mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-11 23:57:59 +00:00
1584 lines
56 KiB
C
1584 lines
56 KiB
C
/*
|
|
* transupp.c
|
|
*
|
|
* Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains image transformation routines and other utility code
|
|
* used by the jpegtran sample application. These are NOT part of the core
|
|
* JPEG library. But we keep these routines separate from jpegtran.c to
|
|
* ease the task of maintaining jpegtran-like programs that have other user
|
|
* interfaces.
|
|
*/
|
|
|
|
/* Although this file really shouldn't have access to the library internals,
|
|
* it's helpful to let it call jround_up() and jcopy_block_row().
|
|
*/
|
|
#define JPEG_INTERNALS
|
|
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "transupp.h" /* My own external interface */
|
|
#include <ctype.h> /* to declare isdigit() */
|
|
|
|
|
|
#if TRANSFORMS_SUPPORTED
|
|
|
|
/*
|
|
* Lossless image transformation routines. These routines work on DCT
|
|
* coefficient arrays and thus do not require any lossy decompression
|
|
* or recompression of the image.
|
|
* Thanks to Guido Vollbeding for the initial design and code of this feature,
|
|
* and to Ben Jackson for introducing the cropping feature.
|
|
*
|
|
* Horizontal flipping is done in-place, using a single top-to-bottom
|
|
* pass through the virtual source array. It will thus be much the
|
|
* fastest option for images larger than main memory.
|
|
*
|
|
* The other routines require a set of destination virtual arrays, so they
|
|
* need twice as much memory as jpegtran normally does. The destination
|
|
* arrays are always written in normal scan order (top to bottom) because
|
|
* the virtual array manager expects this. The source arrays will be scanned
|
|
* in the corresponding order, which means multiple passes through the source
|
|
* arrays for most of the transforms. That could result in much thrashing
|
|
* if the image is larger than main memory.
|
|
*
|
|
* If cropping or trimming is involved, the destination arrays may be smaller
|
|
* than the source arrays. Note it is not possible to do horizontal flip
|
|
* in-place when a nonzero Y crop offset is specified, since we'd have to move
|
|
* data from one block row to another but the virtual array manager doesn't
|
|
* guarantee we can touch more than one row at a time. So in that case,
|
|
* we have to use a separate destination array.
|
|
*
|
|
* Some notes about the operating environment of the individual transform
|
|
* routines:
|
|
* 1. Both the source and destination virtual arrays are allocated from the
|
|
* source JPEG object, and therefore should be manipulated by calling the
|
|
* source's memory manager.
|
|
* 2. The destination's component count should be used. It may be smaller
|
|
* than the source's when forcing to grayscale.
|
|
* 3. Likewise the destination's sampling factors should be used. When
|
|
* forcing to grayscale the destination's sampling factors will be all 1,
|
|
* and we may as well take that as the effective iMCU size.
|
|
* 4. When "trim" is in effect, the destination's dimensions will be the
|
|
* trimmed values but the source's will be untrimmed.
|
|
* 5. When "crop" is in effect, the destination's dimensions will be the
|
|
* cropped values but the source's will be uncropped. Each transform
|
|
* routine is responsible for picking up source data starting at the
|
|
* correct X and Y offset for the crop region. (The X and Y offsets
|
|
* passed to the transform routines are measured in iMCU blocks of the
|
|
* destination.)
|
|
* 6. All the routines assume that the source and destination buffers are
|
|
* padded out to a full iMCU boundary. This is true, although for the
|
|
* source buffer it is an undocumented property of jdcoefct.c.
|
|
*/
|
|
|
|
|
|
LOCAL(void)
|
|
do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Crop. This is only used when no rotate/flip is requested with the crop. */
|
|
{
|
|
JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks;
|
|
int ci, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* We simply have to copy the right amount of data (the destination's
|
|
* image size) starting at the given X and Y offsets in the source.
|
|
*/
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_y + y_crop_blocks,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
|
|
dst_buffer[offset_y],
|
|
compptr->width_in_blocks);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays)
|
|
/* Horizontal flip; done in-place, so no separate dest array is required.
|
|
* NB: this only works when y_crop_offset is zero.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks;
|
|
int ci, k, offset_y;
|
|
JBLOCKARRAY buffer;
|
|
JCOEFPTR ptr1, ptr2;
|
|
JCOEF temp1, temp2;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Horizontal mirroring of DCT blocks is accomplished by swapping
|
|
* pairs of blocks in-place. Within a DCT block, we perform horizontal
|
|
* mirroring by changing the signs of odd-numbered columns.
|
|
* Partial iMCUs at the right edge are left untouched.
|
|
*/
|
|
MCU_cols = srcinfo->output_width /
|
|
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
for (blk_y = 0; blk_y < compptr->height_in_blocks;
|
|
blk_y += compptr->v_samp_factor) {
|
|
buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
/* Do the mirroring */
|
|
for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
|
|
ptr1 = buffer[offset_y][blk_x];
|
|
ptr2 = buffer[offset_y][comp_width - blk_x - 1];
|
|
/* this unrolled loop doesn't need to know which row it's on... */
|
|
for (k = 0; k < DCTSIZE2; k += 2) {
|
|
temp1 = *ptr1; /* swap even column */
|
|
temp2 = *ptr2;
|
|
*ptr1++ = temp2;
|
|
*ptr2++ = temp1;
|
|
temp1 = *ptr1; /* swap odd column with sign change */
|
|
temp2 = *ptr2;
|
|
*ptr1++ = -temp2;
|
|
*ptr2++ = -temp1;
|
|
}
|
|
}
|
|
if (x_crop_blocks > 0) {
|
|
/* Now left-justify the portion of the data to be kept.
|
|
* We can't use a single jcopy_block_row() call because that routine
|
|
* depends on memcpy(), whose behavior is unspecified for overlapping
|
|
* source and destination areas. Sigh.
