You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
11 KiB
350 lines
11 KiB
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
// |
|
// Purpose: |
|
// |
|
//===========================================================================// |
|
|
|
#include <tier0/platform.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <math.h> |
|
#include <stdlib.h> |
|
#include "bitmap/float_bm.h" |
|
#include "vstdlib/vstdlib.h" |
|
#include "raytrace.h" |
|
#include "mathlib/bumpvects.h" |
|
#include "mathlib/halton.h" |
|
#include "tier0/threadtools.h" |
|
#include "tier0/progressbar.h" |
|
|
|
// In order to handle intersections with wrapped copies, we repeat the bitmap triangles this many |
|
// times |
|
#define NREPS_TILE 1 |
|
extern int n_intersection_calculations; |
|
|
|
|
|
|
|
struct SSBumpCalculationContext // what each thread needs to see |
|
{ |
|
RayTracingEnvironment *m_pRtEnv; |
|
FloatBitMap_t *ret_bm; // the bitmnap we are building |
|
FloatBitMap_t const *src_bm; |
|
int nrays_to_trace_per_pixel; |
|
float bump_scale; |
|
Vector *trace_directions; // light source directions to trace |
|
Vector *normals; |
|
int min_y; // range of scanlines to computer for |
|
int max_y; |
|
uint32 m_nOptionFlags; |
|
int thread_number; |
|
}; |
|
|
|
|
|
static uintp SSBumpCalculationThreadFN( void * ctx1 ) |
|
{ |
|
SSBumpCalculationContext *ctx = ( SSBumpCalculationContext * ) ctx1; |
|
|
|
RayStream ray_trace_stream_ctx; |
|
|
|
RayTracingSingleResult * rslts = new |
|
RayTracingSingleResult[ctx->ret_bm->Width * ctx->nrays_to_trace_per_pixel]; |
|
|
|
|
|
for( int y = ctx->min_y; y <= ctx->max_y; y++ ) |
|
{ |
|
if ( ctx->thread_number == 0 ) |
|
ReportProgress("Computing output",(1+ctx->max_y-ctx->min_y),y-ctx->min_y); |
|
for( int r = 0; r < ctx->nrays_to_trace_per_pixel; r++ ) |
|
{ |
|
for( int x = 0; x < ctx->ret_bm->Width; x++ ) |
|
{ |
|
Vector surf_pnt( x, y, ctx->bump_scale * ctx->src_bm->Pixel( x, y, 3 ) ); |
|
// move the ray origin up a hair |
|
surf_pnt.z += 0.55; |
|
Vector trace_end = surf_pnt; |
|
Vector trace_dir = ctx->trace_directions[ r ]; |
|
trace_dir *= ( 1 + NREPS_TILE * 2 ) * max( ctx->src_bm->Width, ctx->src_bm->Height ); |
|
trace_end += trace_dir; |
|
ctx->m_pRtEnv->AddToRayStream( ray_trace_stream_ctx, surf_pnt, trace_end, |
|
& ( rslts[ r + ctx->nrays_to_trace_per_pixel * ( x )] )); |
|
} |
|
} |
|
if ( ctx->nrays_to_trace_per_pixel ) |
|
ctx->m_pRtEnv->FinishRayStream( ray_trace_stream_ctx ); |
|
// now, all ray tracing results are in the results buffer. Determine the visible self-shadowed |
|
// bump map lighting at each vertex in each basis direction |
|
for( int x = 0; x < ctx->src_bm->Width; x++ ) |
|
{ |
|
int nNumChannels = ( ctx->m_nOptionFlags & SSBUMP_OPTION_NONDIRECTIONAL ) ? 1 : 3; |
|
for( int c = 0; c < nNumChannels; c++ ) |
|
{ |
|
float sum_dots = 0; |
|
float sum_possible_dots = 0; |
|
Vector ldir = g_localBumpBasis[c]; |
