mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-12 08:08:06 +00:00
8802 lines
333 KiB
C
8802 lines
333 KiB
C
#ifndef SSE2NEON_H
|
|
#define SSE2NEON_H
|
|
|
|
// This header file provides a simple API translation layer
|
|
// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
|
|
//
|
|
// This header file does not yet translate all of the SSE intrinsics.
|
|
//
|
|
// Contributors to this work are:
|
|
// John W. Ratcliff <jratcliffscarab@gmail.com>
|
|
// Brandon Rowlett <browlett@nvidia.com>
|
|
// Ken Fast <kfast@gdeb.com>
|
|
// Eric van Beurden <evanbeurden@nvidia.com>
|
|
// Alexander Potylitsin <apotylitsin@nvidia.com>
|
|
// Hasindu Gamaarachchi <hasindu2008@gmail.com>
|
|
// Jim Huang <jserv@biilabs.io>
|
|
// Mark Cheng <marktwtn@biilabs.io>
|
|
// Malcolm James MacLeod <malcolm@gulden.com>
|
|
// Devin Hussey (easyaspi314) <husseydevin@gmail.com>
|
|
// Sebastian Pop <spop@amazon.com>
|
|
// Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
|
|
// Danila Kutenin <danilak@google.com>
|
|
// François Turban (JishinMaster) <francois.turban@gmail.com>
|
|
// Pei-Hsuan Hung <afcidk@gmail.com>
|
|
// Yang-Hao Yuan <yanghau@biilabs.io>
|
|
// Syoyo Fujita <syoyo@lighttransport.com>
|
|
// Brecht Van Lommel <brecht@blender.org>
|
|
|
|
/*
|
|
* sse2neon is freely redistributable under the MIT License.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
/* Tunable configurations */
|
|
|
|
/* Enable precise implementation of math operations
|
|
* This would slow down the computation a bit, but gives consistent result with
|
|
* x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
|
|
*/
|
|
/* _mm_min|max_ps|ss|pd|sd */
|
|
#ifndef SSE2NEON_PRECISE_MINMAX
|
|
#define SSE2NEON_PRECISE_MINMAX (0)
|
|
#endif
|
|
/* _mm_rcp_ps and _mm_div_ps */
|
|
#ifndef SSE2NEON_PRECISE_DIV
|
|
#define SSE2NEON_PRECISE_DIV (0)
|
|
#endif
|
|
/* _mm_sqrt_ps and _mm_rsqrt_ps */
|
|
#ifndef SSE2NEON_PRECISE_SQRT
|
|
#define SSE2NEON_PRECISE_SQRT (0)
|
|
#endif
|
|
/* _mm_dp_pd */
|
|
#ifndef SSE2NEON_PRECISE_DP
|
|
#define SSE2NEON_PRECISE_DP (0)
|
|
#endif
|
|
|
|
/* compiler specific definitions */
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma push_macro("FORCE_INLINE")
|
|
#pragma push_macro("ALIGN_STRUCT")
|
|
#define FORCE_INLINE static inline __attribute__((always_inline))
|
|
#define ALIGN_STRUCT(x) __attribute__((aligned(x)))
|
|
#define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
|
|
#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
|
|
#else /* non-GNU / non-clang compilers */
|
|
#warning "Macro name collisions may happen with unsupported compiler."
|
|
#ifndef FORCE_INLINE
|
|
#define FORCE_INLINE static inline
|
|
#endif
|
|
#ifndef ALIGN_STRUCT
|
|
#define ALIGN_STRUCT(x) __declspec(align(x))
|
|
#endif
|
|
#define _sse2neon_likely(x) (x)
|
|
#define _sse2neon_unlikely(x) (x)
|
|
#endif
|
|
|
|
/* C language does not allow initializing a variable with a function call. */
|
|
#ifdef __cplusplus
|
|
#define _sse2neon_const static const
|
|
#else
|
|
#define _sse2neon_const const
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
/* Architecture-specific build options */
|
|
/* FIXME: #pragma GCC push_options is only available on GCC */
|
|
#if defined(__GNUC__)
|
|
#if defined(__arm__) && __ARM_ARCH == 7
|
|
/* According to ARM C Language Extensions Architecture specification,
|
|
* __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
|
|
* architecture supported.
|
|
*/
|
|
#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
|
|
#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
|
|
#endif
|
|
#if !defined(__clang__)
|
|
#pragma GCC push_options
|
|
#pragma GCC target("fpu=neon")
|
|
#endif
|
|
#elif defined(__aarch64__)
|
|
#if !defined(__clang__)
|
|
#pragma GCC push_options
|
|
#pragma GCC target("+simd")
|
|
#endif
|
|
#elif __ARM_ARCH == 8
|
|
#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
|
|
#error \
|
|
"You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON."
|
|
#endif
|
|
#if !defined(__clang__)
|
|
#pragma GCC push_options
|
|
#endif
|
|
#else
|
|
#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
|
|
#endif
|
|
#endif
|
|
|
|
#include <arm_neon.h>
|
|
#if !defined(__aarch64__) && (__ARM_ARCH == 8)
|
|
#if defined __has_include && __has_include(<arm_acle.h>)
|
|
#include <arm_acle.h>
|
|
#endif
|
|
#endif
|
|
|
|
/* Rounding functions require either Aarch64 instructions or libm failback */
|
|
#if !defined(__aarch64__)
|
|
#include <math.h>
|
|
#endif
|
|
|
|
/* "__has_builtin" can be used to query support for built-in functions
|
|
* provided by gcc/clang and other compilers that support it.
|
|
*/
|
|
#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
|
|
/* Compatibility with gcc <= 9 */
|
|
#if defined(__GNUC__) && (__GNUC__ <= 9)
|
|
#define __has_builtin(x) HAS##x
|
|
#define HAS__builtin_popcount 1
|
|
#define HAS__builtin_popcountll 1
|
|
#else
|
|
#define __has_builtin(x) 0
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* MACRO for shuffle parameter for _mm_shuffle_ps().
|
|
* Argument fp3 is a digit[0123] that represents the fp from argument "b"
|
|
* of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
|
|
* for fp2 in result. fp1 is a digit[0123] that represents the fp from
|
|
* argument "a" of mm_shuffle_ps that will be places in fp1 of result.
|
|
* fp0 is the same for fp0 of result.
|
|
*/
|
|
#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
|
|
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
|
|
|
|
/* Rounding mode macros. */
|
|
#define _MM_FROUND_TO_NEAREST_INT 0x00
|
|
#define _MM_FROUND_TO_NEG_INF 0x01
|
|
#define _MM_FROUND_TO_POS_INF 0x02
|
|
#define _MM_FROUND_TO_ZERO 0x03
|
|
#define _MM_FROUND_CUR_DIRECTION 0x04
|
|
#define _MM_FROUND_NO_EXC 0x08
|
|
#define _MM_FROUND_RAISE_EXC 0x00
|
|
#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
|
|
#define _MM_ROUND_NEAREST 0x0000
|
|
#define _MM_ROUND_DOWN 0x2000
|
|
#define _MM_ROUND_UP 0x4000
|
|
#define _MM_ROUND_TOWARD_ZERO 0x6000
|
|
/* Flush zero mode macros. */
|
|
#define _MM_FLUSH_ZERO_MASK 0x8000
|
|
#define _MM_FLUSH_ZERO_ON 0x8000
|
|
#define _MM_FLUSH_ZERO_OFF 0x0000
|
|
/* Denormals are zeros mode macros. */
|
|
#define _MM_DENORMALS_ZERO_MASK 0x0040
|
|
#define _MM_DENORMALS_ZERO_ON 0x0040
|
|
#define _MM_DENORMALS_ZERO_OFF 0x0000
|
|
|
|
/* indicate immediate constant argument in a given range */
|
|
#define __constrange(a, b) const
|
|
|
|
/* A few intrinsics accept traditional data types like ints or floats, but
|
|
* most operate on data types that are specific to SSE.
|
|
* If a vector type ends in d, it contains doubles, and if it does not have
|
|
* a suffix, it contains floats. An integer vector type can contain any type
|
|
* of integer, from chars to shorts to unsigned long longs.
|
|
*/
|
|
typedef int64x1_t __m64;
|
|
typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
|
|
// On ARM 32-bit architecture, the float64x2_t is not supported.
|
|
// The data type __m128d should be represented in a different way for related
|
|
// intrinsic conversion.
|
|
#if defined(__aarch64__)
|
|
typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
|
|
#else
|
|
typedef float32x4_t __m128d;
|
|
#endif
|
|
typedef int64x2_t __m128i; /* 128-bit vector containing integers */
|
|
|
|
// __int64 is defined in the Intrinsics Guide which maps to different datatype
|
|
// in different data model
|
|
#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64))
|
|
#if (defined(__x86_64__) || defined(__i386__))
|
|
#define __int64 long long
|
|
#else
|
|
#define __int64 int64_t
|
|
#endif
|
|
#endif
|
|
|
|
/* type-safe casting between types */
|
|
|
|
#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
|
|
#define vreinterpretq_m128_f32(x) (x)
|
|
#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
|
|
|
|
#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
|
|
#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
|
|
#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
|
|
#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
|
|
|
|
#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
|
|
#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
|
|
#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
|
|
#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
|
|
|
|
#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
|
|
#define vreinterpretq_f32_m128(x) (x)
|
|
#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
|
|
|
|
#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
|
|
#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
|
|
#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
|
|
#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
|
|
|
|
#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
|
|
#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
|
|
#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
|
|
#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
|
|
|
|
#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
|
|
#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
|
|
#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
|
|
#define vreinterpretq_m128i_s64(x) (x)
|
|
|
|
#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
|
|
#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
|
|
#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
|
|
#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
|
|
|
|
#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
|
|
#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
|
|
|
|
#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
|
|
#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
|
|
#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
|
|
#define vreinterpretq_s64_m128i(x) (x)
|
|
|
|
#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
|
|
#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
|
|
#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
|
|
#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
|
|
|
|
#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
|
|
#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
|
|
#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
|
|
#define vreinterpret_m64_s64(x) (x)
|
|
|
|
#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
|
|
#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
|
|
#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
|
|
#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
|
|
|
|
#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
|
|
#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
|
|
#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
|
|
|
|
#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
|
|
#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
|
|
#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
|
|
#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
|
|
|
|
#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
|
|
#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
|
|
#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
|
|
#define vreinterpret_s64_m64(x) (x)
|
|
|
|
#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
|
|
|
|
#if defined(__aarch64__)
|
|
#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
|
|
#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
|
|
|
|
#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
|
|
|
|
#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
|
|
#define vreinterpretq_m128d_f64(x) (x)
|
|
|
|
#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
|
|
|
|
#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
|
|
#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
|
|
|
|
#define vreinterpretq_f64_m128d(x) (x)
|
|
#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
|
|
#else
|
|
#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
|
|
#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
|
|
|
|
#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
|
|
#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
|
|
|
|
#define vreinterpretq_m128d_f32(x) (x)
|
|
|
|
#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
|
|
|
|
#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
|
|
#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
|
|
|
|
#define vreinterpretq_f32_m128d(x) (x)
|
|
#endif
|
|
|
|
// A struct is defined in this header file called 'SIMDVec' which can be used
|
|
// by applications which attempt to access the contents of an __m128 struct
|
|
// directly. It is important to note that accessing the __m128 struct directly
|
|
// is bad coding practice by Microsoft: @see:
|
|
// https://docs.microsoft.com/en-us/cpp/cpp/m128
|
|
//
|
|
// However, some legacy source code may try to access the contents of an __m128
|
|
// struct directly so the developer can use the SIMDVec as an alias for it. Any
|
|
// casting must be done manually by the developer, as you cannot cast or
|
|
// otherwise alias the base NEON data type for intrinsic operations.
|
|
//
|
|
// union intended to allow direct access to an __m128 variable using the names
|
|
// that the MSVC compiler provides. This union should really only be used when
|
|
// trying to access the members of the vector as integer values. GCC/clang
|
|
// allow native access to the float members through a simple array access
|
|
// operator (in C since 4.6, in C++ since 4.8).
|
|
//
|
|
// Ideally direct accesses to SIMD vectors should not be used since it can cause
|
|
// a performance hit. If it really is needed however, the original __m128
|
|
// variable can be aliased with a pointer to this union and used to access
|
|
// individual components. The use of this union should be hidden behind a macro
|
|
// that is used throughout the codebase to access the members instead of always
|
|
// declaring this type of variable.
|
|
typedef union ALIGN_STRUCT(16) SIMDVec {
|
|
float m128_f32[4]; // as floats - DON'T USE. Added for convenience.
|
|
int8_t m128_i8[16]; // as signed 8-bit integers.
|
|
int16_t m128_i16[8]; // as signed 16-bit integers.
|
|
int32_t m128_i32[4]; // as signed 32-bit integers.
|
|
int64_t m128_i64[2]; // as signed 64-bit integers.
|
|
uint8_t m128_u8[16]; // as unsigned 8-bit integers.
|
|
uint16_t m128_u16[8]; // as unsigned 16-bit integers.
|
|
uint32_t m128_u32[4]; // as unsigned 32-bit integers.
|
|
uint64_t m128_u64[2]; // as unsigned 64-bit integers.
|
|
} SIMDVec;
|
|
|
|
// casting using SIMDVec
|
|
#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
|
|
#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
|
|
#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
|
|
|
|
/* SSE macros */
|
|
#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
|
|
#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
|
|
#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
|
|
#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
|
|
|
|
// Function declaration
|
|
// SSE
|
|
FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE();
|
|
FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
|
|
FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
|
|
FORCE_INLINE __m128 _mm_set_ps1(float);
|
|
FORCE_INLINE __m128 _mm_setzero_ps(void);
|
|
// SSE2
|
|
FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
|
|
FORCE_INLINE __m128i _mm_castps_si128(__m128);
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
|
|
FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
|
|
FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
|
|
FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
|
|
FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
|
|
FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
|
|
FORCE_INLINE __m128d _mm_set_pd(double, double);
|
|
FORCE_INLINE __m128i _mm_set1_epi32(int);
|
|
FORCE_INLINE __m128i _mm_setzero_si128();
|
|
// SSE4.1
|
|
FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
|
|
FORCE_INLINE __m128 _mm_ceil_ps(__m128);
|
|
FORCE_INLINE __m128d _mm_floor_pd(__m128d);
|
|
FORCE_INLINE __m128 _mm_floor_ps(__m128);
|
|
FORCE_INLINE __m128d _mm_round_pd(__m128d, int);
|
|
FORCE_INLINE __m128 _mm_round_ps(__m128, int);
|
|
// SSE4.2
|
|
FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
|
|
|
|
/* Backwards compatibility for compilers with lack of specific type support */
|
|
|
|
// Older gcc does not define vld1q_u8_x4 type
|
|
#if defined(__GNUC__) && !defined(__clang__) && \
|
|
(defined(__arm__) || \
|
|
(__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
|
|
(__GNUC__ <= 9 && defined(__aarch64__)))
|
|
FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
|
|
{
|
|
uint8x16x4_t ret;
|
|
ret.val[0] = vld1q_u8(p + 0);
|
|
ret.val[1] = vld1q_u8(p + 16);
|
|
ret.val[2] = vld1q_u8(p + 32);
|
|
ret.val[3] = vld1q_u8(p + 48);
|
|
return ret;
|
|
}
|
|
#else
|
|
// Wraps vld1q_u8_x4
|
|
FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
|
|
{
|
|
return vld1q_u8_x4(p);
|
|
}
|
|
#endif
|
|
|
|
/* Function Naming Conventions
|
|
* The naming convention of SSE intrinsics is straightforward. A generic SSE
|
|
* intrinsic function is given as follows:
|
|
* _mm_<name>_<data_type>
|
|
*
|
|
* The parts of this format are given as follows:
|
|
* 1. <name> describes the operation performed by the intrinsic
|
|
* 2. <data_type> identifies the data type of the function's primary arguments
|
|
*
|
|
* This last part, <data_type>, is a little complicated. It identifies the
|
|
* content of the input values, and can be set to any of the following values:
|
|
* + ps - vectors contain floats (ps stands for packed single-precision)
|
|
* + pd - vectors cantain doubles (pd stands for packed double-precision)
|
|
* + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
|
|
* signed integers
|
|
* + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
|
|
* unsigned integers
|
|
* + si128 - unspecified 128-bit vector or 256-bit vector
|
|
* + m128/m128i/m128d - identifies input vector types when they are different
|
|
* than the type of the returned vector
|
|
*
|
|
* For example, _mm_setzero_ps. The _mm implies that the function returns
|
|
* a 128-bit vector. The _ps at the end implies that the argument vectors
|
|
* contain floats.
