|
|
//========= Copyright <EFBFBD> 1996-2005, Valve Corporation, All rights reserved. ============// |
|
|
// |
|
|
// Purpose: Linked list container class |
|
|
// |
|
|
// $Revision: $ |
|
|
// $NoKeywords: $ |
|
|
//=============================================================================// |
|
|
|
|
|
#ifndef UTLLINKEDLIST_H |
|
|
#define UTLLINKEDLIST_H |
|
|
|
|
|
#ifdef _WIN32 |
|
|
#pragma once |
|
|
#endif |
|
|
|
|
|
#include "tier0/basetypes.h" |
|
|
#include "utlmemory.h" |
|
|
#include "utlfixedmemory.h" |
|
|
#include "utlblockmemory.h" |
|
|
#include "tier0/dbg.h" |
|
|
|
|
|
// define to enable asserts griping about things you shouldn't be doing with multilists |
|
|
// #define MULTILIST_PEDANTIC_ASSERTS 1 |
|
|
|
|
|
// This is a useful macro to iterate from head to tail in a linked list. |
|
|
#define FOR_EACH_LL( listName, iteratorName ) \ |
|
|
for( auto iteratorName=(listName).Head(); (listName).IsUtlLinkedList && iteratorName != (listName).InvalidIndex(); iteratorName = (listName).Next( iteratorName ) ) |
|
|
|
|
|
#define FOR_EACH_LL_BACK( listName, iteratorName ) \ |
|
|
for( auto iteratorName=(listName).Tail(); (listName).IsUtlLinkedList && iteratorName != (listName).InvalidIndex(); iteratorName = (listName).Previous( iteratorName ) ) |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// class CUtlLinkedList: |
|
|
// description: |
|
|
// A lovely index-based linked list! T is the class type, I is the index |
|
|
// type, which usually should be an unsigned short or smaller. However, |
|
|
// you must avoid using 16- or 8-bit arithmetic on PowerPC architectures; |
|
|
// therefore you should not use UtlLinkedListElem_t::I as the type of |
|
|
// a local variable... ever. PowerPC integer arithmetic must be 32- or |
|
|
// 64-bit only; otherwise performance plummets. |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class I> |
|
|
struct UtlLinkedListElem_t |
|
|
{ |
|
|
T m_Element; |
|
|
I m_Previous; |
|
|
I m_Next; |
|
|
|
|
|
private: |
|
|
// No copy constructor for these... |
|
|
UtlLinkedListElem_t( const UtlLinkedListElem_t& ); |
|
|
}; |
|
|
|
|
|
|
|
|
// Class S is the storage type; the type you can use to save off indices in |
|
|
// persistent memory. Class I is the iterator type, which is what should be used |
|
|
// in local scopes. I defaults to be S, but be aware that on the 360, 16-bit |
|
|
// arithmetic is catastrophically slow. Therefore you should try to save shorts |
|
|
// in memory, but always operate on 32's or 64's in local scope. |
|
|
// The ideal parameter order would be TSMI (you are more likely to override M than I) |
|
|
// but since M depends on I we can't have the defaults in that order, alas. |
|
|
template <class T, class S = unsigned short, bool ML = false, class I = S, class M = CUtlMemory< UtlLinkedListElem_t<T, S>, I > > |
|
|
class CUtlLinkedList |
|
|
{ |
|
|
public: |
|
|
typedef T ElemType_t; |
|
|
typedef S IndexType_t; // should really be called IndexStorageType_t, but that would be a huge change |
|
|
typedef I IndexLocalType_t; |
|
|
typedef M MemoryAllocator_t; |
|
|
enum { IsUtlLinkedList = true }; // Used to match this at compiletime |
|
|
|
|
|
// constructor, destructor |
|
|
CUtlLinkedList( int growSize = 0, int initSize = 0 ); |
|
|
~CUtlLinkedList(); |
|
|
|
|
|
CUtlLinkedList( const CUtlLinkedList& ) = delete; |
|
|
CUtlLinkedList& operator=( const CUtlLinkedList& ) = delete; |
|
|
|
|
|
// gets particular elements |
|
|
T& Element( I i ); |
|
|
T const& Element( I i ) const; |
|
|
T& operator[]( I i ); |
|
|
T const& operator[]( I i ) const; |
|
|
|
|
|
// Make sure we have a particular amount of memory |
|
|
void EnsureCapacity( int num ); |
|
|
|
|
|
void SetGrowSize( int growSize ); |
|
|
|
|
|
// Memory deallocation |
|
|
void Purge(); |
|
|
|
|
|
// Delete all the elements then call Purge. |
|
|
void PurgeAndDeleteElements(); |
|
|
|
|
|
// Insertion methods.... |
|
|
I InsertBefore( I before ); |
|
|
I InsertAfter( I after ); |
|
|
I AddToHead( ); |
|
|
I AddToTail( ); |
|
|
|
|
|
I InsertBefore( I before, T const& src ); |
|
|
I InsertAfter( I after, T const& src ); |
|
|
I AddToHead( T const& src ); |
|
|
I AddToTail( T const& src ); |
|
|
|
|
|
// Find an element and return its index or InvalidIndex() if it couldn't be found. |
|
|
I Find( const T &src ) const; |
|
|
|
|
|
// Look for the element. If it exists, remove it and return true. Otherwise, return false. |
|
|
bool FindAndRemove( const T &src ); |
|
|
|
|
|
// Removal methods |
|
|
void Remove( I elem ); |
|
|
void RemoveAll(); |
|
|
|
|
|
// Allocation/deallocation methods |