|
|
*/
|
|
for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) {
|
|
jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks,
|
|
buffer[offset_y] + blk_x,
|
|
(JDIMENSION) 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Horizontal flip in general cropping case */
|
|
{
|
|
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
|
|
JDIMENSION x_crop_blocks, y_crop_blocks;
|
|
int ci, k, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Here we must output into a separate array because we can't touch
|
|
* different rows of a single virtual array simultaneously. Otherwise,
|
|
* this is essentially the same as the routine above.
|
|
*/
|
|
MCU_cols = srcinfo->output_width /
|
|
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_y + y_crop_blocks,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
dst_row_ptr = dst_buffer[offset_y];
|
|
src_row_ptr = src_buffer[offset_y];
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Do the mirrorable blocks */
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
|
|
/* this unrolled loop doesn't need to know which row it's on... */
|
|
for (k = 0; k < DCTSIZE2; k += 2) {
|
|
*dst_ptr++ = *src_ptr++; /* copy even column */
|
|
*dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */
|
|
}
|
|
} else {
|
|
/* Copy last partial block(s) verbatim */
|
|
jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
|
|
dst_row_ptr + dst_blk_x,
|
|
(JDIMENSION) 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Vertical flip */
|
|
{
|
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
|
|
JDIMENSION x_crop_blocks, y_crop_blocks;
|
|
int ci, i, j, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* We output into a separate array because we can't touch different
|
|
* rows of the source virtual array simultaneously. Otherwise, this
|
|
* is a pretty straightforward analog of horizontal flip.
|
|
* Within a DCT block, vertical mirroring is done by changing the signs
|
|
* of odd-numbered rows.
|
|
* Partial iMCUs at the bottom edge are copied verbatim.
|
|
*/
|
|
MCU_rows = srcinfo->output_height /
|
|
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
if (y_crop_blocks + dst_blk_y < comp_height) {
|
|
/* Row is within the mirrorable area. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
comp_height - y_crop_blocks - dst_blk_y -
|
|
(JDIMENSION) compptr->v_samp_factor,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
} else {
|
|
/* Bottom-edge blocks will be copied verbatim. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_y + y_crop_blocks,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
}
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
if (y_crop_blocks + dst_blk_y < comp_height) {
|
|
/* Row is within the mirrorable area. */
|
|
dst_row_ptr = dst_buffer[offset_y];
|
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
|
|
src_row_ptr += x_crop_blocks;
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
|
/* copy even row */
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = *src_ptr++;
|
|
/* copy odd row with sign change */
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
}
|
|
} else {
|
|
/* Just copy row verbatim. */
|
|
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
|
|
dst_buffer[offset_y],
|
|
compptr->width_in_blocks);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Transpose source into destination */
|
|
{
|
|
JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Transposing pixels within a block just requires transposing the
|
|
* DCT coefficients.
|
|
* Partial iMCUs at the edges require no special treatment; we simply
|
|
* process all the available DCT blocks for every component.
|
|
*/
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_x + x_crop_blocks,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* 90 degree rotation is equivalent to
|
|
* 1. Transposing the image;
|
|
* 2. Horizontal mirroring.
|
|
* These two steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
|
|
JDIMENSION x_crop_blocks, y_crop_blocks;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs
|
|
* at the (output) right edge properly. They just get transposed and
|
|
* not mirrored.
|
|
*/
|
|
MCU_cols = srcinfo->output_height /
|
|
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Block is within the mirrorable area. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
comp_width - x_crop_blocks - dst_blk_x -
|
|
(JDIMENSION) compptr->h_samp_factor,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
} else {
|
|
/* Edge blocks are transposed but not mirrored. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_x + x_crop_blocks,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
}
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Block is within the mirrorable area. */
|
|
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
|
|
[dst_blk_y + offset_y + y_crop_blocks];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
i++;
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
} else {
|
|
/* Edge blocks are transposed but not mirrored. */
|
|
src_ptr = src_buffer[offset_x]
|
|
[dst_blk_y + offset_y + y_crop_blocks];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* 270 degree rotation is equivalent to
|
|
* 1. Horizontal mirroring;
|
|
* 2. Transposing the image.
|
|
* These two steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
|
|
JDIMENSION x_crop_blocks, y_crop_blocks;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs
|
|
* at the (output) bottom edge properly. They just get transposed and
|
|
* not mirrored.
|
|
*/
|
|
MCU_rows = srcinfo->output_width /
|
|
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_x + x_crop_blocks,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
if (y_crop_blocks + dst_blk_y < comp_height) {
|
|
/* Block is within the mirrorable area. */
|
|
src_ptr = src_buffer[offset_x]
|
|
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
} else {
|
|
/* Edge blocks are transposed but not mirrored. */
|
|
src_ptr = src_buffer[offset_x]
|
|
[dst_blk_y + offset_y + y_crop_blocks];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* 180 degree rotation is equivalent to
|
|
* 1. Vertical mirroring;
|
|
* 2. Horizontal mirroring.
