You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
919 lines
27 KiB
919 lines
27 KiB
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
// |
|
// Purpose: |
|
// |
|
//=============================================================================// |
|
|
|
#include "nvtc.h" |
|
#include "bitmap/imageformat.h" |
|
#include "basetypes.h" |
|
#include "tier0/dbg.h" |
|
#include <malloc.h> |
|
#include <memory.h> |
|
#include "mathlib/mathlib.h" |
|
#include "mathlib/vector.h" |
|
#include "tier1/utlmemory.h" |
|
#include "tier1/strtools.h" |
|
#include "mathlib/compressed_vector.h" |
|
|
|
// Should be last include |
|
#include "tier0/memdbgon.h" |
|
|
|
|
|
namespace ImageLoader |
|
{ |
|
|
|
//----------------------------------------------------------------------------- |
|
// Gamma correction |
|
//----------------------------------------------------------------------------- |
|
static void ConstructFloatGammaTable( float* pTable, float srcGamma, float dstGamma ) |
|
{ |
|
for( int i = 0; i < 256; i++ ) |
|
{ |
|
pTable[i] = 255.0 * pow( (float)i / 255.0f, srcGamma / dstGamma ); |
|
} |
|
} |
|
|
|
void ConstructGammaTable( unsigned char* pTable, float srcGamma, float dstGamma ) |
|
{ |
|
int v; |
|
for( int i = 0; i < 256; i++ ) |
|
{ |
|
double f; |
|
f = 255.0 * pow( (float)i / 255.0f, srcGamma / dstGamma ); |
|
v = ( int )(f + 0.5f); |
|
if( v < 0 ) |
|
{ |
|
v = 0; |
|
} |
|
else if( v > 255 ) |
|
{ |
|
v = 255; |
|
} |
|
pTable[i] = ( unsigned char )v; |
|
} |
|
} |
|
|
|
void GammaCorrectRGBA8888( unsigned char *pSrc, unsigned char* pDst, int width, int height, int depth, |
|
unsigned char* pGammaTable ) |
|
{ |
|
for (int h = 0; h < depth; ++h ) |
|
{ |
|
for (int i = 0; i < height; ++i ) |
|
{ |
|
for (int j = 0; j < width; ++j ) |
|
{ |
|
int idx = (h * width * height + i * width + j) * 4; |
|
|
|
// don't gamma correct alpha |
|
pDst[idx] = pGammaTable[pSrc[idx]]; |
|
pDst[idx+1] = pGammaTable[pSrc[idx+1]]; |
|
pDst[idx+2] = pGammaTable[pSrc[idx+2]]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GammaCorrectRGBA8888( unsigned char *src, unsigned char* dst, int width, int height, int depth, |
|
float srcGamma, float dstGamma ) |
|
{ |
|
if (srcGamma == dstGamma) |
|
{ |
|
if (src != dst) |
|
{ |
|
memcpy( dst, src, GetMemRequired( width, height, depth, IMAGE_FORMAT_RGBA8888, false ) ); |
|
} |
|
return; |
|
} |
|
|
|
static unsigned char gamma[256]; |
|
static float lastSrcGamma = -1; |
|
static float lastDstGamma = -1; |
|
|
|
if (lastSrcGamma != srcGamma || lastDstGamma != dstGamma) |
|
{ |
|
ConstructGammaTable( gamma, srcGamma, dstGamma ); |
|
lastSrcGamma = srcGamma; |
|
lastDstGamma = dstGamma; |
|
} |
|
|
|
GammaCorrectRGBA8888( src, dst, width, height, depth, gamma ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Generate a NICE filter kernel |
|
//----------------------------------------------------------------------------- |
|
static void GenerateNiceFilter( float wratio, float hratio, float dratio, int kernelDiameter, float* pKernel, float *pInvKernel ) |
|
{ |
|
// Compute a kernel... |
|
int h, i, j; |
|
int kernelWidth = kernelDiameter * wratio; |
|
int kernelHeight = kernelDiameter * hratio; |
|
int kernelDepth = ( dratio != 0 ) ? kernelDiameter * dratio : 1; |
|
|
|
// This is a NICE filter |
|
// sinc pi*x * a box from -3 to 3 * sinc ( pi * x/3) |
|
// where x is the pixel # in the destination (shrunken) image. |
|
// only problem here is that the NICE filter has a very large kernel |
|
// (7x7 x wratio x hratio x dratio) |
|
float dx = 1.0f / (float)wratio; |
|
float dy = 1.0f / (float)hratio; |
|
float z, dz; |
|
|
|
if (dratio != 0.0f) |
|
{ |
|
dz = 1.0f / (float)dratio; |