|
|
// If multilist == true, then list list may contain many |
|
|
// non-connected lists, and IsInList and Head + Tail are meaningless... |
|
|
I Alloc( bool multilist = false ); |
|
|
void Free( I elem ); |
|
|
|
|
|
// list modification |
|
|
void LinkBefore( I before, I elem ); |
|
|
void LinkAfter( I after, I elem ); |
|
|
void Unlink( I elem ); |
|
|
void LinkToHead( I elem ); |
|
|
void LinkToTail( I elem ); |
|
|
|
|
|
// invalid index (M will never allocate an element at this index) |
|
|
inline static S InvalidIndex() { return ( S )M::InvalidIndex(); } |
|
|
|
|
|
// Is a given index valid to use? (representible by S and not the invalid index) |
|
|
static bool IndexInRange( I index ); |
|
|
|
|
|
inline static size_t ElementSize() { return sizeof( ListElem_t ); } |
|
|
|
|
|
// list statistics |
|
|
int Count() const; |
|
|
inline bool IsEmpty( void ) const |
|
|
{ |
|
|
return ( Head() == InvalidIndex() ); |
|
|
} |
|
|
|
|
|
I MaxElementIndex() const; |
|
|
I NumAllocated( void ) const { return m_NumAlloced; } |
|
|
|
|
|
// Traversing the list |
|
|
I Head() const; |
|
|
I Tail() const; |
|
|
I Previous( I i ) const; |
|
|
I Next( I i ) const; |
|
|
|
|
|
// STL compatible const_iterator class |
|
|
template < typename List_t > |
|
|
class _CUtlLinkedList_constiterator_t |
|
|
{ |
|
|
public: |
|
|
typedef typename List_t::ElemType_t ElemType_t; |
|
|
typedef typename List_t::IndexType_t IndexType_t; |
|
|
|
|
|
// Default constructor -- gives a currently unusable iterator. |
|
|
_CUtlLinkedList_constiterator_t() |
|
|
: m_list( 0 ) |
|
|
, m_index( List_t::InvalidIndex() ) |
|
|
{ |
|
|
} |
|
|
// Normal constructor. |
|
|
_CUtlLinkedList_constiterator_t( const List_t& list, IndexType_t index ) |
|
|
: m_list( &list ) |
|
|
, m_index( index ) |
|
|
{ |
|
|
} |
|
|
|
|
|
// Pre-increment operator++. This is the most efficient increment |
|
|
// operator so it should always be used. |
|
|
_CUtlLinkedList_constiterator_t& operator++() |
|
|
{ |
|
|
m_index = m_list->Next( m_index ); |
|
|
return *this; |
|
|
} |
|
|
// Post-increment operator++. This is less efficient than pre-increment. |
|
|
_CUtlLinkedList_constiterator_t operator++(int) |
|
|
{ |
|
|
// Copy ourselves. |
|
|
_CUtlLinkedList_constiterator_t temp = *this; |
|
|
// Increment ourselves. |
|
|
++*this; |
|
|
// Return the copy. |
|
|
return temp; |
|
|
} |
|
|
|
|
|
// Pre-decrement operator--. This is the most efficient decrement |
|
|
// operator so it should always be used. |
|
|
_CUtlLinkedList_constiterator_t& operator--() |
|
|
{ |
|
|
Assert( m_index != m_list->Head() ); |
|
|
if ( m_index == m_list->InvalidIndex() ) |
|
|
{ |
|
|
m_index = m_list->Tail(); |
|
|
} |
|
|
else |
|
|
{ |
|
|
m_index = m_list->Previous( m_index ); |
|
|
} |
|
|
return *this; |
|
|
} |
|
|
// Post-decrement operator--. This is less efficient than post-decrement. |
|
|
_CUtlLinkedList_constiterator_t operator--(int) |
|
|
{ |
|
|
// Copy ourselves. |
|
|
_CUtlLinkedList_constiterator_t temp = *this; |
|
|
// Decrement ourselves. |
|
|
--*this; |
|
|
// Return the copy. |
|
|
return temp; |
|
|
} |
|
|
|
|
|
bool operator==( const _CUtlLinkedList_constiterator_t& other) const |
|
|
{ |
|
|
Assert( m_list == other.m_list ); |
|
|
return m_index == other.m_index; |
|
|
} |
|
|
|
|
|
bool operator!=( const _CUtlLinkedList_constiterator_t& other) const |
|
|
{ |
|
|
Assert( m_list == other.m_list ); |
|
|
return m_index != other.m_index; |
|
|
} |
|
|
|
|
|
const ElemType_t& operator*() const |
|
|
{ |
|
|
return m_list->Element( m_index ); |
|
|
} |
|
|
|
|
|
const ElemType_t* operator->() const |
|
|
{ |
|
|
return (&**this); |
|
|
} |
|
|
|
|
|
protected: |
|
|
// Use a pointer rather than a reference so that we can support |
|
|
// assignment of iterators. |
|
|
const List_t* m_list; |
|
|
IndexType_t m_index; |
|
|
}; |
|
|
|
|
|
// STL compatible iterator class, using derivation so that a non-const |
|
|
// list can return a const_iterator. |
|
|
template < typename List_t > |
|
|
class _CUtlLinkedList_iterator_t : public _CUtlLinkedList_constiterator_t< List_t > |
|
|
{ |
|
|
public: |
|
|
typedef typename List_t::ElemType_t ElemType_t; |
|
|
typedef typename List_t::IndexType_t IndexType_t; |
|
|
typedef _CUtlLinkedList_constiterator_t< List_t > Base; |
|
|
|
|
|
// Default constructor -- gives a currently unusable iterator. |
|
|
_CUtlLinkedList_iterator_t() |
|
|
{ |
|
|
} |
|
|
// Normal constructor. |
|
|
_CUtlLinkedList_iterator_t( const List_t& list, IndexType_t index ) |
|
|
: _CUtlLinkedList_constiterator_t< List_t >( list, index ) |
|