|
|
* These two steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
|
|
JDIMENSION x_crop_blocks, y_crop_blocks;
|
|
int ci, i, j, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
MCU_cols = srcinfo->output_width /
|
|
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
|
|
MCU_rows = srcinfo->output_height /
|
|
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
if (y_crop_blocks + dst_blk_y < comp_height) {
|
|
/* Row is within the vertically mirrorable area. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
comp_height - y_crop_blocks - dst_blk_y -
|
|
(JDIMENSION) compptr->v_samp_factor,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
} else {
|
|
/* Bottom-edge rows are only mirrored horizontally. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_y + y_crop_blocks,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
}
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
dst_row_ptr = dst_buffer[offset_y];
|
|
if (y_crop_blocks + dst_blk_y < comp_height) {
|
|
/* Row is within the mirrorable area. */
|
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Process the blocks that can be mirrored both ways. */
|
|
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
|
/* For even row, negate every odd column. */
|
|
for (j = 0; j < DCTSIZE; j += 2) {
|
|
*dst_ptr++ = *src_ptr++;
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
/* For odd row, negate every even column. */
|
|
for (j = 0; j < DCTSIZE; j += 2) {
|
|
*dst_ptr++ = - *src_ptr++;
|
|
*dst_ptr++ = *src_ptr++;
|
|
}
|
|
}
|
|
} else {
|
|
/* Any remaining right-edge blocks are only mirrored vertically. */
|
|
src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x];
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = *src_ptr++;
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* Remaining rows are just mirrored horizontally. */
|
|
src_row_ptr = src_buffer[offset_y];
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Process the blocks that can be mirrored. */
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
|
|
for (i = 0; i < DCTSIZE2; i += 2) {
|
|
*dst_ptr++ = *src_ptr++;
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
} else {
|
|
/* Any remaining right-edge blocks are only copied. */
|
|
jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
|
|
dst_row_ptr + dst_blk_x,
|
|
(JDIMENSION) 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Transverse transpose is equivalent to
|
|
* 1. 180 degree rotation;
|
|
* 2. Transposition;
|
|
* or
|
|
* 1. Horizontal mirroring;
|
|
* 2. Transposition;
|
|
* 3. Horizontal mirroring.
|
|
* These steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
|
|
JDIMENSION x_crop_blocks, y_crop_blocks;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
MCU_cols = srcinfo->output_height /
|
|
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
|
|
MCU_rows = srcinfo->output_width /
|
|
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
|
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Block is within the mirrorable area. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
comp_width - x_crop_blocks - dst_blk_x -
|
|
(JDIMENSION) compptr->h_samp_factor,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
} else {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
dst_blk_x + x_crop_blocks,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
}
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
if (y_crop_blocks + dst_blk_y < comp_height) {
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Block is within the mirrorable area. */
|
|
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
|
|
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
i++;
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
} else {
|
|
/* Right-edge blocks are mirrored in y only */
|
|
src_ptr = src_buffer[offset_x]
|
|
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (x_crop_blocks + dst_blk_x < comp_width) {
|
|
/* Bottom-edge blocks are mirrored in x only */
|
|
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
|
|
[dst_blk_y + offset_y + y_crop_blocks];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
i++;
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
} else {
|
|
/* At lower right corner, just transpose, no mirroring */
|
|
src_ptr = src_buffer[offset_x]
|
|
[dst_blk_y + offset_y + y_crop_blocks];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec.
|
|
* Returns TRUE if valid integer found, FALSE if not.
|
|
* *strptr is advanced over the digit string, and *result is set to its value.
|
|
*/
|
|
|
|
LOCAL(boolean)
|
|
jt_read_integer (const char ** strptr, JDIMENSION * result)
|
|
{
|
|
const char * ptr = *strptr;
|
|
JDIMENSION val = 0;
|
|
|
|
for (; isdigit(*ptr); ptr++) {
|
|
val = val * 10 + (JDIMENSION) (*ptr - '0');
|
|
}
|
|
*result = val;
|
|
if (ptr == *strptr)
|
|
return FALSE; /* oops, no digits */
|
|
*strptr = ptr;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Parse a crop specification (written in X11 geometry style).
|
|
* The routine returns TRUE if the spec string is valid, FALSE if not.
|
|
*
|
|
* The crop spec string should have the format
|
|
* <width>x<height>{+-}<xoffset>{+-}<yoffset>
|
|
* where width, height, xoffset, and yoffset are unsigned integers.
|
|
* Each of the elements can be omitted to indicate a default value.
|
|
* (A weakness of this style is that it is not possible to omit xoffset
|
|
* while specifying yoffset, since they look alike.)
|
|
*
|
|
* This code is loosely based on XParseGeometry from the X11 distribution.
|
|
*/
|
|
|
|
GLOBAL(boolean)
|
|
jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec)
|
|
{
|
|
info->crop = FALSE;
|
|
info->crop_width_set = JCROP_UNSET;
|
|
info->crop_height_set = JCROP_UNSET;
|
|
info->crop_xoffset_set = JCROP_UNSET;
|
|
info->crop_yoffset_set = JCROP_UNSET;
|
|
|
|
if (isdigit(*spec)) {
|
|
/* fetch width */
|
|
if (! jt_read_integer(&spec, &info->crop_width))
|
|
return FALSE;
|
|
info->crop_width_set = JCROP_POS;
|
|
}
|
|
if (*spec == 'x' || *spec == 'X') {
|
|
/* fetch height */
|
|
spec++;
|
|
if (! jt_read_integer(&spec, &info->crop_height))
|
|
return FALSE;
|
|
info->crop_height_set = JCROP_POS;
|
|
}
|
|
if (*spec == '+' || *spec == '-') {
|
|
/* fetch xoffset */
|
|
info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
|
|
spec++;
|
|
if (! jt_read_integer(&spec, &info->crop_xoffset))
|
|
return FALSE;
|
|
}
|
|
if (*spec == '+' || *spec == '-') {
|
|
/* fetch yoffset */
|
|
info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
|
|
spec++;
|
|
if (! jt_read_integer(&spec, &info->crop_yoffset))
|
|
return FALSE;
|
|
}
|
|
/* We had better have gotten to the end of the string. */
|
|
if (*spec != '\0')
|
|
return FALSE;
|
|
info->crop = TRUE;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Trim off any partial iMCUs on the indicated destination edge */
|
|
|
|
LOCAL(void)
|
|
trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width)
|
|
{
|
|
JDIMENSION MCU_cols;
|
|
|
|
MCU_cols = info->output_width / info->iMCU_sample_width;
|
|
if (MCU_cols > 0 && info->x_crop_offset + MCU_cols ==
|
|
full_width / info->iMCU_sample_width)
|
|
info->output_width = MCU_cols * info->iMCU_sample_width;
|
|
}
|
|
|
|
LOCAL(void)
|
|
trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height)
|
|
{
|
|
JDIMENSION MCU_rows;
|
|
|
|
MCU_rows = info->output_height / info->iMCU_sample_height;
|
|
if (MCU_rows > 0 && info->y_crop_offset + MCU_rows ==
|
|
full_height / info->iMCU_sample_height)
|
|
info->output_height = MCU_rows * info->iMCU_sample_height;
|
|
}
|
|
|
|
|
|
/* Request any required workspace.
