You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1555 lines
44 KiB
1555 lines
44 KiB
.explicit |
|
.text |
|
.ident "ia64.S, Version 2.1" |
|
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" |
|
|
|
// |
|
// ==================================================================== |
|
// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
|
// project. |
|
// |
|
// Rights for redistribution and usage in source and binary forms are |
|
// granted according to the OpenSSL license. Warranty of any kind is |
|
// disclaimed. |
|
// ==================================================================== |
|
// |
|
// Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is |
|
// different from Itanium to this module viewpoint. Most notably, is it |
|
// "wider" than Itanium? Can you experience loop scalability as |
|
// discussed in commentary sections? Not really:-( Itanium2 has 6 |
|
// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to |
|
// spin twice as fast, as I need 8 IALU ports. Amount of floating point |
|
// ports is the same, i.e. 2, while I need 4. In other words, to this |
|
// module Itanium2 remains effectively as "wide" as Itanium. Yet it's |
|
// essentially different in respect to this module, and a re-tune was |
|
// required. Well, because some intruction latencies has changed. Most |
|
// noticeably those intensively used: |
|
// |
|
// Itanium Itanium2 |
|
// ldf8 9 6 L2 hit |
|
// ld8 2 1 L1 hit |
|
// getf 2 5 |
|
// xma[->getf] 7[+1] 4[+0] |
|
// add[->st8] 1[+1] 1[+0] |
|
// |
|
// What does it mean? You might ratiocinate that the original code |
|
// should run just faster... Because sum of latencies is smaller... |
|
// Wrong! Note that getf latency increased. This means that if a loop is |
|
// scheduled for lower latency (as they were), then it will suffer from |
|
// stall condition and the code will therefore turn anti-scalable, e.g. |
|
// original bn_mul_words spun at 5*n or 2.5 times slower than expected |
|
// on Itanium2! What to do? Reschedule loops for Itanium2? But then |
|
// Itanium would exhibit anti-scalability. So I've chosen to reschedule |
|
// for worst latency for every instruction aiming for best *all-round* |
|
// performance. |
|
|
|
// Q. How much faster does it get? |
|
// A. Here is the output from 'openssl speed rsa dsa' for vanilla |
|
// 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat |
|
// Linux 7.1 2.96-81): |
|
// |
|
// sign verify sign/s verify/s |
|
// rsa 512 bits 0.0036s 0.0003s 275.3 2999.2 |
|
// rsa 1024 bits 0.0203s 0.0011s 49.3 894.1 |
|
// rsa 2048 bits 0.1331s 0.0040s 7.5 250.9 |
|
// rsa 4096 bits 0.9270s 0.0147s 1.1 68.1 |
|
// sign verify sign/s verify/s |
|
// dsa 512 bits 0.0035s 0.0043s 288.3 234.8 |
|
// dsa 1024 bits 0.0111s 0.0135s 90.0 74.2 |
|
// |
|
// And here is similar output but for this assembler |
|
// implementation:-) |
|
// |
|
// sign verify sign/s verify/s |
|
// rsa 512 bits 0.0021s 0.0001s 549.4 9638.5 |
|
// rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1 |
|
// rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3 |
|
// rsa 4096 bits 0.1295s 0.0018s 7.7 561.5 |
|
// sign verify sign/s verify/s |
|
// dsa 512 bits 0.0012s 0.0013s 891.9 756.6 |
|
// dsa 1024 bits 0.0023s 0.0028s 440.4 376.2 |
|
// |
|
// Yes, you may argue that it's not fair comparison as it's |
|
// possible to craft the C implementation with BN_UMULT_HIGH |
|
// inline assembler macro. But of course! Here is the output |
|
// with the macro: |
|
// |
|
// sign verify sign/s verify/s |
|
// rsa 512 bits 0.0020s 0.0002s 495.0 6561.0 |
|
// rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7 |
|
// rsa 2048 bits 0.0519s 0.0015s 19.3 667.3 |
|
// rsa 4096 bits 0.3464s 0.0053s 2.9 187.7 |
|
// sign verify sign/s verify/s |
|
// dsa 512 bits 0.0016s 0.0020s 613.1 510.5 |
|
// dsa 1024 bits 0.0045s 0.0054s 221.0 183.9 |
|
// |
|
// My code is still way faster, huh:-) And I believe that even |
|
// higher performance can be achieved. Note that as keys get |
|
// longer, performance gain is larger. Why? According to the |
|
// profiler there is another player in the field, namely |
|
// BN_from_montgomery consuming larger and larger portion of CPU |
|
// time as keysize decreases. I therefore consider putting effort |
|
// to assembler implementation of the following routine: |
|
// |
|
// void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0) |
|
// { |
|
// int i,j; |
|
// BN_ULONG v; |
|
// |
|
// for (i=0; i<nl; i++) |
|
// { |
|
// v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); |
|
// nrp++; |
|
// rp++; |
|
// if (((nrp[-1]+=v)&BN_MASK2) < v) |
|
// for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ; |
|
// } |
|
// } |
|
// |
|
// It might as well be beneficial to implement even combaX |
|
// variants, as it appears as it can literally unleash the |
|
// performance (see comment section to bn_mul_comba8 below). |
|
// |
|
// And finally for your reference the output for 0.9.6a compiled |
|
// with SGIcc version 0.01.0-12 (keep in mind that for the moment |
|
// of this writing it's not possible to convince SGIcc to use |
|
// BN_UMULT_HIGH inline assembler macro, yet the code is fast, |
|
// i.e. for a compiler generated one:-): |
|
// |
|
// sign verify sign/s verify/s |
|
// rsa 512 bits 0.0022s 0.0002s 452.7 5894.3 |
|
// rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9 |
|
// rsa 2048 bits 0.0578s 0.0017s 17.3 600.2 |
|
// rsa 4096 bits 0.3838s 0.0061s 2.6 164.5 |
|
// sign verify sign/s verify/s |
|
// dsa 512 bits 0.0018s 0.0022s 547.3 459.6 |
|
// dsa 1024 bits 0.0051s 0.0062s 196.6 161.3 |
|
// |
|
// Oh! Benchmarks were performed on 733MHz Lion-class Itanium |
|
// system running Redhat Linux 7.1 (very special thanks to Ray |
|
// McCaffity of Williams Communications for providing an account). |
|
// |
|
// Q. What's the heck with 'rum 1<<5' at the end of every function? |
|
// A. Well, by clearing the "upper FP registers written" bit of the |
|
// User Mask I want to excuse the kernel from preserving upper |
|
// (f32-f128) FP register bank over process context switch, thus |
|
// minimizing bus bandwidth consumption during the switch (i.e. |