|
{ |
|
|
} |
|
|
|
|
|
// Pre-increment operator++. This is the most efficient increment |
|
|
// operator so it should always be used. |
|
|
_CUtlLinkedList_iterator_t& operator++() |
|
|
{ |
|
|
Base::m_index = Base::m_list->Next( Base::m_index ); |
|
|
return *this; |
|
|
} |
|
|
// Post-increment operator++. This is less efficient than pre-increment. |
|
|
_CUtlLinkedList_iterator_t operator++(int) |
|
|
{ |
|
|
// Copy ourselves. |
|
|
_CUtlLinkedList_iterator_t temp = *this; |
|
|
// Increment ourselves. |
|
|
++*this; |
|
|
// Return the copy. |
|
|
return temp; |
|
|
} |
|
|
|
|
|
// Pre-decrement operator--. This is the most efficient decrement |
|
|
// operator so it should always be used. |
|
|
_CUtlLinkedList_iterator_t& operator--() |
|
|
{ |
|
|
Assert( Base::m_index != Base::m_list->Head() ); |
|
|
if ( Base::m_index == Base::m_list->InvalidIndex() ) |
|
|
{ |
|
|
Base::m_index = Base::m_list->Tail(); |
|
|
} |
|
|
else |
|
|
{ |
|
|
Base::m_index = Base::m_list->Previous( Base::m_index ); |
|
|
} |
|
|
return *this; |
|
|
} |
|
|
// Post-decrement operator--. This is less efficient than post-decrement. |
|
|
_CUtlLinkedList_iterator_t operator--(int) |
|
|
{ |
|
|
// Copy ourselves. |
|
|
_CUtlLinkedList_iterator_t temp = *this; |
|
|
// Decrement ourselves. |
|
|
--*this; |
|
|
// Return the copy. |
|
|
return temp; |
|
|
} |
|
|
|
|
|
ElemType_t& operator*() const |
|
|
{ |
|
|
// Const_cast to allow sharing the implementation with the |
|
|
// base class. |
|
|
List_t* pMutableList = const_cast<List_t*>( Base::m_list ); |
|
|
return pMutableList->Element( Base::m_index ); |
|
|
} |
|
|
|
|
|
ElemType_t* operator->() const |
|
|
{ |
|
|
return (&**this); |
|
|
} |
|
|
}; |
|
|
|
|
|
typedef _CUtlLinkedList_constiterator_t<CUtlLinkedList<T, S, ML, I, M> > const_iterator; |
|
|
typedef _CUtlLinkedList_iterator_t<CUtlLinkedList<T, S, ML, I, M> > iterator; |
|
|
const_iterator begin() const |
|
|
{ |
|
|
return const_iterator( *this, Head() ); |
|
|
} |
|
|
iterator begin() |
|
|
{ |
|
|
return iterator( *this, Head() ); |
|
|
} |
|
|
|
|
|
const_iterator end() const |
|
|
{ |
|
|
return const_iterator( *this, InvalidIndex() ); |
|
|
} |
|
|
iterator end() |
|
|
{ |
|
|
return iterator( *this, InvalidIndex() ); |
|
|
} |
|
|
|
|
|
// Are nodes in the list or valid? |
|
|
bool IsValidIndex( I i ) const; |
|
|
bool IsInList( I i ) const; |
|
|
|
|
|
protected: |
|
|
|
|
|
// What the linked list element looks like |
|
|
typedef UtlLinkedListElem_t<T, S> ListElem_t; |
|
|
|
|
|
// constructs the class |
|
|
I AllocInternal( bool multilist = false ) RESTRICT; |
|
|
void ConstructList(); |
|
|
|
|
|
// Gets at the list element.... |
|
|
ListElem_t& InternalElement( I i ) { return m_Memory[i]; } |
|
|
ListElem_t const& InternalElement( I i ) const { return m_Memory[i]; } |
|
|
|
|
|
M m_Memory; |
|
|
I m_Head; |
|
|
I m_Tail; |
|
|
I m_FirstFree; |
|
|
I m_ElementCount; // The number actually in the list |
|
|
I m_NumAlloced; // The number of allocated elements |
|
|
typename M::Iterator_t m_LastAlloc; // the last index allocated |
|
|
|
|
|
// For debugging purposes; |
|
|
// it's in release builds so this can be used in libraries correctly |
|
|
ListElem_t *m_pElements; |
|
|
|
|
|
FORCEINLINE M const &Memory( void ) const |
|
|
{ |
|
|
return m_Memory; |
|
|
} |
|
|
|
|
|
void ResetDbgInfo() |
|
|
{ |
|
|
m_pElements = m_Memory.Base(); |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice |
|
|
template < class T > |
|
|
class CUtlFixedLinkedList : public CUtlLinkedList< T, intp, true, intp, CUtlFixedMemory< UtlLinkedListElem_t< T, intp > > > |
|
|
{ |
|
|
public: |
|
|
CUtlFixedLinkedList( int growSize = 0, int initSize = 0 ) |
|
|
: CUtlLinkedList< T, intp, true, intp, CUtlFixedMemory< UtlLinkedListElem_t< T, intp > > >( growSize, initSize ) {} |
|
|
|
|
|
bool IsValidIndex( intp i ) const |
|
|
{ |
|
|
if ( !this->Memory().IsIdxValid( i ) ) |
|
|
return false; |
|
|
|
|
|
#ifdef _DEBUG // it's safe to skip this here, since the only way to get indices after m_LastAlloc is to use MaxElementIndex |
|
|
if ( this->Memory().IsIdxAfter( i, this->m_LastAlloc ) ) |
|
|
{ |
|
|
Assert( 0 ); |
|
|
return false; // don't read values that have been allocated, but not constructed |
|
|
} |
|
|
#endif |
|
|
|
|
|
return ( this->Memory()[ i ].m_Previous != i ) || ( this->Memory()[ i ].m_Next == i ); |
|
|
} |
|
|
|
|
|
private: |
|
|
int MaxElementIndex() const { Assert( 0 ); return this->InvalidIndex(); } // fixedmemory containers don't support iteration from 0..maxelements-1 |
|
|
void ResetDbgInfo() {} |
|
|
}; |
|
|