|
float ndotl = DotProduct( ldir, ctx->normals[x + y * ctx->src_bm->Width] ); |
|
if ( ndotl < 0 ) |
|
ctx->ret_bm->Pixel( x, y, c ) = 0; |
|
else |
|
{ |
|
if ( ctx->nrays_to_trace_per_pixel ) |
|
{ |
|
RayTracingSingleResult *this_rslt = |
|
rslts + ctx->nrays_to_trace_per_pixel * ( x ); |
|
for( int r = 0; r < ctx->nrays_to_trace_per_pixel; r++ ) |
|
{ |
|
float dot; |
|
if ( ctx->m_nOptionFlags & SSBUMP_OPTION_NONDIRECTIONAL ) |
|
dot = ctx->trace_directions[r].z; |
|
else |
|
dot = DotProduct( ldir, ctx->trace_directions[r] ); |
|
if ( dot > 0 ) |
|
{ |
|
sum_possible_dots += dot; |
|
if ( this_rslt[r].HitID == - 1 ) |
|
sum_dots += dot; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
sum_dots = sum_possible_dots = 1.0; |
|
} |
|
ctx->ret_bm->Pixel( x, y, c ) = ( ndotl * sum_dots ) / sum_possible_dots; |
|
} |
|
} |
|
if ( ctx->m_nOptionFlags & SSBUMP_OPTION_NONDIRECTIONAL ) |
|
{ |
|
ctx->ret_bm->Pixel( x, y, 1 ) = ctx->ret_bm->Pixel( x, y, 0 ); // copy height |
|
ctx->ret_bm->Pixel( x, y, 2 ) = ctx->ret_bm->Pixel( x, y, 0 ); // copy height |
|
ctx->ret_bm->Pixel( x, y, 3 ) = ctx->ret_bm->Pixel( x, y, 0 ); // copy height |
|
} |
|
else |
|
{ |
|
ctx->ret_bm->Pixel( x, y, 3 ) = ctx->src_bm->Pixel( x, y, 3 ); // copy height |
|
} |
|
} |
|
} |
|
delete[] rslts; |
|
return 0; |
|
} |
|
|
|
void FloatBitMap_t::ComputeVertexPositionsAndNormals( float flHeightScale, Vector **ppPosOut, Vector **ppNormalOut ) const |
|
{ |
|
Vector *verts = new Vector[Width * Height]; |
|
// first, calculate vertex positions |
|
for( int y = 0; y < Height; y++ ) |
|
for( int x = 0; x < Width; x++ ) |
|
{ |
|
Vector * out = verts + x + y * Width; |
|
out->x = x; |
|
out->y = y; |
|
out->z = flHeightScale * Pixel( x, y, 3 ); |
|
} |
|
|
|
Vector *normals = new Vector[Width * Height]; |
|
// now, calculate normals, smoothed |
|
for( int y = 0; y < Height; y++ ) |
|
for( int x = 0; x < Width; x++ ) |
|
{ |
|
// now, calculcate average normal |
|
Vector avg_normal( 0, 0, 0 ); |
|
for( int xofs =- 1;xofs <= 1;xofs++ ) |
|
for( int yofs =- 1;yofs <= 1;yofs++ ) |
|
{ |
|
int x0 = ( x + xofs ); |
|
if ( x0 < 0 ) |
|
x0 += Width; |
|
int y0 = ( y + yofs ); |
|
if ( y0 < 0 ) |
|
y0 += Height; |
|
x0 = x0 % Width; |
|
y0 = y0 % Height; |
|
int x1 = ( x0 + 1 ) % Width; |
|
int y1 = ( y0 + 1 ) % Height; |
|
// now, form the two triangles from this vertex |
|
Vector p0 = verts[x0 + y0 * Width]; |
|
Vector e1 = verts[x1 + y0 * Width]; |
|
e1 -= p0; |
|
Vector e2 = verts[x0 + y1 * Width]; |
|
e2 -= p0; |
|
Vector n1; |
|
CrossProduct( e1, e2, n1 ); |
|
if ( n1.z < 0 ) |
|
n1.Negate(); |
|
e1 = verts[x + y1 * Width]; |
|
e1 -= p0; |
|
e2 = verts[x1 + y1 * Width]; |
|
e2 -= p0; |
|
Vector n2; |
|
CrossProduct( e1, e2, n2 ); |
|
if ( n2.z < 0 ) |
|
n2.Negate(); |
|
n1.NormalizeInPlace(); |
|
n2.NormalizeInPlace(); |
|
avg_normal += n1; |
|
avg_normal += n2; |
|
} |
|
avg_normal.NormalizeInPlace(); |