|
z = -((float)kernelDiameter - dz) * 0.5f; |
|
} |
|
else |
|
{ |
|
dz = 0.0f; |
|
z = 0.0f; |
|
} |
|
|
|
float total = 0.0f; |
|
for ( h = 0; h < kernelDepth; ++h ) |
|
{ |
|
float y = -((float)kernelDiameter - dy) * 0.5f; |
|
for ( i = 0; i < kernelHeight; ++i ) |
|
{ |
|
float x = -((float)kernelDiameter - dx) * 0.5f; |
|
for ( j = 0; j < kernelWidth; ++j ) |
|
{ |
|
int nKernelIndex = kernelWidth * ( i + h * kernelHeight ) + j; |
|
|
|
float d = sqrt( x * x + y * y + z * z ); |
|
if (d > kernelDiameter * 0.5f) |
|
{ |
|
pKernel[nKernelIndex] = 0.0f; |
|
} |
|
else |
|
{ |
|
float t = M_PI * d; |
|
if ( t != 0 ) |
|
{ |
|
float sinc = sin( t ) / t; |
|
float sinc3 = 3.0f * sin( t / 3.0f ) / t; |
|
pKernel[nKernelIndex] = sinc * sinc3; |
|
} |
|
else |
|
{ |
|
pKernel[nKernelIndex] = 1.0f; |
|
} |
|
total += pKernel[nKernelIndex]; |
|
} |
|
x += dx; |
|
} |
|
y += dy; |
|
} |
|
z += dz; |
|
} |
|
|
|
// normalize |
|
float flInvFactor = ( dratio == 0 ) ? wratio * hratio : dratio * wratio * hratio; |
|
float flInvTotal = (total != 0.0f) ? 1.0f / total : 1.0f; |
|
|
|
for ( h = 0; h < kernelDepth; ++h ) |
|
{ |
|
for ( i = 0; i < kernelHeight; ++i ) |
|
{ |
|
int nPixel = kernelWidth * ( h * kernelHeight + i ); |
|
for ( j = 0; j < kernelWidth; ++j ) |
|
{ |
|
pKernel[nPixel + j] *= flInvTotal; |
|
pInvKernel[nPixel + j] = flInvFactor * pKernel[nPixel + j]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Resample an image |
|
//----------------------------------------------------------------------------- |
|
static inline unsigned char Clamp( float x ) |
|
{ |
|
int idx = (int)(x + 0.5f); |
|
if (idx < 0) idx = 0; |
|
else if (idx > 255) idx = 255; |
|
return idx; |
|
} |
|
|
|
inline bool IsPowerOfTwo( int x ) |
|
{ |
|
return (x & ( x - 1 )) == 0; |
|
} |
|
|
|
|
|
struct KernelInfo_t |
|
{ |
|
float *m_pKernel; |
|
float *m_pInvKernel; |
|
int m_nWidth; |
|
int m_nHeight; |
|
int m_nDepth; |
|
int m_nDiameter; |
|
}; |
|
|
|
enum KernelType_t |
|
{ |
|
KERNEL_DEFAULT = 0, |
|
KERNEL_NORMALMAP, |
|
KERNEL_ALPHATEST, |
|
}; |
|
|
|
typedef void (*ApplyKernelFunc_t)( const KernelInfo_t &kernel, const ResampleInfo_t &info, int wratio, int hratio, int dratio, float* gammaToLinear, float *pAlphaResult ); |
|
|
|
//----------------------------------------------------------------------------- |
|
// Apply Kernel to an image |
|
//----------------------------------------------------------------------------- |
|
template< int type, bool bNiceFilter > |
|
class CKernelWrapper |
|
{ |
|
public: |
|
static inline int ActualX( int x, const ResampleInfo_t &info ) |
|
{ |
|
if ( info.m_nFlags & RESAMPLE_CLAMPS ) |
|
return clamp( x, 0, info.m_nSrcWidth - 1 ); |
|
|
|
// This works since info.m_nSrcWidth is a power of two. |
|
// Even for negative #s! |
|
return x & (info.m_nSrcWidth - 1); |
|
} |
|
|
|
static inline int ActualY( int y, const ResampleInfo_t &info ) |
|
{ |
|
if ( info.m_nFlags & RESAMPLE_CLAMPT ) |
|
return clamp( y, 0, info.m_nSrcHeight - 1 ); |
|
|
|
// This works since info.m_nSrcHeight is a power of two. |
|
// Even for negative #s! |
|
return y & (info.m_nSrcHeight - 1); |
|
} |
|
|
|
static inline int ActualZ( int z, const ResampleInfo_t &info ) |
|
{ |
|
if ( info.m_nFlags & RESAMPLE_CLAMPU ) |
|
return clamp( z, 0, info.m_nSrcDepth - 1 ); |
|
|
|
// This works since info.m_nSrcDepth is a power of two. |
|
// Even for negative #s! |
|
return z & (info.m_nSrcDepth - 1); |
|
} |
|
|
|
static void ComputeAveragedColor( const KernelInfo_t &kernel, const ResampleInfo_t &info, |
|
int startX, int startY, int startZ, float *gammaToLinear, float *total ) |
|
{ |
|
total[0] = total[1] = total[2] = total[3] = 0.0f; |