|
// after PKI opration completes and the program is off doing |
|
// something else like bulk symmetric encryption). Having said |
|
// this, I also want to point out that it might be good idea |
|
// to compile the whole toolkit (as well as majority of the |
|
// programs for that matter) with -mfixed-range=f32-f127 command |
|
// line option. No, it doesn't prevent the compiler from writing |
|
// to upper bank, but at least discourages to do so. If you don't |
|
// like the idea you have the option to compile the module with |
|
// -Drum=nop.m in command line. |
|
// |
|
|
|
#if defined(_HPUX_SOURCE) && !defined(_LP64) |
|
#define ADDP addp4 |
|
#else |
|
#define ADDP add |
|
#endif |
|
|
|
#if 1 |
|
// |
|
// bn_[add|sub]_words routines. |
|
// |
|
// Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the |
|
// data reside in L1 cache, i.e. 2 ticks away). It's possible to |
|
// compress the epilogue and get down to 2*n+6, but at the cost of |
|
// scalability (the neat feature of this implementation is that it |
|
// shall automagically spin in n+5 on "wider" IA-64 implementations:-) |
|
// I consider that the epilogue is short enough as it is to trade tiny |
|
// performance loss on Itanium for scalability. |
|
// |
|
// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) |
|
// |
|
.global bn_add_words# |
|
.proc bn_add_words# |
|
.align 64 |
|
.skip 32 // makes the loop body aligned at 64-byte boundary |
|
bn_add_words: |
|
.prologue |
|
.save ar.pfs,r2 |
|
{ .mii; alloc r2=ar.pfs,4,12,0,16 |
|
cmp4.le p6,p0=r35,r0 };; |
|
{ .mfb; mov r8=r0 // return value |
|
(p6) br.ret.spnt.many b0 };; |
|
|
|
{ .mib; sub r10=r35,r0,1 |
|
.save ar.lc,r3 |
|
mov r3=ar.lc |
|
brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16 |
|
} |
|
{ .mib; ADDP r14=0,r32 // rp |
|
.save pr,r9 |
|
mov r9=pr };; |
|
.body |
|
{ .mii; ADDP r15=0,r33 // ap |
|
mov ar.lc=r10 |
|
mov ar.ec=6 } |
|
{ .mib; ADDP r16=0,r34 // bp |
|
mov pr.rot=1<<16 };; |
|
|
|
.L_bn_add_words_ctop: |
|
{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) |
|
(p18) add r39=r37,r34 |
|
(p19) cmp.ltu.unc p56,p0=r40,r38 } |
|
{ .mfb; (p0) nop.m 0x0 |
|
(p0) nop.f 0x0 |
|
(p0) nop.b 0x0 } |
|
{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) |
|
(p58) cmp.eq.or p57,p0=-1,r41 // (p20) |
|
(p58) add r41=1,r41 } // (p20) |
|
{ .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r |
|
(p0) nop.f 0x0 |
|
br.ctop.sptk .L_bn_add_words_ctop };; |
|
.L_bn_add_words_cend: |
|
|
|
{ .mii; |
|
(p59) add r8=1,r8 // return value |
|
mov pr=r9,0x1ffff |
|
mov ar.lc=r3 } |
|
{ .mbb; nop.b 0x0 |
|
br.ret.sptk.many b0 };; |
|
.endp bn_add_words# |
|
|
|
// |
|
// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) |
|
// |
|
.global bn_sub_words# |
|
.proc bn_sub_words# |
|
.align 64 |
|
.skip 32 // makes the loop body aligned at 64-byte boundary |
|
bn_sub_words: |
|
.prologue |
|
.save ar.pfs,r2 |
|
{ .mii; alloc r2=ar.pfs,4,12,0,16 |
|
cmp4.le p6,p0=r35,r0 };; |
|
{ .mfb; mov r8=r0 // return value |
|
(p6) br.ret.spnt.many b0 };; |
|
|
|
{ .mib; sub r10=r35,r0,1 |
|
.save ar.lc,r3 |
|
mov r3=ar.lc |
|
brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16 |
|
} |
|
{ .mib; ADDP r14=0,r32 // rp |
|
.save pr,r9 |
|
mov r9=pr };; |
|
.body |
|
{ .mii; ADDP r15=0,r33 // ap |
|
mov ar.lc=r10 |
|
mov ar.ec=6 } |
|
{ .mib; ADDP r16=0,r34 // bp |
|
mov pr.rot=1<<16 };; |
|
|
|
.L_bn_sub_words_ctop: |
|
{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) |
|
(p18) sub r39=r37,r34 |
|
(p19) cmp.gtu.unc p56,p0=r40,r38 } |
|
{ .mfb; (p0) nop.m 0x0 |
|
(p0) nop.f 0x0 |
|
(p0) nop.b 0x0 } |
|
{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) |
|
(p58) cmp.eq.or p57,p0=0,r41 // (p20) |
|
(p58) add r41=-1,r41 } // (p20) |
|
{ .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r |
|
(p0) nop.b 0x0 |
|
br.ctop.sptk .L_bn_sub_words_ctop };; |
|
.L_bn_sub_words_cend: |
|
|
|
{ .mii; |
|
(p59) add r8=1,r8 // return value |
|
mov pr=r9,0x1ffff |
|
mov ar.lc=r3 } |
|
{ .mbb; nop.b 0x0 |
|
br.ret.sptk.many b0 };; |
|
.endp bn_sub_words# |
|
#endif |
|
|
|
#if 0 |
|
#define XMA_TEMPTATION |
|
#endif |
|
|
|
#if 1 |
|
// |
|
// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) |
|
// |
|
.global bn_mul_words# |
|
.proc bn_mul_words# |
|
.align 64 |
|
.skip 32 // makes the loop body aligned at 64-byte boundary |
|
bn_mul_words: |
|
.prologue |
|
.save ar.pfs,r2 |
|
#ifdef XMA_TEMPTATION |
|
{ .mfi; alloc r2=ar.pfs,4,0,0,0 };; |
|
#else |
|
{ .mfi; alloc r2=ar.pfs,4,12,0,16 };; |
|
#endif |
|
{ .mib; mov r8=r0 // return value |
|
cmp4.le p6,p0=r34,r0 |
|
(p6) br.ret.spnt.many b0 };; |
|
|
|
{ .mii; sub r10=r34,r0,1 |
|
.save ar.lc,r3 |
|
mov r3=ar.lc |
|
.save pr,r9 |
|
mov r9=pr };; |
|
|
|
.body |
|
{ .mib; setf.sig f8=r35 // w |
|
mov pr.rot=0x800001<<16 |
|
// ------^----- serves as (p50) at first (p27) |
|
brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16 |
|
} |
|
|
|
#ifndef XMA_TEMPTATION |
|
|
|
{ .mmi; ADDP r14=0,r32 // rp |
|
ADDP r15=0,r33 // ap |
|
mov ar.lc=r10 } |
|
{ .mmi; mov r40=0 // serves as r35 at first (p27) |
|
mov ar.ec=13 };; |
|
|
|
// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium |
|
// L2 cache (i.e. 9 ticks away) as floating point load/store instructions |
|
// bypass L1 cache and L2 latency is actually best-case scenario for |
|
// ldf8. The loop is not scalable and shall run in 2*(n+12) even on |
|
// "wider" IA-64 implementations. It's a trade-off here. n+24 loop |
|
// would give us ~5% in *overall* performance improvement on "wider" |
|
// IA-64, but would hurt Itanium for about same because of longer |
|
// epilogue. As it's a matter of few percents in either case I've |
|
// chosen to trade the scalability for development time (you can see |
|
// this very instruction sequence in bn_mul_add_words loop which in |
|
// turn is scalable). |
|
.L_bn_mul_words_ctop: |
|
{ .mfi; (p25) getf.sig r36=f52 // low |
|
(p21) xmpy.lu f48=f37,f8 |
|
(p28) cmp.ltu p54,p50=r41,r39 } |
|
{ .mfi; (p16) ldf8 f32=[r15],8 |
|
(p21) xmpy.hu f40=f37,f8 |
|
(p0) nop.i 0x0 };; |
|
{ .mii; (p25) getf.sig r32=f44 // high |
|
.pred.rel "mutex",p50,p54 |
