mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-11 23:57:59 +00:00
383 lines
14 KiB
C
383 lines
14 KiB
C
/*
|
|
* jctrans.c
|
|
*
|
|
* Copyright (C) 1995-1998, Thomas G. Lane.
|
|
* Modified 2000-2009 by Guido Vollbeding.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains library routines for transcoding compression,
|
|
* that is, writing raw DCT coefficient arrays to an output JPEG file.
|
|
* The routines in jcapimin.c will also be needed by a transcoder.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
|
|
|
|
/* Forward declarations */
|
|
LOCAL(void) transencode_master_selection
|
|
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
|
LOCAL(void) transencode_coef_controller
|
|
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
|
|
|
|
|
/*
|
|
* Compression initialization for writing raw-coefficient data.
|
|
* Before calling this, all parameters and a data destination must be set up.
|
|
* Call jpeg_finish_compress() to actually write the data.
|
|
*
|
|
* The number of passed virtual arrays must match cinfo->num_components.
|
|
* Note that the virtual arrays need not be filled or even realized at
|
|
* the time write_coefficients is called; indeed, if the virtual arrays
|
|
* were requested from this compression object's memory manager, they
|
|
* typically will be realized during this routine and filled afterwards.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
|
|
{
|
|
if (cinfo->global_state != CSTATE_START)
|
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
|
/* Mark all tables to be written */
|
|
jpeg_suppress_tables(cinfo, FALSE);
|
|
/* (Re)initialize error mgr and destination modules */
|
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
|
(*cinfo->dest->init_destination) (cinfo);
|
|
/* Perform master selection of active modules */
|
|
transencode_master_selection(cinfo, coef_arrays);
|
|
/* Wait for jpeg_finish_compress() call */
|
|
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
|
cinfo->global_state = CSTATE_WRCOEFS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the compression object with default parameters,
|
|
* then copy from the source object all parameters needed for lossless
|
|
* transcoding. Parameters that can be varied without loss (such as
|
|
* scan script and Huffman optimization) are left in their default states.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
|
|
j_compress_ptr dstinfo)
|
|
{
|
|
JQUANT_TBL ** qtblptr;
|
|
jpeg_component_info *incomp, *outcomp;
|
|
JQUANT_TBL *c_quant, *slot_quant;
|
|
int tblno, ci, coefi;
|
|
|
|
/* Safety check to ensure start_compress not called yet. */
|
|
if (dstinfo->global_state != CSTATE_START)
|
|
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
|
/* Copy fundamental image dimensions */
|
|
dstinfo->image_width = srcinfo->image_width;
|
|
dstinfo->image_height = srcinfo->image_height;
|
|
dstinfo->input_components = srcinfo->num_components;
|
|
dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
|
dstinfo->jpeg_width = srcinfo->output_width;
|
|
dstinfo->jpeg_height = srcinfo->output_height;
|
|
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
|
|
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
|
|
/* Initialize all parameters to default values */
|
|
jpeg_set_defaults(dstinfo);
|
|
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
|
* Fix it to get the right header markers for the image colorspace.
|
|
*/
|
|
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
|
dstinfo->data_precision = srcinfo->data_precision;
|
|
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
|
/* Copy the source's quantization tables. */
|
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
|
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
|
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
|
|
if (*qtblptr == NULL)
|
|
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
|
|
MEMCOPY((*qtblptr)->quantval,
|
|
srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
|
SIZEOF((*qtblptr)->quantval));
|
|
(*qtblptr)->sent_table = FALSE;
|
|
}
|
|
}
|
|
/* Copy the source's per-component info.
|
|
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
|
*/
|
|
dstinfo->num_components = srcinfo->num_components;
|
|
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
|
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
|
MAX_COMPONENTS);
|
|
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
|
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
|
outcomp->component_id = incomp->component_id;
|
|
outcomp->h_samp_factor = incomp->h_samp_factor;
|
|
outcomp->v_samp_factor = incomp->v_samp_factor;
|
|
outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
|
/* Make sure saved quantization table for component matches the qtable
|
|
* slot. If not, the input file re-used this qtable slot.
|
|
* IJG encoder currently cannot duplicate this.
|
|
*/
|
|
tblno = outcomp->quant_tbl_no;
|
|
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
|
srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
|
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
|
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
|
c_quant = incomp->quant_table;
|
|
if (c_quant != NULL) {
|
|
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
|
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
|
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
|
}
|
|
}
|
|
/* Note: we do not copy the source's Huffman table assignments;
|
|
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
|
*/
|
|
}
|
|
/* Also copy JFIF version and resolution information, if available.
|
|
* Strictly speaking this isn't "critical" info, but it's nearly
|
|
* always appropriate to copy it if available. In particular,
|
|
* if the application chooses to copy JFIF 1.02 extension markers from
|
|
* the source file, we need to copy the version to make sure we don't
|
|
* emit a file that has 1.02 extensions but a claimed version of 1.01.
|
|
* We will *not*, however, copy version info from mislabeled "2.01" files.
|
|
*/
|
|
if (srcinfo->saw_JFIF_marker) {
|
|
if (srcinfo->JFIF_major_version == 1) {
|
|
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
|
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
|
}
|
|
dstinfo->density_unit = srcinfo->density_unit;
|
|
dstinfo->X_density = srcinfo->X_density;
|
|
dstinfo->Y_density = srcinfo->Y_density;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Master selection of compression modules for transcoding.