|
|
|
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice |
|
|
template < class T, class I = unsigned short > |
|
|
class CUtlBlockLinkedList : public CUtlLinkedList< T, I, true, I, CUtlBlockMemory< UtlLinkedListElem_t< T, I >, I > > |
|
|
{ |
|
|
public: |
|
|
CUtlBlockLinkedList( int growSize = 0, int initSize = 0 ) |
|
|
: CUtlLinkedList< T, I, true, I, CUtlBlockMemory< UtlLinkedListElem_t< T, I >, I > >( growSize, initSize ) {} |
|
|
protected: |
|
|
void ResetDbgInfo() {} |
|
|
}; |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// constructor, destructor |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
CUtlLinkedList<T,S,ML,I,M>::CUtlLinkedList( int growSize, int initSize ) : |
|
|
m_Memory( growSize, initSize ), m_LastAlloc( m_Memory.InvalidIterator() ) |
|
|
{ |
|
|
#if !defined( PLATFORM_WINDOWS_PC64 ) && !defined( PLATFORM_64BITS ) |
|
|
// Prevent signed non-int datatypes |
|
|
COMPILE_TIME_ASSERT( sizeof(S) == 4 || ( ( (S)-1 ) > 0 ) ); |
|
|
#endif |
|
|
ConstructList(); |
|
|
ResetDbgInfo(); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
CUtlLinkedList<T,S,ML,I,M>::~CUtlLinkedList( ) |
|
|
{ |
|
|
RemoveAll(); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::ConstructList() |
|
|
{ |
|
|
m_Head = InvalidIndex(); |
|
|
m_Tail = InvalidIndex(); |
|
|
m_FirstFree = InvalidIndex(); |
|
|
m_ElementCount = 0; |
|
|
m_NumAlloced = 0; |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// gets particular elements |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline T& CUtlLinkedList<T,S,ML,I,M>::Element( I i ) |
|
|
{ |
|
|
return m_Memory[i].m_Element; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline T const& CUtlLinkedList<T,S,ML,I,M>::Element( I i ) const |
|
|
{ |
|
|
return m_Memory[i].m_Element; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline T& CUtlLinkedList<T,S,ML,I,M>::operator[]( I i ) |
|
|
{ |
|
|
return m_Memory[i].m_Element; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline T const& CUtlLinkedList<T,S,ML,I,M>::operator[]( I i ) const |
|
|
{ |
|
|
return m_Memory[i].m_Element; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// list statistics |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline int CUtlLinkedList<T,S,ML,I,M>::Count() const |
|
|
{ |
|
|
#ifdef MULTILIST_PEDANTIC_ASSERTS |
|
|
AssertMsg( !ML, "CUtlLinkedList::Count() is meaningless for linked lists." ); |
|
|
#endif |
|
|
return m_ElementCount; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::MaxElementIndex() const |
|
|
{ |
|
|
return m_Memory.NumAllocated(); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Traversing the list |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::Head() const |
|
|
{ |
|
|
return m_Head; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::Tail() const |
|
|
{ |
|
|
return m_Tail; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::Previous( I i ) const |
|
|
{ |
|
|
Assert( IsValidIndex(i) ); |
|
|
return InternalElement(i).m_Previous; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::Next( I i ) const |
|
|
{ |
|
|
Assert( IsValidIndex(i) ); |
|
|
return InternalElement(i).m_Next; |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Are nodes in the list or valid? |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
#pragma warning(push) |
|
|
#pragma warning( disable: 4310 ) // Allows "(I)(S)M::INVALID_INDEX" below |
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline bool CUtlLinkedList<T,S,ML,I,M>::IndexInRange( I index ) // Static method |
|
|
{ |
|
|
// Since S is not necessarily the type returned by M, we need to check that M returns indices |
|
|
// which are representable by S. A common case is 'S === unsigned short', 'I == int', in which |
|
|
// case CUtlMemory will have 'InvalidIndex == (int)-1' (which casts to 65535 in S), and will |
|
|
// happily return elements at index 65535 and above. |
|
|
|
|
|
// Do some static checks here: |
|
|
// 'I' needs to be able to store 'S' |
|
|
// These COMPILE_TIME_ASSERT checks need to be in individual scopes to avoid build breaks |
|
|
// on MacOS and Linux due to a gcc bug. |
|
|
{ COMPILE_TIME_ASSERT( sizeof(I) >= sizeof(S) ); } |
|
|
// 'S' should be unsigned (to avoid signed arithmetic errors for plausibly exhaustible ranges) |
|
|
{ COMPILE_TIME_ASSERT( ( sizeof(S) > 2 ) || ( ( (S)-1 ) > 0 ) ); } |
|
|
// M::INVALID_INDEX should be storable in S to avoid ambiguities (e.g. with 65536) |
|
|
{ COMPILE_TIME_ASSERT( ( M::INVALID_INDEX == -1 ) || ( M::INVALID_INDEX == (S)M::INVALID_INDEX ) ); } |
|
|
|
|
|
return ( ( (S)index == index ) && ( (S)index != InvalidIndex() ) ); |
