You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
681 lines
29 KiB
681 lines
29 KiB
#! /usr/bin/python |
|
# |
|
# Protocol Buffers - Google's data interchange format |
|
# Copyright 2008 Google Inc. All rights reserved. |
|
# https://developers.google.com/protocol-buffers/ |
|
# |
|
# Redistribution and use in source and binary forms, with or without |
|
# modification, are permitted provided that the following conditions are |
|
# met: |
|
# |
|
# * Redistributions of source code must retain the above copyright |
|
# notice, this list of conditions and the following disclaimer. |
|
# * Redistributions in binary form must reproduce the above |
|
# copyright notice, this list of conditions and the following disclaimer |
|
# in the documentation and/or other materials provided with the |
|
# distribution. |
|
# * Neither the name of Google Inc. nor the names of its |
|
# contributors may be used to endorse or promote products derived from |
|
# this software without specific prior written permission. |
|
# |
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
"""Tests python protocol buffers against the golden message. |
|
|
|
Note that the golden messages exercise every known field type, thus this |
|
test ends up exercising and verifying nearly all of the parsing and |
|
serialization code in the whole library. |
|
|
|
TODO(kenton): Merge with wire_format_test? It doesn't make a whole lot of |
|
sense to call this a test of the "message" module, which only declares an |
|
abstract interface. |
|
""" |
|
|
|
__author__ = 'gps@google.com (Gregory P. Smith)' |
|
|
|
import copy |
|
import math |
|
import operator |
|
import pickle |
|
import sys |
|
|
|
from google.apputils import basetest |
|
from google.protobuf import unittest_pb2 |
|
from google.protobuf.internal import api_implementation |
|
from google.protobuf.internal import test_util |
|
from google.protobuf import message |
|
|
|
# Python pre-2.6 does not have isinf() or isnan() functions, so we have |
|
# to provide our own. |
|
def isnan(val): |
|
# NaN is never equal to itself. |
|
return val != val |
|
def isinf(val): |
|
# Infinity times zero equals NaN. |
|
return not isnan(val) and isnan(val * 0) |
|
def IsPosInf(val): |
|
return isinf(val) and (val > 0) |
|
def IsNegInf(val): |
|
return isinf(val) and (val < 0) |
|
|
|
|
|
class MessageTest(basetest.TestCase): |
|
|
|
def testBadUtf8String(self): |
|
if api_implementation.Type() != 'python': |
|
self.skipTest("Skipping testBadUtf8String, currently only the python " |
|
"api implementation raises UnicodeDecodeError when a " |
|
"string field contains bad utf-8.") |
|
bad_utf8_data = test_util.GoldenFileData('bad_utf8_string') |
|
with self.assertRaises(UnicodeDecodeError) as context: |
|
unittest_pb2.TestAllTypes.FromString(bad_utf8_data) |
|
self.assertIn('field: protobuf_unittest.TestAllTypes.optional_string', |
|
str(context.exception)) |
|
|
|
def testGoldenMessage(self): |
|
golden_data = test_util.GoldenFileData( |
|
'golden_message_oneof_implemented') |
|
golden_message = unittest_pb2.TestAllTypes() |
|
golden_message.ParseFromString(golden_data) |
|
test_util.ExpectAllFieldsSet(self, golden_message) |
|
self.assertEqual(golden_data, golden_message.SerializeToString()) |
|
golden_copy = copy.deepcopy(golden_message) |
|
self.assertEqual(golden_data, golden_copy.SerializeToString()) |
|
|
|
def testGoldenExtensions(self): |
|
golden_data = test_util.GoldenFileData('golden_message') |
|
golden_message = unittest_pb2.TestAllExtensions() |