|
for ( int j = 0, srcZ = startZ; j < kernel.m_nDepth; ++j, ++srcZ ) |
|
{ |
|
int sz = ActualZ( srcZ, info ); |
|
sz *= info.m_nSrcWidth * info.m_nSrcHeight; |
|
|
|
for ( int k = 0, srcY = startY; k < kernel.m_nHeight; ++k, ++srcY ) |
|
{ |
|
int sy = ActualY( srcY, info ); |
|
sy *= info.m_nSrcWidth; |
|
|
|
int kernelIdx; |
|
if ( bNiceFilter ) |
|
{ |
|
kernelIdx = kernel.m_nWidth * ( k + j * kernel.m_nHeight ); |
|
} |
|
else |
|
{ |
|
kernelIdx = 0; |
|
} |
|
|
|
for ( int l = 0, srcX = startX; l < kernel.m_nWidth; ++l, ++srcX, ++kernelIdx ) |
|
{ |
|
int sx = ActualX( srcX, info ); |
|
int srcPixel = (sz + sy + sx) << 2; |
|
|
|
float flKernelFactor; |
|
if ( bNiceFilter ) |
|
{ |
|
flKernelFactor = kernel.m_pKernel[kernelIdx]; |
|
if ( flKernelFactor == 0.0f ) |
|
continue; |
|
} |
|
else |
|
{ |
|
flKernelFactor = kernel.m_pKernel[0]; |
|
} |
|
|
|
if ( type == KERNEL_NORMALMAP ) |
|
{ |
|
total[0] += flKernelFactor * info.m_pSrc[srcPixel + 0]; |
|
total[1] += flKernelFactor * info.m_pSrc[srcPixel + 1]; |
|
total[2] += flKernelFactor * info.m_pSrc[srcPixel + 2]; |
|
total[3] += flKernelFactor * info.m_pSrc[srcPixel + 3]; |
|
} |
|
else if ( type == KERNEL_ALPHATEST ) |
|
{ |
|
total[0] += flKernelFactor * gammaToLinear[ info.m_pSrc[srcPixel + 0] ]; |
|
total[1] += flKernelFactor * gammaToLinear[ info.m_pSrc[srcPixel + 1] ]; |
|
total[2] += flKernelFactor * gammaToLinear[ info.m_pSrc[srcPixel + 2] ]; |
|
if ( info.m_pSrc[srcPixel + 3] > 192 ) |
|
{ |
|
total[3] += flKernelFactor * 255.0f; |
|
} |
|
} |
|
else |
|
{ |
|
total[0] += flKernelFactor * gammaToLinear[ info.m_pSrc[srcPixel + 0] ]; |
|
total[1] += flKernelFactor * gammaToLinear[ info.m_pSrc[srcPixel + 1] ]; |
|
total[2] += flKernelFactor * gammaToLinear[ info.m_pSrc[srcPixel + 2] ]; |
|
total[3] += flKernelFactor * info.m_pSrc[srcPixel + 3]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void AddAlphaToAlphaResult( const KernelInfo_t &kernel, const ResampleInfo_t &info, |
|
int startX, int startY, int startZ, float flAlpha, float *pAlphaResult ) |
|
{ |
|
for ( int j = 0, srcZ = startZ; j < kernel.m_nDepth; ++j, ++srcZ ) |
|
{ |
|
int sz = ActualZ( srcZ, info ); |
|
sz *= info.m_nSrcWidth * info.m_nSrcHeight; |
|
|
|
for ( int k = 0, srcY = startY; k < kernel.m_nHeight; ++k, ++srcY ) |
|
{ |
|
int sy = ActualY( srcY, info ); |
|
sy *= info.m_nSrcWidth; |
|
|
|
int kernelIdx; |
|
if ( bNiceFilter ) |
|
{ |
|
kernelIdx = k * kernel.m_nWidth + j * kernel.m_nWidth * kernel.m_nHeight; |
|
} |
|
else |
|
{ |
|
kernelIdx = 0; |
|
} |
|
|
|
for ( int l = 0, srcX = startX; l < kernel.m_nWidth; ++l, ++srcX, ++kernelIdx ) |
|
{ |
|
int sx = ActualX( srcX, info ); |
|
int srcPixel = sz + sy + sx; |
|
|
|
float flKernelFactor; |
|
if ( bNiceFilter ) |
|
{ |
|
flKernelFactor = kernel.m_pInvKernel[kernelIdx]; |
|
if ( flKernelFactor == 0.0f ) |
|
continue; |
|
} |
|
else |
|
{ |
|
flKernelFactor = kernel.m_pInvKernel[0]; |
|
} |
|
|
|
pAlphaResult[srcPixel] += flKernelFactor * flAlpha; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void AdjustAlphaChannel( const KernelInfo_t &kernel, const ResampleInfo_t &info, |
|
int wratio, int hratio, int dratio, float *pAlphaResult ) |
|
{ |
|
// Find the delta between the alpha + source image |
|
for ( int k = 0; k < info.m_nSrcDepth; ++k ) |
|
{ |
|
for ( int i = 0; i < info.m_nSrcHeight; ++i ) |
|
{ |
|
int dstPixel = i * info.m_nSrcWidth + k * info.m_nSrcWidth * info.m_nSrcHeight; |
|
for ( int j = 0; j < info.m_nSrcWidth; ++j, ++dstPixel ) |
|
{ |
|
pAlphaResult[dstPixel] = fabs( pAlphaResult[dstPixel] - info.m_pSrc[dstPixel * 4 + 3] ); |
|
} |
|
} |
|
} |
|
|
|
// Apply the kernel to the image |
|