|
(p50) add r40=r38,r35 // (p27) |
|
(p54) add r40=r38,r35,1 } // (p27) |
|
{ .mfb; (p28) st8 [r14]=r41,8 |
|
(p0) nop.f 0x0 |
|
br.ctop.sptk .L_bn_mul_words_ctop };; |
|
.L_bn_mul_words_cend: |
|
|
|
{ .mii; nop.m 0x0 |
|
.pred.rel "mutex",p51,p55 |
|
(p51) add r8=r36,r0 |
|
(p55) add r8=r36,r0,1 } |
|
{ .mfb; nop.m 0x0 |
|
nop.f 0x0 |
|
nop.b 0x0 } |
|
|
|
#else // XMA_TEMPTATION |
|
|
|
setf.sig f37=r0 // serves as carry at (p18) tick |
|
mov ar.lc=r10 |
|
mov ar.ec=5;; |
|
|
|
// Most of you examining this code very likely wonder why in the name |
|
// of Intel the following loop is commented out? Indeed, it looks so |
|
// neat that you find it hard to believe that it's something wrong |
|
// with it, right? The catch is that every iteration depends on the |
|
// result from previous one and the latter isn't available instantly. |
|
// The loop therefore spins at the latency of xma minus 1, or in other |
|
// words at 6*(n+4) ticks:-( Compare to the "production" loop above |
|
// that runs in 2*(n+11) where the low latency problem is worked around |
|
// by moving the dependency to one-tick latent interger ALU. Note that |
|
// "distance" between ldf8 and xma is not latency of ldf8, but the |
|
// *difference* between xma and ldf8 latencies. |
|
.L_bn_mul_words_ctop: |
|
{ .mfi; (p16) ldf8 f32=[r33],8 |
|
(p18) xma.hu f38=f34,f8,f39 } |
|
{ .mfb; (p20) stf8 [r32]=f37,8 |
|
(p18) xma.lu f35=f34,f8,f39 |
|
br.ctop.sptk .L_bn_mul_words_ctop };; |
|
.L_bn_mul_words_cend: |
|
|
|
getf.sig r8=f41 // the return value |
|
|
|
#endif // XMA_TEMPTATION |
|
|
|
{ .mii; nop.m 0x0 |
|
mov pr=r9,0x1ffff |
|
mov ar.lc=r3 } |
|
{ .mfb; rum 1<<5 // clear um.mfh |
|
nop.f 0x0 |
|
br.ret.sptk.many b0 };; |
|
.endp bn_mul_words# |
|
#endif |
|
|
|
#if 1 |
|
// |
|
// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) |
|
// |
|
.global bn_mul_add_words# |
|
.proc bn_mul_add_words# |
|
.align 64 |
|
.skip 48 // makes the loop body aligned at 64-byte boundary |
|
bn_mul_add_words: |
|
.prologue |
|
.save ar.pfs,r2 |
|
{ .mmi; alloc r2=ar.pfs,4,4,0,8 |
|
cmp4.le p6,p0=r34,r0 |
|
.save ar.lc,r3 |
|
mov r3=ar.lc };; |
|
{ .mib; mov r8=r0 // return value |
|
sub r10=r34,r0,1 |
|
(p6) br.ret.spnt.many b0 };; |
|
|
|
{ .mib; setf.sig f8=r35 // w |
|
.save pr,r9 |
|
mov r9=pr |
|
brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16 |
|
} |
|
.body |
|
{ .mmi; ADDP r14=0,r32 // rp |
|
ADDP r15=0,r33 // ap |
|
mov ar.lc=r10 } |
|
{ .mii; ADDP r16=0,r32 // rp copy |
|
mov pr.rot=0x2001<<16 |
|
// ------^----- serves as (p40) at first (p27) |
|
mov ar.ec=11 };; |
|
|
|
// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on |
|
// Itanium 2. Yes, unlike previous versions it scales:-) Previous |
|
// version was performing *all* additions in IALU and was starving |
|
// for those even on Itanium 2. In this version one addition is |
|
// moved to FPU and is folded with multiplication. This is at cost |
|
// of propogating the result from previous call to this subroutine |
|
// to L2 cache... In other words negligible even for shorter keys. |
|
// *Overall* performance improvement [over previous version] varies |
|
// from 11 to 22 percent depending on key length. |
|
.L_bn_mul_add_words_ctop: |
|
.pred.rel "mutex",p40,p42 |
|
{ .mfi; (p23) getf.sig r36=f45 // low |
|
(p20) xma.lu f42=f36,f8,f50 // low |
|
(p40) add r39=r39,r35 } // (p27) |
|
{ .mfi; (p16) ldf8 f32=[r15],8 // *(ap++) |
|
(p20) xma.hu f36=f36,f8,f50 // high |
|
(p42) add r39=r39,r35,1 };; // (p27) |
|
{ .mmi; (p24) getf.sig r32=f40 // high |
|
(p16) ldf8 f46=[r16],8 // *(rp1++) |
|
(p40) cmp.ltu p41,p39=r39,r35 } // (p27) |
|
{ .mib; (p26) st8 [r14]=r39,8 // *(rp2++) |
|
(p42) cmp.leu p41,p39=r39,r35 // (p27) |
|
br.ctop.sptk .L_bn_mul_add_words_ctop};; |
|
.L_bn_mul_add_words_cend: |
|
|
|
{ .mmi; .pred.rel "mutex",p40,p42 |
|
(p40) add r8=r35,r0 |
|
(p42) add r8=r35,r0,1 |
|
mov pr=r9,0x1ffff } |
|
{ .mib; rum 1<<5 // clear um.mfh |
|
mov ar.lc=r3 |
|
br.ret.sptk.many b0 };; |
|
.endp bn_mul_add_words# |
|
#endif |
|
|
|
#if 1 |
|
// |
|
// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) |
|
// |
|
.global bn_sqr_words# |
|
.proc bn_sqr_words# |
|
.align 64 |
|
.skip 32 // makes the loop body aligned at 64-byte boundary |
|
bn_sqr_words: |
|
.prologue |
|
.save ar.pfs,r2 |
|
{ .mii; alloc r2=ar.pfs,3,0,0,0 |
|
sxt4 r34=r34 };; |
|
{ .mii; cmp.le p6,p0=r34,r0 |
|
mov r8=r0 } // return value |
|
{ .mfb; ADDP r32=0,r32 |
|
nop.f 0x0 |
|
(p6) br.ret.spnt.many b0 };; |
|
|
|
{ .mii; sub r10=r34,r0,1 |
|
.save ar.lc,r3 |
|
mov r3=ar.lc |
|
.save pr,r9 |
|
mov r9=pr };; |
|
|
|
.body |
|
{ .mib; ADDP r33=0,r33 |
|
mov pr.rot=1<<16 |
|
brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16 |
|
} |
|
{ .mii; add r34=8,r32 |
|
mov ar.lc=r10 |
|
mov ar.ec=18 };; |
|
|
|
// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's |
|
// possible to compress the epilogue (I'm getting tired to write this |
|
// comment over and over) and get down to 2*n+16 at the cost of |
|
// scalability. The decision will very likely be reconsidered after the |
|
// benchmark program is profiled. I.e. if perfomance gain on Itanium |
|
// will appear larger than loss on "wider" IA-64, then the loop should |
|
// be explicitely split and the epilogue compressed. |
|
.L_bn_sqr_words_ctop: |
|
{ .mfi; (p16) ldf8 f32=[r33],8 |
|
(p25) xmpy.lu f42=f41,f41 |
|
(p0) nop.i 0x0 } |
|
{ .mib; (p33) stf8 [r32]=f50,16 |
|
(p0) nop.i 0x0 |
|
(p0) nop.b 0x0 } |
|
{ .mfi; (p0) nop.m 0x0 |
|
(p25) xmpy.hu f52=f41,f41 |
|
(p0) nop.i 0x0 } |
|
{ .mib; (p33) stf8 [r34]=f60,16 |
|
(p0) nop.i 0x0 |
|
br.ctop.sptk .L_bn_sqr_words_ctop };; |
|
.L_bn_sqr_words_cend: |
|
|
|
{ .mii; nop.m 0x0 |
|
mov pr=r9,0x1ffff |
|
mov ar.lc=r3 } |
|
{ .mfb; rum 1<<5 // clear um.mfh |
|
nop.f 0x0 |
|
br.ret.sptk.many b0 };; |
|
.endp bn_sqr_words# |
|
#endif |
|
|
|
#if 1 |
|
// Apparently we win nothing by implementing special bn_sqr_comba8. |
|
// Yes, it is possible to reduce the number of multiplications by |
|
// almost factor of two, but then the amount of additions would |
|
// increase by factor of two (as we would have to perform those |
|