|
golden_message.ParseFromString(golden_data) |
|
all_set = unittest_pb2.TestAllExtensions() |
|
test_util.SetAllExtensions(all_set) |
|
self.assertEquals(all_set, golden_message) |
|
self.assertEqual(golden_data, golden_message.SerializeToString()) |
|
golden_copy = copy.deepcopy(golden_message) |
|
self.assertEqual(golden_data, golden_copy.SerializeToString()) |
|
|
|
def testGoldenPackedMessage(self): |
|
golden_data = test_util.GoldenFileData('golden_packed_fields_message') |
|
golden_message = unittest_pb2.TestPackedTypes() |
|
golden_message.ParseFromString(golden_data) |
|
all_set = unittest_pb2.TestPackedTypes() |
|
test_util.SetAllPackedFields(all_set) |
|
self.assertEquals(all_set, golden_message) |
|
self.assertEqual(golden_data, all_set.SerializeToString()) |
|
golden_copy = copy.deepcopy(golden_message) |
|
self.assertEqual(golden_data, golden_copy.SerializeToString()) |
|
|
|
def testGoldenPackedExtensions(self): |
|
golden_data = test_util.GoldenFileData('golden_packed_fields_message') |
|
golden_message = unittest_pb2.TestPackedExtensions() |
|
golden_message.ParseFromString(golden_data) |
|
all_set = unittest_pb2.TestPackedExtensions() |
|
test_util.SetAllPackedExtensions(all_set) |
|
self.assertEquals(all_set, golden_message) |
|
self.assertEqual(golden_data, all_set.SerializeToString()) |
|
golden_copy = copy.deepcopy(golden_message) |
|
self.assertEqual(golden_data, golden_copy.SerializeToString()) |
|
|
|
def testPickleSupport(self): |
|
golden_data = test_util.GoldenFileData('golden_message') |
|
golden_message = unittest_pb2.TestAllTypes() |
|
golden_message.ParseFromString(golden_data) |
|
pickled_message = pickle.dumps(golden_message) |
|
|
|
unpickled_message = pickle.loads(pickled_message) |
|
self.assertEquals(unpickled_message, golden_message) |
|
|
|
|
|
def testPickleIncompleteProto(self): |
|
golden_message = unittest_pb2.TestRequired(a=1) |
|
pickled_message = pickle.dumps(golden_message) |
|
|
|
unpickled_message = pickle.loads(pickled_message) |
|
self.assertEquals(unpickled_message, golden_message) |
|
self.assertEquals(unpickled_message.a, 1) |
|
# This is still an incomplete proto - so serializing should fail |
|
self.assertRaises(message.EncodeError, unpickled_message.SerializeToString) |
|
|
|
def testPositiveInfinity(self): |
|
golden_data = (b'\x5D\x00\x00\x80\x7F' |
|
b'\x61\x00\x00\x00\x00\x00\x00\xF0\x7F' |
|
b'\xCD\x02\x00\x00\x80\x7F' |
|
b'\xD1\x02\x00\x00\x00\x00\x00\x00\xF0\x7F') |
|
golden_message = unittest_pb2.TestAllTypes() |
|
golden_message.ParseFromString(golden_data) |
|
self.assertTrue(IsPosInf(golden_message.optional_float)) |
|
self.assertTrue(IsPosInf(golden_message.optional_double)) |
|
self.assertTrue(IsPosInf(golden_message.repeated_float[0])) |
|
self.assertTrue(IsPosInf(golden_message.repeated_double[0])) |
|
self.assertEqual(golden_data, golden_message.SerializeToString()) |
|
|
|
def testNegativeInfinity(self): |
|
golden_data = (b'\x5D\x00\x00\x80\xFF' |
|
b'\x61\x00\x00\x00\x00\x00\x00\xF0\xFF' |
|
b'\xCD\x02\x00\x00\x80\xFF' |
|
b'\xD1\x02\x00\x00\x00\x00\x00\x00\xF0\xFF') |
|
golden_message = unittest_pb2.TestAllTypes() |
|
golden_message.ParseFromString(golden_data) |
|
self.assertTrue(IsNegInf(golden_message.optional_float)) |
|
self.assertTrue(IsNegInf(golden_message.optional_double)) |
|
self.assertTrue(IsNegInf(golden_message.repeated_float[0])) |
|
self.assertTrue(IsNegInf(golden_message.repeated_double[0])) |
|
self.assertEqual(golden_data, golden_message.SerializeToString()) |