|
normals[x + y * Width]= avg_normal; |
|
} |
|
*ppPosOut = verts; |
|
*ppNormalOut = normals; |
|
} |
|
|
|
FloatBitMap_t *FloatBitMap_t::ComputeSelfShadowedBumpmapFromHeightInAlphaChannel( |
|
float bump_scale, int nrays_to_trace_per_pixel, |
|
uint32 nOptionFlags ) const |
|
{ |
|
|
|
// first, add all the triangles from the height map to the "world". |
|
// we will make multiple copies to handle wrapping |
|
int tcnt = 1; |
|
|
|
Vector * verts; |
|
Vector * normals; |
|
ComputeVertexPositionsAndNormals( bump_scale, & verts, & normals ); |
|
|
|
RayTracingEnvironment rtEnv; |
|
rtEnv.Flags |= RTE_FLAGS_DONT_STORE_TRIANGLE_COLORS; // save some ram |
|
|
|
if ( nrays_to_trace_per_pixel ) |
|
{ |
|
rtEnv.MakeRoomForTriangles( ( 1 + 2 * NREPS_TILE ) * ( 1 + 2 * NREPS_TILE ) * 2 * Height * Width ); |
|
|
|
// now, add a whole mess of triangles to trace against |
|
for( int tilex =- NREPS_TILE; tilex <= NREPS_TILE; tilex++ ) |
|
for( int tiley =- NREPS_TILE; tiley <= NREPS_TILE; tiley++ ) |
|
{ |
|
int min_x = 0; |
|
int max_x = Width - 1; |
|
int min_y = 0; |
|
int max_y = Height - 1; |
|
if ( tilex < 0 ) |
|
min_x = Width / 2; |
|
if ( tilex > 0 ) |
|
max_x = Width / 2; |
|
if ( tiley < 0 ) |
|
min_y = Height / 2; |
|
if ( tiley > 0 ) |
|
max_y = Height / 2; |
|
for( int y = min_y; y <= max_y; y++ ) |
|
for( int x = min_x; x <= max_x; x++ ) |
|
{ |
|
Vector ofs( tilex * Width, tiley * Height, 0 ); |
|
int x1 = ( x + 1 ) % Width; |
|
int y1 = ( y + 1 ) % Height; |
|
Vector v0 = verts[x + y * Width]; |
|
Vector v1 = verts[x1 + y * Width]; |
|
Vector v2 = verts[x1 + y1 * Width]; |
|
Vector v3 = verts[x + y1 * Width]; |
|
v0.x = x; v0.y = y; |
|
v1.x = x + 1; v1.y = y; |
|
v2.x = x + 1; v2.y = y + 1; |
|
v3.x = x; v3.y = y + 1; |
|
v0 += ofs; v1 += ofs; v2 += ofs; v3 += ofs; |
|
rtEnv.AddTriangle( tcnt++, v0, v1, v2, Vector( 1, 1, 1 ) ); |
|
rtEnv.AddTriangle( tcnt++, v0, v3, v2, Vector( 1, 1, 1 ) ); |
|
} |
|
} |
|
//printf("added %d triangles\n",tcnt-1); |
|
ReportProgress("Creating kd-tree",0,0); |
|
rtEnv.SetupAccelerationStructure(); |
|
// ok, now we have built a structure for ray intersection. we will take advantage |
|
// of the SSE ray tracing code by intersecting rays as a batch. |
|
} |
|
|
|
// We need to calculate for each vertex (i.e. pixel) of the heightmap, how "much" of the world |
|
// it can see in each basis direction. we will do this by sampling a sphere of rays around the |
|
// vertex, and using dot-product weighting to measure the lighting contribution in each basis |
|
// direction. note that the surface normal is not used here. The surface normal will end up |
|
// being reflected in the result because of rays being blocked when they try to pass through |
|
// the planes of the triangles touching the vertex. |
|
|
|
// note that there is no reason inter-bounced lighting could not be folded into this |
|
// calculation. |
|
|
|