|
|
*
|
|
* This routine figures out the size that the output image will be
|
|
* (which implies that all the transform parameters must be set before
|
|
* it is called).
|
|
*
|
|
* We allocate the workspace virtual arrays from the source decompression
|
|
* object, so that all the arrays (both the original data and the workspace)
|
|
* will be taken into account while making memory management decisions.
|
|
* Hence, this routine must be called after jpeg_read_header (which reads
|
|
* the image dimensions) and before jpeg_read_coefficients (which realizes
|
|
* the source's virtual arrays).
|
|
*
|
|
* This function returns FALSE right away if -perfect is given
|
|
* and transformation is not perfect. Otherwise returns TRUE.
|
|
*/
|
|
|
|
GLOBAL(boolean)
|
|
jtransform_request_workspace (j_decompress_ptr srcinfo,
|
|
jpeg_transform_info *info)
|
|
{
|
|
jvirt_barray_ptr *coef_arrays;
|
|
boolean need_workspace, transpose_it;
|
|
jpeg_component_info *compptr;
|
|
JDIMENSION xoffset, yoffset;
|
|
JDIMENSION width_in_iMCUs, height_in_iMCUs;
|
|
JDIMENSION width_in_blocks, height_in_blocks;
|
|
int ci, h_samp_factor, v_samp_factor;
|
|
|
|
/* Determine number of components in output image */
|
|
if (info->force_grayscale &&
|
|
srcinfo->jpeg_color_space == JCS_YCbCr &&
|
|
srcinfo->num_components == 3)
|
|
/* We'll only process the first component */
|
|
info->num_components = 1;
|
|
else
|
|
/* Process all the components */
|
|
info->num_components = srcinfo->num_components;
|
|
|
|
/* Compute output image dimensions and related values. */
|
|
jpeg_core_output_dimensions(srcinfo);
|
|
|
|
/* Return right away if -perfect is given and transformation is not perfect.
|
|
*/
|
|
if (info->perfect) {
|
|
if (info->num_components == 1) {
|
|
if (!jtransform_perfect_transform(srcinfo->output_width,
|
|
srcinfo->output_height,
|
|
srcinfo->min_DCT_h_scaled_size,
|
|
srcinfo->min_DCT_v_scaled_size,
|
|
info->transform))
|
|
return FALSE;
|
|
} else {
|
|
if (!jtransform_perfect_transform(srcinfo->output_width,
|
|
srcinfo->output_height,
|
|
srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size,
|
|
srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size,
|
|
info->transform))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* If there is only one output component, force the iMCU size to be 1;
|
|
* else use the source iMCU size. (This allows us to do the right thing
|
|
* when reducing color to grayscale, and also provides a handy way of
|
|
* cleaning up "funny" grayscale images whose sampling factors are not 1x1.)
|
|
*/
|
|
switch (info->transform) {
|
|
case JXFORM_TRANSPOSE:
|
|
case JXFORM_TRANSVERSE:
|
|
case JXFORM_ROT_90:
|
|
case JXFORM_ROT_270:
|
|
info->output_width = srcinfo->output_height;
|
|
info->output_height = srcinfo->output_width;
|
|
if (info->num_components == 1) {
|
|
info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size;
|
|
info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size;
|
|
} else {
|
|
info->iMCU_sample_width =
|
|
srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
|
|
info->iMCU_sample_height =
|
|
srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
|
|
}
|
|
break;
|
|
default:
|
|
info->output_width = srcinfo->output_width;
|
|
info->output_height = srcinfo->output_height;
|
|
if (info->num_components == 1) {
|
|
info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size;
|
|
info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size;
|
|
} else {
|
|
info->iMCU_sample_width =
|
|
srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
|
|
info->iMCU_sample_height =
|
|
srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* If cropping has been requested, compute the crop area's position and
|
|
* dimensions, ensuring that its upper left corner falls at an iMCU boundary.
|
|
*/
|
|
if (info->crop) {
|
|
/* Insert default values for unset crop parameters */
|
|
if (info->crop_xoffset_set == JCROP_UNSET)
|
|
info->crop_xoffset = 0; /* default to +0 */
|
|
if (info->crop_yoffset_set == JCROP_UNSET)
|
|
info->crop_yoffset = 0; /* default to +0 */
|
|
if (info->crop_xoffset >= info->output_width ||
|
|
info->crop_yoffset >= info->output_height)
|
|
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
|
|
if (info->crop_width_set == JCROP_UNSET)
|
|
info->crop_width = info->output_width - info->crop_xoffset;
|
|
if (info->crop_height_set == JCROP_UNSET)
|
|
info->crop_height = info->output_height - info->crop_yoffset;
|
|
/* Ensure parameters are valid */
|
|
if (info->crop_width <= 0 || info->crop_width > info->output_width ||
|
|
info->crop_height <= 0 || info->crop_height > info->output_height ||
|
|
info->crop_xoffset > info->output_width - info->crop_width ||
|
|
info->crop_yoffset > info->output_height - info->crop_height)
|
|
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
|
|
/* Convert negative crop offsets into regular offsets */
|
|
if (info->crop_xoffset_set == JCROP_NEG)
|
|
xoffset = info->output_width - info->crop_width - info->crop_xoffset;
|
|
else
|
|
xoffset = info->crop_xoffset;
|
|
if (info->crop_yoffset_set == JCROP_NEG)
|
|
yoffset = info->output_height - info->crop_height - info->crop_yoffset;
|
|
else
|
|
yoffset = info->crop_yoffset;
|
|
/* Now adjust so that upper left corner falls at an iMCU boundary */
|
|
info->output_width =
|
|
info->crop_width + (xoffset % info->iMCU_sample_width);
|
|
info->output_height =
|
|
info->crop_height + (yoffset % info->iMCU_sample_height);
|
|
/* Save x/y offsets measured in iMCUs */
|
|
info->x_crop_offset = xoffset / info->iMCU_sample_width;
|
|
info->y_crop_offset = yoffset / info->iMCU_sample_height;
|
|
} else {
|
|
info->x_crop_offset = 0;
|
|
info->y_crop_offset = 0;
|
|
}
|
|
|
|
/* Figure out whether we need workspace arrays,
|
|
* and if so whether they are transposed relative to the source.