int nInitialZ = (dratio >> 1) - ((dratio * kernel.m_nDiameter) >> 1); |
|
int nInitialY = (hratio >> 1) - ((hratio * kernel.m_nDiameter) >> 1); |
|
int nInitialX = (wratio >> 1) - ((wratio * kernel.m_nDiameter) >> 1); |
|
|
|
float flAlphaThreshhold = (info.m_flAlphaHiFreqThreshhold >= 0 ) ? 255.0f * info.m_flAlphaHiFreqThreshhold : 255.0f * 0.4f; |
|
|
|
float flInvFactor = (dratio == 0) ? 1.0f / (hratio * wratio) : 1.0f / (hratio * wratio * dratio); |
|
|
|
for ( int h = 0; h < info.m_nDestDepth; ++h ) |
|
{ |
|
int startZ = dratio * h + nInitialZ; |
|
for ( int i = 0; i < info.m_nDestHeight; ++i ) |
|
{ |
|
int startY = hratio * i + nInitialY; |
|
int dstPixel = ( info.m_nDestWidth * (i + h * info.m_nDestHeight) ) << 2; |
|
for ( int j = 0; j < info.m_nDestWidth; ++j, dstPixel += 4 ) |
|
{ |
|
if ( info.m_pDest[ dstPixel + 3 ] == 255 ) |
|
continue; |
|
|
|
int startX = wratio * j + nInitialX; |
|
float flAlphaDelta = 0.0f; |
|
|
|
for ( int m = 0, srcZ = startZ; m < dratio; ++m, ++srcZ ) |
|
{ |
|
int sz = ActualZ( srcZ, info ); |
|
sz *= info.m_nSrcWidth * info.m_nSrcHeight; |
|
|
|
for ( int k = 0, srcY = startY; k < hratio; ++k, ++srcY ) |
|
{ |
|
int sy = ActualY( srcY, info ); |
|
sy *= info.m_nSrcWidth; |
|
|
|
for ( int l = 0, srcX = startX; l < wratio; ++l, ++srcX ) |
|
{ |
|
// HACK: This temp variable fixes an internal compiler error in vs2005 |
|
int temp = srcX; |
|
int sx = ActualX( temp, info ); |
|
|
|
int srcPixel = sz + sy + sx; |
|
flAlphaDelta += pAlphaResult[srcPixel]; |
|
} |
|
} |
|
} |
|
|
|
flAlphaDelta *= flInvFactor; |
|
if ( flAlphaDelta > flAlphaThreshhold ) |
|
{ |
|
info.m_pDest[ dstPixel + 3 ] = 255.0f; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void ApplyKernel( const KernelInfo_t &kernel, const ResampleInfo_t &info, int wratio, int hratio, int dratio, float* gammaToLinear, float *pAlphaResult ) |
|
{ |
|
float invDstGamma = 1.0f / info.m_flDestGamma; |
|
|
|
// Apply the kernel to the image |
|
int nInitialZ = (dratio >> 1) - ((dratio * kernel.m_nDiameter) >> 1); |
|
int nInitialY = (hratio >> 1) - ((hratio * kernel.m_nDiameter) >> 1); |
|
int nInitialX = (wratio >> 1) - ((wratio * kernel.m_nDiameter) >> 1); |
|
|
|
float flAlphaThreshhold = (info.m_flAlphaThreshhold >= 0 ) ? 255.0f * info.m_flAlphaThreshhold : 255.0f * 0.4f; |
|
for ( int k = 0; k < info.m_nDestDepth; ++k ) |
|
{ |
|
int startZ = dratio * k + nInitialZ; |
|
|
|
for ( int i = 0; i < info.m_nDestHeight; ++i ) |
|
{ |
|
int startY = hratio * i + nInitialY; |
|
int dstPixel = (i * info.m_nDestWidth + k * info.m_nDestWidth * info.m_nDestHeight) << 2; |
|
|
|
for ( int j = 0; j < info.m_nDestWidth; ++j, dstPixel += 4 ) |
|
{ |
|
int startX = wratio * j + nInitialX; |
|
|
|
float total[4]; |
|
ComputeAveragedColor( kernel, info, startX, startY, startZ, gammaToLinear, total ); |
|
|
|
// NOTE: Can't use a table here, we lose too many bits |
|
if( type == KERNEL_NORMALMAP ) |
|
{ |
|
for ( int ch = 0; ch < 4; ++ ch ) |
|
info.m_pDest[ dstPixel + ch ] = Clamp( info.m_flColorGoal[ch] + ( info.m_flColorScale[ch] * ( total[ch] - info.m_flColorGoal[ch] ) ) ); |
|
} |
|
else if ( type == KERNEL_ALPHATEST ) |
|
{ |
|
// If there's more than 40% coverage, then keep the pixel (renormalize the color based on coverage) |
|
float flAlpha = ( total[3] >= flAlphaThreshhold ) ? 255 : 0; |
|
|
|
for ( int ch = 0; ch < 3; ++ ch ) |
|
info.m_pDest[ dstPixel + ch ] = Clamp( 255.0f * pow( ( info.m_flColorGoal[ch] + ( info.m_flColorScale[ch] * ( ( total[ch] > 0 ? total[ch] : 0 ) - info.m_flColorGoal[ch] ) ) ) / 255.0f, invDstGamma ) ); |
|
info.m_pDest[ dstPixel + 3 ] = Clamp( flAlpha ); |
|
|
|
AddAlphaToAlphaResult( kernel, info, startX, startY, startZ, flAlpha, pAlphaResult ); |