|
|
*
|
|
* A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
|
|
* // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
|
|
* __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
|
|
* // Set packed 8-bit integers
|
|
* // 128 bits, 16 chars, per 8 bits
|
|
* __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11,
|
|
* 4, 5, 12, 13, 6, 7, 14, 15);
|
|
* // Shuffle packed 8-bit integers
|
|
* __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
|
|
*
|
|
* Data (Number, Binary, Byte Index):
|
|
+------+------+-------------+------+------+-------------+
|
|
| 1 | 2 | 3 | 4 | Number
|
|
+------+------+------+------+------+------+------+------+
|
|
| 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary
|
|
+------+------+------+------+------+------+------+------+
|
|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index
|
|
+------+------+------+------+------+------+------+------+
|
|
|
|
+------+------+------+------+------+------+------+------+
|
|
| 5 | 6 | 7 | 8 | Number
|
|
+------+------+------+------+------+------+------+------+
|
|
| 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary
|
|
+------+------+------+------+------+------+------+------+
|
|
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index
|
|
+------+------+------+------+------+------+------+------+
|
|
* Index (Byte Index):
|
|
+------+------+------+------+------+------+------+------+
|
|
| 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 |
|
|
+------+------+------+------+------+------+------+------+
|
|
|
|
+------+------+------+------+------+------+------+------+
|
|
| 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 |
|
|
+------+------+------+------+------+------+------+------+
|
|
* Result:
|
|
+------+------+------+------+------+------+------+------+
|
|
| 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index
|
|
+------+------+------+------+------+------+------+------+
|
|
| 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary
|
|
+------+------+------+------+------+------+------+------+
|
|
| 256 | 2 | 5 | 6 | Number
|
|
+------+------+------+------+------+------+------+------+
|
|
|
|
+------+------+------+------+------+------+------+------+
|
|
| 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index
|
|
+------+------+------+------+------+------+------+------+
|
|
| 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary
|
|
+------+------+------+------+------+------+------+------+
|
|
| 3 | 7 | 4 | 8 | Number
|
|
+------+------+------+------+------+------+-------------+
|
|
*/
|
|
|
|
/* Constants for use with _mm_prefetch. */
|
|
enum _mm_hint {
|
|
_MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
|
|
_MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
|
|
_MM_HINT_T1 = 2, /* load data to L2 cache only */
|
|
_MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
|
|
_MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */
|
|
_MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */
|
|
_MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */
|
|
_MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */
|
|
};
|
|
|
|
// The bit field mapping to the FPCR(floating-point control register)
|
|
typedef struct {
|
|
uint16_t res0;
|
|
uint8_t res1 : 6;
|
|
uint8_t bit22 : 1;
|
|
uint8_t bit23 : 1;
|
|
uint8_t bit24 : 1;
|
|
uint8_t res2 : 7;
|
|
#if defined(__aarch64__)
|
|
uint32_t res3;
|
|
#endif
|
|
} fpcr_bitfield;
|
|
|
|
// Takes the upper 64 bits of a and places it in the low end of the result
|
|
// Takes the lower 64 bits of b and places it into the high end of the result.
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
|
|
}
|
|
|
|
// takes the lower two 32-bit values from a and swaps them and places in high
|
|
// end of result takes the higher two 32 bit values from b and swaps them and
|
|
// places in low end of result.
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a21 = vget_high_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
|
|
float32x2_t b03 = vget_low_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a03 = vget_low_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
|
|
float32x2_t b21 = vget_high_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
|
|
}
|
|
|
|
// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
|
|
// high
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a22 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
|
|
float32x2_t b22 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
|
|
{
|
|
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
float32x2_t a22 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
|
|
float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a33 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
|
|
float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
float32x2_t b20 = vset_lane_f32(b2, b00, 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32_t b2 = vgetq_lane_f32(b, 2);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
float32x2_t b20 = vset_lane_f32(b2, b00, 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32_t b2 = vgetq_lane_f32(b, 2);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
float32x2_t b20 = vset_lane_f32(b2, b00, 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
|
|
}
|
|
|
|
// Kahan summation for accurate summation of floating-point numbers.
|
|
// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
|
|
FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
|
|
{
|
|
y -= *c;
|
|
float t = *sum + y;
|
|
*c = (t - *sum) - y;
|
|
*sum = t;
|
|
}
|
|
|
|
#if defined(__ARM_FEATURE_CRYPTO) && \
|
|
(defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64))
|
|
// Wraps vmull_p64
|
|
FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
|
|
{
|
|
poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
|
|
poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
|
|
return vreinterpretq_u64_p128(vmull_p64(a, b));
|
|
}
|
|
#else // ARMv7 polyfill
|
|
// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
|
|
//
|
|
// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
|
|
// 64-bit->128-bit polynomial multiply.
|
|
//
|
|
// It needs some work and is somewhat slow, but it is still faster than all
|
|
// known scalar methods.
|
|
//
|
|
// Algorithm adapted to C from
|
|
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
|
|
// from "Fast Software Polynomial Multiplication on ARM Processors Using the
|
|
// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
|
|
// (https://hal.inria.fr/hal-01506572)
|
|
static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
|
|
{
|
|
poly8x8_t a = vreinterpret_p8_u64(_a);
|
|
poly8x8_t b = vreinterpret_p8_u64(_b);
|
|
|
|
// Masks
|
|
uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
|
|
vcreate_u8(0x00000000ffffffff));
|
|
uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
|
|
vcreate_u8(0x0000000000000000));
|
|
|
|
// Do the multiplies, rotating with vext to get all combinations
|
|
uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
|
|
uint8x16_t e =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
|
|
uint8x16_t f =
|
|
vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
|
|
uint8x16_t g =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
|
|
uint8x16_t h =
|
|
vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
|
|
uint8x16_t i =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
|
|
uint8x16_t j =
|
|
vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
|
|
uint8x16_t k =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
|
|
|
|
// Add cross products
|
|
uint8x16_t l = veorq_u8(e, f); // L = E + F
|
|
uint8x16_t m = veorq_u8(g, h); // M = G + H
|
|
uint8x16_t n = veorq_u8(i, j); // N = I + J
|
|
|
|
// Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
|
|
// instructions.
|
|
#if defined(__aarch64__)
|
|
uint8x16_t lm_p0 = vreinterpretq_u8_u64(
|
|
vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
|
|
uint8x16_t lm_p1 = vreinterpretq_u8_u64(
|
|
vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
|
|
uint8x16_t nk_p0 = vreinterpretq_u8_u64(
|
|
vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
|
|
uint8x16_t nk_p1 = vreinterpretq_u8_u64(
|
|
vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
|
|
#else
|
|
uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
|
|
uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
|
|
uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
|
|
uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
|
|
#endif
|
|
// t0 = (L) (P0 + P1) << 8
|
|
// t1 = (M) (P2 + P3) << 16
|
|
uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
|
|
uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
|
|
uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
|
|
|
|
// t2 = (N) (P4 + P5) << 24
|
|
// t3 = (K) (P6 + P7) << 32
|
|
uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
|
|
uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
|
|
uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
|
|
|
|
// De-interleave
|
|
#if defined(__aarch64__)
|
|
uint8x16_t t0 = vreinterpretq_u8_u64(
|
|
vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
|
|
uint8x16_t t1 = vreinterpretq_u8_u64(
|
|
vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
|
|
uint8x16_t t2 = vreinterpretq_u8_u64(
|
|
vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
|
|
uint8x16_t t3 = vreinterpretq_u8_u64(
|
|
vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
|
|
#else
|
|
uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
|
|
uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
|
|
uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
|
|
uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
|
|
#endif
|
|
// Shift the cross products
|
|
uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
|
|
uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
|
|
uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
|
|
uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
|
|
|
|
// Accumulate the products
|
|
uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
|
|
uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
|
|
uint8x16_t mix = veorq_u8(d, cross1);
|
|
uint8x16_t r = veorq_u8(mix, cross2);
|
|
return vreinterpretq_u64_u8(r);
|
|
}
|
|
#endif // ARMv7 polyfill
|
|
|
|
// C equivalent:
|
|
// __m128i _mm_shuffle_epi32_default(__m128i a,
|
|
// __constrange(0, 255) int imm) {
|
|
// __m128i ret;
|
|
// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
|
|
// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
|
|
// return ret;
|
|
// }
|
|
#define _mm_shuffle_epi32_default(a, imm) \
|
|
__extension__({ \
|
|
int32x4_t ret; \
|
|
ret = vmovq_n_s32( \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \
|
|
ret = vsetq_lane_s32( \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
|
|
ret, 1); \
|
|
ret = vsetq_lane_s32( \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
|
|
ret, 2); \
|
|
ret = vsetq_lane_s32( \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
|
|
ret, 3); \
|
|
vreinterpretq_m128i_s32(ret); \
|
|
})
|
|
|
|
// Takes the upper 64 bits of a and places it in the low end of the result
|
|
// Takes the lower 64 bits of a and places it into the high end of the result.
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
|
|
{
|
|
int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
|
|
}
|
|
|
|
// takes the lower two 32-bit values from a and swaps them and places in low end
|
|
// of result takes the higher two 32 bit values from a and swaps them and places
|
|
// in high end of result.
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
|
|
{
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
|
|
}
|
|
|
|
// rotates the least significant 32 bits into the most significant 32 bits, and
|
|
// shifts the rest down
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
|
|
}
|
|
|
|
// rotates the most significant 32 bits into the least significant 32 bits, and
|
|
// shifts the rest up
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
|
|
}
|
|
|
|
// gets the lower 64 bits of a, and places it in the upper 64 bits
|
|
// gets the lower 64 bits of a and places it in the lower 64 bits
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
|
|
{
|
|
int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
|
|
}
|
|
|
|
// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
|
|
// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
|
|
{
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
|
|
}
|
|
|
|
// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
|
|
// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
|
|
// places it in the lower 64 bits
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
|
|
{
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
|
|
{
|
|
int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
|
|
int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
|
|
{
|
|
int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
|
|
{
|
|
int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
|
|
}
|
|
|
|
// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
|
|
// int imm)
|
|
#if defined(__aarch64__)
|
|
#define _mm_shuffle_epi32_splat(a, imm) \
|
|
__extension__({ \
|
|
vreinterpretq_m128i_s32( \
|
|
vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
|
|
})
|
|
#else
|
|
#define _mm_shuffle_epi32_splat(a, imm) \
|
|
__extension__({ \
|
|
vreinterpretq_m128i_s32( \
|
|
vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
|
|
})
|
|
#endif
|
|
|
|
// NEON does not support a general purpose permute intrinsic
|
|
// Selects four specific single-precision, floating-point values from a and b,
|
|
// based on the mask i.
|
|
//
|
|
// C equivalent:
|
|
// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
|
|
// __constrange(0, 255) int imm) {
|
|
// __m128 ret;
|
|
// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
|
|
// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
|
|
// return ret;
|
|
// }
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
|
|
#define _mm_shuffle_ps_default(a, b, imm) \
|
|
__extension__({ \
|
|
float32x4_t ret; \
|
|
ret = vmovq_n_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \
|
|
ret = vsetq_lane_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
|
|
ret, 1); \
|
|
ret = vsetq_lane_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
|
|
ret, 2); \
|
|
ret = vsetq_lane_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
|
|
ret, 3); \
|
|
vreinterpretq_m128_f32(ret); \
|
|
})
|
|
|
|
// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
|
|
// by imm.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
|
|
// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
|
|
// __constrange(0,255) int
|
|
// imm)
|
|
#define _mm_shufflelo_epi16_function(a, imm) \
|
|
__extension__({ \
|
|
int16x8_t ret = vreinterpretq_s16_m128i(a); \
|
|
int16x4_t lowBits = vget_low_s16(ret); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
|
|
1); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
|
|
2); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
|
|
3); \
|
|
vreinterpretq_m128i_s16(ret); \
|
|
})
|
|
|
|
// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
|
|
// by imm.
|
|
// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
|
|
// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
|
|
// __constrange(0,255) int
|
|
// imm)
|
|
#define _mm_shufflehi_epi16_function(a, imm) \
|
|
__extension__({ \
|
|
int16x8_t ret = vreinterpretq_s16_m128i(a); \
|
|
int16x4_t highBits = vget_high_s16(ret); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
|
|
5); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
|
|
6); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
|
|
7); \
|
|
vreinterpretq_m128i_s16(ret); \
|
|
})
|
|
|
|
/* MMX */
|
|
|
|
//_mm_empty is a no-op on arm
|
|
FORCE_INLINE void _mm_empty(void) {}
|
|
|
|
/* SSE */
|
|
|
|
// Adds the four single-precision, floating-point values of a and b.
|
|
//
|
|
// r0 := a0 + b0
|
|
// r1 := a1 + b1
|
|
// r2 := a2 + b2
|
|
// r3 := a3 + b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// adds the scalar single-precision floating point values of a and b.
|
|
// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
|
|
float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
|
|
// the upper values in the result must be the remnants of <a>.
|
|
return vreinterpretq_m128_f32(vaddq_f32(a, value));
|
|
}
|
|
|
|
// Computes the bitwise AND of the four single-precision, floating-point values
|
|
// of a and b.
|
|
//
|
|
// r0 := a0 & b0
|
|
// r1 := a1 & b1
|
|
// r2 := a2 & b2
|
|
// r3 := a3 & b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
|
|
}
|
|
|
|
// Computes the bitwise AND-NOT of the four single-precision, floating-point
|
|
// values of a and b.
|
|
//
|
|
// r0 := ~a0 & b0
|
|
// r1 := ~a1 & b1
|
|
// r2 := ~a2 & b2
|
|
// r3 := ~a3 & b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
vbicq_s32(vreinterpretq_s32_m128(b),
|
|
vreinterpretq_s32_m128(a))); // *NOTE* argument swap
|
|
}
|
|
|
|
// Average packed unsigned 16-bit integers in a and b, and store the results in
|
|
// dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
|
|
FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u16(
|
|
vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
|
|
}
|
|
|
|
// Average packed unsigned 8-bit integers in a and b, and store the results in
|
|
// dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
|
|
FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u8(
|
|
vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
|
|
}
|
|
|
|
// Compares for equality.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compares for equality.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
|
|
}
|
|
|
|
// Compares for greater than or equal.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compares for greater than or equal.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpge_ps(a, b));
|
|
}
|
|
|
|
// Compares for greater than.
|
|
//
|
|
// r0 := (a0 > b0) ? 0xffffffff : 0x0
|
|
// r1 := (a1 > b1) ? 0xffffffff : 0x0
|
|
// r2 := (a2 > b2) ? 0xffffffff : 0x0
|
|
// r3 := (a3 > b3) ? 0xffffffff : 0x0
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compares for greater than.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
|
|
}
|
|
|
|
// Compares for less than or equal.
|
|
//
|
|
// r0 := (a0 <= b0) ? 0xffffffff : 0x0
|
|
// r1 := (a1 <= b1) ? 0xffffffff : 0x0
|
|
// r2 := (a2 <= b2) ? 0xffffffff : 0x0
|
|
// r3 := (a3 <= b3) ? 0xffffffff : 0x0
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compares for less than or equal.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmple_ps(a, b));
|
|
}
|
|
|
|
// Compares for less than
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compares for less than
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmplt_ps(a, b));
|
|
}
|
|
|
|
// Compares for inequality.
|
|
// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compares for inequality.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
|
|
}
|
|
|
|
// Compares for not greater than or equal.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compares for not greater than or equal.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
|
|
}
|
|
|
|
// Compares for not greater than.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compares for not greater than.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
|
|
}
|
|
|
|
// Compares for not less than or equal.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compares for not less than or equal.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
|
|
}
|
|
|
|
// Compares for not less than.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compares for not less than.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
|
|
}
|
|
|
|
// Compares the four 32-bit floats in a and b to check if any values are NaN.
|
|
// Ordered compare between each value returns true for "orderable" and false for
|
|
// "not orderable" (NaN).