|
|
|
def testNotANumber(self): |
|
golden_data = (b'\x5D\x00\x00\xC0\x7F' |
|
b'\x61\x00\x00\x00\x00\x00\x00\xF8\x7F' |
|
b'\xCD\x02\x00\x00\xC0\x7F' |
|
b'\xD1\x02\x00\x00\x00\x00\x00\x00\xF8\x7F') |
|
golden_message = unittest_pb2.TestAllTypes() |
|
golden_message.ParseFromString(golden_data) |
|
self.assertTrue(isnan(golden_message.optional_float)) |
|
self.assertTrue(isnan(golden_message.optional_double)) |
|
self.assertTrue(isnan(golden_message.repeated_float[0])) |
|
self.assertTrue(isnan(golden_message.repeated_double[0])) |
|
|
|
# The protocol buffer may serialize to any one of multiple different |
|
# representations of a NaN. Rather than verify a specific representation, |
|
# verify the serialized string can be converted into a correctly |
|
# behaving protocol buffer. |
|
serialized = golden_message.SerializeToString() |
|
message = unittest_pb2.TestAllTypes() |
|
message.ParseFromString(serialized) |
|
self.assertTrue(isnan(message.optional_float)) |
|
self.assertTrue(isnan(message.optional_double)) |
|
self.assertTrue(isnan(message.repeated_float[0])) |
|
self.assertTrue(isnan(message.repeated_double[0])) |
|
|
|
def testPositiveInfinityPacked(self): |
|
golden_data = (b'\xA2\x06\x04\x00\x00\x80\x7F' |
|
b'\xAA\x06\x08\x00\x00\x00\x00\x00\x00\xF0\x7F') |
|
golden_message = unittest_pb2.TestPackedTypes() |
|
golden_message.ParseFromString(golden_data) |
|
self.assertTrue(IsPosInf(golden_message.packed_float[0])) |
|
self.assertTrue(IsPosInf(golden_message.packed_double[0])) |
|
self.assertEqual(golden_data, golden_message.SerializeToString()) |
|
|
|
def testNegativeInfinityPacked(self): |
|
golden_data = (b'\xA2\x06\x04\x00\x00\x80\xFF' |
|
b'\xAA\x06\x08\x00\x00\x00\x00\x00\x00\xF0\xFF') |
|
golden_message = unittest_pb2.TestPackedTypes() |
|
golden_message.ParseFromString(golden_data) |
|
self.assertTrue(IsNegInf(golden_message.packed_float[0])) |
|
self.assertTrue(IsNegInf(golden_message.packed_double[0])) |
|
self.assertEqual(golden_data, golden_message.SerializeToString()) |
|
|
|
def testNotANumberPacked(self): |
|
golden_data = (b'\xA2\x06\x04\x00\x00\xC0\x7F' |
|
b'\xAA\x06\x08\x00\x00\x00\x00\x00\x00\xF8\x7F') |
|
golden_message = unittest_pb2.TestPackedTypes() |
|
golden_message.ParseFromString(golden_data) |
|
self.assertTrue(isnan(golden_message.packed_float[0])) |
|
self.assertTrue(isnan(golden_message.packed_double[0])) |
|
|
|
serialized = golden_message.SerializeToString() |
|
message = unittest_pb2.TestPackedTypes() |
|
message.ParseFromString(serialized) |
|
self.assertTrue(isnan(message.packed_float[0])) |
|
self.assertTrue(isnan(message.packed_double[0])) |
|
|
|
def testExtremeFloatValues(self): |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
# Most positive exponent, no significand bits set. |
|
kMostPosExponentNoSigBits = math.pow(2, 127) |
|
message.optional_float = kMostPosExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == kMostPosExponentNoSigBits) |
|
|
|
# Most positive exponent, one significand bit set. |
|
kMostPosExponentOneSigBit = 1.5 * math.pow(2, 127) |
|
message.optional_float = kMostPosExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == kMostPosExponentOneSigBit) |
|
|
|
# Repeat last two cases with values of same magnitude, but negative. |
|
message.optional_float = -kMostPosExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == -kMostPosExponentNoSigBits) |
|
|
|
message.optional_float = -kMostPosExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == -kMostPosExponentOneSigBit) |