|
} |
|
else |
|
{ |
|
for ( int ch = 0; ch < 3; ++ ch ) |
|
info.m_pDest[ dstPixel + ch ] = Clamp( 255.0f * pow( ( info.m_flColorGoal[ch] + ( info.m_flColorScale[ch] * ( ( total[ch] > 0 ? total[ch] : 0 ) - info.m_flColorGoal[ch] ) ) ) / 255.0f, invDstGamma ) ); |
|
info.m_pDest[ dstPixel + 3 ] = Clamp( info.m_flColorGoal[3] + ( info.m_flColorScale[3] * ( total[3] - info.m_flColorGoal[3] ) ) ); |
|
} |
|
} |
|
} |
|
|
|
if ( type == KERNEL_ALPHATEST ) |
|
{ |
|
AdjustAlphaChannel( kernel, info, wratio, hratio, dratio, pAlphaResult ); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
typedef CKernelWrapper< KERNEL_DEFAULT, false > ApplyKernelDefault_t; |
|
typedef CKernelWrapper< KERNEL_NORMALMAP, false > ApplyKernelNormalmap_t; |
|
typedef CKernelWrapper< KERNEL_ALPHATEST, false > ApplyKernelAlphatest_t; |
|
typedef CKernelWrapper< KERNEL_DEFAULT, true > ApplyKernelDefaultNice_t; |
|
typedef CKernelWrapper< KERNEL_NORMALMAP, true > ApplyKernelNormalmapNice_t; |
|
typedef CKernelWrapper< KERNEL_ALPHATEST, true > ApplyKernelAlphatestNice_t; |
|
|
|
static ApplyKernelFunc_t g_KernelFunc[] = |
|
{ |
|
ApplyKernelDefault_t::ApplyKernel, |
|
ApplyKernelNormalmap_t::ApplyKernel, |
|
ApplyKernelAlphatest_t::ApplyKernel, |
|
}; |
|
|
|
static ApplyKernelFunc_t g_KernelFuncNice[] = |
|
{ |
|
ApplyKernelDefaultNice_t::ApplyKernel, |
|
ApplyKernelNormalmapNice_t::ApplyKernel, |
|
ApplyKernelAlphatestNice_t::ApplyKernel, |
|
}; |
|
|
|
bool ResampleRGBA8888( const ResampleInfo_t& info ) |
|
{ |
|
// No resampling needed, just gamma correction |
|
if ( info.m_nSrcWidth == info.m_nDestWidth && info.m_nSrcHeight == info.m_nDestHeight && info.m_nSrcDepth == info.m_nDestDepth ) |
|
{ |
|
// Here, we need to gamma convert the source image.. |
|
GammaCorrectRGBA8888( info.m_pSrc, info.m_pDest, info.m_nSrcWidth, info.m_nSrcHeight, info.m_nSrcDepth, info.m_flSrcGamma, info.m_flDestGamma ); |
|
return true; |
|
} |
|
|
|
// fixme: has to be power of two for now. |
|
if( !IsPowerOfTwo(info.m_nSrcWidth) || !IsPowerOfTwo(info.m_nSrcHeight) || !IsPowerOfTwo(info.m_nSrcDepth) || |
|
!IsPowerOfTwo(info.m_nDestWidth) || !IsPowerOfTwo(info.m_nDestHeight) || !IsPowerOfTwo(info.m_nDestDepth) ) |
|
{ |
|
return false; |
|
} |
|
|
|
// fixme: can only downsample for now. |
|
if( (info.m_nSrcWidth < info.m_nDestWidth) || (info.m_nSrcHeight < info.m_nDestHeight) || (info.m_nSrcDepth < info.m_nDestDepth) ) |
|
{ |
|
return false; |
|
} |
|
|
|
// Compute gamma tables... |
|
static float gammaToLinear[256]; |
|
static float lastSrcGamma = -1; |
|
|
|
if (lastSrcGamma != info.m_flSrcGamma) |
|
{ |
|
ConstructFloatGammaTable( gammaToLinear, info.m_flSrcGamma, 1.0f ); |
|
lastSrcGamma = info.m_flSrcGamma; |
|
} |
|
|
|
int wratio = info.m_nSrcWidth / info.m_nDestWidth; |
|
int hratio = info.m_nSrcHeight / info.m_nDestHeight; |
|
int dratio = (info.m_nSrcDepth != info.m_nDestDepth) ? info.m_nSrcDepth / info.m_nDestDepth : 0; |
|
|
|
KernelInfo_t kernel; |
|
|
|
float* pTempMemory = 0; |
|
float* pTempInvMemory = 0; |
|
static float* kernelCache[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
|
static float* pInvKernelCache[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
|
float pKernelMem[1]; |
|
float pInvKernelMem[1]; |
|
if ( info.m_nFlags & RESAMPLE_NICE_FILTER ) |
|
{ |
|
// Kernel size is measured in dst pixels |
|
kernel.m_nDiameter = 6; |
|
|
|
// Compute a kernel... |
|
kernel.m_nWidth = kernel.m_nDiameter * wratio; |
|
kernel.m_nHeight = kernel.m_nDiameter * hratio; |
|
kernel.m_nDepth = kernel.m_nDiameter * dratio; |
|
if ( kernel.m_nDepth == 0 ) |
|
{ |
|
kernel.m_nDepth = 1; |
|
} |
|
|
|