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
|
|
// also:
|
|
// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
|
|
// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
|
|
FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
|
|
{
|
|
// Note: NEON does not have ordered compare builtin
|
|
// Need to compare a eq a and b eq b to check for NaN
|
|
// Do AND of results to get final
|
|
uint32x4_t ceqaa =
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
|
|
uint32x4_t ceqbb =
|
|
vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
|
|
}
|
|
|
|
// Compares for ordered.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpord_ps(a, b));
|
|
}
|
|
|
|
// Compares for unordered.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t f32a =
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
|
|
uint32x4_t f32b =
|
|
vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
|
|
}
|
|
|
|
// Compares for unordered.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
|
|
}
|
|
|
|
// Compares the lower single-precision floating point scalar values of a and b
|
|
// using an equality operation. :
|
|
// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
|
|
FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_eq_b =
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_eq_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compares the lower single-precision floating point scalar values of a and b
|
|
// using a greater than or equal operation. :
|
|
// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
|
|
FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_ge_b =
|
|
vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_ge_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compares the lower single-precision floating point scalar values of a and b
|
|
// using a greater than operation. :
|
|
// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
|
|
FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_gt_b =
|
|
vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_gt_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compares the lower single-precision floating point scalar values of a and b
|
|
// using a less than or equal operation. :
|
|
// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
|
|
FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_le_b =
|
|
vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_le_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compares the lower single-precision floating point scalar values of a and b
|
|
// using a less than operation. :
|
|
// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
|
|
// note!! The documentation on MSDN is incorrect! If either of the values is a
|
|
// NAN the docs say you will get a one, but in fact, it will return a zero!!
|
|
FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_lt_b =
|
|
vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_lt_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compares the lower single-precision floating point scalar values of a and b
|
|
// using an inequality operation. :
|
|
// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
|
|
FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
|
|
{
|
|
return !_mm_comieq_ss(a, b);
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in b to packed single-precision
|
|
// (32-bit) floating-point elements, store the results in the lower 2 elements
|
|
// of dst, and copy the upper 2 packed elements from a to the upper elements of
|
|
// dst.
|
|
//
|
|
// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
|
|
// dst[63:32] := Convert_Int32_To_FP32(b[63:32])
|
|
// dst[95:64] := a[95:64]
|
|
// dst[127:96] := a[127:96]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
|
|
FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
|
|
vget_high_f32(vreinterpretq_f32_m128(a))));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi
|
|
FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vreinterpret_m64_s32(
|
|
vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
|
|
#else
|
|
return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
|
|
vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
|
|
#endif
|
|
}
|
|
|
|
// Convert the signed 32-bit integer b to a single-precision (32-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
|
|
FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer, and store the result in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
|
|
FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
|
|
0);
|
|
#else
|
|
float32_t data = vgetq_lane_f32(
|
|
vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
|
|
return (int32_t) data;
|
|
#endif
|
|
}
|
|
|
|
// Convert packed 16-bit integers in a to packed single-precision (32-bit)
|
|
// floating-point elements, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// m := j*32
|
|
// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
|
|
}
|
|
|
|
// Convert packed 32-bit integers in b to packed single-precision (32-bit)
|
|
// floating-point elements, store the results in the lower 2 elements of dst,
|
|
// and copy the upper 2 packed elements from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
|
|
// dst[63:32] := Convert_Int32_To_FP32(b[63:32])
|
|
// dst[95:64] := a[95:64]
|
|
// dst[127:96] := a[127:96]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
|
|
vget_high_f32(vreinterpretq_f32_m128(a))));
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, store the results in the lower 2 elements
|
|
// of dst, then convert the packed signed 32-bit integers in b to
|
|
// single-precision (32-bit) floating-point element, and store the results in
|
|
// the upper 2 elements of dst.
|
|
//
|
|
// dst[31:0] := Convert_Int32_To_FP32(a[31:0])
|
|
// dst[63:32] := Convert_Int32_To_FP32(a[63:32])
|
|
// dst[95:64] := Convert_Int32_To_FP32(b[31:0])
|
|
// dst[127:96] := Convert_Int32_To_FP32(b[63:32])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_s32(
|
|
vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
|
|
}
|
|
|
|
// Convert the lower packed 8-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*8
|
|
// m := j*32
|
|
// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_s32(
|
|
vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 16-bit integers, and store the results in dst. Note: this intrinsic
|
|
// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
|
|
// 0x7FFFFFFF.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := 16*j
|
|
// k := 32*j
|
|
// IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF)
|
|
// dst[i+15:i] := 0x7FFF
|
|
// ELSE
|
|
// dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16
|
|
FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
|
|
{
|
|
const __m128 i16Min = _mm_set_ps1((float) INT16_MIN);
|
|
const __m128 i16Max = _mm_set_ps1((float) INT16_MAX);
|
|
const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
|
|
const __m128i maxMask = _mm_castps_si128(
|
|
_mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max)));
|
|
const __m128i betweenMask = _mm_castps_si128(
|
|
_mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max)));
|
|
const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
|
|
_mm_setzero_si128());
|
|
__m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX));
|
|
__m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN));
|
|
__m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
|
|
__m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
|
|
return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32)));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32
|
|
#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 8-bit integers, and store the results in lower 4 elements of dst.
|
|
// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
|
|
// between 0x7F and 0x7FFFFFFF.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := 8*j
|
|
// k := 32*j
|
|
// IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF)
|
|
// dst[i+7:i] := 0x7F
|
|
// ELSE
|
|
// dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8
|
|
FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
|
|
{
|
|
const __m128 i8Min = _mm_set_ps1((float) INT8_MIN);
|
|
const __m128 i8Max = _mm_set_ps1((float) INT8_MAX);
|
|
const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
|
|
const __m128i maxMask = _mm_castps_si128(
|
|
_mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max)));
|
|
const __m128i betweenMask = _mm_castps_si128(
|
|
_mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max)));
|
|
const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
|
|
_mm_setzero_si128());
|
|
__m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX));
|
|
__m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN));
|
|
__m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
|
|
__m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
|
|
int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32));
|
|
int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16));
|
|
static const uint32_t bitMask[2] = {0xFFFFFFFF, 0};
|
|
int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask));
|
|
|
|
return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0)));
|
|
}
|
|
|
|
// Convert packed unsigned 16-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// m := j*32
|
|
// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
|
|
FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
|
|
}
|
|
|
|
// Convert the lower packed unsigned 8-bit integers in a to packed
|
|
// single-precision (32-bit) floating-point elements, and store the results in
|
|
// dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*8
|
|
// m := j*32
|
|
// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
|
|
FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_u32(
|
|
vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
|
|
}
|
|
|
|
// Convert the signed 32-bit integer b to a single-precision (32-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss
|
|
#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
|
|
|
|
// Convert the signed 64-bit integer b to a single-precision (32-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := Convert_Int64_To_FP32(b[63:0])
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss
|
|
FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Copy the lower single-precision (32-bit) floating-point element of a to dst.
|
|
//
|
|
// dst[31:0] := a[31:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
|
|
FORCE_INLINE float _mm_cvtss_f32(__m128 a)
|
|
{
|
|
return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
}
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer, and store the result in dst.
|
|
//
|
|
// dst[31:0] := Convert_FP32_To_Int32(a[31:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32
|
|
#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 64-bit integer, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP32_To_Int64(a[31:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64
|
|
FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
|
|
#else
|
|
float32_t data = vgetq_lane_f32(
|
|
vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
|
|
return (int64_t) data;
|
|
#endif
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi
|
|
FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
|
|
{
|
|
return vreinterpret_m64_s32(
|
|
vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
|
|
}
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer with truncation, and store the result in dst.
|
|
//
|
|
// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si
|
|
FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
|
|
{
|
|
return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32
|
|
#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer with truncation, and store the result in dst.
|
|
//
|
|
// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32
|
|
#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 64-bit integer with truncation, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64
|
|
FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
|
|
{
|
|
return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
}
|
|
|
|
// Divides the four single-precision, floating-point values of a and b.
|
|
//
|
|
// r0 := a0 / b0
|
|
// r1 := a1 / b1
|
|
// r2 := a2 / b2
|
|
// r3 := a3 / b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV
|
|
return vreinterpretq_m128_f32(
|
|
vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
|
|
#if SSE2NEON_PRECISE_DIV
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
|
|
#endif
|
|
return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
|
|
#endif
|
|
}
|
|
|
|
// Divides the scalar single-precision floating point value of a by b.
|
|
// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t value =
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Extract a 16-bit integer from a, selected with imm8, and store the result in
|
|
// the lower element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16
|
|
#define _mm_extract_pi16(a, imm) \
|
|
(int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
|
|
|
|
// Free aligned memory that was allocated with _mm_malloc.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free
|
|
FORCE_INLINE void _mm_free(void *addr)
|
|
{
|
|
free(addr);
|
|
}
|
|
|
|
// Macro: Get the flush zero bits from the MXCSR control and status register.
|
|
// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
|
|
// _MM_FLUSH_ZERO_OFF
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE
|
|
FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
|
|
}
|
|
|
|
// Macro: Get the rounding mode bits from the MXCSR control and status register.
|
|
// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
|
|
// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE
|
|
FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
if (r.field.bit22) {
|
|
return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
|
|
} else {
|
|
return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
|
|
}
|
|
}
|
|
|
|
// Copy a to dst, and insert the 16-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16
|
|
#define _mm_insert_pi16(a, b, imm) \
|
|
__extension__({ \
|
|
vreinterpret_m64_s16( \
|
|
vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \
|
|
})
|
|
|
|
// Loads four single-precision, floating-point values.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_load_ps(const float *p)
|
|
{
|
|
return vreinterpretq_m128_f32(vld1q_f32(p));
|
|
}
|
|
|
|
// Load a single-precision (32-bit) floating-point element from memory into all
|
|
// elements of dst.
|
|
//
|
|
// dst[31:0] := MEM[mem_addr+31:mem_addr]
|
|
// dst[63:32] := MEM[mem_addr+31:mem_addr]
|
|
// dst[95:64] := MEM[mem_addr+31:mem_addr]
|
|
// dst[127:96] := MEM[mem_addr+31:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
|
|
#define _mm_load_ps1 _mm_load1_ps
|
|
|
|
// Loads an single - precision, floating - point value into the low word and
|
|
// clears the upper three words.
|
|
// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128 _mm_load_ss(const float *p)
|
|
{
|
|
return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
|
|
}
|
|
|
|
// Loads a single single-precision, floating-point value, copying it into all
|
|
// four words
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_load1_ps(const float *p)
|
|
{
|
|
return vreinterpretq_m128_f32(vld1q_dup_f32(p));
|
|
}
|
|
|
|
// Sets the upper two single-precision, floating-point values with 64
|
|
// bits of data loaded from the address p; the lower two values are passed
|
|
// through from a.
|
|
//
|
|
// r0 := a0
|
|
// r1 := a1
|
|
// r2 := *p0
|
|
// r3 := *p1
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
|
|
FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
|
|
}
|
|
|
|
// Sets the lower two single-precision, floating-point values with 64
|
|
// bits of data loaded from the address p; the upper two values are passed
|
|
// through from a.
|
|
//
|
|
// Return Value
|
|
// r0 := *p0
|
|
// r1 := *p1
|
|
// r2 := a2
|
|
// r3 := a3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
|
|
}
|
|
|
|
// Load 4 single-precision (32-bit) floating-point elements from memory into dst
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
//
|
|
// dst[31:0] := MEM[mem_addr+127:mem_addr+96]
|
|
// dst[63:32] := MEM[mem_addr+95:mem_addr+64]
|
|
// dst[95:64] := MEM[mem_addr+63:mem_addr+32]
|
|
// dst[127:96] := MEM[mem_addr+31:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
|
|
FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
|
|
{
|
|
float32x4_t v = vrev64q_f32(vld1q_f32(p));
|
|
return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
|
|
}
|
|
|
|
// Loads four single-precision, floating-point values.
|
|
// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
|
|
{
|
|
// for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
|
|
// equivalent for neon
|
|
return vreinterpretq_m128_f32(vld1q_f32(p));
|
|
}
|
|
|
|
// Load unaligned 16-bit integer from memory into the first element of dst.
|
|
//
|
|
// dst[15:0] := MEM[mem_addr+15:mem_addr]
|
|
// dst[MAX:16] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
|
|
FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
|
|
}
|
|
|
|
// Load unaligned 64-bit integer from memory into the first element of dst.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+63:mem_addr]
|
|
// dst[MAX:64] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
|
|
FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
|
|
}
|
|
|
|
// Allocate aligned blocks of memory.
|
|
// https://software.intel.com/en-us/
|
|
// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
|
|
FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
|
|
{
|
|
void *ptr;
|
|
if (align == 1)
|
|
return malloc(size);
|
|
if (align == 2 || (sizeof(void *) == 8 && align == 4))
|
|
align = sizeof(void *);
|
|
if (!posix_memalign(&ptr, align, size))
|
|
return ptr;
|
|
return NULL;
|
|
}
|
|
|
|
// Conditionally store 8-bit integer elements from a into memory using mask
|
|
// (elements are not stored when the highest bit is not set in the corresponding
|
|
// element) and a non-temporal memory hint.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64
|
|
FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
|
|
{
|
|
int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
|
|
__m128 b = _mm_load_ps((const float *) mem_addr);
|
|
int8x8_t masked =
|
|
vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
|
|
vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
|
|
vst1_s8((int8_t *) mem_addr, masked);
|
|
}
|
|
|
|
// Conditionally store 8-bit integer elements from a into memory using mask
|
|
// (elements are not stored when the highest bit is not set in the corresponding
|
|
// element) and a non-temporal memory hint.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq
|
|
#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
|
|
FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
|
|
}
|
|
|
|
// Computes the maximums of the four single-precision, floating-point values of
|
|
// a and b.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
|
|
{
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float32x4_t _a = vreinterpretq_f32_m128(a);
|
|
float32x4_t _b = vreinterpretq_f32_m128(b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128_f32(
|
|
vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
|
|
FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u8(
|
|
vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
|
|
}
|
|
|
|
// Computes the maximum of the two lower scalar single-precision floating point
|
|
// values of a and b.
|
|
// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
|
|
FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
|
|
}
|
|
|
|
// Computes the minima of the four single-precision, floating-point values of a
|
|
// and b.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
|
|
{
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float32x4_t _a = vreinterpretq_f32_m128(a);
|
|
float32x4_t _b = vreinterpretq_f32_m128(b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128_f32(
|
|
vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
|
|
FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u8(
|
|
vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
|
|
}
|
|
|
|
// Computes the minimum of the two lower scalar single-precision floating point
|
|
// values of a and b.
