You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
755 lines
22 KiB
755 lines
22 KiB
#!/usr/bin/env perl |
|
# |
|
# ==================================================================== |
|
# Written by David Mosberger <David.Mosberger@acm.org> based on the |
|
# Itanium optimized Crypto code which was released by HP Labs at |
|
# http://www.hpl.hp.com/research/linux/crypto/. |
|
# |
|
# Copyright (c) 2005 Hewlett-Packard Development Company, L.P. |
|
# |
|
# Permission is hereby granted, free of charge, to any person obtaining |
|
# a copy of this software and associated documentation files (the |
|
# "Software"), to deal in the Software without restriction, including |
|
# without limitation the rights to use, copy, modify, merge, publish, |
|
# distribute, sublicense, and/or sell copies of the Software, and to |
|
# permit persons to whom the Software is furnished to do so, subject to |
|
# the following conditions: |
|
# |
|
# The above copyright notice and this permission notice shall be |
|
# included in all copies or substantial portions of the Software. |
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
|
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
|
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
|
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
|
|
|
|
|
|
|
# This is a little helper program which generates a software-pipelined |
|
# for RC4 encryption. The basic algorithm looks like this: |
|
# |
|
# for (counter = 0; counter < len; ++counter) |
|
# { |
|
# in = inp[counter]; |
|
# SI = S[I]; |
|
# J = (SI + J) & 0xff; |
|
# SJ = S[J]; |
|
# T = (SI + SJ) & 0xff; |
|
# S[I] = SJ, S[J] = SI; |
|
# ST = S[T]; |
|
# outp[counter] = in ^ ST; |
|
# I = (I + 1) & 0xff; |
|
# } |
|
# |
|
# Pipelining this loop isn't easy, because the stores to the S[] array |
|
# need to be observed in the right order. The loop generated by the |
|
# code below has the following pipeline diagram: |
|
# |
|
# cycle |
|
# | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | |
|
# iter |
|
# 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx |
|
# 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx |
|
# 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx |
|
# |
|
# where: |
|
# LDI = load of S[I] |
|
# LDJ = load of S[J] |
|
# SWP = swap of S[I] and S[J] |
|
# LDT = load of S[T] |
|
# |
|
# Note that in the above diagram, the major trouble-spot is that LDI |
|
# of the 2nd iteration is performed BEFORE the SWP of the first |
|
# iteration. Fortunately, this is easy to detect (I of the 1st |
|
# iteration will be equal to J of the 2nd iteration) and when this |
|
# happens, we simply forward the proper value from the 1st iteration |
|
# to the 2nd one. The proper value in this case is simply the value |
|
# of S[I] from the first iteration (thanks to the fact that SWP |
|
# simply swaps the contents of S[I] and S[J]). |
|
# |
|
# Another potential trouble-spot is in cycle 7, where SWP of the 1st |
|
# iteration issues at the same time as the LDI of the 3rd iteration. |
|
# However, thanks to IA-64 execution semantics, this can be taken |
|
# care of simply by placing LDI later in the instruction-group than |
|