// otherwise performed by xma ourselves). Normally we would trade |
|
// anyway as multiplications are way more expensive, but not this |
|
// time... Multiplication kernel is fully pipelined and as we drain |
|
// one 128-bit multiplication result per clock cycle multiplications |
|
// are effectively as inexpensive as additions. Special implementation |
|
// might become of interest for "wider" IA-64 implementation as you'll |
|
// be able to get through the multiplication phase faster (there won't |
|
// be any stall issues as discussed in the commentary section below and |
|
// you therefore will be able to employ all 4 FP units)... But these |
|
// Itanium days it's simply too hard to justify the effort so I just |
|
// drop down to bn_mul_comba8 code:-) |
|
// |
|
// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) |
|
// |
|
.global bn_sqr_comba8# |
|
.proc bn_sqr_comba8# |
|
.align 64 |
|
bn_sqr_comba8: |
|
.prologue |
|
.save ar.pfs,r2 |
|
#if defined(_HPUX_SOURCE) && !defined(_LP64) |
|
{ .mii; alloc r2=ar.pfs,2,1,0,0 |
|
addp4 r33=0,r33 |
|
addp4 r32=0,r32 };; |
|
{ .mii; |
|
#else |
|
{ .mii; alloc r2=ar.pfs,2,1,0,0 |
|
#endif |
|
mov r34=r33 |
|
add r14=8,r33 };; |
|
.body |
|
{ .mii; add r17=8,r34 |
|
add r15=16,r33 |
|
add r18=16,r34 } |
|
{ .mfb; add r16=24,r33 |
|
br .L_cheat_entry_point8 };; |
|
.endp bn_sqr_comba8# |
|
#endif |
|
|
|
#if 1 |
|
// I've estimated this routine to run in ~120 ticks, but in reality |
|
// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra |
|
// cycles consumed for instructions fetch? Or did I misinterpret some |
|
// clause in Itanium µ-architecture manual? Comments are welcomed and |
|
// highly appreciated. |
|
// |
|
// On Itanium 2 it takes ~190 ticks. This is because of stalls on |
|
// result from getf.sig. I do nothing about it at this point for |
|
// reasons depicted below. |
|
// |
|
// However! It should be noted that even 160 ticks is darn good result |
|
// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the |
|
// C version (compiled with gcc with inline assembler). I really |
|
// kicked compiler's butt here, didn't I? Yeah! This brings us to the |
|
// following statement. It's damn shame that this routine isn't called |
|
// very often nowadays! According to the profiler most CPU time is |
|
// consumed by bn_mul_add_words called from BN_from_montgomery. In |
|
// order to estimate what we're missing, I've compared the performance |
|
// of this routine against "traditional" implementation, i.e. against |
|
// following routine: |
|
// |
|
// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
|
// { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); |
|
// r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); |
|
// r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); |
|
// r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); |
|
// r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); |
|
// r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); |
|
// r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); |
|
// r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); |
|
// } |
|
// |
|
// The one below is over 8 times faster than the one above:-( Even |
|
// more reasons to "combafy" bn_mul_add_mont... |
|
// |
|
// And yes, this routine really made me wish there were an optimizing |
|
// assembler! It also feels like it deserves a dedication. |
|
// |
|
// To my wife for being there and to my kids... |
|
// |
|
// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
|
// |
|
#define carry1 r14 |
|
#define carry2 r15 |
|
#define carry3 r34 |
|
.global bn_mul_comba8# |
|
.proc bn_mul_comba8# |
|
.align 64 |
|
bn_mul_comba8: |
|
.prologue |
|
.save ar.pfs,r2 |
|
#if defined(_HPUX_SOURCE) && !defined(_LP64) |
|
{ .mii; alloc r2=ar.pfs,3,0,0,0 |
|
addp4 r33=0,r33 |
|
addp4 r34=0,r34 };; |
|
{ .mii; addp4 r32=0,r32 |
|
#else |
|
{ .mii; alloc r2=ar.pfs,3,0,0,0 |
|
#endif |
|
add r14=8,r33 |
|
add r17=8,r34 } |
|
.body |
|
{ .mii; add r15=16,r33 |
|
add r18=16,r34 |
|
add r16=24,r33 } |
|
.L_cheat_entry_point8: |
|
{ .mmi; add r19=24,r34 |
|
|
|
ldf8 f32=[r33],32 };; |
|
|
|
{ .mmi; ldf8 f120=[r34],32 |
|
ldf8 f121=[r17],32 } |
|
{ .mmi; ldf8 f122=[r18],32 |
|
ldf8 f123=[r19],32 };; |
|
{ .mmi; ldf8 f124=[r34] |
|
ldf8 f125=[r17] } |
|
{ .mmi; ldf8 f126=[r18] |
|
ldf8 f127=[r19] } |
|
|
|
{ .mmi; ldf8 f33=[r14],32 |
|
ldf8 f34=[r15],32 } |
|
{ .mmi; ldf8 f35=[r16],32;; |
|
ldf8 f36=[r33] } |
|
{ .mmi; ldf8 f37=[r14] |
|
ldf8 f38=[r15] } |
|
{ .mfi; ldf8 f39=[r16] |
|
// -------\ Entering multiplier's heaven /------- |
|
// ------------\ /------------ |
|
// -----------------\ /----------------- |
|
// ----------------------\/---------------------- |
|
xma.hu f41=f32,f120,f0 } |
|
{ .mfi; xma.lu f40=f32,f120,f0 };; // (*) |
|
{ .mfi; xma.hu f51=f32,f121,f0 } |
|
{ .mfi; xma.lu f50=f32,f121,f0 };; |
|
{ .mfi; xma.hu f61=f32,f122,f0 } |
|
{ .mfi; xma.lu f60=f32,f122,f0 };; |
|
{ .mfi; xma.hu f71=f32,f123,f0 } |
|
{ .mfi; xma.lu f70=f32,f123,f0 };; |
|
{ .mfi; xma.hu f81=f32,f124,f0 } |
|
{ .mfi; xma.lu f80=f32,f124,f0 };; |
|
{ .mfi; xma.hu f91=f32,f125,f0 } |
|
{ .mfi; xma.lu f90=f32,f125,f0 };; |
|
{ .mfi; xma.hu f101=f32,f126,f0 } |
|
{ .mfi; xma.lu f100=f32,f126,f0 };; |
|
{ .mfi; xma.hu f111=f32,f127,f0 } |
|
{ .mfi; xma.lu f110=f32,f127,f0 };;// |
|
// (*) You can argue that splitting at every second bundle would |
|
// prevent "wider" IA-64 implementations from achieving the peak |
|
// performance. Well, not really... The catch is that if you |
|
// intend to keep 4 FP units busy by splitting at every fourth |
|
// bundle and thus perform these 16 multiplications in 4 ticks, |
|
// the first bundle *below* would stall because the result from |
|
// the first xma bundle *above* won't be available for another 3 |
|
// ticks (if not more, being an optimist, I assume that "wider" |
|
// implementation will have same latency:-). This stall will hold |
|
// you back and the performance would be as if every second bundle |
|
// were split *anyway*... |
|
{ .mfi; getf.sig r16=f40 |
|
xma.hu f42=f33,f120,f41 |
|
add r33=8,r32 } |
|
{ .mfi; xma.lu f41=f33,f120,f41 };; |