|
|
// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Sets the low word to the single-precision, floating-point value of b
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100)
|
|
FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
|
|
vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Moves the upper two values of B into the lower two values of A.
|
|
//
|
|
// r3 := a3
|
|
// r2 := a2
|
|
// r1 := b3
|
|
// r0 := b2
|
|
FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B)
|
|
{
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
|
|
return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
|
|
}
|
|
|
|
// Moves the lower two values of B into the upper two values of A.
|
|
//
|
|
// r3 := b1
|
|
// r2 := b0
|
|
// r1 := a1
|
|
// r0 := a0
|
|
FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
|
|
}
|
|
|
|
// Create mask from the most significant bit of each 8-bit element in a, and
|
|
// store the result in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8
|
|
FORCE_INLINE int _mm_movemask_pi8(__m64 a)
|
|
{
|
|
uint8x8_t input = vreinterpret_u8_m64(a);
|
|
#if defined(__aarch64__)
|
|
static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
uint8x8_t tmp = vshr_n_u8(input, 7);
|
|
return vaddv_u8(vshl_u8(tmp, shift));
|
|
#else
|
|
// Refer the implementation of `_mm_movemask_epi8`
|
|
uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
|
|
uint32x2_t paired16 =
|
|
vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
|
|
uint8x8_t paired32 =
|
|
vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
|
|
return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
|
|
#endif
|
|
}
|
|
|
|
// NEON does not provide this method
|
|
// Creates a 4-bit mask from the most significant bits of the four
|
|
// single-precision, floating-point values.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
|
|
FORCE_INLINE int _mm_movemask_ps(__m128 a)
|
|
{
|
|
uint32x4_t input = vreinterpretq_u32_m128(a);
|
|
#if defined(__aarch64__)
|
|
static const int32x4_t shift = {0, 1, 2, 3};
|
|
uint32x4_t tmp = vshrq_n_u32(input, 31);
|
|
return vaddvq_u32(vshlq_u32(tmp, shift));
|
|
#else
|
|
// Uses the exact same method as _mm_movemask_epi8, see that for details.
|
|
// Shift out everything but the sign bits with a 32-bit unsigned shift
|
|
// right.
|
|
uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
|
|
// Merge the two pairs together with a 64-bit unsigned shift right + add.
|
|
uint8x16_t paired =
|
|
vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
|
|
// Extract the result.
|
|
return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
|
|
#endif
|
|
}
|
|
|
|
// Multiplies the four single-precision, floating-point values of a and b.
|
|
//
|
|
// r0 := a0 * b0
|
|
// r1 := a1 * b1
|
|
// r2 := a2 * b2
|
|
// r3 := a3 * b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Multiply the lower single-precision (32-bit) floating-point element in a and
|
|
// b, store the result in the lower element of dst, and copy the upper 3 packed
|
|
// elements from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := a[31:0] * b[31:0]
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
|
|
FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_mul_ps(a, b));
|
|
}
|
|
|
|
// Multiply the packed unsigned 16-bit integers in a and b, producing
|
|
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
|
|
// integers in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
|
|
FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u16(vshrn_n_u32(
|
|
vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
|
|
}
|
|
|
|
// Computes the bitwise OR of the four single-precision, floating-point values
|
|
// of a and b.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
|
|
}
|
|
|
|
// Average packed unsigned 8-bit integers in a and b, and store the results in
|
|
// dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
|
|
#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
|
|
|
|
// Average packed unsigned 16-bit integers in a and b, and store the results in
|
|
// dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
|
|
#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
|
|
|
|
// Extract a 16-bit integer from a, selected with imm8, and store the result in
|
|
// the lower element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw
|
|
#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
|
|
|
|
// Copy a to dst, and insert the 16-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw
|
|
#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw
|
|
#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub
|
|
#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw
|
|
#define _m_pminsw(a, b) _mm_min_pi16(a, b)
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub
|
|
#define _m_pminub(a, b) _mm_min_pu8(a, b)
|
|
|
|
// Create mask from the most significant bit of each 8-bit element in a, and
|
|
// store the result in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb
|
|
#define _m_pmovmskb(a) _mm_movemask_pi8(a)
|
|
|
|
// Multiply the packed unsigned 16-bit integers in a and b, producing
|
|
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
|
|
// integers in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
|
|
#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
|
|
|
|
// Loads one cache line of data from address p to a location closer to the
|
|
// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
|
|
FORCE_INLINE void _mm_prefetch(const void *p, int i)
|
|
{
|
|
(void) i;
|
|
__builtin_prefetch(p);
|
|
}
|
|
|
|
// Compute the absolute differences of packed unsigned 8-bit integers in a and
|
|
// b, then horizontally sum each consecutive 8 differences to produce four
|
|
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
|
|
// 16 bits of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw
|
|
#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
|
|
|
|
// Shuffle 16-bit integers in a using the control in imm8, and store the results
|
|
// in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw
|
|
#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
|
|
|
|
// Compute the approximate reciprocal of packed single-precision (32-bit)
|
|
// floating-point elements in a, and store the results in dst. The maximum
|
|
// relative error for this approximation is less than 1.5*2^-12.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps
|
|
FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
|
|
{
|
|
float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
|
|
#if SSE2NEON_PRECISE_DIV
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
|
|
#endif
|
|
return vreinterpretq_m128_f32(recip);
|
|
}
|
|
|
|
// Compute the approximate reciprocal of the lower single-precision (32-bit)
|
|
// floating-point element in a, store the result in the lower element of dst,
|
|
// and copy the upper 3 packed elements from a to the upper elements of dst. The
|
|
// maximum relative error for this approximation is less than 1.5*2^-12.
|
|
//
|
|
// dst[31:0] := (1.0 / a[31:0])
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
|
|
FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
|
|
{
|
|
return _mm_move_ss(a, _mm_rcp_ps(a));
|
|
}
|
|
|
|
// Computes the approximations of the reciprocal square roots of the four
|
|
// single-precision floating point values of in.
|
|
// The current precision is 1% error.
|
|
// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
|
|
{
|
|
float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
|
|
#if SSE2NEON_PRECISE_SQRT
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
out = vmulq_f32(
|
|
out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
|
|
out = vmulq_f32(
|
|
out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
|
|
#endif
|
|
return vreinterpretq_m128_f32(out);
|
|
}
|
|
|
|
// Compute the approximate reciprocal square root of the lower single-precision
|
|
// (32-bit) floating-point element in a, store the result in the lower element
|
|
// of dst, and copy the upper 3 packed elements from a to the upper elements of
|
|
// dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
|
|
FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
|
|
{
|
|
return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
|
|
}
|
|
|
|
// Compute the absolute differences of packed unsigned 8-bit integers in a and
|
|
// b, then horizontally sum each consecutive 8 differences to produce four
|
|
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
|
|
// 16 bits of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
|
|
FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
|
|
{
|
|
uint64x1_t t = vpaddl_u32(vpaddl_u16(
|
|
vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
|
|
return vreinterpret_m64_u16(
|
|
vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0));
|
|
}
|
|
|
|
// Macro: Set the flush zero bits of the MXCSR control and status register to
|
|
// the value in unsigned 32-bit integer a. The flush zero may contain any of the
|
|
// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE
|
|
FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
|
|
{
|
|
// AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
|
|
// regardless of the value of the FZ bit.
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
|
|
#else
|
|
__asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
|
|
#endif
|
|
}
|
|
|
|
// Sets the four single-precision, floating-point values to the four inputs.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
|
|
{
|
|
float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
}
|
|
|
|
// Sets the four single-precision, floating-point values to w.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_set_ps1(float _w)
|
|
{
|
|
return vreinterpretq_m128_f32(vdupq_n_f32(_w));
|
|
}
|
|
|
|
// Macro: Set the rounding mode bits of the MXCSR control and status register to
|
|
// the value in unsigned 32-bit integer a. The rounding mode may contain any of
|
|
// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
|
|
// _MM_ROUND_TOWARD_ZERO
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE
|
|
FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
switch (rounding) {
|
|
case _MM_ROUND_TOWARD_ZERO:
|
|
r.field.bit22 = 1;
|
|
r.field.bit23 = 1;
|
|
break;
|
|
case _MM_ROUND_DOWN:
|
|
r.field.bit22 = 0;
|
|
r.field.bit23 = 1;
|
|
break;
|
|
case _MM_ROUND_UP:
|
|
r.field.bit22 = 1;
|
|
r.field.bit23 = 0;
|
|
break;
|
|
default: //_MM_ROUND_NEAREST
|
|
r.field.bit22 = 0;
|
|
r.field.bit23 = 0;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
|
|
#else
|
|
__asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
|
|
#endif
|
|
}
|
|
|
|
// Copy single-precision (32-bit) floating-point element a to the lower element
|
|
// of dst, and zero the upper 3 elements.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
|
|
FORCE_INLINE __m128 _mm_set_ss(float a)
|
|
{
|
|
float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
}
|
|
|
|
// Sets the four single-precision, floating-point values to w.
|
|
//
|
|
// r0 := r1 := r2 := r3 := w
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_set1_ps(float _w)
|
|
{
|
|
return vreinterpretq_m128_f32(vdupq_n_f32(_w));
|
|
}
|
|
|
|
// FIXME: _mm_setcsr() implementation supports changing the rounding mode only.
|
|
FORCE_INLINE void _mm_setcsr(unsigned int a)
|
|
{
|
|
_MM_SET_ROUNDING_MODE(a);
|
|
}
|
|
|
|
// FIXME: _mm_getcsr() implementation supports reading the rounding mode only.
|
|
FORCE_INLINE unsigned int _mm_getcsr()
|
|
{
|
|
return _MM_GET_ROUNDING_MODE();
|
|
}
|
|
|
|
// Sets the four single-precision, floating-point values to the four inputs in
|
|
// reverse order.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
|
|
{
|
|
float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
}
|
|
|
|
// Clears the four single-precision, floating-point values.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_setzero_ps(void)
|
|
{
|
|
return vreinterpretq_m128_f32(vdupq_n_f32(0));
|
|
}
|
|
|
|
// Shuffle 16-bit integers in a using the control in imm8, and store the results
|
|
// in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _mm_shuffle_pi16(a, imm) \
|
|
__extension__({ \
|
|
vreinterpret_m64_s16(__builtin_shufflevector( \
|
|
vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
|
|
((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \
|
|
})
|
|
#else
|
|
#define _mm_shuffle_pi16(a, imm) \
|
|
__extension__({ \
|
|
int16x4_t ret; \
|
|
ret = \
|
|
vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \
|
|
ret = vset_lane_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret, \
|
|
1); \
|
|
ret = vset_lane_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret, \
|
|
2); \
|
|
ret = vset_lane_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret, \
|
|
3); \
|
|
vreinterpret_m64_s16(ret); \
|
|
})
|
|
#endif
|
|
|
|
// Guarantees that every preceding store is globally visible before any
|
|
// subsequent store.
|
|
// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
|
|
FORCE_INLINE void _mm_sfence(void)
|
|
{
|
|
__sync_synchronize();
|
|
}
|
|
|
|
// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
|
|
// int imm)
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _mm_shuffle_ps(a, b, imm) \
|
|
__extension__({ \
|
|
float32x4_t _input1 = vreinterpretq_f32_m128(a); \
|
|
float32x4_t _input2 = vreinterpretq_f32_m128(b); \
|
|
float32x4_t _shuf = __builtin_shufflevector( \
|
|
_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
|
|
(((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
|
|
vreinterpretq_m128_f32(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shuffle_ps(a, b, imm) \
|
|
__extension__({ \
|
|
__m128 ret; \
|
|
switch (imm) { \
|
|
case _MM_SHUFFLE(1, 0, 3, 2): \
|
|
ret = _mm_shuffle_ps_1032((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 3, 0, 1): \
|
|
ret = _mm_shuffle_ps_2301((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 3, 2, 1): \
|
|
ret = _mm_shuffle_ps_0321((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 1, 0, 3): \
|
|
ret = _mm_shuffle_ps_2103((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 1, 0): \
|
|
ret = _mm_movelh_ps((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 0, 1): \
|
|
ret = _mm_shuffle_ps_1001((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 1, 0, 1): \
|
|
ret = _mm_shuffle_ps_0101((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 2, 1, 0): \
|
|
ret = _mm_shuffle_ps_3210((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 0, 1, 1): \
|
|
ret = _mm_shuffle_ps_0011((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 0, 2, 2): \
|
|
ret = _mm_shuffle_ps_0022((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 2, 0, 0): \
|
|
ret = _mm_shuffle_ps_2200((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 2, 0, 2): \
|
|
ret = _mm_shuffle_ps_3202((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 2, 3, 2): \
|
|
ret = _mm_movehl_ps((b), (a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 1, 3, 3): \
|
|
ret = _mm_shuffle_ps_1133((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 0, 1, 0): \
|
|
ret = _mm_shuffle_ps_2010((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 0, 0, 1): \
|
|
ret = _mm_shuffle_ps_2001((a), (b)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 0, 3, 2): \
|
|
ret = _mm_shuffle_ps_2032((a), (b)); \
|
|
break; \
|
|
default: \
|
|
ret = _mm_shuffle_ps_default((a), (b), (imm)); \
|
|
break; \
|
|
} \
|
|
ret; \
|
|
})
|
|
#endif
|
|
|
|
// Computes the approximations of square roots of the four single-precision,
|
|
// floating-point values of a. First computes reciprocal square roots and then
|
|
// reciprocals of the four values.
|
|
//
|
|
// r0 := sqrt(a0)
|
|
// r1 := sqrt(a1)
|
|
// r2 := sqrt(a2)
|
|
// r3 := sqrt(a3)
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
|
|
{
|
|
#if SSE2NEON_PRECISE_SQRT
|
|
float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
|
|
|
|
// Test for vrsqrteq_f32(0) -> positive infinity case.
|
|
// Change to zero, so that s * 1/sqrt(s) result is zero too.
|
|
const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
|
|
const uint32x4_t div_by_zero =
|
|
vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
|
|
recip = vreinterpretq_f32_u32(
|
|
vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
|
|
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
recip = vmulq_f32(
|
|
vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
|
|
recip);
|
|
recip = vmulq_f32(
|
|
vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
|
|
recip);
|
|
|
|
// sqrt(s) = s * 1/sqrt(s)
|
|
return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
|
|
#elif defined(__aarch64__)
|
|
return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
|
|
#else
|
|
float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
|
|
float32x4_t sq = vrecpeq_f32(recipsq);
|
|
return vreinterpretq_m128_f32(sq);
|
|
#endif
|
|
}
|
|
|
|
// Computes the approximation of the square root of the scalar single-precision
|
|
// floating point value of in.
|
|
// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
|
|
{
|
|
float32_t value =
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
|
|
}
|
|
|
|
// Stores four single-precision, floating-point values.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
|
|
FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
|
|
{
|
|
vst1q_f32(p, vreinterpretq_f32_m128(a));
|
|
}
|
|
|
|
// Store the lower single-precision (32-bit) floating-point element from a into
|
|
// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
//
|
|
// MEM[mem_addr+31:mem_addr] := a[31:0]
|
|
// MEM[mem_addr+63:mem_addr+32] := a[31:0]
|
|
// MEM[mem_addr+95:mem_addr+64] := a[31:0]
|
|
// MEM[mem_addr+127:mem_addr+96] := a[31:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1
|
|
FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
|
|
{
|
|
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
vst1q_f32(p, vdupq_n_f32(a0));
|
|
}
|
|
|
|
// Stores the lower single - precision, floating - point value.