|
|
|
# Most negative exponent, no significand bits set. |
|
kMostNegExponentNoSigBits = math.pow(2, -127) |
|
message.optional_float = kMostNegExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == kMostNegExponentNoSigBits) |
|
|
|
# Most negative exponent, one significand bit set. |
|
kMostNegExponentOneSigBit = 1.5 * math.pow(2, -127) |
|
message.optional_float = kMostNegExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == kMostNegExponentOneSigBit) |
|
|
|
# Repeat last two cases with values of the same magnitude, but negative. |
|
message.optional_float = -kMostNegExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == -kMostNegExponentNoSigBits) |
|
|
|
message.optional_float = -kMostNegExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_float == -kMostNegExponentOneSigBit) |
|
|
|
def testExtremeDoubleValues(self): |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
# Most positive exponent, no significand bits set. |
|
kMostPosExponentNoSigBits = math.pow(2, 1023) |
|
message.optional_double = kMostPosExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == kMostPosExponentNoSigBits) |
|
|
|
# Most positive exponent, one significand bit set. |
|
kMostPosExponentOneSigBit = 1.5 * math.pow(2, 1023) |
|
message.optional_double = kMostPosExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == kMostPosExponentOneSigBit) |
|
|
|
# Repeat last two cases with values of same magnitude, but negative. |
|
message.optional_double = -kMostPosExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == -kMostPosExponentNoSigBits) |
|
|
|
message.optional_double = -kMostPosExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == -kMostPosExponentOneSigBit) |
|
|
|
# Most negative exponent, no significand bits set. |
|
kMostNegExponentNoSigBits = math.pow(2, -1023) |
|
message.optional_double = kMostNegExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == kMostNegExponentNoSigBits) |
|
|
|
# Most negative exponent, one significand bit set. |
|
kMostNegExponentOneSigBit = 1.5 * math.pow(2, -1023) |
|
message.optional_double = kMostNegExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == kMostNegExponentOneSigBit) |
|
|
|
# Repeat last two cases with values of the same magnitude, but negative. |
|
message.optional_double = -kMostNegExponentNoSigBits |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == -kMostNegExponentNoSigBits) |
|
|
|
message.optional_double = -kMostNegExponentOneSigBit |
|
message.ParseFromString(message.SerializeToString()) |
|
self.assertTrue(message.optional_double == -kMostNegExponentOneSigBit) |
|
|
|
def testFloatPrinting(self): |
|
message = unittest_pb2.TestAllTypes() |
|
message.optional_float = 2.0 |
|
self.assertEqual(str(message), 'optional_float: 2.0\n') |
|
|
|
def testHighPrecisionFloatPrinting(self): |
|
message = unittest_pb2.TestAllTypes() |
|
message.optional_double = 0.12345678912345678 |
|
if sys.version_info.major >= 3: |
|
self.assertEqual(str(message), 'optional_double: 0.12345678912345678\n') |
|
else: |
|
self.assertEqual(str(message), 'optional_double: 0.123456789123\n') |
|
|
|
def testUnknownFieldPrinting(self): |
|
populated = unittest_pb2.TestAllTypes() |
|
test_util.SetAllNonLazyFields(populated) |
|
empty = unittest_pb2.TestEmptyMessage() |
|
empty.ParseFromString(populated.SerializeToString()) |
|
self.assertEqual(str(empty), '') |
|
|
|
def testSortingRepeatedScalarFieldsDefaultComparator(self): |
|