|
{ .mfi; getf.sig r24=f50 |
|
xma.hu f52=f33,f121,f51 } |
|
{ .mfi; xma.lu f51=f33,f121,f51 };; |
|
{ .mfi; st8 [r32]=r16,16 |
|
xma.hu f62=f33,f122,f61 } |
|
{ .mfi; xma.lu f61=f33,f122,f61 };; |
|
{ .mfi; xma.hu f72=f33,f123,f71 } |
|
{ .mfi; xma.lu f71=f33,f123,f71 };; |
|
{ .mfi; xma.hu f82=f33,f124,f81 } |
|
{ .mfi; xma.lu f81=f33,f124,f81 };; |
|
{ .mfi; xma.hu f92=f33,f125,f91 } |
|
{ .mfi; xma.lu f91=f33,f125,f91 };; |
|
{ .mfi; xma.hu f102=f33,f126,f101 } |
|
{ .mfi; xma.lu f101=f33,f126,f101 };; |
|
{ .mfi; xma.hu f112=f33,f127,f111 } |
|
{ .mfi; xma.lu f111=f33,f127,f111 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r25=f41 |
|
xma.hu f43=f34,f120,f42 } |
|
{ .mfi; xma.lu f42=f34,f120,f42 };; |
|
{ .mfi; getf.sig r16=f60 |
|
xma.hu f53=f34,f121,f52 } |
|
{ .mfi; xma.lu f52=f34,f121,f52 };; |
|
{ .mfi; getf.sig r17=f51 |
|
xma.hu f63=f34,f122,f62 |
|
add r25=r25,r24 } |
|
{ .mfi; xma.lu f62=f34,f122,f62 |
|
mov carry1=0 };; |
|
{ .mfi; cmp.ltu p6,p0=r25,r24 |
|
xma.hu f73=f34,f123,f72 } |
|
{ .mfi; xma.lu f72=f34,f123,f72 };; |
|
{ .mfi; st8 [r33]=r25,16 |
|
xma.hu f83=f34,f124,f82 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; xma.lu f82=f34,f124,f82 };; |
|
{ .mfi; xma.hu f93=f34,f125,f92 } |
|
{ .mfi; xma.lu f92=f34,f125,f92 };; |
|
{ .mfi; xma.hu f103=f34,f126,f102 } |
|
{ .mfi; xma.lu f102=f34,f126,f102 };; |
|
{ .mfi; xma.hu f113=f34,f127,f112 } |
|
{ .mfi; xma.lu f112=f34,f127,f112 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r18=f42 |
|
xma.hu f44=f35,f120,f43 |
|
add r17=r17,r16 } |
|
{ .mfi; xma.lu f43=f35,f120,f43 };; |
|
{ .mfi; getf.sig r24=f70 |
|
xma.hu f54=f35,f121,f53 } |
|
{ .mfi; mov carry2=0 |
|
xma.lu f53=f35,f121,f53 };; |
|
{ .mfi; getf.sig r25=f61 |
|
xma.hu f64=f35,f122,f63 |
|
cmp.ltu p7,p0=r17,r16 } |
|
{ .mfi; add r18=r18,r17 |
|
xma.lu f63=f35,f122,f63 };; |
|
{ .mfi; getf.sig r26=f52 |
|
xma.hu f74=f35,f123,f73 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r18,r17 |
|
xma.lu f73=f35,f123,f73 |
|
add r18=r18,carry1 };; |
|
{ .mfi; |
|
xma.hu f84=f35,f124,f83 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r18,carry1 |
|
xma.lu f83=f35,f124,f83 };; |
|
{ .mfi; st8 [r32]=r18,16 |
|
xma.hu f94=f35,f125,f93 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; xma.lu f93=f35,f125,f93 };; |
|
{ .mfi; xma.hu f104=f35,f126,f103 } |
|
{ .mfi; xma.lu f103=f35,f126,f103 };; |
|
{ .mfi; xma.hu f114=f35,f127,f113 } |
|
{ .mfi; mov carry1=0 |
|
xma.lu f113=f35,f127,f113 |
|
add r25=r25,r24 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r27=f43 |
|
xma.hu f45=f36,f120,f44 |
|
cmp.ltu p6,p0=r25,r24 } |
|
{ .mfi; xma.lu f44=f36,f120,f44 |
|
add r26=r26,r25 };; |
|
{ .mfi; getf.sig r16=f80 |
|
xma.hu f55=f36,f121,f54 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; xma.lu f54=f36,f121,f54 };; |
|
{ .mfi; getf.sig r17=f71 |
|
xma.hu f65=f36,f122,f64 |
|
cmp.ltu p6,p0=r26,r25 } |
|
{ .mfi; xma.lu f64=f36,f122,f64 |
|
add r27=r27,r26 };; |
|
{ .mfi; getf.sig r18=f62 |
|
xma.hu f75=f36,f123,f74 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; cmp.ltu p6,p0=r27,r26 |
|
xma.lu f74=f36,f123,f74 |
|
add r27=r27,carry2 };; |
|
{ .mfi; getf.sig r19=f53 |
|
xma.hu f85=f36,f124,f84 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; xma.lu f84=f36,f124,f84 |
|
cmp.ltu p6,p0=r27,carry2 };; |
|
{ .mfi; st8 [r33]=r27,16 |
|
xma.hu f95=f36,f125,f94 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; xma.lu f94=f36,f125,f94 };; |
|
{ .mfi; xma.hu f105=f36,f126,f104 } |
|
{ .mfi; mov carry2=0 |
|
xma.lu f104=f36,f126,f104 |
|
add r17=r17,r16 };; |
|
{ .mfi; xma.hu f115=f36,f127,f114 |
|
cmp.ltu p7,p0=r17,r16 } |
|
{ .mfi; xma.lu f114=f36,f127,f114 |
|
add r18=r18,r17 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r20=f44 |
|
xma.hu f46=f37,f120,f45 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r18,r17 |
|
xma.lu f45=f37,f120,f45 |
|
add r19=r19,r18 };; |
|
{ .mfi; getf.sig r24=f90 |
|
xma.hu f56=f37,f121,f55 } |
|
{ .mfi; xma.lu f55=f37,f121,f55 };; |
|
{ .mfi; getf.sig r25=f81 |
|
xma.hu f66=f37,f122,f65 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r19,r18 |
|
xma.lu f65=f37,f122,f65 |
|
add r20=r20,r19 };; |
|
{ .mfi; getf.sig r26=f72 |
|
xma.hu f76=f37,f123,f75 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r20,r19 |
|
xma.lu f75=f37,f123,f75 |
|
add r20=r20,carry1 };; |
|
{ .mfi; getf.sig r27=f63 |
|
xma.hu f86=f37,f124,f85 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; xma.lu f85=f37,f124,f85 |
|
cmp.ltu p7,p0=r20,carry1 };; |
|
{ .mfi; getf.sig r28=f54 |
|
xma.hu f96=f37,f125,f95 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; st8 [r32]=r20,16 |
|
xma.lu f95=f37,f125,f95 };; |
|
{ .mfi; xma.hu f106=f37,f126,f105 } |
|
{ .mfi; mov carry1=0 |
|
xma.lu f105=f37,f126,f105 |
|
add r25=r25,r24 };; |
|
{ .mfi; xma.hu f116=f37,f127,f115 |
|
cmp.ltu p6,p0=r25,r24 } |
|
{ .mfi; xma.lu f115=f37,f127,f115 |
|
add r26=r26,r25 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r29=f45 |
|
xma.hu f47=f38,f120,f46 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; cmp.ltu p6,p0=r26,r25 |
|
xma.lu f46=f38,f120,f46 |
|
add r27=r27,r26 };; |
|
{ .mfi; getf.sig r16=f100 |
|
xma.hu f57=f38,f121,f56 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; cmp.ltu p6,p0=r27,r26 |
|
xma.lu f56=f38,f121,f56 |
|
add r28=r28,r27 };; |
|
{ .mfi; getf.sig r17=f91 |
|
xma.hu f67=f38,f122,f66 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; cmp.ltu p6,p0=r28,r27 |
|
xma.lu f66=f38,f122,f66 |
|
add r29=r29,r28 };; |
|
{ .mfi; getf.sig r18=f82 |
|
xma.hu f77=f38,f123,f76 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; cmp.ltu p6,p0=r29,r28 |
|
xma.lu f76=f38,f123,f76 |
|
add r29=r29,carry2 };; |
|
{ .mfi; getf.sig r19=f73 |
|
xma.hu f87=f38,f124,f86 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; xma.lu f86=f38,f124,f86 |
|
cmp.ltu p6,p0=r29,carry2 };; |
|
{ .mfi; getf.sig r20=f64 |
|
xma.hu f97=f38,f125,f96 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; st8 [r33]=r29,16 |
|
xma.lu f96=f38,f125,f96 };; |
|
{ .mfi; getf.sig r21=f55 |
|
xma.hu f107=f38,f126,f106 } |
|
{ .mfi; mov carry2=0 |
|
xma.lu f106=f38,f126,f106 |
|
add r17=r17,r16 };; |