|
|
// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
|
|
FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
|
|
{
|
|
vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
|
|
}
|
|
|
|
// Store the lower single-precision (32-bit) floating-point element from a into
|
|
// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
//
|
|
// MEM[mem_addr+31:mem_addr] := a[31:0]
|
|
// MEM[mem_addr+63:mem_addr+32] := a[31:0]
|
|
// MEM[mem_addr+95:mem_addr+64] := a[31:0]
|
|
// MEM[mem_addr+127:mem_addr+96] := a[31:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps
|
|
#define _mm_store1_ps _mm_store_ps1
|
|
|
|
// Stores the upper two single-precision, floating-point values of a to the
|
|
// address p.
|
|
//
|
|
// *p0 := a2
|
|
// *p1 := a3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
|
|
FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
|
|
{
|
|
*p = vreinterpret_m64_f32(vget_high_f32(a));
|
|
}
|
|
|
|
// Stores the lower two single-precision floating point values of a to the
|
|
// address p.
|
|
//
|
|
// *p0 := a0
|
|
// *p1 := a1
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
|
|
FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
|
|
{
|
|
*p = vreinterpret_m64_f32(vget_low_f32(a));
|
|
}
|
|
|
|
// Store 4 single-precision (32-bit) floating-point elements from a into memory
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
//
|
|
// MEM[mem_addr+31:mem_addr] := a[127:96]
|
|
// MEM[mem_addr+63:mem_addr+32] := a[95:64]
|
|
// MEM[mem_addr+95:mem_addr+64] := a[63:32]
|
|
// MEM[mem_addr+127:mem_addr+96] := a[31:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps
|
|
FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
|
|
{
|
|
float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
|
|
float32x4_t rev = vextq_f32(tmp, tmp, 2);
|
|
vst1q_f32(p, rev);
|
|
}
|
|
|
|
// Stores four single-precision, floating-point values.
|
|
// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
|
|
FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
|
|
{
|
|
vst1q_f32(p, vreinterpretq_f32_m128(a));
|
|
}
|
|
|
|
// Stores 16-bits of integer data a at the address p.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16
|
|
FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
|
|
{
|
|
vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
|
|
}
|
|
|
|
// Stores 64-bits of integer data a at the address p.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64
|
|
FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
|
|
{
|
|
vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
|
|
}
|
|
|
|
// Store 64-bits of integer data from a into memory using a non-temporal memory
|
|
// hint.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi
|
|
FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
|
|
{
|
|
vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
|
|
}
|
|
|
|
// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
|
|
// point elements) from a into memory using a non-temporal memory hint.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
|
|
FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
__builtin_nontemporal_store(a, (float32x4_t *) p);
|
|
#else
|
|
vst1q_f32(p, vreinterpretq_f32_m128(a));
|
|
#endif
|
|
}
|
|
|
|
// Subtracts the four single-precision, floating-point values of a and b.
|
|
//
|
|
// r0 := a0 - b0
|
|
// r1 := a1 - b1
|
|
// r2 := a2 - b2
|
|
// r3 := a3 - b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Subtract the lower single-precision (32-bit) floating-point element in b from
|
|
// the lower single-precision (32-bit) floating-point element in a, store the
|
|
// result in the lower element of dst, and copy the upper 3 packed elements from
|
|
// a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := a[31:0] - b[31:0]
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
|
|
FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_sub_ps(a, b));
|
|
}
|
|
|
|
// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
|
|
// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
|
|
// transposed matrix in these vectors (row0 now contains column 0, etc.).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
|
|
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
|
|
do { \
|
|
float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
|
|
float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
|
|
row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
|
|
vget_low_f32(ROW23.val[0])); \
|
|
row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
|
|
vget_low_f32(ROW23.val[1])); \
|
|
row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
|
|
vget_high_f32(ROW23.val[0])); \
|
|
row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
|
|
vget_high_f32(ROW23.val[1])); \
|
|
} while (0)
|
|
|
|
// according to the documentation, these intrinsics behave the same as the
|
|
// non-'u' versions. We'll just alias them here.
|
|
#define _mm_ucomieq_ss _mm_comieq_ss
|
|
#define _mm_ucomige_ss _mm_comige_ss
|
|
#define _mm_ucomigt_ss _mm_comigt_ss
|
|
#define _mm_ucomile_ss _mm_comile_ss
|
|
#define _mm_ucomilt_ss _mm_comilt_ss
|
|
#define _mm_ucomineq_ss _mm_comineq_ss
|
|
|
|
// Return vector of type __m128i with undefined elements.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128
|
|
FORCE_INLINE __m128i _mm_undefined_si128(void)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wuninitialized"
|
|
#endif
|
|
__m128i a;
|
|
return a;
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// Return vector of type __m128 with undefined elements.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
|
|
FORCE_INLINE __m128 _mm_undefined_ps(void)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wuninitialized"
|
|
#endif
|
|
__m128 a;
|
|
return a;
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// Selects and interleaves the upper two single-precision, floating-point values
|
|
// from a and b.
|
|
//
|
|
// r0 := a2
|
|
// r1 := b2
|
|
// r2 := a3
|
|
// r3 := b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128_f32(
|
|
vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
float32x2x2_t result = vzip_f32(a1, b1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Selects and interleaves the lower two single-precision, floating-point values
|
|
// from a and b.
|
|
//
|
|
// r0 := a0
|
|
// r1 := b0
|
|
// r2 := a1
|
|
// r3 := b1
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128_f32(
|
|
vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
float32x2x2_t result = vzip_f32(a1, b1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Computes bitwise EXOR (exclusive-or) of the four single-precision,
|
|
// floating-point values of a and b.
|
|
// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
|
|
}
|
|
|
|
/* SSE2 */
|
|
|
|
// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
|
|
// unsigned 16-bit integers in b.
|
|
// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
|
|
// unsigned 32-bit integers in b.
|
|
//
|
|
// r0 := a0 + b0
|
|
// r1 := a1 + b1
|
|
// r2 := a2 + b2
|
|
// r3 := a3 + b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
|
|
// unsigned 32-bit integers in b.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
}
|
|
|
|
// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
|
|
// unsigned 8-bit integers in b.
|
|
// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
|
|
FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Add packed double-precision (64-bit) floating-point elements in a and b, and
|
|
// store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
|
|
FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2];
|
|
c[0] = da[0] + db[0];
|
|
c[1] = da[1] + db[1];
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Add the lower double-precision (64-bit) floating-point element in a and b,
|
|
// store the result in the lower element of dst, and copy the upper element from
|
|
// a to the upper element of dst.
|
|
//
|
|
// dst[63:0] := a[63:0] + b[63:0]
|
|
// dst[127:64] := a[127:64]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd
|
|
FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_add_pd(a, b));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2];
|
|
c[0] = da[0] + db[0];
|
|
c[1] = da[1];
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Add 64-bit integers a and b, and store the result in dst.
|
|
//
|
|
// dst[63:0] := a[63:0] + b[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
|
|
FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s64(
|
|
vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
|
|
}
|
|
|
|
// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
|
|
// and saturates.
|
|
//
|
|
// r0 := SignedSaturate(a0 + b0)
|
|
// r1 := SignedSaturate(a1 + b1)
|
|
// ...
|
|
// r7 := SignedSaturate(a7 + b7)
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Add packed signed 8-bit integers in a and b using saturation, and store the
|
|
// results in dst.
|
|
//
|
|
// FOR j := 0 to 15
|
|
// i := j*8
|
|
// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
|
|
FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Add packed unsigned 16-bit integers in a and b using saturation, and store
|
|
// the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16
|
|
FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
|
|
// b and saturates..
|
|
// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Compute the bitwise AND of packed double-precision (64-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// dst[i+63:i] := a[i+63:i] AND b[i+63:i]
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
|
|
FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_s64(
|
|
vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
|
|
}
|
|
|
|
// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
|
|
// b.
|
|
//
|
|
// r := a & b
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
|
|
// elements in a and then AND with b, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
|
|
FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
|
|
{
|
|
// *NOTE* argument swap
|
|
return vreinterpretq_m128d_s64(
|
|
vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
|
|
}
|
|
|
|
// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
|
|
// 128-bit value in a.
|
|
//
|
|
// r := (~a) & b
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vbicq_s32(vreinterpretq_s32_m128i(b),
|
|
vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
|
|
}
|
|
|
|
// Computes the average of the 8 unsigned 16-bit integers in a and the 8
|
|
// unsigned 16-bit integers in b and rounds.
|
|
//
|
|
// r0 := (a0 + b0) / 2
|
|
// r1 := (a1 + b1) / 2
|
|
// ...
|
|
// r7 := (a7 + b7) / 2
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
|
|
{
|
|
return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
|
|
vreinterpretq_u16_m128i(b));
|
|
}
|
|
|
|
// Computes the average of the 16 unsigned 8-bit integers in a and the 16
|
|
// unsigned 8-bit integers in b and rounds.
|
|
//
|
|
// r0 := (a0 + b0) / 2
|
|
// r1 := (a1 + b1) / 2
|
|
// ...
|
|
// r15 := (a15 + b15) / 2
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
|
|
FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Shift a left by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128
|
|
#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
|
|
|
|
// Shift a right by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128
|
|
#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
|
|
|
|
// Cast vector of type __m128d to type __m128. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps
|
|
FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
|
|
{
|
|
return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
|
|
}
|
|
|
|
// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
|
|
FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
|
|
{
|
|
return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
|
|
}
|
|
|
|
// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
|
|
FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
|
|
{
|
|
return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
|
|
}
|
|
|
|
// Applies a type cast to reinterpret four 32-bit floating point values passed
|
|
// in as a 128-bit parameter as packed 32-bit integers.
|
|
// https://msdn.microsoft.com/en-us/library/bb514099.aspx
|
|
FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
|
|
}
|
|
|
|
// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd
|
|
FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
|
|
#endif
|
|
}
|
|
|
|
// Applies a type cast to reinterpret four 32-bit integers passed in as a
|
|
// 128-bit parameter as packed 32-bit floating point values.
|
|
// https://msdn.microsoft.com/en-us/library/bb514029.aspx
|
|
FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
|
|
{
|
|
return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
|
|
}
|
|
|
|
// Cache line containing p is flushed and invalidated from all caches in the
|
|
// coherency domain. :
|
|
// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
|
|
FORCE_INLINE void _mm_clflush(void const *p)
|
|
{
|
|
(void) p;
|
|
// no corollary for Neon?
|
|
}
|
|
|
|
// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
|
|
// unsigned 16-bit integers in b for equality.
|
|
// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed 32-bit integers in a and b for equality, and store the results
|
|
// in dst
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
|
|
// unsigned 8-bit integers in b for equality.
|
|
// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for equality, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd
|
|
FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
// (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
|
|
uint32x4_t cmp =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
|
|
uint32x4_t swapped = vrev64q_u32(cmp);
|
|
return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for equality, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd
|
|
FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for greater-than-or-equal, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd
|
|
FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(
|
|
vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for greater-than-or-equal, store the result in the lower element of dst,
|
|
// and copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd
|
|
FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_cmpge_pd(a, b));
|
|
#else
|
|
// expand "_mm_cmpge_pd()" to reduce unnecessary operations
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
|
|
// in b for greater than.
|
|
//
|
|
// r0 := (a0 > b0) ? 0xffff : 0x0
|
|
// r1 := (a1 > b1) ? 0xffff : 0x0
|
|
// ...
|
|
// r7 := (a7 > b7) ? 0xffff : 0x0
|
|
//
|
|
// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
|
|
// in b for greater than.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
|
|
// in b for greater than.
|
|
//
|
|
// r0 := (a0 > b0) ? 0xff : 0x0
|
|
// r1 := (a1 > b1) ? 0xff : 0x0
|
|
// ...
|
|
// r15 := (a15 > b15) ? 0xff : 0x0
|
|
//
|
|
// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for greater-than, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd
|
|
FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(
|
|
vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for greater-than, store the result in the lower element of dst, and copy
|
|
// the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd
|
|
FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
|
|
#else
|
|
// expand "_mm_cmpge_pd()" to reduce unnecessary operations
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for less-than-or-equal, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd
|
|
FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(
|
|
vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for less-than-or-equal, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd
|
|
FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_cmple_pd(a, b));
|
|
#else
|
|
// expand "_mm_cmpge_pd()" to reduce unnecessary operations
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
|
|
// in b for less than.
|
|
//
|
|
// r0 := (a0 < b0) ? 0xffff : 0x0
|
|
// r1 := (a1 < b1) ? 0xffff : 0x0
|
|
// ...
|
|
// r7 := (a7 < b7) ? 0xffff : 0x0
|
|
//
|
|
// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
|
|
// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
|
|
// in b for less than.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
|
|
// in b for lesser than.
|
|
// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for less-than, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd
|
|
FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(
|
|
vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for less-than, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd
|
|
FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_cmplt_pd(a, b));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-equal, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd
|
|
FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
|
|
#else
|
|
// (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
|
|
uint32x4_t cmp =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
|
|
uint32x4_t swapped = vrev64q_u32(cmp);
|
|
return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-equal, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd
|
|
FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-greater-than-or-equal, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd
|
|
FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] =
|
|
!((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] =
|
|
!((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-greater-than-or-equal, store the result in the lower element of
|
|
// dst, and copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd
|
|
FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-greater-than, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd
|
|
FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] =
|
|
!((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] =
|
|
!((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-greater-than, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd
|
|
FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-less-than-or-equal, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd
|
|
FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] =
|
|
!((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] =
|
|
!((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-less-than-or-equal, store the result in the lower element of dst,
|
|
// and copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd
|
|
FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-less-than, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd
|
|
FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] =
|
|
!((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] =
|
|
!((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-less-than, store the result in the lower element of dst, and copy
|
|
// the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd
|
|
FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// to see if neither is NaN, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd
|
|
FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
// Excluding NaNs, any two floating point numbers can be compared.
|
|
uint64x2_t not_nan_a =
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
|
|
uint64x2_t not_nan_b =
|
|
vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
|
|
return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
|
|
(*(double *) &b0) == (*(double *) &b0))
|
|
? ~UINT64_C(0)
|
|
: UINT64_C(0);
|
|
d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
|
|
(*(double *) &b1) == (*(double *) &b1))
|
|
? ~UINT64_C(0)
|
|
: UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b to see if neither is NaN, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd
|
|
FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_cmpord_pd(a, b));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t d[2];
|
|
d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
|
|
(*(double *) &b0) == (*(double *) &b0))
|
|
? ~UINT64_C(0)
|
|
: UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// to see if either is NaN, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd
|
|
FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
// Two NaNs are not equal in comparison operation.