|
|
} |
|
|
#pragma warning(pop) |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline bool CUtlLinkedList<T,S,ML,I,M>::IsValidIndex( I i ) const |
|
|
{ |
|
|
if ( !m_Memory.IsIdxValid( i ) ) |
|
|
return false; |
|
|
|
|
|
if ( m_Memory.IsIdxAfter( i, m_LastAlloc ) ) |
|
|
return false; // don't read values that have been allocated, but not constructed |
|
|
|
|
|
return ( m_Memory[ i ].m_Previous != i ) || ( m_Memory[ i ].m_Next == i ); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline bool CUtlLinkedList<T,S,ML,I,M>::IsInList( I i ) const |
|
|
{ |
|
|
if ( !m_Memory.IsIdxValid( i ) || m_Memory.IsIdxAfter( i, m_LastAlloc ) ) |
|
|
return false; // don't read values that have been allocated, but not constructed |
|
|
|
|
|
return Previous( i ) != i; |
|
|
} |
|
|
|
|
|
/* |
|
|
template <class T> |
|
|
inline bool CUtlFixedLinkedList<T>::IsInList( int i ) const |
|
|
{ |
|
|
return m_Memory.IsIdxValid( i ) && (Previous( i ) != i); |
|
|
} |
|
|
*/ |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Makes sure we have enough memory allocated to store a requested # of elements |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template< class T, class S, bool ML, class I, class M > |
|
|
void CUtlLinkedList<T,S,ML,I,M>::EnsureCapacity( int num ) |
|
|
{ |
|
|
MEM_ALLOC_CREDIT_CLASS(); |
|
|
m_Memory.EnsureCapacity(num); |
|
|
ResetDbgInfo(); |
|
|
} |
|
|
|
|
|
template< class T, class S, bool ML, class I, class M > |
|
|
void CUtlLinkedList<T,S,ML,I,M>::SetGrowSize( int growSize ) |
|
|
{ |
|
|
RemoveAll(); |
|
|
m_Memory.Init( growSize ); |
|
|
ResetDbgInfo(); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Deallocate memory |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::Purge() |
|
|
{ |
|
|
RemoveAll(); |
|
|
|
|
|
m_Memory.Purge(); |
|
|
m_FirstFree = InvalidIndex(); |
|
|
m_NumAlloced = 0; |
|
|
|
|
|
//Routing "m_LastAlloc = m_Memory.InvalidIterator();" through a local const to sidestep an internal compiler error on 360 builds |
|
|
const typename M::Iterator_t scInvalidIterator = m_Memory.InvalidIterator(); |
|
|
m_LastAlloc = scInvalidIterator; |
|
|
ResetDbgInfo(); |
|
|
} |
|
|
|
|
|
|
|
|
template<class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::PurgeAndDeleteElements() |
|
|
{ |
|
|
I iNext; |
|
|
for( I i=Head(); i != InvalidIndex(); i=iNext ) |
|
|
{ |
|
|
iNext = Next(i); |
|
|
delete Element(i); |
|
|
} |
|
|
|
|
|
Purge(); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Node allocation/deallocation |
|
|
//----------------------------------------------------------------------------- |
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::AllocInternal( bool multilist ) RESTRICT |
|
|
{ |
|
|
Assert( !multilist || ML ); |
|
|
#ifdef MULTILIST_PEDANTIC_ASSERTS |
|
|
Assert( multilist == ML ); |
|
|
#endif |
|
|
I elem; |
|
|
if ( m_FirstFree == InvalidIndex() ) |
|
|
{ |
|
|
Assert( m_Memory.IsValidIterator( m_LastAlloc ) || m_ElementCount == 0 ); |
|
|
|
|
|
typename M::Iterator_t it = m_Memory.IsValidIterator( m_LastAlloc ) ? m_Memory.Next( m_LastAlloc ) : m_Memory.First(); |
|
|
|
|
|
if ( !m_Memory.IsValidIterator( it ) ) |
|
|
{ |
|
|
MEM_ALLOC_CREDIT_CLASS(); |
|
|
m_Memory.Grow(); |
|
|
ResetDbgInfo(); |
|
|
|
|
|
it = m_Memory.IsValidIterator( m_LastAlloc ) ? m_Memory.Next( m_LastAlloc ) : m_Memory.First(); |
|
|
|
|
|
Assert( m_Memory.IsValidIterator( it ) ); |
|
|
if ( !m_Memory.IsValidIterator( it ) ) |
|
|
{ |
|
|
// We rarely if ever handle alloc failure. Continuing leads to corruption. |
|
|
Error( "CUtlLinkedList overflow! (exhausted memory allocator)\n" ); |
|
|
return InvalidIndex(); |
|
|
} |
|
|
} |
|
|
|
|
|
// We can overflow before the utlmemory overflows, since S != I |
|
|
if ( !IndexInRange( m_Memory.GetIndex( it ) ) ) |
|
|
{ |
|
|
// We rarely if ever handle alloc failure. Continuing leads to corruption. |
|
|
Error( "CUtlLinkedList overflow! (exhausted index range)\n" ); |
|
|
return InvalidIndex(); |
|
|
} |
|
|
|
|
|
m_LastAlloc = it; |
|
|
elem = m_Memory.GetIndex( m_LastAlloc ); |
|
|
m_NumAlloced++; |
|
|
} |
|
|
else |
|
|
{ |
|
|
elem = m_FirstFree; |
|
|
m_FirstFree = InternalElement( m_FirstFree ).m_Next; |
|
|
} |
|
|
|
|
|
if ( !multilist ) |
|
|
{ |
|
|
InternalElement( elem ).m_Next = elem; |
|
|
InternalElement( elem ).m_Previous = elem; |
|
|
} |
|
|
else |
|
|
{ |
|
|
InternalElement( elem ).m_Next = InvalidIndex(); |
|
|
InternalElement( elem ).m_Previous = InvalidIndex(); |
|
|
} |
|
|
|
|
|
return elem; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::Alloc( bool multilist ) |
|
|
{ |
|
|