// Cache the filter (2d kernels only).... |
|
int power = -1; |
|
|
|
if ( (wratio == hratio) && (dratio == 0) ) |
|
{ |
|
power = 0; |
|
int tempWidth = wratio; |
|
while (tempWidth > 1) |
|
{ |
|
++power; |
|
tempWidth >>= 1; |
|
} |
|
|
|
// Don't cache anything bigger than 512x512 |
|
if (power >= 10) |
|
{ |
|
power = -1; |
|
} |
|
} |
|
|
|
if (power >= 0) |
|
{ |
|
if (!kernelCache[power]) |
|
{ |
|
kernelCache[power] = new float[kernel.m_nWidth * kernel.m_nHeight]; |
|
pInvKernelCache[power] = new float[kernel.m_nWidth * kernel.m_nHeight]; |
|
GenerateNiceFilter( wratio, hratio, dratio, kernel.m_nDiameter, kernelCache[power], pInvKernelCache[power] ); |
|
} |
|
|
|
kernel.m_pKernel = kernelCache[power]; |
|
kernel.m_pInvKernel = pInvKernelCache[power]; |
|
} |
|
else |
|
{ |
|
// Don't cache non-square kernels, or 3d kernels |
|
pTempMemory = new float[kernel.m_nWidth * kernel.m_nHeight * kernel.m_nDepth]; |
|
pTempInvMemory = new float[kernel.m_nWidth * kernel.m_nHeight * kernel.m_nDepth]; |
|
GenerateNiceFilter( wratio, hratio, dratio, kernel.m_nDiameter, pTempMemory, pTempInvMemory ); |
|
kernel.m_pKernel = pTempMemory; |
|
kernel.m_pInvKernel = pTempInvMemory; |
|
} |
|
} |
|
else |
|
{ |
|
// Compute a kernel... |
|
kernel.m_nWidth = wratio; |
|
kernel.m_nHeight = hratio; |
|
kernel.m_nDepth = dratio ? dratio : 1; |
|
|
|
kernel.m_nDiameter = 1; |
|
|
|
// Simple implementation of a box filter that doesn't block the stack! |
|
pKernelMem[0] = 1.0f / (float)(kernel.m_nWidth * kernel.m_nHeight * kernel.m_nDepth); |
|
pInvKernelMem[0] = 1.0f; |
|
kernel.m_pKernel = pKernelMem; |
|
kernel.m_pInvKernel = pInvKernelMem; |
|
} |
|
|
|
float *pAlphaResult = NULL; |
|
KernelType_t type; |
|
if ( info.m_nFlags & RESAMPLE_NORMALMAP ) |
|
{ |
|
type = KERNEL_NORMALMAP; |
|
} |
|
else if ( info.m_nFlags & RESAMPLE_ALPHATEST ) |
|
{ |
|
int nSize = info.m_nSrcHeight * info.m_nSrcWidth * info.m_nSrcDepth * sizeof(float); |
|
pAlphaResult = (float*)malloc( nSize ); |
|
memset( pAlphaResult, 0, nSize ); |
|
type = KERNEL_ALPHATEST; |
|
} |
|
else |
|
{ |
|
type = KERNEL_DEFAULT; |
|
} |
|
|
|
if ( info.m_nFlags & RESAMPLE_NICE_FILTER ) |
|
{ |
|
g_KernelFuncNice[type]( kernel, info, wratio, hratio, dratio, gammaToLinear, pAlphaResult ); |
|
if (pTempMemory) |
|
{ |
|
delete[] pTempMemory; |
|
} |
|
} |
|
else |
|
{ |
|
g_KernelFunc[type]( kernel, info, wratio, hratio, dratio, gammaToLinear, pAlphaResult ); |
|
} |
|
|
|
if ( pAlphaResult ) |
|
{ |
|
free( pAlphaResult ); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool ResampleRGBA16161616( const ResampleInfo_t& info ) |
|
{ |
|
// HDRFIXME: This is some lame shit right here. (We need to get NICE working, etc, etc.) |
|
|
|
// Make sure everything is power of two. |
|
Assert( ( info.m_nSrcWidth & ( info.m_nSrcWidth - 1 ) ) == 0 ); |
|
Assert( ( info.m_nSrcHeight & ( info.m_nSrcHeight - 1 ) ) == 0 ); |
|
Assert( ( info.m_nDestWidth & ( info.m_nDestWidth - 1 ) ) == 0 ); |
|
Assert( ( info.m_nDestHeight & ( info.m_nDestHeight - 1 ) ) == 0 ); |
|
|
|
// Make sure that we aren't upscsaling the image. . .we do`n't support that very well. |
|
Assert( info.m_nSrcWidth >= info.m_nDestWidth ); |
|
Assert( info.m_nSrcHeight >= info.m_nDestHeight ); |
|
|
|
int nSampleWidth = info.m_nSrcWidth / info.m_nDestWidth; |
|
int nSampleHeight = info.m_nSrcHeight / info.m_nDestHeight; |
|
|
|
unsigned short *pSrc = ( unsigned short * )info.m_pSrc; |
|
unsigned short *pDst = ( unsigned short * )info.m_pDest; |
|
int x, y; |
|
for( y = 0; y < info.m_nDestHeight; y++ ) |
|
{ |
|
for( x = 0; x < info.m_nDestWidth; x++ ) |
|
{ |
|
int accum[4]; |
|
accum[0] = accum[1] = accum[2] = accum[3] = 0; |
|
int nSampleY; |