# SWP. IA-64 CPUs will automatically forward the value if they |
|
# detect that the SWP and LDI are accessing the same memory-location. |
|
|
|
# The core-loop that can be pipelined then looks like this (annotated |
|
# with McKinley/Madison issue port & latency numbers, assuming L1 |
|
# cache hits for the most part): |
|
|
|
# operation: instruction: issue-ports: latency |
|
# ------------------ ----------------------------- ------------- ------- |
|
|
|
# Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 |
|
# shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc |
|
# I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc |
|
# ;; |
|
# SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! |
|
# ;; |
|
# cmp.eq.unc pBypass = I, J * after J is valid! |
|
# J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 |
|
# (pBypass) br.cond.spnt Bypass |
|
# ;; |
|
# --------------------------------------------------------------------------------------- |
|
# J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 |
|
# ;; |
|
# shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 |
|
# ;; |
|
# SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 |
|
# ;; |
|
# --------------------------------------------------------------------------------------- |
|
# T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 |
|
# ;; |
|
# T = T & 0xff zxt1 T = T I0, I1 1 cyc |
|
# S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 |
|
# S[J] = SI st8 [Jptr] = SI M2-M3 |
|
# ;; |
|
# shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 |
|
# ;; |
|
# --------------------------------------------------------------------------------------- |
|
# T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 |
|
# ;; |
|
# data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 |
|
# ;; |
|
# *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 |
|
# ;; |
|
# --------------------------------------------------------------------------------------- |
|
|
|
# There are several points worth making here: |
|
|
|
# - Note that due to the bypass/forwarding-path, the first two |
|
# phases of the loop are strangly mingled together. In |
|
# particular, note that the first stage of the pipeline is |
|
# using the value of "J", as calculated by the second stage. |
|
# - Each bundle-pair will have exactly 6 instructions. |
|
# - Pipelined, the loop can execute in 3 cycles/iteration and |
|
# 4 stages. However, McKinley/Madison can issue "st1" to |
|
# the same bank at a rate of at most one per 4 cycles. Thus, |
|
# instead of storing each byte, we accumulate them in a word |
|
# and then write them back at once with a single "st8" (this |
|
# implies that the setup code needs to ensure that the output |
|
# buffer is properly aligned, if need be, by encoding the |
|
# first few bytes separately). |
|
# - There is no space for a "br.ctop" instruction. For this |
|
# reason we can't use module-loop support in IA-64 and have |
|
# to do a traditional, purely software-pipelined loop. |
|
# - We can't replace any of the remaining "add/zxt1" pairs with |
|
# "padd1" because the latency for that instruction is too high |
|