|
{ .mfi; xma.hu f117=f38,f127,f116 |
|
cmp.ltu p7,p0=r17,r16 } |
|
{ .mfi; xma.lu f116=f38,f127,f116 |
|
add r18=r18,r17 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r22=f46 |
|
xma.hu f48=f39,f120,f47 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r18,r17 |
|
xma.lu f47=f39,f120,f47 |
|
add r19=r19,r18 };; |
|
{ .mfi; getf.sig r24=f110 |
|
xma.hu f58=f39,f121,f57 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r19,r18 |
|
xma.lu f57=f39,f121,f57 |
|
add r20=r20,r19 };; |
|
{ .mfi; getf.sig r25=f101 |
|
xma.hu f68=f39,f122,f67 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r20,r19 |
|
xma.lu f67=f39,f122,f67 |
|
add r21=r21,r20 };; |
|
{ .mfi; getf.sig r26=f92 |
|
xma.hu f78=f39,f123,f77 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r21,r20 |
|
xma.lu f77=f39,f123,f77 |
|
add r22=r22,r21 };; |
|
{ .mfi; getf.sig r27=f83 |
|
xma.hu f88=f39,f124,f87 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; cmp.ltu p7,p0=r22,r21 |
|
xma.lu f87=f39,f124,f87 |
|
add r22=r22,carry1 };; |
|
{ .mfi; getf.sig r28=f74 |
|
xma.hu f98=f39,f125,f97 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; xma.lu f97=f39,f125,f97 |
|
cmp.ltu p7,p0=r22,carry1 };; |
|
{ .mfi; getf.sig r29=f65 |
|
xma.hu f108=f39,f126,f107 |
|
(p7) add carry2=1,carry2 } |
|
{ .mfi; st8 [r32]=r22,16 |
|
xma.lu f107=f39,f126,f107 };; |
|
{ .mfi; getf.sig r30=f56 |
|
xma.hu f118=f39,f127,f117 } |
|
{ .mfi; xma.lu f117=f39,f127,f117 };;// |
|
//-------------------------------------------------// |
|
// Leaving muliplier's heaven... Quite a ride, huh? |
|
|
|
{ .mii; getf.sig r31=f47 |
|
add r25=r25,r24 |
|
mov carry1=0 };; |
|
{ .mii; getf.sig r16=f111 |
|
cmp.ltu p6,p0=r25,r24 |
|
add r26=r26,r25 };; |
|
{ .mfb; getf.sig r17=f102 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,r25 |
|
add r27=r27,r26 };; |
|
{ .mfb; nop.m 0x0 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r27,r26 |
|
add r28=r28,r27 };; |
|
{ .mii; getf.sig r18=f93 |
|
add r17=r17,r16 |
|
mov carry3=0 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r28,r27 |
|
add r29=r29,r28 };; |
|
{ .mii; getf.sig r19=f84 |
|
cmp.ltu p7,p0=r17,r16 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r29,r28 |
|
add r30=r30,r29 };; |
|
{ .mii; getf.sig r20=f75 |
|
add r18=r18,r17 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r30,r29 |
|
add r31=r31,r30 };; |
|
{ .mfb; getf.sig r21=f66 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r18,r17 |
|
add r19=r19,r18 } |
|
{ .mfb; nop.m 0x0 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r31,r30 |
|
add r31=r31,carry2 };; |
|
{ .mfb; getf.sig r22=f57 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r19,r18 |
|
add r20=r20,r19 } |
|
{ .mfb; nop.m 0x0 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r31,carry2 };; |
|
{ .mfb; getf.sig r23=f48 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r20,r19 |
|
add r21=r21,r20 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 } |
|
{ .mfb; st8 [r33]=r31,16 };; |
|
|
|
{ .mfb; getf.sig r24=f112 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r21,r20 |
|
add r22=r22,r21 };; |
|
{ .mfb; getf.sig r25=f103 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r22,r21 |
|
add r23=r23,r22 };; |
|
{ .mfb; getf.sig r26=f94 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r23,r22 |
|
add r23=r23,carry1 };; |
|
{ .mfb; getf.sig r27=f85 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p8=r23,carry1};; |
|
{ .mii; getf.sig r28=f76 |
|
add r25=r25,r24 |
|
mov carry1=0 } |
|
{ .mii; st8 [r32]=r23,16 |
|
(p7) add carry2=1,carry3 |
|
(p8) add carry2=0,carry3 };; |
|
|
|
{ .mfb; nop.m 0x0 } |
|
{ .mii; getf.sig r29=f67 |
|
cmp.ltu p6,p0=r25,r24 |
|
add r26=r26,r25 };; |
|
{ .mfb; getf.sig r30=f58 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,r25 |
|
add r27=r27,r26 };; |
|
{ .mfb; getf.sig r16=f113 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r27,r26 |
|
add r28=r28,r27 };; |
|
{ .mfb; getf.sig r17=f104 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r28,r27 |
|
add r29=r29,r28 };; |
|
{ .mfb; getf.sig r18=f95 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r29,r28 |
|
add r30=r30,r29 };; |
|
{ .mii; getf.sig r19=f86 |
|
add r17=r17,r16 |
|
mov carry3=0 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r30,r29 |
|
add r30=r30,carry2 };; |
|
{ .mii; getf.sig r20=f77 |
|
cmp.ltu p7,p0=r17,r16 |
|
add r18=r18,r17 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r30,carry2 };; |
|
{ .mfb; getf.sig r21=f68 } |
|
{ .mii; st8 [r33]=r30,16 |
|
(p6) add carry1=1,carry1 };; |
|
|
|
{ .mfb; getf.sig r24=f114 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r18,r17 |
|
add r19=r19,r18 };; |
|
{ .mfb; getf.sig r25=f105 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r19,r18 |
|
add r20=r20,r19 };; |
|
{ .mfb; getf.sig r26=f96 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r20,r19 |
|
add r21=r21,r20 };; |
|
{ .mfb; getf.sig r27=f87 } |
|
{ .mii; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p0=r21,r20 |
|
add r21=r21,carry1 };; |
|
{ .mib; getf.sig r28=f78 |
|
add r25=r25,r24 } |
|
{ .mib; (p7) add carry3=1,carry3 |
|
cmp.ltu p7,p8=r21,carry1};; |
|
{ .mii; st8 [r32]=r21,16 |
|
(p7) add carry2=1,carry3 |
|
(p8) add carry2=0,carry3 } |
|
|
|
{ .mii; mov carry1=0 |
|
cmp.ltu p6,p0=r25,r24 |
|
add r26=r26,r25 };; |
|
{ .mfb; getf.sig r16=f115 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,r25 |
|
add r27=r27,r26 };; |
|
{ .mfb; getf.sig r17=f106 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r27,r26 |
|
add r28=r28,r27 };; |
|
{ .mfb; getf.sig r18=f97 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r28,r27 |
|
add r28=r28,carry2 };; |
|
{ .mib; getf.sig r19=f88 |
|
add r17=r17,r16 } |
|
{ .mib; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r28,carry2 };; |
|
{ .mii; st8 [r33]=r28,16 |
|
(p6) add carry1=1,carry1 } |
|
|
|
{ .mii; mov carry2=0 |
|
cmp.ltu p7,p0=r17,r16 |
|
add r18=r18,r17 };; |
|
{ .mfb; getf.sig r24=f116 } |
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r18,r17 |
|
add r19=r19,r18 };; |
|
{ .mfb; getf.sig r25=f107 } |
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r19,r18 |
|