|
for( nSampleY = 0; nSampleY < nSampleHeight; nSampleY++ ) |
|
{ |
|
int nSampleX; |
|
for( nSampleX = 0; nSampleX < nSampleWidth; nSampleX++ ) |
|
{ |
|
accum[0] += ( int )pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*4+0]; |
|
accum[1] += ( int )pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*4+1]; |
|
accum[2] += ( int )pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*4+2]; |
|
accum[3] += ( int )pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*4+3]; |
|
} |
|
} |
|
int i; |
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
accum[i] /= ( nSampleWidth * nSampleHeight ); |
|
accum[i] = max( accum[i], 0 ); |
|
accum[i] = min( accum[i], 65535 ); |
|
pDst[(x+y*info.m_nDestWidth)*4+i] = ( unsigned short )accum[i]; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool ResampleRGB323232F( const ResampleInfo_t& info ) |
|
{ |
|
// HDRFIXME: This is some lame shit right here. (We need to get NICE working, etc, etc.) |
|
|
|
// Make sure everything is power of two. |
|
Assert( ( info.m_nSrcWidth & ( info.m_nSrcWidth - 1 ) ) == 0 ); |
|
Assert( ( info.m_nSrcHeight & ( info.m_nSrcHeight - 1 ) ) == 0 ); |
|
Assert( ( info.m_nDestWidth & ( info.m_nDestWidth - 1 ) ) == 0 ); |
|
Assert( ( info.m_nDestHeight & ( info.m_nDestHeight - 1 ) ) == 0 ); |
|
|
|
// Make sure that we aren't upscaling the image. . .we do`n't support that very well. |
|
Assert( info.m_nSrcWidth >= info.m_nDestWidth ); |
|
Assert( info.m_nSrcHeight >= info.m_nDestHeight ); |
|
|
|
int nSampleWidth = info.m_nSrcWidth / info.m_nDestWidth; |
|
int nSampleHeight = info.m_nSrcHeight / info.m_nDestHeight; |
|
|
|
float *pSrc = ( float * )info.m_pSrc; |
|
float *pDst = ( float * )info.m_pDest; |
|
int x, y; |
|
for( y = 0; y < info.m_nDestHeight; y++ ) |
|
{ |
|
for( x = 0; x < info.m_nDestWidth; x++ ) |
|
{ |
|
float accum[4]; |
|
accum[0] = accum[1] = accum[2] = accum[3] = 0; |
|
int nSampleY; |
|
for( nSampleY = 0; nSampleY < nSampleHeight; nSampleY++ ) |
|
{ |
|
int nSampleX; |
|
for( nSampleX = 0; nSampleX < nSampleWidth; nSampleX++ ) |
|
{ |
|
accum[0] += pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*3+0]; |
|
accum[1] += pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*3+1]; |
|
accum[2] += pSrc[((x*nSampleWidth+nSampleX)+(y*nSampleHeight+nSampleY)*info.m_nSrcWidth)*3+2]; |
|
} |
|
} |
|
int i; |
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
accum[i] /= ( nSampleWidth * nSampleHeight ); |
|
pDst[(x+y*info.m_nDestWidth)*3+i] = accum[i]; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Generates mipmap levels |
|
//----------------------------------------------------------------------------- |
|
void GenerateMipmapLevels( unsigned char* pSrc, unsigned char* pDst, int width, |
|
int height, int depth, ImageFormat imageFormat, float srcGamma, float dstGamma, int numLevels ) |
|
{ |
|
int dstWidth = width; |
|
int dstHeight = height; |
|
int dstDepth = depth; |
|
|
|
// temporary storage for the mipmaps |
|
int tempMem = GetMemRequired( dstWidth, dstHeight, dstDepth, IMAGE_FORMAT_RGBA8888, false ); |
|
CUtlMemory<unsigned char> tmpImage; |
|
tmpImage.EnsureCapacity( tempMem ); |
|
|
|
while( true ) |
|
{ |
|
// This generates a mipmap in RGBA8888, linear space |
|
ResampleInfo_t info; |
|
info.m_pSrc = pSrc; |
|
info.m_pDest = tmpImage.Base(); |
|
info.m_nSrcWidth = width; |
|
info.m_nSrcHeight = height; |
|
info.m_nSrcDepth = depth; |
|
info.m_nDestWidth = dstWidth; |
|
info.m_nDestHeight = dstHeight; |
|
info.m_nDestDepth = dstDepth; |
|
info.m_flSrcGamma = srcGamma; |
|
info.m_flDestGamma = dstGamma; |
|
|
|
ResampleRGBA8888( info ); |
|
|
|
// each mipmap level needs to be color converted separately |