"""Check some different types with the default comparator.""" |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
# TODO(mattp): would testing more scalar types strengthen test? |
|
message.repeated_int32.append(1) |
|
message.repeated_int32.append(3) |
|
message.repeated_int32.append(2) |
|
message.repeated_int32.sort() |
|
self.assertEqual(message.repeated_int32[0], 1) |
|
self.assertEqual(message.repeated_int32[1], 2) |
|
self.assertEqual(message.repeated_int32[2], 3) |
|
|
|
message.repeated_float.append(1.1) |
|
message.repeated_float.append(1.3) |
|
message.repeated_float.append(1.2) |
|
message.repeated_float.sort() |
|
self.assertAlmostEqual(message.repeated_float[0], 1.1) |
|
self.assertAlmostEqual(message.repeated_float[1], 1.2) |
|
self.assertAlmostEqual(message.repeated_float[2], 1.3) |
|
|
|
message.repeated_string.append('a') |
|
message.repeated_string.append('c') |
|
message.repeated_string.append('b') |
|
message.repeated_string.sort() |
|
self.assertEqual(message.repeated_string[0], 'a') |
|
self.assertEqual(message.repeated_string[1], 'b') |
|
self.assertEqual(message.repeated_string[2], 'c') |
|
|
|
message.repeated_bytes.append(b'a') |
|
message.repeated_bytes.append(b'c') |
|
message.repeated_bytes.append(b'b') |
|
message.repeated_bytes.sort() |
|
self.assertEqual(message.repeated_bytes[0], b'a') |
|
self.assertEqual(message.repeated_bytes[1], b'b') |
|
self.assertEqual(message.repeated_bytes[2], b'c') |
|
|
|
def testSortingRepeatedScalarFieldsCustomComparator(self): |
|
"""Check some different types with custom comparator.""" |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
message.repeated_int32.append(-3) |
|
message.repeated_int32.append(-2) |
|
message.repeated_int32.append(-1) |
|
message.repeated_int32.sort(key=abs) |
|
self.assertEqual(message.repeated_int32[0], -1) |
|
self.assertEqual(message.repeated_int32[1], -2) |
|
self.assertEqual(message.repeated_int32[2], -3) |
|
|
|
message.repeated_string.append('aaa') |
|
message.repeated_string.append('bb') |
|
message.repeated_string.append('c') |
|
message.repeated_string.sort(key=len) |
|
self.assertEqual(message.repeated_string[0], 'c') |
|
self.assertEqual(message.repeated_string[1], 'bb') |
|
self.assertEqual(message.repeated_string[2], 'aaa') |
|
|
|
def testSortingRepeatedCompositeFieldsCustomComparator(self): |
|
"""Check passing a custom comparator to sort a repeated composite field.""" |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
message.repeated_nested_message.add().bb = 1 |
|
message.repeated_nested_message.add().bb = 3 |
|
message.repeated_nested_message.add().bb = 2 |
|
message.repeated_nested_message.add().bb = 6 |
|
message.repeated_nested_message.add().bb = 5 |
|
message.repeated_nested_message.add().bb = 4 |
|
message.repeated_nested_message.sort(key=operator.attrgetter('bb')) |
|
self.assertEqual(message.repeated_nested_message[0].bb, 1) |
|
self.assertEqual(message.repeated_nested_message[1].bb, 2) |
|
self.assertEqual(message.repeated_nested_message[2].bb, 3) |
|
self.assertEqual(message.repeated_nested_message[3].bb, 4) |
|
self.assertEqual(message.repeated_nested_message[4].bb, 5) |
|
self.assertEqual(message.repeated_nested_message[5].bb, 6) |
|
|
|
def testRepeatedCompositeFieldSortArguments(self): |
|
"""Check sorting a repeated composite field using list.sort() arguments.""" |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
get_bb = operator.attrgetter('bb') |
|
cmp_bb = lambda a, b: cmp(a.bb, b.bb) |
|
message.repeated_nested_message.add().bb = 1 |
|