FloatBitMap_t * ret = new FloatBitMap_t( Width, Height ); |
|
|
|
|
|
Vector *trace_directions=new Vector[nrays_to_trace_per_pixel]; |
|
DirectionalSampler_t my_sphere_sampler; |
|
for( int r=0; r < nrays_to_trace_per_pixel; r++) |
|
{ |
|
Vector trace_dir=my_sphere_sampler.NextValue(); |
|
// trace_dir=Vector(1,0,0); |
|
trace_dir.z=fabs(trace_dir.z); // upwards facing only |
|
trace_directions[ r ]= trace_dir; |
|
} |
|
|
|
volatile SSBumpCalculationContext ctxs[32]; |
|
ctxs[0].m_pRtEnv =& rtEnv; |
|
ctxs[0].ret_bm = ret; |
|
ctxs[0].src_bm = this; |
|
ctxs[0].nrays_to_trace_per_pixel = nrays_to_trace_per_pixel; |
|
ctxs[0].bump_scale = bump_scale; |
|
ctxs[0].trace_directions = trace_directions; |
|
ctxs[0].normals = normals; |
|
ctxs[0].min_y = 0; |
|
ctxs[0].max_y = Height - 1; |
|
ctxs[0].m_nOptionFlags = nOptionFlags; |
|
int nthreads = min( 32, (int)GetCPUInformation()->m_nPhysicalProcessors ); |
|
|
|
ThreadHandle_t waithandles[32]; |
|
int starty = 0; |
|
int ystep = Height / nthreads; |
|
for( int t = 0;t < nthreads; t++ ) |
|
{ |
|
if ( t ) |
|
memcpy( (void * ) ( & ctxs[t] ), ( void * ) & ctxs[0], sizeof( ctxs[0] )); |
|
ctxs[t].thread_number = t; |
|
ctxs[t].min_y = starty; |
|
if ( t != nthreads - 1 ) |
|
ctxs[t].max_y = min( Height - 1, starty + ystep - 1 ); |
|
else |
|
ctxs[t].max_y = Height - 1; |
|
waithandles[t]= CreateSimpleThread( SSBumpCalculationThreadFN, ( SSBumpCalculationContext * ) & ctxs[t] ); |
|
starty += ystep; |
|
} |
|
for(int t=0;t<nthreads;t++) |
|
{ |
|
ThreadJoin( waithandles[t] ); |
|
} |
|
if ( nOptionFlags & SSBUMP_MOD2X_DETAIL_TEXTURE ) |
|
{ |
|
const float flOutputScale = 0.5 * ( 1.0 / .57735026 ); // normalize so that a flat normal yields 0.5 |
|
// scale output weights by color channel |
|
for( int nY = 0; nY < Height; nY++ ) |
|
for( int nX = 0; nX < Width; nX++ ) |
|
{ |
|
float flScale = flOutputScale * (2.0/3.0) * ( Pixel( nX, nY, 0 ) + Pixel( nX, nY, 1 ) + Pixel( nX, nY, 2 ) ); |
|
ret->Pixel( nX, nY, 0 ) *= flScale; |
|
ret->Pixel( nX, nY, 1 ) *= flScale; |
|
ret->Pixel( nX, nY, 2 ) *= flScale; |
|
} |
|
} |
|
|
|
delete[] verts; |
|
delete[] trace_directions; |
|
delete[] normals; |
|
return ret; // destructor will clean up rtenv |
|
} |
|
|
|
// generate a conventional normal map from a source with height stored in alpha. |
|
FloatBitMap_t *FloatBitMap_t::ComputeBumpmapFromHeightInAlphaChannel( float bump_scale ) const |
|
{ |
|
Vector *verts; |
|
Vector *normals; |
|
ComputeVertexPositionsAndNormals( bump_scale, &verts, &normals ); |
|
FloatBitMap_t *ret=new FloatBitMap_t( Width, Height ); |
|
for( int y = 0; y < Height; y++ ) |
|
for( int x = 0; x < Width; x++ ) |
|
{ |
|
Vector const & N = normals[ x + y * Width ]; |
|
ret->Pixel( x, y, 0 ) = 0.5+ 0.5 * N.x; |
|
ret->Pixel( x, y, 1 ) = 0.5+ 0.5 * N.y; |
|
ret->Pixel( x, y, 2 ) = 0.5+ 0.5 * N.z; |
|
ret->Pixel( x, y, 3 ) = Pixel( x, y, 3 ); |
|
} |
|
return ret; |
|
} |
|
|
|
|