|
ConvertImageFormat( tmpImage.Base(), IMAGE_FORMAT_RGBA8888, |
|
pDst, imageFormat, dstWidth, dstHeight, 0, 0 ); |
|
|
|
if (numLevels == 0) |
|
{ |
|
// We're done after we've made the 1x1 mip level |
|
if (dstWidth == 1 && dstHeight == 1 && dstDepth == 1) |
|
return; |
|
} |
|
else |
|
{ |
|
if (--numLevels <= 0) |
|
return; |
|
} |
|
|
|
// Figure out where the next level goes |
|
int memRequired = ImageLoader::GetMemRequired( dstWidth, dstHeight, dstDepth, imageFormat, false); |
|
pDst += memRequired; |
|
|
|
// shrink by a factor of 2, but clamp at 1 pixel (non-square textures) |
|
dstWidth = dstWidth > 1 ? dstWidth >> 1 : 1; |
|
dstHeight = dstHeight > 1 ? dstHeight >> 1 : 1; |
|
dstDepth = dstDepth > 1 ? dstDepth >> 1 : 1; |
|
} |
|
} |
|
|
|
void GenerateMipmapLevelsLQ( unsigned char* pSrc, unsigned char* pDst, int width, int height, |
|
ImageFormat imageFormat, int numLevels ) |
|
{ |
|
CUtlMemory<unsigned char> tmpImage; |
|
|
|
const unsigned char* pSrcLevel = pSrc; |
|
|
|
int mipmap0Size = GetMemRequired( width, height, 1, IMAGE_FORMAT_RGBA8888, false ); |
|
|
|
// TODO: Could work with any 8888 format without conversion. |
|
if ( imageFormat != IMAGE_FORMAT_RGBA8888 ) |
|
{ |
|
// Damn and blast, had to allocate memory. |
|
tmpImage.EnsureCapacity( mipmap0Size ); |
|
ConvertImageFormat( tmpImage.Base(), IMAGE_FORMAT_RGBA8888, pSrc, imageFormat, width, height, 0, 0 ); |
|
pSrcLevel = tmpImage.Base(); |
|
} |
|
|
|
// Copy the 0th level over. |
|
memcpy( pDst, pSrcLevel, mipmap0Size ); |
|
|
|
int dstWidth = width; |
|
int dstHeight = height; |
|
unsigned char* pDstLevel = pDst + mipmap0Size; |
|
|
|
int srcWidth = width; |
|
int srcHeight = height; |
|
|
|
// Distance from one pixel to the next |
|
const int cStride = 4; |
|
|
|
do |
|
{ |
|
dstWidth = Max( 1, dstWidth >> 1 ); |
|
dstHeight = Max( 1, dstHeight >> 1 ); |
|
|
|
// Distance from one row to the next. |
|
const int cSrcPitch = cStride * srcWidth * ( srcHeight > 1 ? 1 : 0); |
|
const int cSrcStride = srcWidth > 1 ? cStride : 0; |
|
|
|
const unsigned char* pSrcPixel = pSrcLevel; |
|
unsigned char* pDstPixel = pDstLevel; |
|
|
|
for ( int j = 0; j < dstHeight; ++j ) |
|
{ |
|
for ( int i = 0; i < dstWidth; ++i ) |
|
{ |
|
// This doesn't round. It's crappy. It's a simple bilerp. |
|
pDstPixel[ 0 ] = ( ( unsigned int ) pSrcPixel[ 0 ] + ( unsigned int ) pSrcPixel[ 0 + cSrcStride ] + ( unsigned int ) pSrcPixel[ 0 + cSrcPitch ] + ( unsigned int ) pSrcPixel[ 0 + cSrcPitch + cSrcStride ] ) >> 2; |
|
pDstPixel[ 1 ] = ( ( unsigned int ) pSrcPixel[ 1 ] + ( unsigned int ) pSrcPixel[ 1 + cSrcStride ] + ( unsigned int ) pSrcPixel[ 1 + cSrcPitch ] + ( unsigned int ) pSrcPixel[ 1 + cSrcPitch + cSrcStride ] ) >> 2; |
|
pDstPixel[ 2 ] = ( ( unsigned int ) pSrcPixel[ 2 ] + ( unsigned int ) pSrcPixel[ 2 + cSrcStride ] + ( unsigned int ) pSrcPixel[ 2 + cSrcPitch ] + ( unsigned int ) pSrcPixel[ 2 + cSrcPitch + cSrcStride ] ) >> 2; |
|
pDstPixel[ 3 ] = ( ( unsigned int ) pSrcPixel[ 3 ] + ( unsigned int ) pSrcPixel[ 3 + cSrcStride ] + ( unsigned int ) pSrcPixel[ 3 + cSrcPitch ] + ( unsigned int ) pSrcPixel[ 3 + cSrcPitch + cSrcStride ] ) >> 2; |
|
|
|
pDstPixel += cStride; |
|
pSrcPixel += cStride * 2; // We advance 2 source pixels for each pixel. |
|
} |
|
|
|
// Need to bump down a row. |
|
pSrcPixel += cSrcPitch; |
|
} |
|
|
|
// Update for the next go round! |
|
pSrcLevel = pDstLevel; |
|
pDstLevel += GetMemRequired( dstWidth, dstHeight, 1, IMAGE_FORMAT_RGBA8888, false ); |
|
|
|
srcWidth = Max( 1, srcWidth >> 1 ); |
|
srcHeight = Max( 1, srcHeight >> 1 ); |
|
} while ( srcWidth > 1 || srcHeight > 1 ); |
|
} |
|
|
|
|
|
} // ImageLoader namespace ends |
|
|
|
|