|
|
*/
|
|
need_workspace = FALSE;
|
|
transpose_it = FALSE;
|
|
switch (info->transform) {
|
|
case JXFORM_NONE:
|
|
if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
|
|
need_workspace = TRUE;
|
|
/* No workspace needed if neither cropping nor transforming */
|
|
break;
|
|
case JXFORM_FLIP_H:
|
|
if (info->trim)
|
|
trim_right_edge(info, srcinfo->output_width);
|
|
if (info->y_crop_offset != 0)
|
|
need_workspace = TRUE;
|
|
/* do_flip_h_no_crop doesn't need a workspace array */
|
|
break;
|
|
case JXFORM_FLIP_V:
|
|
if (info->trim)
|
|
trim_bottom_edge(info, srcinfo->output_height);
|
|
/* Need workspace arrays having same dimensions as source image. */
|
|
need_workspace = TRUE;
|
|
break;
|
|
case JXFORM_TRANSPOSE:
|
|
/* transpose does NOT have to trim anything */
|
|
/* Need workspace arrays having transposed dimensions. */
|
|
need_workspace = TRUE;
|
|
transpose_it = TRUE;
|
|
break;
|
|
case JXFORM_TRANSVERSE:
|
|
if (info->trim) {
|
|
trim_right_edge(info, srcinfo->output_height);
|
|
trim_bottom_edge(info, srcinfo->output_width);
|
|
}
|
|
/* Need workspace arrays having transposed dimensions. */
|
|
need_workspace = TRUE;
|
|
transpose_it = TRUE;
|
|
break;
|
|
case JXFORM_ROT_90:
|
|
if (info->trim)
|
|
trim_right_edge(info, srcinfo->output_height);
|
|
/* Need workspace arrays having transposed dimensions. */
|
|
need_workspace = TRUE;
|
|
transpose_it = TRUE;
|
|
break;
|
|
case JXFORM_ROT_180:
|
|
if (info->trim) {
|
|
trim_right_edge(info, srcinfo->output_width);
|
|
trim_bottom_edge(info, srcinfo->output_height);
|
|
}
|
|
/* Need workspace arrays having same dimensions as source image. */
|
|
need_workspace = TRUE;
|
|
break;
|
|
case JXFORM_ROT_270:
|
|
if (info->trim)
|
|
trim_bottom_edge(info, srcinfo->output_width);
|
|
/* Need workspace arrays having transposed dimensions. */
|
|
need_workspace = TRUE;
|
|
transpose_it = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Allocate workspace if needed.
|
|
* Note that we allocate arrays padded out to the next iMCU boundary,
|
|
* so that transform routines need not worry about missing edge blocks.
|
|
*/
|
|
if (need_workspace) {
|
|
coef_arrays = (jvirt_barray_ptr *)
|
|
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
|
|
SIZEOF(jvirt_barray_ptr) * info->num_components);
|
|
width_in_iMCUs = (JDIMENSION)
|
|
jdiv_round_up((long) info->output_width,
|
|
(long) info->iMCU_sample_width);
|
|
height_in_iMCUs = (JDIMENSION)
|
|
jdiv_round_up((long) info->output_height,
|
|
(long) info->iMCU_sample_height);
|
|
for (ci = 0; ci < info->num_components; ci++) {
|
|
compptr = srcinfo->comp_info + ci;
|
|
if (info->num_components == 1) {
|
|
/* we're going to force samp factors to 1x1 in this case */
|
|
h_samp_factor = v_samp_factor = 1;
|
|
} else if (transpose_it) {
|
|
h_samp_factor = compptr->v_samp_factor;
|
|
v_samp_factor = compptr->h_samp_factor;
|
|
} else {
|
|
h_samp_factor = compptr->h_samp_factor;
|
|
v_samp_factor = compptr->v_samp_factor;
|
|
}
|
|
width_in_blocks = width_in_iMCUs * h_samp_factor;
|
|
height_in_blocks = height_in_iMCUs * v_samp_factor;
|
|
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
|
|
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
|
|
width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor);
|
|
}
|
|
info->workspace_coef_arrays = coef_arrays;
|
|
} else
|
|
info->workspace_coef_arrays = NULL;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Transpose destination image parameters */
|
|
|
|
LOCAL(void)
|
|
transpose_critical_parameters (j_compress_ptr dstinfo)
|
|
{
|
|
int tblno, i, j, ci, itemp;
|
|
jpeg_component_info *compptr;
|
|
JQUANT_TBL *qtblptr;
|
|
JDIMENSION jtemp;
|
|
UINT16 qtemp;
|
|
|
|
/* Transpose image dimensions */
|
|
jtemp = dstinfo->image_width;
|
|
dstinfo->image_width = dstinfo->image_height;
|
|
dstinfo->image_height = jtemp;
|
|
itemp = dstinfo->min_DCT_h_scaled_size;
|
|
dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size;
|
|
dstinfo->min_DCT_v_scaled_size = itemp;
|
|
|
|
/* Transpose sampling factors */
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
itemp = compptr->h_samp_factor;
|
|
compptr->h_samp_factor = compptr->v_samp_factor;
|
|
compptr->v_samp_factor = itemp;
|
|
}
|
|
|
|
/* Transpose quantization tables */
|
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
|
qtblptr = dstinfo->quant_tbl_ptrs[tblno];
|
|
if (qtblptr != NULL) {
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
qtemp = qtblptr->quantval[i*DCTSIZE+j];
|
|
qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
|
|
qtblptr->quantval[j*DCTSIZE+i] = qtemp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Adjust Exif image parameters.