# and would push the loop to the point where more bypasses |
|
# would be needed, which we don't have space for. |
|
# - The above loop runs at around 3.26 cycles/byte, or roughly |
|
# 440 MByte/sec on a 1.5GHz Madison. This is well below the |
|
# system bus bandwidth and hence with judicious use of |
|
# "lfetch" this loop can run at (almost) peak speed even when |
|
# the input and output data reside in memory. The |
|
# max. latency that can be tolerated is (PREFETCH_DISTANCE * |
|
# L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at |
|
# least) 1-ahead prefetching of 128 byte cache-lines. Note |
|
# that we do NOT prefetch into L1, since that would only |
|
# interfere with the S[] table values stored there. This is |
|
# acceptable because there is a 10 cycle latency between |
|
# load and first use of the input data. |
|
# - We use a branch to out-of-line bypass-code of cycle-pressure: |
|
# we calculate the next J, check for the need to activate the |
|
# bypass path, and activate the bypass path ALL IN THE SAME |
|
# CYCLE. If we didn't have these constraints, we could do |
|
# the bypass with a simple conditional move instruction. |
|
# Fortunately, the bypass paths get activated relatively |
|
# infrequently, so the extra branches don't cost all that much |
|
# (about 0.04 cycles/byte, measured on a 16396 byte file with |
|
# random input data). |
|
# |
|
|
|
$phases = 4; # number of stages/phases in the pipelined-loop |
|
$unroll_count = 6; # number of times we unrolled it |
|
$pComI = (1 << 0); |
|
$pComJ = (1 << 1); |
|
$pComT = (1 << 2); |
|
$pOut = (1 << 3); |
|
|
|
$NData = 4; |
|
$NIP = 3; |
|
$NJP = 2; |
|
$NI = 2; |
|
$NSI = 3; |
|
$NSJ = 2; |
|
$NT = 2; |
|
$NOutWord = 2; |
|
|
|
# |
|
# $threshold is the minimum length before we attempt to use the |
|
# big software-pipelined loop. It MUST be greater-or-equal |
|
# to: |
|
# PHASES * (UNROLL_COUNT + 1) + 7 |
|
# |
|
# The "+ 7" comes from the fact we may have to encode up to |
|
# 7 bytes separately before the output pointer is aligned. |
|
# |
|
$threshold = (3 * ($phases * ($unroll_count + 1)) + 7); |
|
|
|
sub I { |
|
local *code = shift; |
|
local $format = shift; |
|
$code .= sprintf ("\t\t".$format."\n", @_); |
|
} |
|
|
|
sub P { |
|
local *code = shift; |
|
local $format = shift; |
|
$code .= sprintf ($format."\n", @_); |
|
} |
|
|
|
sub STOP { |
|
local *code = shift; |
|
$code .=<<___; |
|
;; |
|
___ |
|
} |
|
|
|
sub emit_body { |
|
local *c = shift; |
|
local *bypass = shift; |
|
local ($iteration, $p) = @_; |
|
|
|
local $i0 = $iteration; |
|
local $i1 = $iteration - 1; |
|
local $i2 = $iteration - 2; |
|
local $i3 = $iteration - 3; |
|
local $iw0 = ($iteration - 3) / 8; |
|
local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; |
|
local $byte_num = ($iteration - 3) % 8; |
|
local $label = $iteration + 1; |
|
local $pAny = ($p & 0xf) == 0xf; |
|
local $pByp = (($p & $pComI) && ($iteration > 0)); |
|
|
|
$c.=<<___; |
|
////////////////////////////////////////////////// |
|
___ |
|
|
|
if (($p & 0xf) == 0) { |
|
$c.="#ifdef HOST_IS_BIG_ENDIAN\n"; |
|
&I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", |
|
$iw1 % $NOutWord, $iw1 % $NOutWord); |