|
|
uint64x2_t not_nan_a =
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
|
|
uint64x2_t not_nan_b =
|
|
vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
|
|
return vreinterpretq_m128d_s32(
|
|
vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
|
|
(*(double *) &b0) == (*(double *) &b0))
|
|
? UINT64_C(0)
|
|
: ~UINT64_C(0);
|
|
d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
|
|
(*(double *) &b1) == (*(double *) &b1))
|
|
? UINT64_C(0)
|
|
: ~UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b to see if either is NaN, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd
|
|
FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t d[2];
|
|
d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
|
|
(*(double *) &b0) == (*(double *) &b0))
|
|
? UINT64_C(0)
|
|
: ~UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for greater-than-or-equal, and return the boolean result (0 or 1).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd
|
|
FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
|
|
return (*(double *) &a0 >= *(double *) &b0);
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for greater-than, and return the boolean result (0 or 1).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd
|
|
FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
|
|
return (*(double *) &a0 > *(double *) &b0);
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for less-than-or-equal, and return the boolean result (0 or 1).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd
|
|
FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
|
|
return (*(double *) &a0 <= *(double *) &b0);
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for less-than, and return the boolean result (0 or 1).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd
|
|
FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
|
|
return (*(double *) &a0 < *(double *) &b0);
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for equality, and return the boolean result (0 or 1).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd
|
|
FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
uint32x4_t a_not_nan =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
|
|
uint32x4_t b_not_nan =
|
|
vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
|
|
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
|
|
uint32x4_t a_eq_b =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
|
|
uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
|
|
vreinterpretq_u64_u32(a_eq_b));
|
|
return vgetq_lane_u64(and_results, 0) & 0x1;
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for not-equal, and return the boolean result (0 or 1).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd
|
|
FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
|
|
{
|
|
return !_mm_comieq_sd(a, b);
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed double-precision
|
|
// (64-bit) floating-point elements, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*32
|
|
// m := j*64
|
|
// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd
|
|
FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
|
|
#else
|
|
double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
|
|
double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Converts the four signed 32-bit integer values of a to single-precision,
|
|
// floating-point values
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
|
|
FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// k := 64*j
|
|
// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32
|
|
FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
|
|
{
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double d0 = ((double *) &rnd)[0];
|
|
double d1 = ((double *) &rnd)[1];
|
|
return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// k := 64*j
|
|
// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32
|
|
FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
|
|
{
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double d0 = ((double *) &rnd)[0];
|
|
double d1 = ((double *) &rnd)[1];
|
|
int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
|
|
return vreinterpret_m64_s32(vld1_s32(data));
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed single-precision (32-bit) floating-point elements, and store the
|
|
// results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 32*j
|
|
// k := 64*j
|
|
// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k])
|
|
// ENDFOR
|
|
// dst[127:64] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
|
|
FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
|
|
return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
|
|
#else
|
|
float a0 = (float) ((double *) &a)[0];
|
|
float a1 = (float) ((double *) &a)[1];
|
|
return _mm_set_ps(0, 0, a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed double-precision
|
|
// (64-bit) floating-point elements, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*32
|
|
// m := j*64
|
|
// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd
|
|
FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
|
|
#else
|
|
double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
|
|
double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Converts the four single-precision, floating-point values of a to signed
|
|
// 32-bit integer values.
|
|
//
|
|
// r0 := (int) a0
|
|
// r1 := (int) a1
|
|
// r2 := (int) a2
|
|
// r3 := (int) a3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
|
|
// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
|
|
// does not support! It is supported on ARMv8-A however.
|
|
FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
switch (_MM_GET_ROUNDING_MODE()) {
|
|
case _MM_ROUND_NEAREST:
|
|
return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
|
|
case _MM_ROUND_DOWN:
|
|
return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
|
|
case _MM_ROUND_UP:
|
|
return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
|
|
default: // _MM_ROUND_TOWARD_ZERO
|
|
return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
|
|
}
|
|
#else
|
|
float *f = (float *) &a;
|
|
switch (_MM_GET_ROUNDING_MODE()) {
|
|
case _MM_ROUND_NEAREST: {
|
|
uint32x4_t signmask = vdupq_n_u32(0x80000000);
|
|
float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
|
|
vdupq_n_f32(0.5f)); /* +/- 0.5 */
|
|
int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
|
|
vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
|
|
int32x4_t r_trunc = vcvtq_s32_f32(
|
|
vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
|
|
int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
|
|
vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
|
|
int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
|
|
vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
|
|
float32x4_t delta = vsubq_f32(
|
|
vreinterpretq_f32_m128(a),
|
|
vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
|
|
uint32x4_t is_delta_half =
|
|
vceqq_f32(delta, half); /* delta == +/- 0.5 */
|
|
return vreinterpretq_m128i_s32(
|
|
vbslq_s32(is_delta_half, r_even, r_normal));
|
|
}
|
|
case _MM_ROUND_DOWN:
|
|
return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
|
|
floorf(f[0]));
|
|
case _MM_ROUND_UP:
|
|
return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
|
|
ceilf(f[0]));
|
|
default: // _MM_ROUND_TOWARD_ZERO
|
|
return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
|
|
(int32_t) f[0]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed double-precision (64-bit) floating-point elements, and store the
|
|
// results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 64*j
|
|
// k := 32*j
|
|
// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
|
|
FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
|
|
#else
|
|
double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower double-precision (64-bit) floating-point element of a to dst.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
|
|
FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
|
|
#else
|
|
return ((double *) &a)[0];
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 32-bit integer, and store the result in dst.
|
|
//
|
|
// dst[31:0] := Convert_FP64_To_Int32(a[63:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32
|
|
FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
|
|
#else
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double ret = ((double *) &rnd)[0];
|
|
return (int32_t) ret;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP64_To_Int64(a[63:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64
|
|
FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
|
|
#else
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double ret = ((double *) &rnd)[0];
|
|
return (int64_t) ret;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP64_To_Int64(a[63:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x
|
|
#define _mm_cvtsd_si64x _mm_cvtsd_si64
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in b to a
|
|
// single-precision (32-bit) floating-point element, store the result in the
|
|
// lower element of dst, and copy the upper 3 packed elements from a to the
|
|
// upper elements of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss
|
|
FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128_f32(vsetq_lane_f32(
|
|
vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
|
|
vreinterpretq_f32_m128(a), 0));
|
|
#else
|
|
return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0],
|
|
vreinterpretq_f32_m128(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower 32-bit integer in a to dst.
|
|
//
|
|
// dst[31:0] := a[31:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
|
|
FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
|
|
{
|
|
return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
|
|
FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
|
|
{
|
|
return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
|
|
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
|
|
|
|
// Convert the signed 32-bit integer b to a double-precision (64-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd
|
|
FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
double bf = (double) b;
|
|
return vreinterpretq_m128d_s64(
|
|
vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
|
|
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
|
|
|
|
// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
|
|
// zero extending the upper bits.
|
|
//
|
|
// r0 := a
|
|
// r1 := 0x0
|
|
// r2 := 0x0
|
|
// r3 := 0x0
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
|
|
}
|
|
|
|
// Convert the signed 64-bit integer b to a double-precision (64-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd
|
|
FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
double bf = (double) b;
|
|
return vreinterpretq_m128d_s64(
|
|
vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
|
|
// zero extending the upper bits.
|
|
//
|
|
// r0 := a
|
|
// r1 := 0x0
|
|
FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
|
|
{
|
|
return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
|
|
}
|
|
|
|
// Copy 64-bit integer a to the lower element of dst, and zero the upper
|
|
// element.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128
|
|
#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
|
|
|
|
// Convert the signed 64-bit integer b to a double-precision (64-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd
|
|
#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in b to a
|
|
// double-precision (64-bit) floating-point element, store the result in the
|
|
// lower element of dst, and copy the upper element from a to the upper element
|
|
// of dst.
|
|
//
|
|
// dst[63:0] := Convert_FP32_To_FP64(b[31:0])
|
|
// dst[127:64] := a[127:64]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd
|
|
FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
|
|
{
|
|
double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
return vreinterpretq_m128d_s64(
|
|
vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32
|
|
FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
|
|
{
|
|
double a0 = ((double *) &a)[0];
|
|
double a1 = ((double *) &a)[1];
|
|
return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32
|
|
FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
|
|
{
|
|
double a0 = ((double *) &a)[0];
|
|
double a1 = ((double *) &a)[1];
|
|
int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
|
|
return vreinterpret_m64_s32(vld1_s32(data));
|
|
}
|
|
|
|
// Converts the four single-precision, floating-point values of a to signed
|
|
// 32-bit integer values using truncate.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 32-bit integer with truncation, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32
|
|
FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
|
|
{
|
|
double ret = *((double *) &a);
|
|
return (int32_t) ret;
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer with truncation, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64
|
|
FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
|
|
#else
|
|
double ret = *((double *) &a);
|
|
return (int64_t) ret;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer with truncation, and store the result in dst.
|
|
//
|
|
// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x
|
|
#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
|
|
|
|
// Divide packed double-precision (64-bit) floating-point elements in a by
|
|
// packed elements in b, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := 64*j
|
|
// dst[i+63:i] := a[i+63:i] / b[i+63:i]
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd
|
|
FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2];
|
|
c[0] = da[0] / db[0];
|
|
c[1] = da[1] / db[1];
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Divide the lower double-precision (64-bit) floating-point element in a by the
|
|
// lower double-precision (64-bit) floating-point element in b, store the result
|
|
// in the lower element of dst, and copy the upper element from a to the upper
|
|
// element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd
|
|
FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
float64x2_t tmp =
|
|
vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
|
|
#else
|
|
return _mm_move_sd(a, _mm_div_pd(a, b));
|
|
#endif
|
|
}
|
|
|
|
// Extracts the selected signed or unsigned 16-bit integer from a and zero
|
|
// extends.
|
|
// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
|
|
// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
|
|
#define _mm_extract_epi16(a, imm) \
|
|
vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
|
|
|
|
// Inserts the least significant 16 bits of b into the selected 16-bit integer
|
|
// of a.
|
|
// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
|
|
// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
|
|
// __constrange(0,8) int imm)
|
|
#define _mm_insert_epi16(a, b, imm) \
|
|
__extension__({ \
|
|
vreinterpretq_m128i_s16( \
|
|
vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
|
|
})
|
|
|
|
// Loads two double-precision from 16-byte aligned memory, floating-point
|
|
// values.
|
|
//
|
|
// dst[127:0] := MEM[mem_addr+127:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
|
|
FORCE_INLINE __m128d _mm_load_pd(const double *p)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vld1q_f64(p));
|
|
#else
|
|
const float *fp = (const float *) p;
|
|
float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
|
|
return vreinterpretq_m128d_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into both
|
|
// elements of dst.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+63:mem_addr]
|
|
// dst[127:64] := MEM[mem_addr+63:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
|
|
#define _mm_load_pd1 _mm_load1_pd
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into the
|
|
// lower of dst, and zero the upper element. mem_addr does not need to be
|
|
// aligned on any particular boundary.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+63:mem_addr]
|
|
// dst[127:64] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
|
|
FORCE_INLINE __m128d _mm_load_sd(const double *p)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
|
|
#else
|
|
const float *fp = (const float *) p;
|
|
float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
|
|
return vreinterpretq_m128d_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
// Loads 128-bit value. :
|
|
// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
|
|
FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
|
|
{
|
|
return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into both
|
|
// elements of dst.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+63:mem_addr]
|
|
// dst[127:64] := MEM[mem_addr+63:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
|
|
FORCE_INLINE __m128d _mm_load1_pd(const double *p)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
|
|
#else
|
|
return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
|
|
#endif
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into the
|
|
// upper element of dst, and copy the lower element from a to dst. mem_addr does
|
|
// not need to be aligned on any particular boundary.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
// dst[127:64] := MEM[mem_addr+63:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
|
|
FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vcombine_f32(
|
|
vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
|
|
#endif
|
|
}
|
|
|
|
// Load 64-bit integer from memory into the first element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64
|
|
FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
|
|
{
|
|
/* Load the lower 64 bits of the value pointed to by p into the
|
|
* lower 64 bits of the result, zeroing the upper 64 bits of the result.
|
|
*/
|
|
return vreinterpretq_m128i_s32(
|
|
vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into the
|
|
// lower element of dst, and copy the upper element from a to dst. mem_addr does
|
|
// not need to be aligned on any particular boundary.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+63:mem_addr]
|
|
// dst[127:64] := a[127:64]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
|
|
FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
|
|
#else
|
|
return vreinterpretq_m128d_f32(
|
|
vcombine_f32(vld1_f32((const float *) p),
|
|
vget_high_f32(vreinterpretq_f32_m128d(a))));
|
|
#endif
|
|
}
|
|
|
|
// Load 2 double-precision (64-bit) floating-point elements from memory into dst
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+127:mem_addr+64]
|
|
// dst[127:64] := MEM[mem_addr+63:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
|
|
FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
|
|
{
|
|
#if defined(__aarch64__)
|
|
float64x2_t v = vld1q_f64(p);
|
|
return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
|
|
#else
|
|
int64x2_t v = vld1q_s64((const int64_t *) p);
|
|
return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
|
|
#endif
|
|
}
|
|
|
|
// Loads two double-precision from unaligned memory, floating-point values.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
|
|
FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
|
|
{
|
|
return _mm_load_pd(p);
|
|
}
|
|
|
|
// Loads 128-bit value. :
|
|
// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
|
|
{
|
|
return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
|
|
}
|
|
|
|
// Load unaligned 32-bit integer from memory into the first element of dst.
|
|
//
|
|
// dst[31:0] := MEM[mem_addr+31:mem_addr]
|
|
// dst[MAX:32] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
|
|
FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
|
|
}
|
|
|
|
// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
|
|
// integers from b.
|
|
//
|
|
// r0 := (a0 * b0) + (a1 * b1)
|
|
// r1 := (a2 * b2) + (a3 * b3)
|
|
// r2 := (a4 * b4) + (a5 * b5)
|
|
// r3 := (a6 * b6) + (a7 * b7)
|
|
// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
|
|
{
|
|
int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_low_s16(vreinterpretq_s16_m128i(b)));
|
|
int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_high_s16(vreinterpretq_s16_m128i(b)));
|
|
|
|
int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
|
|
int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
|
|
|
|
return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
|
|
}
|
|
|
|
// Conditionally store 8-bit integer elements from a into memory using mask
|
|
// (elements are not stored when the highest bit is not set in the corresponding
|
|
// element) and a non-temporal memory hint. mem_addr does not need to be aligned
|
|
// on any particular boundary.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128
|
|
FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
|
|
{
|
|
int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
|
|
__m128 b = _mm_load_ps((const float *) mem_addr);
|
|
int8x16_t masked =
|
|
vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
|
|
vreinterpretq_s8_m128(b));
|
|
vst1q_s8((int8_t *) mem_addr, masked);
|
|
}
|
|
|
|
// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
|
|
// signed 16-bit integers from b.
|
|
// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
|
|
// 16 unsigned 8-bit integers from b.
|
|
// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b,
|
|
// and store packed maximum values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd
|
|
FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float64x2_t _a = vreinterpretq_f64_m128d(a);
|
|
float64x2_t _b = vreinterpretq_f64_m128d(b);
|
|
return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128d_f64(
|
|
vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#endif
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0;
|
|
d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b, store the maximum value in the lower element of dst, and copy the upper
|
|
// element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd
|
|
FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_max_pd(a, b));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]};
|
|
return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
|
|
// signed 16-bit integers from b.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
|
|
// 16 unsigned 8-bit integers from b.
|
|
// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
|
|
FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b,
|
|
// and store packed minimum values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd
|
|
FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float64x2_t _a = vreinterpretq_f64_m128d(a);
|
|
float64x2_t _b = vreinterpretq_f64_m128d(b);
|
|
return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128d_f64(
|
|
vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#endif
|
|
#else
|
|
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
|
|
uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
|
|
uint64_t d[2];
|
|
d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0;
|
|
d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1;
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b, store the minimum value in the lower element of dst, and copy the upper
|
|
// element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd
|
|
FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_min_pd(a, b));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]};
|
|
return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
|
|
// upper element.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
// dst[127:64] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
|
|
FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
|
|
}
|
|
|
|
// Move the lower double-precision (64-bit) floating-point element from b to the
|
|
// lower element of dst, and copy the upper element from a to the upper element
|
|
// of dst.
|
|
//
|
|
// dst[63:0] := b[63:0]
|
|
// dst[127:64] := a[127:64]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd
|
|
FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_f32(
|
|
vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
|
|
vget_high_f32(vreinterpretq_f32_m128d(a))));
|
|
}
|
|
|
|
// NEON does not provide a version of this function.
|
|
// Creates a 16-bit mask from the most significant bits of the 16 signed or
|
|
// unsigned 8-bit integers in a and zero extends the upper bits.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
|
|
FORCE_INLINE int _mm_movemask_epi8(__m128i a)
|
|
{
|
|
// Use increasingly wide shifts+adds to collect the sign bits
|
|
// together.