I elem = AllocInternal( multilist ); |
|
|
if ( elem == InvalidIndex() ) |
|
|
return elem; |
|
|
|
|
|
Construct( &Element(elem) ); |
|
|
|
|
|
return elem; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::Free( I elem ) |
|
|
{ |
|
|
Assert( IsValidIndex(elem) && IndexInRange( elem ) ); |
|
|
Unlink(elem); |
|
|
|
|
|
ListElem_t &internalElem = InternalElement(elem); |
|
|
Destruct( &internalElem.m_Element ); |
|
|
internalElem.m_Next = m_FirstFree; |
|
|
m_FirstFree = elem; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Insertion methods; allocates and links (uses default constructor) |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::InsertBefore( I before ) |
|
|
{ |
|
|
// Make a new node |
|
|
I newNode = AllocInternal(); |
|
|
if ( newNode == InvalidIndex() ) |
|
|
return newNode; |
|
|
|
|
|
// Link it in |
|
|
LinkBefore( before, newNode ); |
|
|
|
|
|
// Construct the data |
|
|
Construct( &Element(newNode) ); |
|
|
|
|
|
return newNode; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::InsertAfter( I after ) |
|
|
{ |
|
|
// Make a new node |
|
|
I newNode = AllocInternal(); |
|
|
if ( newNode == InvalidIndex() ) |
|
|
return newNode; |
|
|
|
|
|
// Link it in |
|
|
LinkAfter( after, newNode ); |
|
|
|
|
|
// Construct the data |
|
|
Construct( &Element(newNode) ); |
|
|
|
|
|
return newNode; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::AddToHead( ) |
|
|
{ |
|
|
return InsertAfter( InvalidIndex() ); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::AddToTail( ) |
|
|
{ |
|
|
return InsertBefore( InvalidIndex() ); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Insertion methods; allocates and links (uses copy constructor) |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::InsertBefore( I before, T const& src ) |
|
|
{ |
|
|
// Make a new node |
|
|
I newNode = AllocInternal(); |
|
|
if ( newNode == InvalidIndex() ) |
|
|
return newNode; |
|
|
|
|
|
// Link it in |
|
|
LinkBefore( before, newNode ); |
|
|
|
|
|
// Construct the data |
|
|
CopyConstruct( &Element(newNode), src ); |
|
|
|
|
|
return newNode; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::InsertAfter( I after, T const& src ) |
|
|
{ |
|
|
// Make a new node |
|
|
I newNode = AllocInternal(); |
|
|
if ( newNode == InvalidIndex() ) |
|
|
return newNode; |
|
|
|
|
|
// Link it in |
|
|
LinkAfter( after, newNode ); |
|
|
|
|
|
// Construct the data |
|
|
CopyConstruct( &Element(newNode), src ); |
|
|
|
|
|
return newNode; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::AddToHead( T const& src ) |
|
|
{ |
|
|
return InsertAfter( InvalidIndex(), src ); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline I CUtlLinkedList<T,S,ML,I,M>::AddToTail( T const& src ) |
|
|
{ |
|
|
return InsertBefore( InvalidIndex(), src ); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Removal methods |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template<class T, class S, bool ML, class I, class M> |
|
|
I CUtlLinkedList<T,S,ML,I,M>::Find( const T &src ) const |
|
|
{ |
|
|
for ( I i=Head(); i != InvalidIndex(); i = Next( i ) ) |
|
|
{ |
|
|
if ( Element( i ) == src ) |
|
|
return i; |
|
|
} |
|
|
return InvalidIndex(); |
|
|
} |
|
|
|
|
|
|
|
|
template<class T, class S, bool ML, class I, class M> |
|
|
bool CUtlLinkedList<T,S,ML,I,M>::FindAndRemove( const T &src ) |
|
|
{ |
|
|
I i = Find( src ); |
|
|
if ( i == InvalidIndex() ) |
|
|
{ |
|
|
return false; |
|
|
} |
|
|
else |
|
|
{ |
|
|
Remove( i ); |
|
|
return true; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::Remove( I elem ) |
|
|
{ |
|
|
Free( elem ); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::RemoveAll() |
|
|
{ |
|
|
// Have to do some convoluted stuff to invoke the destructor on all |
|
|
// valid elements for the multilist case (since we don't have all elements |
|
|
// connected to each other in a list). |
|
|
|
|
|
if ( m_LastAlloc == m_Memory.InvalidIterator() ) |
|
|
{ |
|
|
Assert( m_Head == InvalidIndex() ); |
|
|
Assert( m_Tail == InvalidIndex() ); |
|
|
Assert( m_FirstFree == InvalidIndex() ); |
|
|
Assert( m_ElementCount == 0 ); |
|
|
return; |
|
|
} |
|
|
|
|
|
if ( ML ) |
|
|
{ |
|
|
for ( typename M::Iterator_t it = m_Memory.First(); it != m_Memory.InvalidIterator(); it = m_Memory.Next( it ) ) |
|
|
{ |
|
|
I i = m_Memory.GetIndex( it ); |
|
|
if ( IsValidIndex( i ) ) // skip elements already in the free list |
|
|
{ |
|
|
ListElem_t &internalElem = InternalElement( i ); |
|
|
Destruct( &internalElem.m_Element ); |
|
|
internalElem.m_Previous = i; |
|
|
internalElem.m_Next = m_FirstFree; |
|
|
m_FirstFree = i; |