|
$c.="#endif\n"; |
|
&I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); |
|
return; |
|
} |
|
|
|
# Cycle 0 |
|
&I(\$c, "{ .mmi") if ($pAny); |
|
&I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); |
|
&I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); |
|
&I(\$c, "zxt1 J = J") if ($p & $pComJ); |
|
&I(\$c, "}") if ($pAny); |
|
&I(\$c, "{ .mmi") if ($pAny); |
|
&I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); |
|
&I(\$c, "add T[%u] = SI[%u], SJ[%u]", |
|
$i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); |
|
&I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); |
|
&I(\$c, "}") if ($pAny); |
|
&STOP(\$c); |
|
|
|
# Cycle 1 |
|
&I(\$c, "{ .mmi") if ($pAny); |
|
&I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); |
|
&I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); |
|
&I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); |
|
&I(\$c, "}") if ($pAny); |
|
&I(\$c, "{ .mmi") if ($pAny); |
|
&I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); |
|
&I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); |
|
&I(\$c, "xor Data[%u] = Data[%u], T[%u]", |
|
$i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); |
|
&I(\$c, "}") if ($pAny); |
|
&STOP(\$c); |
|
|
|
# Cycle 2 |
|
&I(\$c, "{ .mmi") if ($pAny); |
|
&I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); |
|
&I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); |
|
&I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", |
|
$iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); |
|
&I(\$c, "}") if ($pAny); |
|
&I(\$c, "{ .mmb") if ($pAny); |
|
&I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); |
|
&I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); |
|
&P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); |
|
&I(\$c, "}") if ($pAny); |
|
&STOP(\$c); |
|
|
|
&P(\$c, ".rc4Resume%u:", $label) if ($pByp); |
|
if ($byte_num == 0 && $iteration >= $phases) { |
|
&I(\$c, "st8 [OutPtr] = OutWord[%u], 8", |
|
$iw1 % $NOutWord) if ($p & $pOut); |
|
if ($iteration == (1 + $unroll_count) * $phases - 1) { |
|
if ($unroll_count == 6) { |
|
&I(\$c, "mov OutWord[%u] = OutWord[%u]", |
|
$iw1 % $NOutWord, $iw0 % $NOutWord); |
|
} |
|
&I(\$c, "lfetch.nt1 [InPrefetch], %u", |
|
$unroll_count * $phases); |
|
&I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", |
|
$unroll_count * $phases); |
|
&I(\$c, "br.cloop.sptk.few .rc4Loop"); |
|
} |
|
} |
|
|
|
if ($pByp) { |
|
&P(\$bypass, ".rc4Bypass%u:", $label); |
|
&I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); |
|
&I(\$bypass, "nop 0"); |
|
&I(\$bypass, "nop 0"); |
|
&I(\$bypass, ";;"); |
|
&I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); |
|
&I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); |
|
&I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); |
|
&I(\$bypass, ";;"); |
|
} |
|
} |
|
|
|
$code=<<___; |
|
.ident \"rc4-ia64.s, version 3.0\" |
|
.ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" |
|
|
|
#define LCSave r8 |
|
#define PRSave r9 |
|
|
|
/* Inputs become invalid once rotation begins! */ |
|
|
|
#define StateTable in0 |
|
#define DataLen in1 |
|
#define InputBuffer in2 |
|
#define OutputBuffer in3 |
|
|
|