|
|
*
|
|
* We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
adjust_exif_parameters (JOCTET FAR * data, unsigned int length,
|
|
JDIMENSION new_width, JDIMENSION new_height)
|
|
{
|
|
boolean is_motorola; /* Flag for byte order */
|
|
unsigned int number_of_tags, tagnum;
|
|
unsigned int firstoffset, offset;
|
|
JDIMENSION new_value;
|
|
|
|
if (length < 12) return; /* Length of an IFD entry */
|
|
|
|
/* Discover byte order */
|
|
if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
|
|
is_motorola = FALSE;
|
|
else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
|
|
is_motorola = TRUE;
|
|
else
|
|
return;
|
|
|
|
/* Check Tag Mark */
|
|
if (is_motorola) {
|
|
if (GETJOCTET(data[2]) != 0) return;
|
|
if (GETJOCTET(data[3]) != 0x2A) return;
|
|
} else {
|
|
if (GETJOCTET(data[3]) != 0) return;
|
|
if (GETJOCTET(data[2]) != 0x2A) return;
|
|
}
|
|
|
|
/* Get first IFD offset (offset to IFD0) */
|
|
if (is_motorola) {
|
|
if (GETJOCTET(data[4]) != 0) return;
|
|
if (GETJOCTET(data[5]) != 0) return;
|
|
firstoffset = GETJOCTET(data[6]);
|
|
firstoffset <<= 8;
|
|
firstoffset += GETJOCTET(data[7]);
|
|
} else {
|
|
if (GETJOCTET(data[7]) != 0) return;
|
|
if (GETJOCTET(data[6]) != 0) return;
|
|
firstoffset = GETJOCTET(data[5]);
|
|
firstoffset <<= 8;
|
|
firstoffset += GETJOCTET(data[4]);
|
|
}
|
|
if (firstoffset > length - 2) return; /* check end of data segment */
|
|
|
|
/* Get the number of directory entries contained in this IFD */
|
|
if (is_motorola) {
|
|
number_of_tags = GETJOCTET(data[firstoffset]);
|
|
number_of_tags <<= 8;
|
|
number_of_tags += GETJOCTET(data[firstoffset+1]);
|
|
} else {
|
|
number_of_tags = GETJOCTET(data[firstoffset+1]);
|
|
number_of_tags <<= 8;
|
|
number_of_tags += GETJOCTET(data[firstoffset]);
|
|
}
|
|
if (number_of_tags == 0) return;
|
|
firstoffset += 2;
|
|
|
|
/* Search for ExifSubIFD offset Tag in IFD0 */
|
|
for (;;) {
|
|
if (firstoffset > length - 12) return; /* check end of data segment */
|
|
/* Get Tag number */
|
|
if (is_motorola) {
|
|
tagnum = GETJOCTET(data[firstoffset]);
|
|
tagnum <<= 8;
|
|
tagnum += GETJOCTET(data[firstoffset+1]);
|
|
} else {
|
|
tagnum = GETJOCTET(data[firstoffset+1]);
|
|
tagnum <<= 8;
|
|
tagnum += GETJOCTET(data[firstoffset]);
|
|
}
|
|
if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */
|
|
if (--number_of_tags == 0) return;
|
|
firstoffset += 12;
|
|
}
|
|
|
|
/* Get the ExifSubIFD offset */
|
|
if (is_motorola) {
|
|
if (GETJOCTET(data[firstoffset+8]) != 0) return;
|
|
if (GETJOCTET(data[firstoffset+9]) != 0) return;
|
|
offset = GETJOCTET(data[firstoffset+10]);
|
|
offset <<= 8;
|
|
offset += GETJOCTET(data[firstoffset+11]);
|
|
} else {
|
|
if (GETJOCTET(data[firstoffset+11]) != 0) return;
|
|
if (GETJOCTET(data[firstoffset+10]) != 0) return;
|
|
offset = GETJOCTET(data[firstoffset+9]);
|
|
offset <<= 8;
|
|
offset += GETJOCTET(data[firstoffset+8]);
|
|
}
|
|
if (offset > length - 2) return; /* check end of data segment */
|
|
|
|
/* Get the number of directory entries contained in this SubIFD */
|
|
if (is_motorola) {
|
|
number_of_tags = GETJOCTET(data[offset]);
|
|
number_of_tags <<= 8;
|
|
number_of_tags += GETJOCTET(data[offset+1]);
|
|
} else {
|
|
number_of_tags = GETJOCTET(data[offset+1]);
|
|
number_of_tags <<= 8;
|
|
number_of_tags += GETJOCTET(data[offset]);
|
|
}
|
|
if (number_of_tags < 2) return;
|
|
offset += 2;
|
|
|
|
/* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */
|
|
do {
|
|
if (offset > length - 12) return; /* check end of data segment */
|
|
/* Get Tag number */
|
|
if (is_motorola) {
|
|
tagnum = GETJOCTET(data[offset]);
|
|
tagnum <<= 8;
|
|
tagnum += GETJOCTET(data[offset+1]);
|
|
} else {
|
|
tagnum = GETJOCTET(data[offset+1]);
|
|
tagnum <<= 8;
|
|
tagnum += GETJOCTET(data[offset]);
|
|
}
|
|
if (tagnum == 0xA002 || tagnum == 0xA003) {
|
|
if (tagnum == 0xA002)
|
|
new_value = new_width; /* ExifImageWidth Tag */
|
|
else
|
|
new_value = new_height; /* ExifImageHeight Tag */
|
|
if (is_motorola) {
|
|
data[offset+2] = 0; /* Format = unsigned long (4 octets) */
|
|
data[offset+3] = 4;
|
|
data[offset+4] = 0; /* Number Of Components = 1 */
|
|
data[offset+5] = 0;
|
|
data[offset+6] = 0;
|
|
data[offset+7] = 1;
|
|
data[offset+8] = 0;
|
|
data[offset+9] = 0;
|
|
data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF);
|
|
data[offset+11] = (JOCTET)(new_value & 0xFF);
|
|
} else {
|
|
data[offset+2] = 4; /* Format = unsigned long (4 octets) */
|
|
data[offset+3] = 0;
|
|
data[offset+4] = 1; /* Number Of Components = 1 */
|
|
data[offset+5] = 0;
|
|
data[offset+6] = 0;
|
|
data[offset+7] = 0;
|
|
data[offset+8] = (JOCTET)(new_value & 0xFF);
|
|
data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF);
|
|
data[offset+10] = 0;
|
|
data[offset+11] = 0;
|
|
}
|
|
}
|
|
offset += 12;
|
|
} while (--number_of_tags);
|
|
}
|
|
|
|
|
|
/* Adjust output image parameters as needed.