|
|
} |
|
|
|
|
|
if ( it == m_LastAlloc ) |
|
|
break; // don't destruct elements that haven't ever been constructed |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
I i = Head(); |
|
|
I next; |
|
|
while ( i != InvalidIndex() ) |
|
|
{ |
|
|
next = Next( i ); |
|
|
ListElem_t &internalElem = InternalElement( i ); |
|
|
Destruct( &internalElem.m_Element ); |
|
|
internalElem.m_Previous = i; |
|
|
internalElem.m_Next = next == InvalidIndex() ? m_FirstFree : next; |
|
|
i = next; |
|
|
} |
|
|
if ( Head() != InvalidIndex() ) |
|
|
{ |
|
|
m_FirstFree = Head(); |
|
|
} |
|
|
} |
|
|
|
|
|
// Clear everything else out |
|
|
m_Head = InvalidIndex(); |
|
|
m_Tail = InvalidIndex(); |
|
|
m_ElementCount = 0; |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// list modification |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::LinkBefore( I before, I elem ) |
|
|
{ |
|
|
Assert( IsValidIndex(elem) ); |
|
|
|
|
|
// Unlink it if it's in the list at the moment |
|
|
Unlink(elem); |
|
|
|
|
|
ListElem_t * RESTRICT pNewElem = &InternalElement(elem); |
|
|
|
|
|
// The element *after* our newly linked one is the one we linked before. |
|
|
pNewElem->m_Next = before; |
|
|
|
|
|
S newElem_mPrevious; // we need to hang on to this for the compairson against InvalidIndex() |
|
|
// below; otherwise we get a a load-hit-store on pNewElem->m_Previous, even |
|
|
// with RESTRICT |
|
|
if (before == InvalidIndex()) |
|
|
{ |
|
|
// In this case, we're linking to the end of the list, so reset the tail |
|
|
newElem_mPrevious = m_Tail; |
|
|
pNewElem->m_Previous = m_Tail; |
|
|
m_Tail = elem; |
|
|
} |
|
|
else |
|
|
{ |
|
|
// Here, we're not linking to the end. Set the prev pointer to point to |
|
|
// the element we're linking. |
|
|
Assert( IsInList(before) ); |
|
|
ListElem_t * RESTRICT beforeElem = &InternalElement(before); |
|
|
pNewElem->m_Previous = newElem_mPrevious = beforeElem->m_Previous; |
|
|
beforeElem->m_Previous = elem; |
|
|
} |
|
|
|
|
|
// Reset the head if we linked to the head of the list |
|
|
if (newElem_mPrevious == InvalidIndex()) |
|
|
m_Head = elem; |
|
|
else |
|
|
InternalElement(newElem_mPrevious).m_Next = elem; |
|
|
|
|
|
// one more element baby |
|
|
++m_ElementCount; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::LinkAfter( I after, I elem ) |
|
|
{ |
|
|
Assert( IsValidIndex(elem) ); |
|
|
|
|
|
// Unlink it if it's in the list at the moment |
|
|
if ( IsInList(elem) ) |
|
|
Unlink(elem); |
|
|
|
|
|
ListElem_t& newElem = InternalElement(elem); |
|
|
|
|
|
// The element *before* our newly linked one is the one we linked after |
|
|
newElem.m_Previous = after; |
|
|
if (after == InvalidIndex()) |
|
|
{ |
|
|
// In this case, we're linking to the head of the list, reset the head |
|
|
newElem.m_Next = m_Head; |
|
|
m_Head = elem; |
|
|
} |
|
|
else |
|
|
{ |
|
|
// Here, we're not linking to the end. Set the next pointer to point to |
|
|
// the element we're linking. |
|
|
Assert( IsInList(after) ); |
|
|
ListElem_t& afterElem = InternalElement(after); |
|
|
newElem.m_Next = afterElem.m_Next; |
|
|
afterElem.m_Next = elem; |
|
|
} |
|
|
|
|
|
// Reset the tail if we linked to the tail of the list |
|
|
if (newElem.m_Next == InvalidIndex()) |
|
|
m_Tail = elem; |
|
|
else |
|
|
InternalElement(newElem.m_Next).m_Previous = elem; |
|
|
|
|
|
// one more element baby |
|
|
++m_ElementCount; |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
void CUtlLinkedList<T,S,ML,I,M>::Unlink( I elem ) |
|
|
{ |
|
|
Assert( IsValidIndex(elem) ); |
|
|
if (IsInList(elem)) |
|
|
{ |
|
|
ListElem_t * RESTRICT pOldElem = &m_Memory[ elem ]; |
|
|
|
|
|
// If we're the first guy, reset the head |
|
|
// otherwise, make our previous node's next pointer = our next |
|
|
if ( pOldElem->m_Previous != InvalidIndex() ) |
|
|
{ |
|
|
m_Memory[ pOldElem->m_Previous ].m_Next = pOldElem->m_Next; |
|
|
} |
|
|
else |
|
|
{ |
|
|
m_Head = pOldElem->m_Next; |
|
|
} |
|
|
|
|
|
// If we're the last guy, reset the tail |
|
|
// otherwise, make our next node's prev pointer = our prev |
|
|
if ( pOldElem->m_Next != InvalidIndex() ) |
|
|
{ |
|
|
m_Memory[ pOldElem->m_Next ].m_Previous = pOldElem->m_Previous; |
|
|
} |
|
|
else |
|
|
{ |
|
|
m_Tail = pOldElem->m_Previous; |
|
|
} |
|
|
|
|
|
// This marks this node as not in the list, |
|
|
// but not in the free list either |
|
|
pOldElem->m_Previous = pOldElem->m_Next = elem; |
|
|
|
|
|
// One less puppy |
|
|
--m_ElementCount; |
|
|
} |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline void CUtlLinkedList<T,S,ML,I,M>::LinkToHead( I elem ) |
|
|
{ |
|
|