message.repeated_nested_message.add().bb = 3 |
|
message.repeated_nested_message.add().bb = 2 |
|
message.repeated_nested_message.add().bb = 6 |
|
message.repeated_nested_message.add().bb = 5 |
|
message.repeated_nested_message.add().bb = 4 |
|
message.repeated_nested_message.sort(key=get_bb) |
|
self.assertEqual([k.bb for k in message.repeated_nested_message], |
|
[1, 2, 3, 4, 5, 6]) |
|
message.repeated_nested_message.sort(key=get_bb, reverse=True) |
|
self.assertEqual([k.bb for k in message.repeated_nested_message], |
|
[6, 5, 4, 3, 2, 1]) |
|
if sys.version_info.major >= 3: return # No cmp sorting in PY3. |
|
message.repeated_nested_message.sort(sort_function=cmp_bb) |
|
self.assertEqual([k.bb for k in message.repeated_nested_message], |
|
[1, 2, 3, 4, 5, 6]) |
|
message.repeated_nested_message.sort(cmp=cmp_bb, reverse=True) |
|
self.assertEqual([k.bb for k in message.repeated_nested_message], |
|
[6, 5, 4, 3, 2, 1]) |
|
|
|
def testRepeatedScalarFieldSortArguments(self): |
|
"""Check sorting a scalar field using list.sort() arguments.""" |
|
message = unittest_pb2.TestAllTypes() |
|
|
|
message.repeated_int32.append(-3) |
|
message.repeated_int32.append(-2) |
|
message.repeated_int32.append(-1) |
|
message.repeated_int32.sort(key=abs) |
|
self.assertEqual(list(message.repeated_int32), [-1, -2, -3]) |
|
message.repeated_int32.sort(key=abs, reverse=True) |
|
self.assertEqual(list(message.repeated_int32), [-3, -2, -1]) |
|
if sys.version_info.major < 3: # No cmp sorting in PY3. |
|
abs_cmp = lambda a, b: cmp(abs(a), abs(b)) |
|
message.repeated_int32.sort(sort_function=abs_cmp) |
|
self.assertEqual(list(message.repeated_int32), [-1, -2, -3]) |
|
message.repeated_int32.sort(cmp=abs_cmp, reverse=True) |
|
self.assertEqual(list(message.repeated_int32), [-3, -2, -1]) |
|
|
|
message.repeated_string.append('aaa') |
|
message.repeated_string.append('bb') |
|
message.repeated_string.append('c') |
|
message.repeated_string.sort(key=len) |
|
self.assertEqual(list(message.repeated_string), ['c', 'bb', 'aaa']) |
|
message.repeated_string.sort(key=len, reverse=True) |
|
self.assertEqual(list(message.repeated_string), ['aaa', 'bb', 'c']) |
|
if sys.version_info.major < 3: # No cmp sorting in PY3. |
|
len_cmp = lambda a, b: cmp(len(a), len(b)) |
|
message.repeated_string.sort(sort_function=len_cmp) |
|
self.assertEqual(list(message.repeated_string), ['c', 'bb', 'aaa']) |
|
message.repeated_string.sort(cmp=len_cmp, reverse=True) |
|
self.assertEqual(list(message.repeated_string), ['aaa', 'bb', 'c']) |
|
|
|
def testRepeatedFieldsComparable(self): |
|
m1 = unittest_pb2.TestAllTypes() |
|
m2 = unittest_pb2.TestAllTypes() |
|
m1.repeated_int32.append(0) |
|
m1.repeated_int32.append(1) |
|
m1.repeated_int32.append(2) |
|
m2.repeated_int32.append(0) |
|
m2.repeated_int32.append(1) |
|
m2.repeated_int32.append(2) |
|
m1.repeated_nested_message.add().bb = 1 |
|
m1.repeated_nested_message.add().bb = 2 |
|
m1.repeated_nested_message.add().bb = 3 |
|
m2.repeated_nested_message.add().bb = 1 |
|
m2.repeated_nested_message.add().bb = 2 |
|
m2.repeated_nested_message.add().bb = 3 |
|
|
|
if sys.version_info.major >= 3: return # No cmp() in PY3. |
|
|
|
# These comparisons should not raise errors. |
|
_ = m1 < m2 |
|
_ = m1.repeated_nested_message < m2.repeated_nested_message |
|
|
|
# Make sure cmp always works. If it wasn't defined, these would be |
|
# id() comparisons and would all fail. |
|
self.assertEqual(cmp(m1, m2), 0) |
|
self.assertEqual(cmp(m1.repeated_int32, m2.repeated_int32), 0) |