|
|
// Since the widening shifts would be rather confusing to follow in little
|
|
// endian, everything will be illustrated in big endian order instead. This
|
|
// has a different result - the bits would actually be reversed on a big
|
|
// endian machine.
|
|
|
|
// Starting input (only half the elements are shown):
|
|
// 89 ff 1d c0 00 10 99 33
|
|
uint8x16_t input = vreinterpretq_u8_m128i(a);
|
|
|
|
// Shift out everything but the sign bits with an unsigned shift right.
|
|
//
|
|
// Bytes of the vector::
|
|
// 89 ff 1d c0 00 10 99 33
|
|
// \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
|
|
// | | | | | | | |
|
|
// 01 01 00 01 00 00 01 00
|
|
//
|
|
// Bits of first important lane(s):
|
|
// 10001001 (89)
|
|
// \______
|
|
// |
|
|
// 00000001 (01)
|
|
uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
|
|
|
|
// Merge the even lanes together with a 16-bit unsigned shift right + add.
|
|
// 'xx' represents garbage data which will be ignored in the final result.
|
|
// In the important bytes, the add functions like a binary OR.
|
|
//
|
|
// 01 01 00 01 00 00 01 00
|
|
// \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
|
|
// \| \| \| \|
|
|
// xx 03 xx 01 xx 00 xx 02
|
|
//
|
|
// 00000001 00000001 (01 01)
|
|
// \_______ |
|
|
// \|
|
|
// xxxxxxxx xxxxxx11 (xx 03)
|
|
uint32x4_t paired16 =
|
|
vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
|
|
|
|
// Repeat with a wider 32-bit shift + add.
|
|
// xx 03 xx 01 xx 00 xx 02
|
|
// \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
|
|
// 14))
|
|
// \| \|
|
|
// xx xx xx 0d xx xx xx 02
|
|
//
|
|
// 00000011 00000001 (03 01)
|
|
// \\_____ ||
|
|
// '----.\||
|
|
// xxxxxxxx xxxx1101 (xx 0d)
|
|
uint64x2_t paired32 =
|
|
vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
|
|
|
|
// Last, an even wider 64-bit shift + add to get our result in the low 8 bit
|
|
// lanes. xx xx xx 0d xx xx xx 02
|
|
// \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
|
|
// 28))
|
|
// \|
|
|
// xx xx xx xx xx xx xx d2
|
|
//
|
|
// 00001101 00000010 (0d 02)
|
|
// \ \___ | |
|
|
// '---. \| |
|
|
// xxxxxxxx 11010010 (xx d2)
|
|
uint8x16_t paired64 =
|
|
vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
|
|
|
|
// Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
|
|
// xx xx xx xx xx xx xx d2
|
|
// || return paired64[0]
|
|
// d2
|
|
// Note: Little endian would return the correct value 4b (01001011) instead.
|
|
return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
|
|
}
|
|
|
|
// Set each bit of mask dst based on the most significant bit of the
|
|
// corresponding packed double-precision (64-bit) floating-point element in a.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd
|
|
FORCE_INLINE int _mm_movemask_pd(__m128d a)
|
|
{
|
|
uint64x2_t input = vreinterpretq_u64_m128d(a);
|
|
uint64x2_t high_bits = vshrq_n_u64(input, 63);
|
|
return vgetq_lane_u64(high_bits, 0) | (vgetq_lane_u64(high_bits, 1) << 1);
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
|
|
FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
|
|
{
|
|
return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
|
|
}
|
|
|
|
// Copy the 64-bit integer a to the lower element of dst, and zero the upper
|
|
// element.
|
|
//
|
|
// dst[63:0] := a[63:0]
|
|
// dst[127:64] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
|
|
FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
|
|
}
|
|
|
|
// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
|
|
// a and b, and store the unsigned 64-bit results in dst.
|
|
//
|
|
// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
|
|
// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
|
|
FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
|
|
{
|
|
// vmull_u32 upcasts instead of masking, so we downcast.
|
|
uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
|
|
uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
|
|
return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
|
|
}
|
|
|
|
// Multiply packed double-precision (64-bit) floating-point elements in a and b,
|
|
// and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd
|
|
FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2];
|
|
c[0] = da[0] * db[0];
|
|
c[1] = da[1] * db[1];
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Multiply the lower double-precision (64-bit) floating-point element in a and
|
|
// b, store the result in the lower element of dst, and copy the upper element
|
|
// from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd
|
|
FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_mul_pd(a, b));
|
|
}
|
|
|
|
// Multiply the low unsigned 32-bit integers from a and b, and store the
|
|
// unsigned 64-bit result in dst.
|
|
//
|
|
// dst[63:0] := a[31:0] * b[31:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
|
|
FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u64(vget_low_u64(
|
|
vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
|
|
}
|
|
|
|
// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
|
|
// integers from b.
|
|
//
|
|
// r0 := (a0 * b0)[31:16]
|
|
// r1 := (a1 * b1)[31:16]
|
|
// ...
|
|
// r7 := (a7 * b7)[31:16]
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
|
|
{
|
|
/* FIXME: issue with large values because of result saturation */
|
|
// int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
|
|
// vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
|
|
// vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
|
|
int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
|
|
int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
|
|
int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
|
|
int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
|
|
uint16x8x2_t r =
|
|
vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
|
|
return vreinterpretq_m128i_u16(r.val[1]);
|
|
}
|
|
|
|
// Multiply the packed unsigned 16-bit integers in a and b, producing
|
|
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
|
|
// integers in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16
|
|
FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
|
|
{
|
|
uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
|
|
uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
|
|
uint32x4_t ab3210 = vmull_u16(a3210, b3210);
|
|
#if defined(__aarch64__)
|
|
uint32x4_t ab7654 =
|
|
vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
|
|
uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
|
|
vreinterpretq_u16_u32(ab7654));
|
|
return vreinterpretq_m128i_u16(r);
|
|
#else
|
|
uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
|
|
uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
|
|
uint32x4_t ab7654 = vmull_u16(a7654, b7654);
|
|
uint16x8x2_t r =
|
|
vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
|
|
return vreinterpretq_m128i_u16(r.val[1]);
|
|
#endif
|
|
}
|
|
|
|
// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
|
|
// unsigned 16-bit integers from b.
|
|
//
|
|
// r0 := (a0 * b0)[15:0]
|
|
// r1 := (a1 * b1)[15:0]
|
|
// ...
|
|
// r7 := (a7 * b7)[15:0]
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compute the bitwise OR of packed double-precision (64-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd
|
|
FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_s64(
|
|
vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
|
|
}
|
|
|
|
// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
|
|
//
|
|
// r := a | b
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
|
|
// saturates.
|
|
// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
|
|
vqmovn_s16(vreinterpretq_s16_m128i(b))));
|
|
}
|
|
|
|
// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
|
|
// and saturates.
|
|
//
|
|
// r0 := SignedSaturate(a0)
|
|
// r1 := SignedSaturate(a1)
|
|
// r2 := SignedSaturate(a2)
|
|
// r3 := SignedSaturate(a3)
|
|
// r4 := SignedSaturate(b0)
|
|
// r5 := SignedSaturate(b1)
|
|
// r6 := SignedSaturate(b2)
|
|
// r7 := SignedSaturate(b3)
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
|
|
vqmovn_s32(vreinterpretq_s32_m128i(b))));
|
|
}
|
|
|
|
// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
|
|
// integers and saturates.
|
|
//
|
|
// r0 := UnsignedSaturate(a0)
|
|
// r1 := UnsignedSaturate(a1)
|
|
// ...
|
|
// r7 := UnsignedSaturate(a7)
|
|
// r8 := UnsignedSaturate(b0)
|
|
// r9 := UnsignedSaturate(b1)
|
|
// ...
|
|
// r15 := UnsignedSaturate(b7)
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
|
|
vqmovun_s16(vreinterpretq_s16_m128i(b))));
|
|
}
|
|
|
|
// Pause the processor. This is typically used in spin-wait loops and depending
|
|
// on the x86 processor typical values are in the 40-100 cycle range. The
|
|
// 'yield' instruction isn't a good fit because it's effectively a nop on most
|
|
// Arm cores. Experience with several databases has shown has shown an 'isb' is
|
|
// a reasonable approximation.
|
|
FORCE_INLINE void _mm_pause()
|
|
{
|
|
__asm__ __volatile__("isb\n");
|
|
}
|
|
|
|
// Compute the absolute differences of packed unsigned 8-bit integers in a and
|
|
// b, then horizontally sum each consecutive 8 differences to produce two
|
|
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
|
|
// 16 bits of 64-bit elements in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
|
|
FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
|
|
{
|
|
uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
|
|
return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
|
|
}
|
|
|
|
// Sets the 8 signed 16-bit integer values.
|
|
// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_set_epi16(short i7,
|
|
short i6,
|
|
short i5,
|
|
short i4,
|
|
short i3,
|
|
short i2,
|
|
short i1,
|
|
short i0)
|
|
{
|
|
int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
|
|
return vreinterpretq_m128i_s16(vld1q_s16(data));
|
|
}
|
|
|
|
// Sets the 4 signed 32-bit integer values.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
|
|
{
|
|
int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
|
|
return vreinterpretq_m128i_s32(vld1q_s32(data));
|
|
}
|
|
|
|
// Returns the __m128i structure with its two 64-bit integer values
|
|
// initialized to the values of the two 64-bit integers passed in.
|
|
// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
|
|
FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
|
|
{
|
|
return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
|
|
}
|
|
|
|
// Returns the __m128i structure with its two 64-bit integer values
|
|
// initialized to the values of the two 64-bit integers passed in.
|
|
// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
|
|
FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
|
|
}
|
|
|
|
// Sets the 16 signed 8-bit integer values.
|
|
// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
|
|
signed char b14,
|
|
signed char b13,
|
|
signed char b12,
|
|
signed char b11,
|
|
signed char b10,
|
|
signed char b9,
|
|
signed char b8,
|
|
signed char b7,
|
|
signed char b6,
|
|
signed char b5,
|
|
signed char b4,
|
|
signed char b3,
|
|
signed char b2,
|
|
signed char b1,
|
|
signed char b0)
|
|
{
|
|
int8_t ALIGN_STRUCT(16)
|
|
data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
|
|
(int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
|
|
(int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
|
|
(int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
|
|
return (__m128i) vld1q_s8(data);
|
|
}
|
|
|
|
// Set packed double-precision (64-bit) floating-point elements in dst with the
|
|
// supplied values.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
|
|
FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
|
|
{
|
|
double ALIGN_STRUCT(16) data[2] = {e0, e1};
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
|
|
#endif
|
|
}
|
|
|
|
// Broadcast double-precision (64-bit) floating-point value a to all elements of
|
|
// dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1
|
|
#define _mm_set_pd1 _mm_set1_pd
|
|
|
|
// Copy double-precision (64-bit) floating-point element a to the lower element
|
|
// of dst, and zero the upper element.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd
|
|
FORCE_INLINE __m128d _mm_set_sd(double a)
|
|
{
|
|
return _mm_set_pd(0, a);
|
|
}
|
|
|
|
// Sets the 8 signed 16-bit integer values to w.
|
|
//
|
|
// r0 := w
|
|
// r1 := w
|
|
// ...
|
|
// r7 := w
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_set1_epi16(short w)
|
|
{
|
|
return vreinterpretq_m128i_s16(vdupq_n_s16(w));
|
|
}
|
|
|
|
// Sets the 4 signed 32-bit integer values to i.
|
|
//
|
|
// r0 := i
|
|
// r1 := i
|
|
// r2 := i
|
|
// r3 := I
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_set1_epi32(int _i)
|
|
{
|
|
return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
|
|
}
|
|
|
|
// Sets the 2 signed 64-bit integer values to i.
|
|
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
|
|
FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
|
|
{
|
|
return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
|
|
}
|
|
|
|
// Sets the 2 signed 64-bit integer values to i.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
|
|
FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
|
|
{
|
|
return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
|
|
}
|
|
|
|
// Sets the 16 signed 8-bit integer values to b.
|
|
//
|
|
// r0 := b
|
|
// r1 := b
|
|
// ...
|
|
// r15 := b
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
|
|
{
|
|
return vreinterpretq_m128i_s8(vdupq_n_s8(w));
|
|
}
|
|
|
|
// Broadcast double-precision (64-bit) floating-point value a to all elements of
|
|
// dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd
|
|
FORCE_INLINE __m128d _mm_set1_pd(double d)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vdupq_n_f64(d));
|
|
#else
|
|
return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
|
|
#endif
|
|
}
|
|
|
|
// Sets the 8 signed 16-bit integer values in reverse order.
|
|
//
|
|
// Return Value
|
|
// r0 := w0
|
|
// r1 := w1
|
|
// ...
|
|
// r7 := w7
|
|
FORCE_INLINE __m128i _mm_setr_epi16(short w0,
|
|
short w1,
|
|
short w2,
|
|
short w3,
|
|
short w4,
|
|
short w5,
|
|
short w6,
|
|
short w7)
|
|
{
|
|
int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
|
|
return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
|
|
}
|
|
|
|
// Sets the 4 signed 32-bit integer values in reverse order
|
|
// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
|
|
{
|
|
int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
|
|
return vreinterpretq_m128i_s32(vld1q_s32(data));
|
|
}
|
|
|
|
// Set packed 64-bit integers in dst with the supplied values in reverse order.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
|
|
FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
|
|
{
|
|
return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
|
|
}
|
|
|
|
// Sets the 16 signed 8-bit integer values in reverse order.
|
|
// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
|
|
signed char b1,
|
|
signed char b2,
|
|
signed char b3,
|
|
signed char b4,
|
|
signed char b5,
|
|
signed char b6,
|
|
signed char b7,
|
|
signed char b8,
|
|
signed char b9,
|
|
signed char b10,
|
|
signed char b11,
|
|
signed char b12,
|
|
signed char b13,
|
|
signed char b14,
|
|
signed char b15)
|
|
{
|
|
int8_t ALIGN_STRUCT(16)
|
|
data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
|
|
(int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
|
|
(int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
|
|
(int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
|
|
return (__m128i) vld1q_s8(data);
|
|
}
|
|
|
|
// Set packed double-precision (64-bit) floating-point elements in dst with the
|
|
// supplied values in reverse order.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd
|
|
FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
|
|
{
|
|
return _mm_set_pd(e0, e1);
|
|
}
|
|
|
|
// Return vector of type __m128d with all elements set to zero.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd
|
|
FORCE_INLINE __m128d _mm_setzero_pd(void)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vdupq_n_f64(0));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vdupq_n_f32(0));
|
|
#endif
|
|
}
|
|
|
|
// Sets the 128-bit value to zero
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_setzero_si128(void)
|
|
{
|
|
return vreinterpretq_m128i_s32(vdupq_n_s32(0));
|
|
}
|
|
|
|
// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
|
|
// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
|
|
// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
|
|
// __constrange(0,255) int imm)
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _mm_shuffle_epi32(a, imm) \
|
|
__extension__({ \
|
|
int32x4_t _input = vreinterpretq_s32_m128i(a); \
|
|
int32x4_t _shuf = __builtin_shufflevector( \
|
|
_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
|
|
((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
|
|
vreinterpretq_m128i_s32(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shuffle_epi32(a, imm) \
|
|
__extension__({ \
|
|
__m128i ret; \
|
|
switch (imm) { \
|
|
case _MM_SHUFFLE(1, 0, 3, 2): \
|
|
ret = _mm_shuffle_epi_1032((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 3, 0, 1): \
|
|
ret = _mm_shuffle_epi_2301((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 3, 2, 1): \
|
|
ret = _mm_shuffle_epi_0321((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 1, 0, 3): \
|
|
ret = _mm_shuffle_epi_2103((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 1, 0): \
|
|
ret = _mm_shuffle_epi_1010((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 0, 1): \
|
|
ret = _mm_shuffle_epi_1001((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 1, 0, 1): \
|
|
ret = _mm_shuffle_epi_0101((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 2, 1, 1): \
|
|
ret = _mm_shuffle_epi_2211((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 1, 2, 2): \
|
|
ret = _mm_shuffle_epi_0122((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 3, 3, 2): \
|
|
ret = _mm_shuffle_epi_3332((a)); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 0, 0, 0): \
|
|
ret = _mm_shuffle_epi32_splat((a), 0); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 1, 1, 1): \
|
|
ret = _mm_shuffle_epi32_splat((a), 1); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 2, 2, 2): \
|
|
ret = _mm_shuffle_epi32_splat((a), 2); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 3, 3, 3): \
|
|
ret = _mm_shuffle_epi32_splat((a), 3); \
|
|
break; \
|
|
default: \
|
|
ret = _mm_shuffle_epi32_default((a), (imm)); \
|
|
break; \
|
|
} \
|
|
ret; \
|
|
})
|
|
#endif
|
|
|
|
// Shuffle double-precision (64-bit) floating-point elements using the control
|
|
// in imm8, and store the results in dst.