#define KTable r14 |
|
#define J r15 |
|
#define InPtr r16 |
|
#define OutPtr r17 |
|
#define InPrefetch r18 |
|
#define OutPrefetch r19 |
|
#define One r20 |
|
#define LoopCount r21 |
|
#define Remainder r22 |
|
#define IFinal r23 |
|
#define EndPtr r24 |
|
|
|
#define tmp0 r25 |
|
#define tmp1 r26 |
|
|
|
#define pBypass p6 |
|
#define pDone p7 |
|
#define pSmall p8 |
|
#define pAligned p9 |
|
#define pUnaligned p10 |
|
|
|
#define pComputeI pPhase[0] |
|
#define pComputeJ pPhase[1] |
|
#define pComputeT pPhase[2] |
|
#define pOutput pPhase[3] |
|
|
|
#define RetVal r8 |
|
#define L_OK p7 |
|
#define L_NOK p8 |
|
|
|
#define _NINPUTS 4 |
|
#define _NOUTPUT 0 |
|
|
|
#define _NROTATE 24 |
|
#define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) |
|
|
|
#ifndef SZ |
|
# define SZ 4 // this must be set to sizeof(RC4_INT) |
|
#endif |
|
|
|
#if SZ == 1 |
|
# define LKEY ld1 |
|
# define SKEY st1 |
|
# define KEYADDR(dst, i) add dst = i, KTable |
|
#elif SZ == 2 |
|
# define LKEY ld2 |
|
# define SKEY st2 |
|
# define KEYADDR(dst, i) shladd dst = i, 1, KTable |
|
#elif SZ == 4 |
|
# define LKEY ld4 |
|
# define SKEY st4 |
|
# define KEYADDR(dst, i) shladd dst = i, 2, KTable |
|
#else |
|
# define LKEY ld8 |
|
# define SKEY st8 |
|
# define KEYADDR(dst, i) shladd dst = i, 3, KTable |
|
#endif |
|
|
|
#if defined(_HPUX_SOURCE) && !defined(_LP64) |
|
# define ADDP addp4 |
|
#else |
|
# define ADDP add |
|
#endif |
|
|
|
/* Define a macro for the bit number of the n-th byte: */ |
|
|
|
#if defined(_HPUX_SOURCE) || defined(B_ENDIAN) |
|
# define HOST_IS_BIG_ENDIAN |
|
# define BYTE_POS(n) (56 - (8 * (n))) |
|
#else |
|
# define BYTE_POS(n) (8 * (n)) |
|
#endif |
|
|
|
/* |
|
We must perform the first phase of the pipeline explicitly since |
|
we will always load from the stable the first time. The br.cexit |
|
will never be taken since regardless of the number of bytes because |
|
the epilogue count is 4. |
|
*/ |
|
/* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX |
|
assembler failed on original macro with syntax error. <appro> */ |
|
#define MODSCHED_RC4_PROLOGUE \\ |
|
{ \\ |
|
ld1 Data[0] = [InPtr], 1; \\ |
|
add IFinal = 1, I[1]; \\ |
|
KEYADDR(IPr[0], I[1]); \\ |
|
} ;; \\ |
|
{ \\ |
|
LKEY SI[0] = [IPr[0]]; \\ |
|
mov pr.rot = 0x10000; \\ |
|
mov ar.ec = 4; \\ |
|
} ;; \\ |
|
{ \\ |
|
add J = J, SI[0]; \\ |
|
zxt1 I[0] = IFinal; \\ |
|
br.cexit.spnt.few .+16; /* never taken */ \\ |
|
} ;; |
|
#define MODSCHED_RC4_LOOP(label) \\ |
|
label: \\ |
|
{ .mmi; \\ |
|
(pComputeI) ld1 Data[0] = [InPtr], 1; \\ |
|
(pComputeI) add IFinal = 1, I[1]; \\ |
|
(pComputeJ) zxt1 J = J; \\ |
|
}{ .mmi; \\ |
|
(pOutput) LKEY T[1] = [T[1]]; \\ |
|
(pComputeT) add T[0] = SI[2], SJ[1]; \\ |
|
(pComputeI) KEYADDR(IPr[0], I[1]); \\ |
|
} ;; \\ |
|
{ .mmi; \\ |
|
(pComputeT) SKEY [IPr[2]] = SJ[1]; \\ |
|
(pComputeT) SKEY [JP[1]] = SI[2]; \\ |
|
(pComputeT) zxt1 T[0] = T[0]; \\ |
|
}{ .mmi; \\ |
|
(pComputeI) LKEY SI[0] = [IPr[0]]; \\ |
|
(pComputeJ) KEYADDR(JP[0], J); \\ |
|
(pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ |
|
} ;; \\ |
|
{ .mmi; \\ |
|
(pComputeJ) LKEY SJ[0] = [JP[0]]; \\ |
|
(pOutput) xor Data[3] = Data[3], T[1]; \\ |