|
self.assertEqual(cmp(m1.repeated_int32, [0, 1, 2]), 0) |
|
self.assertEqual(cmp(m1.repeated_nested_message, |
|
m2.repeated_nested_message), 0) |
|
with self.assertRaises(TypeError): |
|
# Can't compare repeated composite containers to lists. |
|
cmp(m1.repeated_nested_message, m2.repeated_nested_message[:]) |
|
|
|
# TODO(anuraag): Implement extensiondict comparison in C++ and then add test |
|
|
|
def testParsingMerge(self): |
|
"""Check the merge behavior when a required or optional field appears |
|
multiple times in the input.""" |
|
messages = [ |
|
unittest_pb2.TestAllTypes(), |
|
unittest_pb2.TestAllTypes(), |
|
unittest_pb2.TestAllTypes() ] |
|
messages[0].optional_int32 = 1 |
|
messages[1].optional_int64 = 2 |
|
messages[2].optional_int32 = 3 |
|
messages[2].optional_string = 'hello' |
|
|
|
merged_message = unittest_pb2.TestAllTypes() |
|
merged_message.optional_int32 = 3 |
|
merged_message.optional_int64 = 2 |
|
merged_message.optional_string = 'hello' |
|
|
|
generator = unittest_pb2.TestParsingMerge.RepeatedFieldsGenerator() |
|
generator.field1.extend(messages) |
|
generator.field2.extend(messages) |
|
generator.field3.extend(messages) |
|
generator.ext1.extend(messages) |
|
generator.ext2.extend(messages) |
|
generator.group1.add().field1.MergeFrom(messages[0]) |
|
generator.group1.add().field1.MergeFrom(messages[1]) |
|
generator.group1.add().field1.MergeFrom(messages[2]) |
|
generator.group2.add().field1.MergeFrom(messages[0]) |
|
generator.group2.add().field1.MergeFrom(messages[1]) |
|
generator.group2.add().field1.MergeFrom(messages[2]) |
|
|
|
data = generator.SerializeToString() |
|
parsing_merge = unittest_pb2.TestParsingMerge() |
|
parsing_merge.ParseFromString(data) |
|
|
|
# Required and optional fields should be merged. |
|
self.assertEqual(parsing_merge.required_all_types, merged_message) |
|
self.assertEqual(parsing_merge.optional_all_types, merged_message) |
|
self.assertEqual(parsing_merge.optionalgroup.optional_group_all_types, |
|
merged_message) |
|
self.assertEqual(parsing_merge.Extensions[ |
|
unittest_pb2.TestParsingMerge.optional_ext], |
|
merged_message) |
|
|
|
# Repeated fields should not be merged. |
|
self.assertEqual(len(parsing_merge.repeated_all_types), 3) |
|
self.assertEqual(len(parsing_merge.repeatedgroup), 3) |
|
self.assertEqual(len(parsing_merge.Extensions[ |
|
unittest_pb2.TestParsingMerge.repeated_ext]), 3) |
|
|
|
def ensureNestedMessageExists(self, msg, attribute): |
|
"""Make sure that a nested message object exists. |
|
|
|
As soon as a nested message attribute is accessed, it will be present in the |
|
_fields dict, without being marked as actually being set. |
|
""" |
|
getattr(msg, attribute) |
|
self.assertFalse(msg.HasField(attribute)) |
|
|
|
def testOneofGetCaseNonexistingField(self): |
|
m = unittest_pb2.TestAllTypes() |
|
self.assertRaises(ValueError, m.WhichOneof, 'no_such_oneof_field') |
|
|
|
def testOneofSemantics(self): |
|
m = unittest_pb2.TestAllTypes() |
|
self.assertIs(None, m.WhichOneof('oneof_field')) |
|
|
|
m.oneof_uint32 = 11 |
|
self.assertEqual('oneof_uint32', m.WhichOneof('oneof_field')) |
|
self.assertTrue(m.HasField('oneof_uint32')) |
|
|
|
m.oneof_string = u'foo' |
|
self.assertEqual('oneof_string', m.WhichOneof('oneof_field')) |
|
self.assertFalse(m.HasField('oneof_uint32')) |
|
self.assertTrue(m.HasField('oneof_string')) |
|
|
|
m.oneof_nested_message.bb = 11 |
|
self.assertEqual('oneof_nested_message', m.WhichOneof('oneof_field')) |
|
self.assertFalse(m.HasField('oneof_string')) |