LinkAfter( InvalidIndex(), elem ); |
|
|
} |
|
|
|
|
|
template <class T, class S, bool ML, class I, class M> |
|
|
inline void CUtlLinkedList<T,S,ML,I,M>::LinkToTail( I elem ) |
|
|
{ |
|
|
LinkBefore( InvalidIndex(), elem ); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Class to drop in to replace a CUtlLinkedList that needs to be more memory agressive |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
DECLARE_POINTER_HANDLE( UtlPtrLinkedListIndex_t ); // to enforce correct usage |
|
|
|
|
|
template < typename T > |
|
|
class CUtlPtrLinkedList |
|
|
{ |
|
|
public: |
|
|
CUtlPtrLinkedList() |
|
|
: m_pFirst( NULL ), |
|
|
m_nElems( 0 ) |
|
|
{ |
|
|
COMPILE_TIME_ASSERT( sizeof(IndexType_t) == sizeof(Node_t *) ); |
|
|
} |
|
|
|
|
|
~CUtlPtrLinkedList() |
|
|
{ |
|
|
RemoveAll(); |
|
|
} |
|
|
|
|
|
typedef UtlPtrLinkedListIndex_t IndexType_t; |
|
|
|
|
|
T &operator[]( IndexType_t i ) |
|
|
{ |
|
|
return (( Node_t * )i)->elem; |
|
|
} |
|
|
|
|
|
const T &operator[]( IndexType_t i ) const |
|
|
{ |
|
|
return (( Node_t * )i)->elem; |
|
|
} |
|
|
|
|
|
IndexType_t AddToTail() |
|
|
{ |
|
|
return DoInsertBefore( (IndexType_t)m_pFirst, NULL ); |
|
|
} |
|
|
|
|
|
IndexType_t AddToTail( T const& src ) |
|
|
{ |
|
|
return DoInsertBefore( (IndexType_t)m_pFirst, &src ); |
|
|
} |
|
|
|
|
|
IndexType_t AddToHead() |
|
|
{ |
|
|
IndexType_t result = DoInsertBefore( (IndexType_t)m_pFirst, NULL ); |
|
|
m_pFirst = ((Node_t *)result); |
|
|
return result; |
|
|
} |
|
|
|
|
|
IndexType_t AddToHead( T const& src ) |
|
|
{ |
|
|
IndexType_t result = DoInsertBefore( (IndexType_t)m_pFirst, &src ); |
|
|
m_pFirst = ((Node_t *)result); |
|
|
return result; |
|
|
} |
|
|
|
|
|
IndexType_t InsertBefore( IndexType_t before ) |
|
|
{ |
|
|
return DoInsertBefore( before, NULL ); |
|
|
} |
|
|
|
|
|
IndexType_t InsertAfter( IndexType_t after ) |
|
|
{ |
|
|
Node_t *pBefore = ((Node_t *)after)->next; |
|
|
return DoInsertBefore( pBefore, NULL ); |
|
|
} |
|
|
|
|
|
IndexType_t InsertBefore( IndexType_t before, T const& src ) |
|
|
{ |
|
|
return DoInsertBefore( before, &src ); |
|
|
} |
|
|
|
|
|
IndexType_t InsertAfter( IndexType_t after, T const& src ) |
|
|
{ |
|
|
Node_t *pBefore = ((Node_t *)after)->next; |
|
|
return DoInsertBefore( pBefore, &src ); |
|
|
} |
|
|
|
|
|
void Remove( IndexType_t elem ) |
|
|
{ |
|
|
Node_t *p = (Node_t *)elem; |
|
|
|
|
|
if ( p->pNext == p ) |
|
|
{ |
|
|
m_pFirst = NULL; |
|
|
} |
|
|
else |
|
|
{ |
|
|
if ( m_pFirst == p ) |
|
|
{ |
|
|
m_pFirst = p->pNext; |
|
|
} |
|
|
p->pNext->pPrev = p->pPrev; |
|
|
p->pPrev->pNext = p->pNext; |
|
|
} |
|
|
|
|
|
delete p; |
|
|
m_nElems--; |
|
|
} |
|
|
|
|
|
void RemoveAll() |
|
|
{ |
|
|
Node_t *p = m_pFirst; |
|
|
if ( p ) |
|
|
{ |
|
|
do |
|
|
{ |
|
|
Node_t *pNext = p->pNext; |
|
|
delete p; |
|
|
p = pNext; |
|
|
} while( p != m_pFirst ); |
|
|
} |
|
|
|
|
|
m_pFirst = NULL; |
|
|
m_nElems = 0; |
|
|
} |
|
|
|
|
|
int Count() const |
|
|
{ |
|
|
return m_nElems; |
|
|
} |
|
|
|
|
|
IndexType_t Head() const |
|
|
{ |
|
|
return (IndexType_t)m_pFirst; |
|
|
} |
|
|
|
|
|
IndexType_t Next( IndexType_t i ) const |
|
|
{ |
|
|
Node_t *p = ((Node_t *)i)->pNext; |
|
|
if ( p != m_pFirst ) |
|
|
{ |
|
|
return (IndexType_t)p; |
|
|
} |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
bool IsValidIndex( IndexType_t i ) const |
|
|
{ |
|
|
Node_t *p = ((Node_t *)i); |
|
|
return ( p && p->pNext && p->pPrev ); |
|
|
} |
|
|
|
|
|
inline static IndexType_t InvalidIndex() |
|
|
{ |
|
|
return NULL; |
|
|
} |
|
|
private: |
|
|
|
|
|
struct Node_t |
|
|
{ |
|
|
Node_t() {} |
|
|
Node_t( const T &_elem ) : elem( _elem ) {} |
|
|
|
|
|
T elem; |
|
|
Node_t *pPrev, *pNext; |
|
|
}; |
|
|
|
|
|
Node_t *AllocNode( const T *pCopyFrom ) |
|
|
{ |
|
|
MEM_ALLOC_CREDIT_CLASS(); |
|
|
Node_t *p; |
|
|
|
|
|
if ( !pCopyFrom ) |
|
|
{ |
|
|
p = new Node_t; |
|
|
} |
|
|
else |
|
|
{ |
|
|
p = new Node_t( *pCopyFrom ); |
|
|
} |
|
|
|
|
|
return p; |
|
|
} |
|
|
|
|
|
IndexType_t DoInsertBefore( IndexType_t before, const T *pCopyFrom ) |
|
|
{ |
|
|
Node_t *p = AllocNode( pCopyFrom ); |
|
|
Node_t *pBefore = (Node_t *)before; |
|
|
if ( pBefore ) |
|
|
{ |
|
|
p->pNext = pBefore; |
|
|
p->pPrev = pBefore->pPrev; |
|
|
pBefore->pPrev = p; |
|
|
p->pPrev->pNext = p; |
|
|
} |
|
|
else |
|
|
{ |
|
|
Assert( !m_pFirst ); |
|
|
m_pFirst = p->pNext = p->pPrev = p; |
|
|
} |
|
|
|
|
|
m_nElems++; |
|
|
return (IndexType_t)p; |
|
|
} |
|
|
|
|
|
Node_t *m_pFirst; |
|
|
unsigned m_nElems; |
|
|
}; |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
#endif // UTLLINKEDLIST_H
|
|
|
|