|
nop 0x0; \\ |
|
}{ .mmi; \\ |
|
(pComputeT) KEYADDR(T[0], T[0]); \\ |
|
(pBypass) mov SI[0] = SI[1]; \\ |
|
(pComputeI) zxt1 I[0] = IFinal; \\ |
|
} ;; \\ |
|
{ .mmb; \\ |
|
(pOutput) st1 [OutPtr] = Data[3], 1; \\ |
|
(pComputeI) add J = J, SI[0]; \\ |
|
br.ctop.sptk.few label; \\ |
|
} ;; |
|
|
|
.text |
|
|
|
.align 32 |
|
|
|
.type RC4, \@function |
|
.global RC4 |
|
|
|
.proc RC4 |
|
.prologue |
|
|
|
RC4: |
|
{ |
|
.mmi |
|
alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE |
|
|
|
.rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ |
|
OutWord[2] |
|
.rotp pPhase[4] |
|
|
|
ADDP InPrefetch = 0, InputBuffer |
|
ADDP KTable = 0, StateTable |
|
} |
|
{ |
|
.mmi |
|
ADDP InPtr = 0, InputBuffer |
|
ADDP OutPtr = 0, OutputBuffer |
|
mov RetVal = r0 |
|
} |
|
;; |
|
{ |
|
.mmi |
|
lfetch.nt1 [InPrefetch], 0x80 |
|
ADDP OutPrefetch = 0, OutputBuffer |
|
} |
|
{ // Return 0 if the input length is nonsensical |
|
.mib |
|
ADDP StateTable = 0, StateTable |
|
cmp.ge.unc L_NOK, L_OK = r0, DataLen |
|
(L_NOK) br.ret.sptk.few rp |
|
} |
|
;; |
|
{ |
|
.mib |
|
cmp.eq.or L_NOK, L_OK = r0, InPtr |
|
cmp.eq.or L_NOK, L_OK = r0, OutPtr |
|
nop 0x0 |
|
} |
|
{ |
|
.mib |
|
cmp.eq.or L_NOK, L_OK = r0, StateTable |
|
nop 0x0 |
|
(L_NOK) br.ret.sptk.few rp |
|
} |
|
;; |
|
LKEY I[1] = [KTable], SZ |
|
/* Prefetch the state-table. It contains 256 elements of size SZ */ |
|
|
|
#if SZ == 1 |
|
ADDP tmp0 = 1*128, StateTable |
|
#elif SZ == 2 |
|
ADDP tmp0 = 3*128, StateTable |
|
ADDP tmp1 = 2*128, StateTable |
|
#elif SZ == 4 |
|
ADDP tmp0 = 7*128, StateTable |
|
ADDP tmp1 = 6*128, StateTable |
|
#elif SZ == 8 |
|
ADDP tmp0 = 15*128, StateTable |
|
ADDP tmp1 = 14*128, StateTable |
|
#endif |
|
;; |
|
#if SZ >= 8 |
|
lfetch.fault.nt1 [tmp0], -256 // 15 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
lfetch.fault.nt1 [tmp0], -256 // 13 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
lfetch.fault.nt1 [tmp0], -256 // 11 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
lfetch.fault.nt1 [tmp0], -256 // 9 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
#endif |
|
#if SZ >= 4 |
|
lfetch.fault.nt1 [tmp0], -256 // 7 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
lfetch.fault.nt1 [tmp0], -256 // 5 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
#endif |
|
#if SZ >= 2 |
|
lfetch.fault.nt1 [tmp0], -256 // 3 |
|
lfetch.fault.nt1 [tmp1], -256;; |
|
#endif |
|
{ |
|
.mii |
|
lfetch.fault.nt1 [tmp0] // 1 |
|
add I[1]=1,I[1];; |
|
zxt1 I[1]=I[1] |
|
} |
|
{ |
|
.mmi |
|
lfetch.nt1 [InPrefetch], 0x80 |
|
lfetch.excl.nt1 [OutPrefetch], 0x80 |
|
.save pr, PRSave |
|
mov PRSave = pr |
|
} ;; |
|
{ |
|
.mmi |
|
lfetch.excl.nt1 [OutPrefetch], 0x80 |
|
LKEY J = [KTable], SZ |
|
ADDP EndPtr = DataLen, InPtr |
|
} ;; |
|
{ |
|
.mmi |
|
ADDP EndPtr = -1, EndPtr // Make it point to |
|
// last data byte. |
|
mov One = 1 |
|
.save ar.lc, LCSave |
|
mov LCSave = ar.lc |
|
.body |
|
} ;; |
|
{ |
|
.mmb |
|
sub Remainder = 0, OutPtr |
|
cmp.gtu pSmall, p0 = $threshold, DataLen |
|
(pSmall) br.cond.dpnt .rc4Remainder // Data too small for |
|
// big loop. |
|
} ;; |
|
{ |
|
.mmi |
|
and Remainder = 0x7, Remainder |
|
;; |
|