|
|
*
|
|
* This must be called after jpeg_copy_critical_parameters()
|
|
* and before jpeg_write_coefficients().
|
|
*
|
|
* The return value is the set of virtual coefficient arrays to be written
|
|
* (either the ones allocated by jtransform_request_workspace, or the
|
|
* original source data arrays). The caller will need to pass this value
|
|
* to jpeg_write_coefficients().
|
|
*/
|
|
|
|
GLOBAL(jvirt_barray_ptr *)
|
|
jtransform_adjust_parameters (j_decompress_ptr srcinfo,
|
|
j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jpeg_transform_info *info)
|
|
{
|
|
/* If force-to-grayscale is requested, adjust destination parameters */
|
|
if (info->force_grayscale) {
|
|
/* First, ensure we have YCbCr or grayscale data, and that the source's
|
|
* Y channel is full resolution. (No reasonable person would make Y
|
|
* be less than full resolution, so actually coping with that case
|
|
* isn't worth extra code space. But we check it to avoid crashing.)
|
|
*/
|
|
if (((dstinfo->jpeg_color_space == JCS_YCbCr &&
|
|
dstinfo->num_components == 3) ||
|
|
(dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
|
|
dstinfo->num_components == 1)) &&
|
|
srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor &&
|
|
srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) {
|
|
/* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
|
|
* properly. Among other things, it sets the target h_samp_factor &
|
|
* v_samp_factor to 1, which typically won't match the source.
|
|
* We have to preserve the source's quantization table number, however.
|
|
*/
|
|
int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
|
|
jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
|
|
dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
|
|
} else {
|
|
/* Sorry, can't do it */
|
|
ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
|
|
}
|
|
} else if (info->num_components == 1) {
|
|
/* For a single-component source, we force the destination sampling factors
|
|
* to 1x1, with or without force_grayscale. This is useful because some
|
|
* decoders choke on grayscale images with other sampling factors.
|
|
*/
|
|
dstinfo->comp_info[0].h_samp_factor = 1;
|
|
dstinfo->comp_info[0].v_samp_factor = 1;
|
|
}
|
|
|
|
/* Correct the destination's image dimensions as necessary
|
|
* for rotate/flip, resize, and crop operations.
|
|
*/
|
|
dstinfo->jpeg_width = info->output_width;
|
|
dstinfo->jpeg_height = info->output_height;
|
|
|
|
/* Transpose destination image parameters */
|
|
switch (info->transform) {
|
|
case JXFORM_TRANSPOSE:
|
|
case JXFORM_TRANSVERSE:
|
|
case JXFORM_ROT_90:
|
|
case JXFORM_ROT_270:
|
|
transpose_critical_parameters(dstinfo);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Adjust Exif properties */
|
|
if (srcinfo->marker_list != NULL &&
|
|
srcinfo->marker_list->marker == JPEG_APP0+1 &&
|
|
srcinfo->marker_list->data_length >= 6 &&
|
|
GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 &&
|
|
GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 &&
|
|
GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 &&
|
|
GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 &&
|
|
GETJOCTET(srcinfo->marker_list->data[4]) == 0 &&
|
|
GETJOCTET(srcinfo->marker_list->data[5]) == 0) {
|
|
/* Suppress output of JFIF marker */
|
|
dstinfo->write_JFIF_header = FALSE;
|
|
/* Adjust Exif image parameters */
|
|
if (dstinfo->jpeg_width != srcinfo->image_width ||
|
|
dstinfo->jpeg_height != srcinfo->image_height)
|
|
/* Align data segment to start of TIFF structure for parsing */
|
|
adjust_exif_parameters(srcinfo->marker_list->data + 6,
|
|
srcinfo->marker_list->data_length - 6,
|
|
dstinfo->jpeg_width, dstinfo->jpeg_height);
|
|
}
|
|
|
|
/* Return the appropriate output data set */
|
|
if (info->workspace_coef_arrays != NULL)
|
|
return info->workspace_coef_arrays;
|
|
return src_coef_arrays;
|
|
}
|
|
|
|
|
|
/* Execute the actual transformation, if any.
|
|
*
|
|
* This must be called *after* jpeg_write_coefficients, because it depends
|
|
* on jpeg_write_coefficients to have computed subsidiary values such as
|
|
* the per-component width and height fields in the destination object.
|
|
*
|
|
* Note that some transformations will modify the source data arrays!
