"); |
|
|
|
# stack frame layout |
|
# |
|
# +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area |
|
# X[4]+K X[5]+K X[6]+K X[7]+K |
|
# X[8]+K X[9]+K X[10]+K X[11]+K |
|
# X[12]+K X[13]+K X[14]+K X[15]+K |
|
# |
|
# +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area |
|
# X[4] X[5] X[6] X[7] |
|
# X[8] X[9] X[10] X[11] # even borrowed for K_00_19 |
|
# |
|
# +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants |
|
# K_40_59 K_40_59 K_40_59 K_40_59 |
|
# K_60_79 K_60_79 K_60_79 K_60_79 |
|
# K_00_19 K_00_19 K_00_19 K_00_19 |
|
# pbswap mask |
|
# |
|
# +192 ctx # argument block |
|
# +196 inp |
|
# +200 end |
|
# +204 esp |
|
&sub ("esp",208); |
|
&and ("esp",-64); |
|
|
|
&vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants |
|
&vmovdqa(&QWP(112+16,"esp"),@X[5]); |
|
&vmovdqa(&QWP(112+32,"esp"),@X[6]); |
|
&shl ($D,6); # len*64 |
|
&vmovdqa(&QWP(112+48,"esp"),@X[3]); |
|
&add ($D,$inp); # end of input |
|
&vmovdqa(&QWP(112+64,"esp"),@X[2]); |
|
&add ($inp,64); |
|
&mov (&DWP(192+0,"esp"),$E); # save argument block |
|
&mov (&DWP(192+4,"esp"),$inp); |
|
&mov (&DWP(192+8,"esp"),$D); |
|
&mov (&DWP(192+12,"esp"),@T[0]); # save original %esp |
|
|
|
&mov ($A,&DWP(0,$E)); # load context |
|
&mov ($B,&DWP(4,$E)); |
|
&mov ($C,&DWP(8,$E)); |
|
&mov ($D,&DWP(12,$E)); |
|
&mov ($E,&DWP(16,$E)); |
|
&mov (@T[0],$B); # magic seed |
|
|
|
&vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] |
|
&vmovdqu(@X[-3&7],&QWP(-48,$inp)); |
|
&vmovdqu(@X[-2&7],&QWP(-32,$inp)); |
|
&vmovdqu(@X[-1&7],&QWP(-16,$inp)); |
|
&vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap |
|
&vpshufb(@X[-3&7],@X[-3&7],@X[2]); |
|
&vpshufb(@X[-2&7],@X[-2&7],@X[2]); |
|
&vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
|
&vpshufb(@X[-1&7],@X[-1&7],@X[2]); |
|
&vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19 |
|
&vpaddd (@X[1],@X[-3&7],@X[3]); |
|
&vpaddd (@X[2],@X[-2&7],@X[3]); |
|
&vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU |
|
&vmovdqa(&QWP(0+16,"esp"),@X[1]); |
|
&vmovdqa(&QWP(0+32,"esp"),@X[2]); |
|
&jmp (&label("loop")); |
|
|
|
sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4 |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpaddd (@X[3],@X[3],@X[-1&7]); |
|
&vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpsrld (@X[2],@X[0],31); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword |
|
&vpaddd (@X[0],@X[0],@X[0]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpsrld (@X[3],@X[4],30); |
|
&vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpslld (@X[4],@X[4],2); |
|
&vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vpxor (@X[0],@X[0],@X[3]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
foreach (@insns) { eval; } # remaining instructions [if any] |
|
|
|
$Xi++; push(@X,shift(@X)); # "rotate" X[] |
|
} |
|
|
|
sub Xupdate_avx_32_79() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
&vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]" |
|
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
|
|
&vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" |
|
&vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
if ($Xi%5) { |
|
&vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... |
|
} else { # ... or load next one |
|
&vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); |
|
} |
|
&vpaddd (@X[3],@X[3],@X[-1&7]); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
&vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]" |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
|
|
&vpsrld (@X[2],@X[0],30); |
|
&vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
&vpslld (@X[0],@X[0],2); |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
&vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2 |
|
eval(shift(@insns)); # body_20_39 |
|
eval(shift(@insns)); |
|
&vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # rol |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); # ror |
|
eval(shift(@insns)); |
|
|
|
foreach (@insns) { eval; } # remaining instructions |
|
|
|
$Xi++; push(@X,shift(@X)); # "rotate" X[] |
|
} |
|
|
|
sub Xuplast_avx_80() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
eval(shift(@insns)); |
|
&vpaddd (@X[3],@X[3],@X[-1&7]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
&vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU |
|
|
|
foreach (@insns) { eval; } # remaining instructions |
|
|
|
&mov ($inp=@T[1],&DWP(192+4,"esp")); |
|
&cmp ($inp,&DWP(192+8,"esp")); |
|
&je (&label("done")); |
|
|
|
&vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19 |
|
&vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask |
|
&vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input |
|
&vmovdqu(@X[-3&7],&QWP(16,$inp)); |
|
&vmovdqu(@X[-2&7],&QWP(32,$inp)); |
|
&vmovdqu(@X[-1&7],&QWP(48,$inp)); |
|
&add ($inp,64); |
|
&vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap |
|
&mov (&DWP(192+4,"esp"),$inp); |
|
&vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot |
|
|
|
$Xi=0; |
|
} |
|
|
|
sub Xloop_avx() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
&vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU |
|
eval(shift(@insns)); |
|
eval(shift(@insns)); |
|
|
|
foreach (@insns) { eval; } |
|
$Xi++; |
|
} |
|
|
|
sub Xtail_avx() |
|
{ use integer; |
|
my $body = shift; |
|
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions |
|
my ($a,$b,$c,$d,$e); |
|
|
|
foreach (@insns) { eval; } |
|
} |
|
|
|
&set_label("loop",16); |
|
&Xupdate_avx_16_31(\&body_00_19); |
|
&Xupdate_avx_16_31(\&body_00_19); |
|
&Xupdate_avx_16_31(\&body_00_19); |
|
&Xupdate_avx_16_31(\&body_00_19); |
|
&Xupdate_avx_32_79(\&body_00_19); |
|
&Xupdate_avx_32_79(\&body_20_39); |
|
&Xupdate_avx_32_79(\&body_20_39); |
|
&Xupdate_avx_32_79(\&body_20_39); |
|
&Xupdate_avx_32_79(\&body_20_39); |
|
&Xupdate_avx_32_79(\&body_20_39); |
|
&Xupdate_avx_32_79(\&body_40_59); |
|
&Xupdate_avx_32_79(\&body_40_59); |
|
&Xupdate_avx_32_79(\&body_40_59); |
|
&Xupdate_avx_32_79(\&body_40_59); |
|
&Xupdate_avx_32_79(\&body_40_59); |
|
&Xupdate_avx_32_79(\&body_20_39); |
|
&Xuplast_avx_80(\&body_20_39); # can jump to "done" |
|
|
|
$saved_j=$j; @saved_V=@V; |
|
|
|
&Xloop_avx(\&body_20_39); |
|
&Xloop_avx(\&body_20_39); |
|
&Xloop_avx(\&body_20_39); |
|
|
|
&mov (@T[1],&DWP(192,"esp")); # update context |
|
&add ($A,&DWP(0,@T[1])); |
|
&add (@T[0],&DWP(4,@T[1])); # $b |
|
&add ($C,&DWP(8,@T[1])); |
|
&mov (&DWP(0,@T[1]),$A); |
|
&add ($D,&DWP(12,@T[1])); |
|
&mov (&DWP(4,@T[1]),@T[0]); |
|
&add ($E,&DWP(16,@T[1])); |
|
&mov (&DWP(8,@T[1]),$C); |
|
&mov ($B,@T[0]); |
|
&mov (&DWP(12,@T[1]),$D); |
|
&mov (&DWP(16,@T[1]),$E); |
|
|
|
&jmp (&label("loop")); |
|
|
|
&set_label("done",16); $j=$saved_j; @V=@saved_V; |
|
|
|
&Xtail_avx(\&body_20_39); |
|
&Xtail_avx(\&body_20_39); |
|
&Xtail_avx(\&body_20_39); |
|
|
|
&vzeroall(); |
|
|
|
&mov (@T[1],&DWP(192,"esp")); # update context |
|
&add ($A,&DWP(0,@T[1])); |
|
&mov ("esp",&DWP(192+12,"esp")); # restore %esp |
|
&add (@T[0],&DWP(4,@T[1])); # $b |
|
&add ($C,&DWP(8,@T[1])); |
|
&mov (&DWP(0,@T[1]),$A); |
|
&add ($D,&DWP(12,@T[1])); |
|
&mov (&DWP(4,@T[1]),@T[0]); |
|
&add ($E,&DWP(16,@T[1])); |
|
&mov (&DWP(8,@T[1]),$C); |
|
&mov (&DWP(12,@T[1]),$D); |
|
&mov (&DWP(16,@T[1]),$E); |
|
&function_end("_sha1_block_data_order_avx"); |
|
} |
|
&set_label("K_XX_XX",64); |
|
&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19 |
|
&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39 |
|
&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59 |
|
&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79 |
|
&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask |
|
} |
|
&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); |
|
|
|
&asm_finish();
|
|
|