cmp.eq pAligned, pUnaligned = Remainder, r0 |
|
nop 0x0 |
|
} ;; |
|
{ |
|
.mmb |
|
.pred.rel "mutex",pUnaligned,pAligned |
|
(pUnaligned) add Remainder = -1, Remainder |
|
(pAligned) sub Remainder = EndPtr, InPtr |
|
(pAligned) br.cond.dptk.many .rc4Aligned |
|
} ;; |
|
{ |
|
.mmi |
|
nop 0x0 |
|
nop 0x0 |
|
mov.i ar.lc = Remainder |
|
} |
|
|
|
/* Do the initial few bytes via the compact, modulo-scheduled loop |
|
until the output pointer is 8-byte-aligned. */ |
|
|
|
MODSCHED_RC4_PROLOGUE |
|
MODSCHED_RC4_LOOP(.RC4AlignLoop) |
|
|
|
{ |
|
.mib |
|
sub Remainder = EndPtr, InPtr |
|
zxt1 IFinal = IFinal |
|
clrrrb // Clear CFM.rrb.pr so |
|
;; // next "mov pr.rot = N" |
|
// does the right thing. |
|
} |
|
{ |
|
.mmi |
|
mov I[1] = IFinal |
|
nop 0x0 |
|
nop 0x0 |
|
} ;; |
|
|
|
|
|
.rc4Aligned: |
|
|
|
/* |
|
Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) |
|
*/ |
|
|
|
{ |
|
.mlx |
|
add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder |
|
movl Remainder = 0xaaaaaaaaaaaaaaab |
|
} ;; |
|
{ |
|
.mmi |
|
setf.sig f6 = LoopCount // M2, M3 6 cyc |
|
setf.sig f7 = Remainder // M2, M3 6 cyc |
|
nop 0x0 |
|
} ;; |
|
{ |
|
.mfb |
|
nop 0x0 |
|
xmpy.hu f6 = f6, f7 |
|
nop 0x0 |
|
} ;; |
|
{ |
|
.mmi |
|
getf.sig LoopCount = f6;; // M2 5 cyc |
|
nop 0x0 |
|
shr.u LoopCount = LoopCount, 4 |
|
} ;; |
|
{ |
|
.mmi |
|
nop 0x0 |
|
nop 0x0 |
|
mov.i ar.lc = LoopCount |
|
} ;; |
|
|
|
/* Now comes the unrolled loop: */ |
|
|
|
.rc4Prologue: |
|
___ |
|
|
|
$iteration = 0; |
|
|
|
# Generate the prologue: |
|
$predicates = 1; |
|
for ($i = 0; $i < $phases; ++$i) { |
|
&emit_body (\$code, \$bypass, $iteration++, $predicates); |
|
$predicates = ($predicates << 1) | 1; |
|
} |
|
|
|
$code.=<<___; |
|
.rc4Loop: |
|
___ |
|
|
|
# Generate the body: |
|
for ($i = 0; $i < $unroll_count*$phases; ++$i) { |
|
&emit_body (\$code, \$bypass, $iteration++, $predicates); |
|
} |
|
|
|
$code.=<<___; |
|
.rc4Epilogue: |
|
___ |
|
|
|
# Generate the epilogue: |
|
for ($i = 0; $i < $phases; ++$i) { |
|
$predicates <<= 1; |
|
&emit_body (\$code, \$bypass, $iteration++, $predicates); |
|
} |
|
|
|
$code.=<<___; |
|
{ |
|
.mmi |
|
lfetch.nt1 [EndPtr] // fetch line with last byte |
|
mov IFinal = I[1] |
|
nop 0x0 |
|
} |
|
|
|
.rc4Remainder: |
|
{ |
|
.mmi |
|
sub Remainder = EndPtr, InPtr // Calculate |
|
// # of bytes |
|
// left - 1 |
|
nop 0x0 |
|
nop 0x0 |
|
} ;; |
|
{ |
|
.mib |
|
cmp.eq pDone, p0 = -1, Remainder // done already? |
|
mov.i ar.lc = Remainder |
|
(pDone) br.cond.dptk.few .rc4Complete |
|
} |
|
|
|
/* Do the remaining bytes via the compact, modulo-scheduled loop */ |
|
|
|
MODSCHED_RC4_PROLOGUE |
|
MODSCHED_RC4_LOOP(.RC4RestLoop) |
|
|
|
.rc4Complete: |
|
{ |
|
.mmi |
|
add KTable = -SZ, KTable |
|
add IFinal = -1, IFinal |
|
mov ar.lc = LCSave |
|
} ;; |
|
{ |
|
.mii |
|
SKEY [KTable] = J,-SZ |
|
zxt1 IFinal = IFinal |
|
mov pr = PRSave, 0x1FFFF |
|
} ;; |
|
{ |
|
.mib |
|
SKEY [KTable] = IFinal |
|
add RetVal = 1, r0 |
|
br.ret.sptk.few rp |
|
} ;; |
|
___ |
|
|
|
# Last but not least, emit the code for the bypass-code of the unrolled loop: |
|
|
|
$code.=$bypass; |
|
|
|
$code.=<<___; |
|
.endp RC4 |
|
___ |
|
|
|
print $code;
|
|
|