add r19=r19,carry1 };; |
|
{ .mfb; getf.sig r26=f98 } |
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r19,carry1};; |
|
{ .mii; st8 [r32]=r19,16 |
|
(p7) add carry2=1,carry2 } |
|
|
|
{ .mfb; add r25=r25,r24 };; |
|
|
|
{ .mfb; getf.sig r16=f117 } |
|
{ .mii; mov carry1=0 |
|
cmp.ltu p6,p0=r25,r24 |
|
add r26=r26,r25 };; |
|
{ .mfb; getf.sig r17=f108 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,r25 |
|
add r26=r26,carry2 };; |
|
{ .mfb; nop.m 0x0 } |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,carry2 };; |
|
{ .mii; st8 [r33]=r26,16 |
|
(p6) add carry1=1,carry1 } |
|
|
|
{ .mfb; add r17=r17,r16 };; |
|
{ .mfb; getf.sig r24=f118 } |
|
{ .mii; mov carry2=0 |
|
cmp.ltu p7,p0=r17,r16 |
|
add r17=r17,carry1 };; |
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r17,carry1};; |
|
{ .mii; st8 [r32]=r17 |
|
(p7) add carry2=1,carry2 };; |
|
{ .mfb; add r24=r24,carry2 };; |
|
{ .mib; st8 [r33]=r24 } |
|
|
|
{ .mib; rum 1<<5 // clear um.mfh |
|
br.ret.sptk.many b0 };; |
|
.endp bn_mul_comba8# |
|
#undef carry3 |
|
#undef carry2 |
|
#undef carry1 |
|
#endif |
|
|
|
#if 1 |
|
// It's possible to make it faster (see comment to bn_sqr_comba8), but |
|
// I reckon it doesn't worth the effort. Basically because the routine |
|
// (actually both of them) practically never called... So I just play |
|
// same trick as with bn_sqr_comba8. |
|
// |
|
// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) |
|
// |
|
.global bn_sqr_comba4# |
|
.proc bn_sqr_comba4# |
|
.align 64 |
|
bn_sqr_comba4: |
|
.prologue |
|
.save ar.pfs,r2 |
|
#if defined(_HPUX_SOURCE) && !defined(_LP64) |
|
{ .mii; alloc r2=ar.pfs,2,1,0,0 |
|
addp4 r32=0,r32 |
|
addp4 r33=0,r33 };; |
|
{ .mii; |
|
#else |
|
{ .mii; alloc r2=ar.pfs,2,1,0,0 |
|
#endif |
|
mov r34=r33 |
|
add r14=8,r33 };; |
|
.body |
|
{ .mii; add r17=8,r34 |
|
add r15=16,r33 |
|
add r18=16,r34 } |
|
{ .mfb; add r16=24,r33 |
|
br .L_cheat_entry_point4 };; |
|
.endp bn_sqr_comba4# |
|
#endif |
|
|
|
#if 1 |
|
// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever... |
|
// |
|
// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
|
// |
|
#define carry1 r14 |
|
#define carry2 r15 |
|
.global bn_mul_comba4# |
|
.proc bn_mul_comba4# |
|
.align 64 |
|
bn_mul_comba4: |
|
.prologue |
|
.save ar.pfs,r2 |
|
#if defined(_HPUX_SOURCE) && !defined(_LP64) |
|
{ .mii; alloc r2=ar.pfs,3,0,0,0 |
|
addp4 r33=0,r33 |
|
addp4 r34=0,r34 };; |
|
{ .mii; addp4 r32=0,r32 |
|
#else |
|
{ .mii; alloc r2=ar.pfs,3,0,0,0 |
|
#endif |
|
add r14=8,r33 |
|
add r17=8,r34 } |
|
.body |
|
{ .mii; add r15=16,r33 |
|
add r18=16,r34 |
|
add r16=24,r33 };; |
|
.L_cheat_entry_point4: |
|
{ .mmi; add r19=24,r34 |
|
|
|
ldf8 f32=[r33] } |
|
|
|
{ .mmi; ldf8 f120=[r34] |
|
ldf8 f121=[r17] };; |
|
{ .mmi; ldf8 f122=[r18] |
|
ldf8 f123=[r19] } |
|
|
|
{ .mmi; ldf8 f33=[r14] |
|
ldf8 f34=[r15] } |
|
{ .mfi; ldf8 f35=[r16] |
|
|
|
xma.hu f41=f32,f120,f0 } |
|
{ .mfi; xma.lu f40=f32,f120,f0 };; |
|
{ .mfi; xma.hu f51=f32,f121,f0 } |
|
{ .mfi; xma.lu f50=f32,f121,f0 };; |
|
{ .mfi; xma.hu f61=f32,f122,f0 } |
|
{ .mfi; xma.lu f60=f32,f122,f0 };; |
|
{ .mfi; xma.hu f71=f32,f123,f0 } |
|
{ .mfi; xma.lu f70=f32,f123,f0 };;// |
|
// Major stall takes place here, and 3 more places below. Result from |
|
// first xma is not available for another 3 ticks. |
|
{ .mfi; getf.sig r16=f40 |
|
xma.hu f42=f33,f120,f41 |
|
add r33=8,r32 } |
|
{ .mfi; xma.lu f41=f33,f120,f41 };; |
|
{ .mfi; getf.sig r24=f50 |
|
xma.hu f52=f33,f121,f51 } |
|
{ .mfi; xma.lu f51=f33,f121,f51 };; |
|
{ .mfi; st8 [r32]=r16,16 |
|
xma.hu f62=f33,f122,f61 } |
|
{ .mfi; xma.lu f61=f33,f122,f61 };; |
|
{ .mfi; xma.hu f72=f33,f123,f71 } |
|
{ .mfi; xma.lu f71=f33,f123,f71 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r25=f41 |
|
xma.hu f43=f34,f120,f42 } |
|
{ .mfi; xma.lu f42=f34,f120,f42 };; |
|
{ .mfi; getf.sig r16=f60 |
|
xma.hu f53=f34,f121,f52 } |
|
{ .mfi; xma.lu f52=f34,f121,f52 };; |
|
{ .mfi; getf.sig r17=f51 |
|
xma.hu f63=f34,f122,f62 |
|
add r25=r25,r24 } |
|
{ .mfi; mov carry1=0 |
|
xma.lu f62=f34,f122,f62 };; |
|
{ .mfi; st8 [r33]=r25,16 |
|
xma.hu f73=f34,f123,f72 |
|
cmp.ltu p6,p0=r25,r24 } |
|
{ .mfi; xma.lu f72=f34,f123,f72 };;// |
|
//-------------------------------------------------// |
|
{ .mfi; getf.sig r18=f42 |
|
xma.hu f44=f35,f120,f43 |
|
(p6) add carry1=1,carry1 } |
|
{ .mfi; add r17=r17,r16 |
|
xma.lu f43=f35,f120,f43 |
|
mov carry2=0 };; |
|
{ .mfi; getf.sig r24=f70 |
|
xma.hu f54=f35,f121,f53 |
|
cmp.ltu p7,p0=r17,r16 } |
|
{ .mfi; xma.lu f53=f35,f121,f53 };; |
|
{ .mfi; getf.sig r25=f61 |
|
xma.hu f64=f35,f122,f63 |
|
add r18=r18,r17 } |
|
{ .mfi; xma.lu f63=f35,f122,f63 |
|
(p7) add carry2=1,carry2 };; |
|
{ .mfi; getf.sig r26=f52 |
|
xma.hu f74=f35,f123,f73 |
|
cmp.ltu p7,p0=r18,r17 } |
|
{ .mfi; xma.lu f73=f35,f123,f73 |
|
add r18=r18,carry1 };; |
|
//-------------------------------------------------// |
|
{ .mii; st8 [r32]=r18,16 |
|
(p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r18,carry1 };; |
|
|
|
{ .mfi; getf.sig r27=f43 // last major stall |
|
(p7) add carry2=1,carry2 };; |
|
{ .mii; getf.sig r16=f71 |
|
add r25=r25,r24 |
|
mov carry1=0 };; |
|
{ .mii; getf.sig r17=f62 |
|
cmp.ltu p6,p0=r25,r24 |
|
add r26=r26,r25 };; |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,r25 |
|
add r27=r27,r26 };; |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r27,r26 |
|
add r27=r27,carry2 };; |
|
{ .mii; getf.sig r18=f53 |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r27,carry2 };; |
|
{ .mfi; st8 [r33]=r27,16 |
|
(p6) add carry1=1,carry1 } |
|
|
|
{ .mii; getf.sig r19=f44 |
|
add r17=r17,r16 |
|
mov carry2=0 };; |
|
{ .mii; getf.sig r24=f72 |
|
cmp.ltu p7,p0=r17,r16 |
|
add r18=r18,r17 };; |
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r18,r17 |
|
add r19=r19,r18 };; |
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r19,r18 |
|
add r19=r19,carry1 };; |
|
{ .mii; getf.sig r25=f63 |
|
(p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r19,carry1};; |
|
{ .mii; st8 [r32]=r19,16 |
|
(p7) add carry2=1,carry2 } |
|
|
|
{ .mii; getf.sig r26=f54 |
|
add r25=r25,r24 |
|
mov carry1=0 };; |
|
{ .mii; getf.sig r16=f73 |
|