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jtransform_execute_transform (j_decompress_ptr srcinfo,
|
|
j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jpeg_transform_info *info)
|
|
{
|
|
jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
|
|
|
|
/* Note: conditions tested here should match those in switch statement
|
|
* in jtransform_request_workspace()
|
|
*/
|
|
switch (info->transform) {
|
|
case JXFORM_NONE:
|
|
if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
|
|
do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_FLIP_H:
|
|
if (info->y_crop_offset != 0)
|
|
do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
else
|
|
do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset,
|
|
src_coef_arrays);
|
|
break;
|
|
case JXFORM_FLIP_V:
|
|
do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_TRANSPOSE:
|
|
do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_TRANSVERSE:
|
|
do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_ROT_90:
|
|
do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_ROT_180:
|
|
do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_ROT_270:
|
|
do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
|
|
src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* jtransform_perfect_transform
|
|
*
|
|
* Determine whether lossless transformation is perfectly
|
|
* possible for a specified image and transformation.
|
|
*
|
|
* Inputs:
|
|
* image_width, image_height: source image dimensions.
|
|
* MCU_width, MCU_height: pixel dimensions of MCU.
|
|
* transform: transformation identifier.
|
|
* Parameter sources from initialized jpeg_struct
|
|
* (after reading source header):
|
|
* image_width = cinfo.image_width
|
|
* image_height = cinfo.image_height
|
|
* MCU_width = cinfo.max_h_samp_factor * cinfo.block_size
|
|
* MCU_height = cinfo.max_v_samp_factor * cinfo.block_size
|
|
* Result:
|
|
* TRUE = perfect transformation possible
|
|
* FALSE = perfect transformation not possible
|
|
* (may use custom action then)
|
|
*/
|
|
|
|
GLOBAL(boolean)
|
|
jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height,
|
|
int MCU_width, int MCU_height,
|
|
JXFORM_CODE transform)
|
|
{
|
|
boolean result = TRUE; /* initialize TRUE */
|
|
|
|
switch (transform) {
|
|
case JXFORM_FLIP_H:
|
|
case JXFORM_ROT_270:
|
|
if (image_width % (JDIMENSION) MCU_width)
|
|
result = FALSE;
|
|
break;
|
|
case JXFORM_FLIP_V:
|
|
case JXFORM_ROT_90:
|
|
if (image_height % (JDIMENSION) MCU_height)
|
|
result = FALSE;
|
|
break;
|
|
case JXFORM_TRANSVERSE:
|
|
case JXFORM_ROT_180:
|
|
if (image_width % (JDIMENSION) MCU_width)
|
|
result = FALSE;
|
|
if (image_height % (JDIMENSION) MCU_height)
|
|
result = FALSE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* TRANSFORMS_SUPPORTED */
|
|
|
|
|
|
/* Setup decompression object to save desired markers in memory.
|
|
* This must be called before jpeg_read_header() to have the desired effect.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
|
|
{
|
|
#ifdef SAVE_MARKERS_SUPPORTED
|
|
int m;
|
|
|
|
/* Save comments except under NONE option */
|
|
if (option != JCOPYOPT_NONE) {
|
|
jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
|
|
}
|
|
/* Save all types of APPn markers iff ALL option */
|
|
if (option == JCOPYOPT_ALL) {
|
|
for (m = 0; m < 16; m++)
|
|
jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
|
|
}
|
|
#endif /* SAVE_MARKERS_SUPPORTED */
|
|
}
|
|
|
|
/* Copy markers saved in the given source object to the destination object.
|
|
* This should be called just after jpeg_start_compress() or
|
|
* jpeg_write_coefficients().
|
|
* Note that those routines will have written the SOI, and also the
|
|
* JFIF APP0 or Adobe APP14 markers if selected.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JCOPY_OPTION option)
|
|
{
|
|
jpeg_saved_marker_ptr marker;
|
|
|
|
/* In the current implementation, we don't actually need to examine the
|
|
* option flag here; we just copy everything that got saved.
|
|
* But to avoid confusion, we do not output JFIF and Adobe APP14 markers
|
|
* if the encoder library already wrote one.
|
|
*/
|
|
for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
|
|
if (dstinfo->write_JFIF_header &&
|
|
marker->marker == JPEG_APP0 &&
|
|
marker->data_length >= 5 &&
|
|
GETJOCTET(marker->data[0]) == 0x4A &&
|
|
GETJOCTET(marker->data[1]) == 0x46 &&
|
|
GETJOCTET(marker->data[2]) == 0x49 &&
|
|
GETJOCTET(marker->data[3]) == 0x46 &&
|
|
GETJOCTET(marker->data[4]) == 0)
|
|
continue; /* reject duplicate JFIF */
|
|
if (dstinfo->write_Adobe_marker &&
|
|
marker->marker == JPEG_APP0+14 &&
|
|
marker->data_length >= 5 &&
|
|
GETJOCTET(marker->data[0]) == 0x41 &&
|
|
GETJOCTET(marker->data[1]) == 0x64 &&
|
|
GETJOCTET(marker->data[2]) == 0x6F &&
|
|
GETJOCTET(marker->data[3]) == 0x62 &&
|
|
GETJOCTET(marker->data[4]) == 0x65)
|
|
continue; /* reject duplicate Adobe */
|
|
#ifdef NEED_FAR_POINTERS
|
|
/* We could use jpeg_write_marker if the data weren't FAR... */
|
|
{
|
|
unsigned int i;
|
|
jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
|
|
for (i = 0; i < marker->data_length; i++)
|
|
jpeg_write_m_byte(dstinfo, marker->data[i]);
|
|
}
|
|
#else
|
|
jpeg_write_marker(dstinfo, marker->marker,
|
|
marker->data, marker->data_length);
|
|
#endif
|
|
}
|
|
}
|