|
|
* This substitutes for jcinit.c's initialization of the full compressor.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
transencode_master_selection (j_compress_ptr cinfo,
|
|
jvirt_barray_ptr * coef_arrays)
|
|
{
|
|
/* Initialize master control (includes parameter checking/processing) */
|
|
jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
|
|
|
/* Entropy encoding: either Huffman or arithmetic coding. */
|
|
if (cinfo->arith_code)
|
|
jinit_arith_encoder(cinfo);
|
|
else {
|
|
jinit_huff_encoder(cinfo);
|
|
}
|
|
|
|
/* We need a special coefficient buffer controller. */
|
|
transencode_coef_controller(cinfo, coef_arrays);
|
|
|
|
jinit_marker_writer(cinfo);
|
|
|
|
/* We can now tell the memory manager to allocate virtual arrays. */
|
|
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
|
|
|
/* Write the datastream header (SOI, JFIF) immediately.
|
|
* Frame and scan headers are postponed till later.
|
|
* This lets application insert special markers after the SOI.
|
|
*/
|
|
(*cinfo->marker->write_file_header) (cinfo);
|
|
}
|
|
|
|
|
|
/*
|
|
* The rest of this file is a special implementation of the coefficient
|
|
* buffer controller. This is similar to jccoefct.c, but it handles only
|
|
* output from presupplied virtual arrays. Furthermore, we generate any
|
|
* dummy padding blocks on-the-fly rather than expecting them to be present
|
|
* in the arrays.
|
|
*/
|
|
|
|
/* Private buffer controller object */
|
|
|
|
typedef struct {
|
|
struct jpeg_c_coef_controller pub; /* public fields */
|
|
|
|
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
|
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
|
|
|
/* Virtual block array for each component. */
|
|
jvirt_barray_ptr * whole_image;
|
|
|
|
/* Workspace for constructing dummy blocks at right/bottom edges. */
|
|
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
|
} my_coef_controller;
|
|
|
|
typedef my_coef_controller * my_coef_ptr;
|
|
|
|
|
|
LOCAL(void)
|
|
start_iMCU_row (j_compress_ptr cinfo)
|
|
/* Reset within-iMCU-row counters for a new row */
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
|
|
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
|
* But at the bottom of the image, process only what's left.
|
|
*/
|
|
if (cinfo->comps_in_scan > 1) {
|
|
coef->MCU_rows_per_iMCU_row = 1;
|
|
} else {
|
|
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
|
else
|
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
|
}
|
|
|
|
coef->mcu_ctr = 0;
|
|
coef->MCU_vert_offset = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize for a processing pass.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
|
|
if (pass_mode != JBUF_CRANK_DEST)
|
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
|
|
|
coef->iMCU_row_num = 0;
|
|
start_iMCU_row(cinfo);
|
|
}
|
|
|
|
|
|
/*
|
|
* Process some data.
|
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
|
* per call, ie, v_samp_factor block rows for each component in the scan.
|
|
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
|
*
|
|
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
|
JDIMENSION start_col;
|
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
|
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
|
JBLOCKROW buffer_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Align the virtual buffers for the components used in this scan. */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
|
coef->iMCU_row_num * compptr->v_samp_factor,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
}
|
|
|
|
/* Loop to process one whole iMCU row */
|
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
yoffset++) {
|
|
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
|
MCU_col_num++) {
|
|
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
|
blkn = 0; /* index of current DCT block within MCU */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
start_col = MCU_col_num * compptr->MCU_width;
|
|
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
|
: compptr->last_col_width;
|
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
if (coef->iMCU_row_num < last_iMCU_row ||
|
|
yindex+yoffset < compptr->last_row_height) {
|
|
/* Fill in pointers to real blocks in this row */
|
|
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
|
for (xindex = 0; xindex < blockcnt; xindex++)
|
|
MCU_buffer[blkn++] = buffer_ptr++;
|
|
} else {
|
|
/* At bottom of image, need a whole row of dummy blocks */
|
|
xindex = 0;
|
|
}
|
|
/* Fill in any dummy blocks needed in this row.
|
|
* Dummy blocks are filled in the same way as in jccoefct.c:
|
|
* all zeroes in the AC entries, DC entries equal to previous
|
|
* block's DC value. The init routine has already zeroed the
|
|
* AC entries, so we need only set the DC entries correctly.
|
|
*/
|
|
for (; xindex < compptr->MCU_width; xindex++) {
|
|
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
|
|
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
|
|
blkn++;
|
|
}
|
|
}
|
|
}
|
|
/* Try to write the MCU. */
|
|
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
|
/* Suspension forced; update state counters and exit */
|
|
coef->MCU_vert_offset = yoffset;
|
|
coef->mcu_ctr = MCU_col_num;
|
|
return FALSE;
|
|
}
|
|
}
|
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
coef->mcu_ctr = 0;
|
|
}
|
|
/* Completed the iMCU row, advance counters for next one */
|
|
coef->iMCU_row_num++;
|
|
start_iMCU_row(cinfo);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize coefficient buffer controller.
|
|
*
|
|
* Each passed coefficient array must be the right size for that
|
|
* coefficient: width_in_blocks wide and height_in_blocks high,
|
|
* with unitheight at least v_samp_factor.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
transencode_coef_controller (j_compress_ptr cinfo,
|
|
jvirt_barray_ptr * coef_arrays)
|
|
{
|
|
my_coef_ptr coef;
|
|
JBLOCKROW buffer;
|
|
int i;
|
|
|
|
coef = (my_coef_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
SIZEOF(my_coef_controller));
|
|
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
|
coef->pub.start_pass = start_pass_coef;
|
|
coef->pub.compress_data = compress_output;
|
|
|
|
/* Save pointer to virtual arrays */
|
|
coef->whole_image = coef_arrays;
|
|
|
|
/* Allocate and pre-zero space for dummy DCT blocks. */
|
|
buffer = (JBLOCKROW)
|
|
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
|
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
|
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
|
coef->dummy_buffer[i] = buffer + i;
|
|
}
|
|
}
|