cmp.ltu p6,p0=r25,r24 |
|
add r26=r26,r25 };; |
|
{ .mii; |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,r25 |
|
add r26=r26,carry2 };; |
|
{ .mii; getf.sig r17=f64 |
|
(p6) add carry1=1,carry1 |
|
cmp.ltu p6,p0=r26,carry2 };; |
|
{ .mii; st8 [r33]=r26,16 |
|
(p6) add carry1=1,carry1 } |
|
|
|
{ .mii; getf.sig r24=f74 |
|
add r17=r17,r16 |
|
mov carry2=0 };; |
|
{ .mii; cmp.ltu p7,p0=r17,r16 |
|
add r17=r17,carry1 };; |
|
|
|
{ .mii; (p7) add carry2=1,carry2 |
|
cmp.ltu p7,p0=r17,carry1};; |
|
{ .mii; st8 [r32]=r17,16 |
|
(p7) add carry2=1,carry2 };; |
|
|
|
{ .mii; add r24=r24,carry2 };; |
|
{ .mii; st8 [r33]=r24 } |
|
|
|
{ .mib; rum 1<<5 // clear um.mfh |
|
br.ret.sptk.many b0 };; |
|
.endp bn_mul_comba4# |
|
#undef carry2 |
|
#undef carry1 |
|
#endif |
|
|
|
#if 1 |
|
// |
|
// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) |
|
// |
|
// In the nutshell it's a port of my MIPS III/IV implementation. |
|
// |
|
#define AT r14 |
|
#define H r16 |
|
#define HH r20 |
|
#define L r17 |
|
#define D r18 |
|
#define DH r22 |
|
#define I r21 |
|
|
|
#if 0 |
|
// Some preprocessors (most notably HP-UX) appear to be allergic to |
|
// macros enclosed to parenthesis [as these three were]. |
|
#define cont p16 |
|
#define break p0 // p20 |
|
#define equ p24 |
|
#else |
|
cont=p16 |
|
break=p0 |
|
equ=p24 |
|
#endif |
|
|
|
.global abort# |
|
.global bn_div_words# |
|
.proc bn_div_words# |
|
.align 64 |
|
bn_div_words: |
|
.prologue |
|
.save ar.pfs,r2 |
|
{ .mii; alloc r2=ar.pfs,3,5,0,8 |
|
.save b0,r3 |
|
mov r3=b0 |
|
.save pr,r10 |
|
mov r10=pr };; |
|
{ .mmb; cmp.eq p6,p0=r34,r0 |
|
mov r8=-1 |
|
(p6) br.ret.spnt.many b0 };; |
|
|
|
.body |
|
{ .mii; mov H=r32 // save h |
|
mov ar.ec=0 // don't rotate at exit |
|
mov pr.rot=0 } |
|
{ .mii; mov L=r33 // save l |
|
mov r36=r0 };; |
|
|
|
.L_divw_shift: // -vv- note signed comparison |
|
{ .mfi; (p0) cmp.lt p16,p0=r0,r34 // d |
|
(p0) shladd r33=r34,1,r0 } |
|
{ .mfb; (p0) add r35=1,r36 |
|
(p0) nop.f 0x0 |
|
(p16) br.wtop.dpnt .L_divw_shift };; |
|
|
|
{ .mii; mov D=r34 |
|
shr.u DH=r34,32 |
|
sub r35=64,r36 };; |
|
{ .mii; setf.sig f7=DH |
|
shr.u AT=H,r35 |
|
mov I=r36 };; |
|
{ .mib; cmp.ne p6,p0=r0,AT |
|
shl H=H,r36 |
|
(p6) br.call.spnt.clr b0=abort };; // overflow, die... |
|
|
|
{ .mfi; fcvt.xuf.s1 f7=f7 |
|
shr.u AT=L,r35 };; |
|
{ .mii; shl L=L,r36 |
|
or H=H,AT };; |
|
|
|
{ .mii; nop.m 0x0 |
|
cmp.leu p6,p0=D,H;; |
|
(p6) sub H=H,D } |
|
|
|
{ .mlx; setf.sig f14=D |
|
movl AT=0xffffffff };; |
|
/////////////////////////////////////////////////////////// |
|
{ .mii; setf.sig f6=H |
|
shr.u HH=H,32;; |
|
cmp.eq p6,p7=HH,DH };; |
|
{ .mfb; |
|
(p6) setf.sig f8=AT |
|
(p7) fcvt.xuf.s1 f6=f6 |
|
(p7) br.call.sptk b6=.L_udiv64_32_b6 };; |
|
|
|
{ .mfi; getf.sig r33=f8 // q |
|
xmpy.lu f9=f8,f14 } |
|
{ .mfi; xmpy.hu f10=f8,f14 |
|
shrp H=H,L,32 };; |
|
|
|
{ .mmi; getf.sig r35=f9 // tl |
|
getf.sig r31=f10 };; // th |
|
|
|
.L_divw_1st_iter: |
|
{ .mii; (p0) add r32=-1,r33 |
|
(p0) cmp.eq equ,cont=HH,r31 };; |
|
{ .mii; (p0) cmp.ltu p8,p0=r35,D |
|
(p0) sub r34=r35,D |
|
(equ) cmp.leu break,cont=r35,H };; |
|
{ .mib; (cont) cmp.leu cont,break=HH,r31 |
|
(p8) add r31=-1,r31 |
|
(cont) br.wtop.spnt .L_divw_1st_iter };; |
|
/////////////////////////////////////////////////////////// |
|
{ .mii; sub H=H,r35 |
|
shl r8=r33,32 |
|
shl L=L,32 };; |
|
/////////////////////////////////////////////////////////// |
|
{ .mii; setf.sig f6=H |
|
shr.u HH=H,32;; |
|
cmp.eq p6,p7=HH,DH };; |
|
{ .mfb; |
|
(p6) setf.sig f8=AT |
|
(p7) fcvt.xuf.s1 f6=f6 |
|
(p7) br.call.sptk b6=.L_udiv64_32_b6 };; |
|
|
|
{ .mfi; getf.sig r33=f8 // q |
|
xmpy.lu f9=f8,f14 } |
|
{ .mfi; xmpy.hu f10=f8,f14 |
|
shrp H=H,L,32 };; |
|
|
|
{ .mmi; getf.sig r35=f9 // tl |
|
getf.sig r31=f10 };; // th |
|
|
|
.L_divw_2nd_iter: |
|
{ .mii; (p0) add r32=-1,r33 |
|
(p0) cmp.eq equ,cont=HH,r31 };; |
|
{ .mii; (p0) cmp.ltu p8,p0=r35,D |
|
(p0) sub r34=r35,D |
|
(equ) cmp.leu break,cont=r35,H };; |
|
{ .mib; (cont) cmp.leu cont,break=HH,r31 |
|
(p8) add r31=-1,r31 |
|
(cont) br.wtop.spnt .L_divw_2nd_iter };; |
|
/////////////////////////////////////////////////////////// |
|
{ .mii; sub H=H,r35 |
|
or r8=r8,r33 |
|
mov ar.pfs=r2 };; |
|
{ .mii; shr.u r9=H,I // remainder if anybody wants it |
|
mov pr=r10,0x1ffff } |
|
{ .mfb; br.ret.sptk.many b0 };; |
|
|
|
// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division |
|
// procedure. |
|
// |
|
// inputs: f6 = (double)a, f7 = (double)b |
|
// output: f8 = (int)(a/b) |
|
// clobbered: f8,f9,f10,f11,pred |
|
pred=p15 |
|
// One can argue that this snippet is copyrighted to Intel |
|
// Corporation, as it's essentially identical to one of those |
|
// found in "Divide, Square Root and Remainder" section at |
|
// http://www.intel.com/software/products/opensource/libraries/num.htm. |
|
// Yes, I admit that the referred code was used as template, |
|
// but after I realized that there hardly is any other instruction |
|
// sequence which would perform this operation. I mean I figure that |
|
// any independent attempt to implement high-performance division |
|
// will result in code virtually identical to the Intel code. It |
|
// should be noted though that below division kernel is 1 cycle |
|
// faster than Intel one (note commented splits:-), not to mention |
|
// original prologue (rather lack of one) and epilogue. |
|
.align 32 |
|
.skip 16 |
|
.L_udiv64_32_b6: |
|
frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b |
|
|
|
(pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0 |
|
(pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0 |
|
(pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0 |
|
(pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0 |
|
(pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0 |
|
(pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1 |
|
(pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1 |
|
(pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2 |
|
(pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2 |
|
|
|
fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3) |
|
br.ret.sptk.many b6;; |
|
.endp bn_div_words# |
|
#endif
|
|
|