|
self.assertTrue(m.HasField('oneof_nested_message')) |
|
|
|
m.oneof_bytes = b'bb' |
|
self.assertEqual('oneof_bytes', m.WhichOneof('oneof_field')) |
|
self.assertFalse(m.HasField('oneof_nested_message')) |
|
self.assertTrue(m.HasField('oneof_bytes')) |
|
|
|
def testOneofCompositeFieldReadAccess(self): |
|
m = unittest_pb2.TestAllTypes() |
|
m.oneof_uint32 = 11 |
|
|
|
self.ensureNestedMessageExists(m, 'oneof_nested_message') |
|
self.assertEqual('oneof_uint32', m.WhichOneof('oneof_field')) |
|
self.assertEqual(11, m.oneof_uint32) |
|
|
|
def testOneofHasField(self): |
|
m = unittest_pb2.TestAllTypes() |
|
self.assertFalse(m.HasField('oneof_field')) |
|
m.oneof_uint32 = 11 |
|
self.assertTrue(m.HasField('oneof_field')) |
|
m.oneof_bytes = b'bb' |
|
self.assertTrue(m.HasField('oneof_field')) |
|
m.ClearField('oneof_bytes') |
|
self.assertFalse(m.HasField('oneof_field')) |
|
|
|
def testOneofClearField(self): |
|
m = unittest_pb2.TestAllTypes() |
|
m.oneof_uint32 = 11 |
|
m.ClearField('oneof_field') |
|
self.assertFalse(m.HasField('oneof_field')) |
|
self.assertFalse(m.HasField('oneof_uint32')) |
|
self.assertIs(None, m.WhichOneof('oneof_field')) |
|
|
|
def testOneofClearSetField(self): |
|
m = unittest_pb2.TestAllTypes() |
|
m.oneof_uint32 = 11 |
|
m.ClearField('oneof_uint32') |
|
self.assertFalse(m.HasField('oneof_field')) |
|
self.assertFalse(m.HasField('oneof_uint32')) |
|
self.assertIs(None, m.WhichOneof('oneof_field')) |
|
|
|
def testOneofClearUnsetField(self): |
|
m = unittest_pb2.TestAllTypes() |
|
m.oneof_uint32 = 11 |
|
self.ensureNestedMessageExists(m, 'oneof_nested_message') |
|
m.ClearField('oneof_nested_message') |
|
self.assertEqual(11, m.oneof_uint32) |
|
self.assertTrue(m.HasField('oneof_field')) |
|
self.assertTrue(m.HasField('oneof_uint32')) |
|
self.assertEqual('oneof_uint32', m.WhichOneof('oneof_field')) |
|
|
|
def testOneofDeserialize(self): |
|
m = unittest_pb2.TestAllTypes() |
|
m.oneof_uint32 = 11 |
|
m2 = unittest_pb2.TestAllTypes() |
|
m2.ParseFromString(m.SerializeToString()) |
|
self.assertEqual('oneof_uint32', m2.WhichOneof('oneof_field')) |
|
|
|
def testSortEmptyRepeatedCompositeContainer(self): |
|
"""Exercise a scenario that has led to segfaults in the past. |
|
""" |
|
m = unittest_pb2.TestAllTypes() |
|
m.repeated_nested_message.sort() |
|
|
|
def testHasFieldOnRepeatedField(self): |
|
"""Using HasField on a repeated field should raise an exception. |
|
""" |
|
m = unittest_pb2.TestAllTypes() |
|
with self.assertRaises(ValueError) as _: |
|
m.HasField('repeated_int32') |
|
|
|
|
|
class ValidTypeNamesTest(basetest.TestCase): |
|
|
|
def assertImportFromName(self, msg, base_name): |
|
# Parse <type 'module.class_name'> to extra 'some.name' as a string. |
|
tp_name = str(type(msg)).split("'")[1] |
|
valid_names = ('Repeated%sContainer' % base_name, |
|
'Repeated%sFieldContainer' % base_name) |
|
self.assertTrue(any(tp_name.endswith(v) for v in valid_names), |
|
'%r does end with any of %r' % (tp_name, valid_names)) |
|
|
|
parts = tp_name.split('.') |
|
class_name = parts[-1] |
|
module_name = '.'.join(parts[:-1]) |
|
__import__(module_name, fromlist=[class_name]) |
|
|
|
def testTypeNamesCanBeImported(self): |
|
# If import doesn't work, pickling won't work either. |
|
pb = unittest_pb2.TestAllTypes() |
|
self.assertImportFromName(pb.repeated_int32, 'Scalar') |
|
self.assertImportFromName(pb.repeated_nested_message, 'Composite') |
|
|
|
|
|
if __name__ == '__main__': |
|
basetest.main()
|
|
|