|
|
//
|
|
// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64]
|
|
// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _mm_shuffle_pd(a, b, imm8) \
|
|
vreinterpretq_m128d_s64(__builtin_shufflevector( \
|
|
vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \
|
|
((imm8 & 0x2) >> 1) + 2))
|
|
#else
|
|
#define _mm_shuffle_pd(a, b, imm8) \
|
|
_mm_castsi128_pd(_mm_set_epi64x( \
|
|
vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
|
|
vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
|
|
#endif
|
|
|
|
// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
|
|
// __constrange(0,255) int imm)
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _mm_shufflehi_epi16(a, imm) \
|
|
__extension__({ \
|
|
int16x8_t _input = vreinterpretq_s16_m128i(a); \
|
|
int16x8_t _shuf = __builtin_shufflevector( \
|
|
_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
|
|
(((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
|
|
(((imm) >> 6) & 0x3) + 4); \
|
|
vreinterpretq_m128i_s16(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
|
|
#endif
|
|
|
|
// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
|
|
// __constrange(0,255) int imm)
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _mm_shufflelo_epi16(a, imm) \
|
|
__extension__({ \
|
|
int16x8_t _input = vreinterpretq_s16_m128i(a); \
|
|
int16x8_t _shuf = __builtin_shufflevector( \
|
|
_input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
|
|
(((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
|
|
vreinterpretq_m128i_s16(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
|
|
#endif
|
|
|
|
// Shift packed 16-bit integers in a left by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF count[63:0] > 15
|
|
// dst[i+15:i] := 0
|
|
// ELSE
|
|
// dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16
|
|
FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~15))
|
|
return _mm_setzero_si128();
|
|
|
|
int16x8_t vc = vdupq_n_s16((int16_t) c);
|
|
return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a left by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// IF count[63:0] > 31
|
|
// dst[i+31:i] := 0
|
|
// ELSE
|
|
// dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32
|
|
FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~31))
|
|
return _mm_setzero_si128();
|
|
|
|
int32x4_t vc = vdupq_n_s32((int32_t) c);
|
|
return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 64-bit integers in a left by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// IF count[63:0] > 63
|
|
// dst[i+63:i] := 0
|
|
// ELSE
|
|
// dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64
|
|
FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~63))
|
|
return _mm_setzero_si128();
|
|
|
|
int64x2_t vc = vdupq_n_s64((int64_t) c);
|
|
return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF imm8[7:0] > 15
|
|
// dst[i+15:i] := 0
|
|
// ELSE
|
|
// dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16
|
|
FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~15))
|
|
return _mm_setzero_si128();
|
|
return vreinterpretq_m128i_s16(
|
|
vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// IF imm8[7:0] > 31
|
|
// dst[i+31:i] := 0
|
|
// ELSE
|
|
// dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32
|
|
FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~31))
|
|
return _mm_setzero_si128();
|
|
return vreinterpretq_m128i_s32(
|
|
vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
|
|
}
|
|
|
|
// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// IF imm8[7:0] > 63
|
|
// dst[i+63:i] := 0
|
|
// ELSE
|
|
// dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64
|
|
FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~63))
|
|
return _mm_setzero_si128();
|
|
return vreinterpretq_m128i_s64(
|
|
vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
|
|
}
|
|
|
|
// Shift a left by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
//
|
|
// tmp := imm8[7:0]
|
|
// IF tmp > 15
|
|
// tmp := 16
|
|
// FI
|
|
// dst[127:0] := a[127:0] << (tmp*8)
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128
|
|
FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~15))
|
|
return _mm_setzero_si128();
|
|
uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)};
|
|
return vreinterpretq_m128i_u8(
|
|
vld1q_u8(((uint8_t const *) tmp) + (16 - imm)));
|
|
}
|
|
|
|
// Compute the square root of packed double-precision (64-bit) floating-point
|
|
// elements in a, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd
|
|
FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
double a0 = sqrt(((double *) &a)[0]);
|
|
double a1 = sqrt(((double *) &a)[1]);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Compute the square root of the lower double-precision (64-bit) floating-point
|
|
// element in b, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd
|
|
FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return _mm_move_sd(a, _mm_sqrt_pd(b));
|
|
#else
|
|
return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0]));
|
|
#endif
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a right by count while shifting in sign bits,
|
|
// and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF count[63:0] > 15
|
|
// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0)
|
|
// ELSE
|
|
// dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16
|
|
FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
|
|
{
|
|
int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
|
|
if (_sse2neon_unlikely(c & ~15))
|
|
return _mm_cmplt_epi16(a, _mm_setzero_si128());
|
|
return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a right by count while shifting in sign bits,
|
|
// and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// IF count[63:0] > 31
|
|
// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
|
|
// ELSE
|
|
// dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32
|
|
FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
|
|
{
|
|
int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
|
|
if (_sse2neon_unlikely(c & ~31))
|
|
return _mm_cmplt_epi32(a, _mm_setzero_si128());
|
|
return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a right by imm8 while shifting in sign
|
|
// bits, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF imm8[7:0] > 15
|
|
// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0)
|
|
// ELSE
|
|
// dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
|
|
FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
|
|
{
|
|
const int count = (imm & ~15) ? 15 : imm;
|
|
return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
|
|
// and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// IF imm8[7:0] > 31
|
|
// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
|
|
// ELSE
|
|
// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
|
|
// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
|
|
#define _mm_srai_epi32(a, imm) \
|
|
__extension__({ \
|
|
__m128i ret; \
|
|
if (_sse2neon_unlikely((imm) == 0)) { \
|
|
ret = a; \
|
|
} else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
|
|
ret = vreinterpretq_m128i_s32( \
|
|
vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_s32( \
|
|
vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
// Shift packed 16-bit integers in a right by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF count[63:0] > 15
|
|
// dst[i+15:i] := 0
|
|
// ELSE
|
|
// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16
|
|
FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~15))
|
|
return _mm_setzero_si128();
|
|
|
|
int16x8_t vc = vdupq_n_s16(-(int16_t) c);
|
|
return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a right by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// IF count[63:0] > 31
|
|
// dst[i+31:i] := 0
|
|
// ELSE
|
|
// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32
|
|
FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~31))
|
|
return _mm_setzero_si128();
|
|
|
|
int32x4_t vc = vdupq_n_s32(-(int32_t) c);
|
|
return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 64-bit integers in a right by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// IF count[63:0] > 63
|
|
// dst[i+63:i] := 0
|
|
// ELSE
|
|
// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64
|
|
FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~63))
|
|
return _mm_setzero_si128();
|
|
|
|
int64x2_t vc = vdupq_n_s64(-(int64_t) c);
|
|
return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF imm8[7:0] > 15
|
|
// dst[i+15:i] := 0
|
|
// ELSE
|
|
// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
|
|
#define _mm_srli_epi16(a, imm) \
|
|
__extension__({ \
|
|
__m128i ret; \
|
|
if (_sse2neon_unlikely((imm) & ~15)) { \
|
|
ret = _mm_setzero_si128(); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_u16( \
|
|
vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// IF imm8[7:0] > 31
|
|
// dst[i+31:i] := 0
|
|
// ELSE
|
|
// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
|
|
// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
|
|
#define _mm_srli_epi32(a, imm) \
|
|
__extension__({ \
|
|
__m128i ret; \
|
|
if (_sse2neon_unlikely((imm) & ~31)) { \
|
|
ret = _mm_setzero_si128(); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_u32( \
|
|
vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// IF imm8[7:0] > 63
|
|
// dst[i+63:i] := 0
|
|
// ELSE
|
|
// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0])
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
|
|
#define _mm_srli_epi64(a, imm) \
|
|
__extension__({ \
|
|
__m128i ret; \
|
|
if (_sse2neon_unlikely((imm) & ~63)) { \
|
|
ret = _mm_setzero_si128(); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_u64( \
|
|
vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
// Shift a right by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
//
|
|
// tmp := imm8[7:0]
|
|
// IF tmp > 15
|
|
// tmp := 16
|
|
// FI
|
|
// dst[127:0] := a[127:0] >> (tmp*8)
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128
|
|
FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~15))
|
|
return _mm_setzero_si128();
|
|
uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)};
|
|
return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm));
|
|
}
|
|
|
|
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
|
|
// or a general-protection exception may be generated.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
|
|
FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
|
|
#else
|
|
vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
|
|
#endif
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1
|
|
FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
|
|
vst1q_f64((float64_t *) mem_addr,
|
|
vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
|
|
#else
|
|
float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
|
|
vst1q_f32((float32_t *) mem_addr,
|
|
vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
|
|
#endif
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// memory. mem_addr does not need to be aligned on any particular boundary.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd
|
|
FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
|
|
#endif
|
|
}
|
|
|
|
// Stores four 32-bit integer values as (as a __m128i value) at the address p.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
|
|
FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
|
|
{
|
|
vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd
|
|
#define _mm_store1_pd _mm_store_pd1
|
|
|
|
// Store the upper double-precision (64-bit) floating-point element from a into
|
|
// memory.
|
|
//
|
|
// MEM[mem_addr+63:mem_addr] := a[127:64]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd
|
|
FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
|
|
#endif
|
|
}
|
|
|
|
// Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
|
|
// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
|
|
FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
|
|
{
|
|
vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b)));
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// memory.
|
|
//
|
|
// MEM[mem_addr+63:mem_addr] := a[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd
|
|
FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
|
|
#endif
|
|
}
|
|
|
|
// Store 2 double-precision (64-bit) floating-point elements from a into memory
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
//
|
|
// MEM[mem_addr+63:mem_addr] := a[127:64]
|
|
// MEM[mem_addr+127:mem_addr+64] := a[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd
|
|
FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
|
|
{
|
|
float32x4_t f = vreinterpretq_f32_m128d(a);
|
|
_mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
|
|
}
|
|
|
|
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from a into memory. mem_addr does not need to be aligned on any
|
|
// particular boundary.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
|
|
FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
|
|
{
|
|
_mm_store_pd(mem_addr, a);
|
|
}
|
|
|
|
// Stores 128-bits of integer data a at the address p.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128
|
|
FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
|
|
{
|
|
vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
|
|
}
|
|
|
|
// Stores 32-bits of integer data a at the address p.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32
|
|
FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
|
|
{
|
|
vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
|
|
}
|
|
|
|
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from a into memory using a non-temporal memory hint. mem_addr must
|
|
// be aligned on a 16-byte boundary or a general-protection exception may be
|
|
// generated.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd
|
|
FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
__builtin_nontemporal_store(a, (float32x4_t *) p);
|
|
#elif defined(__aarch64__)
|
|
vst1q_f64(p, vreinterpretq_f64_m128d(a));
|
|
#else
|
|
vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
|
|
#endif
|
|
}
|
|
|
|
// Stores the data in a to the address p without polluting the caches. If the
|
|
// cache line containing address p is already in the cache, the cache will be
|
|
// updated.
|
|
// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
|
|
FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
__builtin_nontemporal_store(a, p);
|
|
#else
|
|
vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
|
|
#endif
|
|
}
|
|
|
|
// Store 32-bit integer a into memory using a non-temporal hint to minimize
|
|
// cache pollution. If the cache line containing address mem_addr is already in
|
|
// the cache, the cache will be updated.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32
|
|
FORCE_INLINE void _mm_stream_si32(int *p, int a)
|
|
{
|
|
vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
|
|
}
|
|
|
|
// Store 64-bit integer a into memory using a non-temporal hint to minimize
|
|
// cache pollution. If the cache line containing address mem_addr is already in
|
|
// the cache, the cache will be updated.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si64
|
|
FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a)
|
|
{
|
|
vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a));
|
|
}
|
|
|
|
// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
|
|
// store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16
|
|
FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
|
|
// unsigned 32-bit integers of a.
|
|
//
|
|
// r0 := a0 - b0
|
|
// r1 := a1 - b1
|
|
// r2 := a2 - b2
|
|
// r3 := a3 - b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
|
|
// and store the results in dst.
|
|
// r0 := a0 - b0
|
|
// r1 := a1 - b1
|
|
FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
|
|
// store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8
|
|
FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed double-precision (64-bit) floating-point elements in b from
|
|
// packed double-precision (64-bit) floating-point elements in a, and store the
|
|
// results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// dst[i+63:i] := a[i+63:i] - b[i+63:i]
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd
|
|
FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[2];
|
|
c[0] = da[0] - db[0];
|
|
c[1] = da[1] - db[1];
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Subtract the lower double-precision (64-bit) floating-point element in b from
|
|
// the lower double-precision (64-bit) floating-point element in a, store the
|
|
// result in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd
|
|
FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_sub_pd(a, b));
|
|
}
|
|
|
|
// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
|
|
//
|
|
// dst[63:0] := a[63:0] - b[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
|
|
FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s64(
|
|
vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
|
|
}
|
|
|
|
// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
|
|
// of a and saturates.
|
|
//
|
|
// r0 := SignedSaturate(a0 - b0)
|
|
// r1 := SignedSaturate(a1 - b1)
|
|
// ...
|
|
// r7 := SignedSaturate(a7 - b7)
|
|
//
|
|
// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
|
|
FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
|
|
// of a and saturates.
|
|
//
|
|
// r0 := SignedSaturate(a0 - b0)
|
|
// r1 := SignedSaturate(a1 - b1)
|
|
// ...
|
|
// r15 := SignedSaturate(a15 - b15)
|
|
//
|
|
// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
|
|
FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
|
|
// integers of a and saturates..
|
|
// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
|
|
FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
|
|
// integers of a and saturates.
|
|
//
|
|
// r0 := UnsignedSaturate(a0 - b0)
|
|
// r1 := UnsignedSaturate(a1 - b1)
|
|
// ...
|
|
// r15 := UnsignedSaturate(a15 - b15)
|
|
//
|
|
// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
|
|
FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
#define _mm_ucomieq_sd _mm_comieq_sd
|
|
#define _mm_ucomige_sd _mm_comige_sd
|
|
#define _mm_ucomigt_sd _mm_comigt_sd
|
|
#define _mm_ucomile_sd _mm_comile_sd
|
|
#define _mm_ucomilt_sd _mm_comilt_sd
|
|
#define _mm_ucomineq_sd _mm_comineq_sd
|
|
|
|
// Return vector of type __m128d with undefined elements.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd
|
|
FORCE_INLINE __m128d _mm_undefined_pd(void)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wuninitialized"
|
|
#endif
|
|
__m128d a;
|
|
return a;
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
|
|
// upper 4 signed or unsigned 16-bit integers in b.
|
|
//
|
|
// r0 := a4
|
|
// r1 := b4
|
|
// r2 := a5
|
|
// r3 := b5
|
|
// r4 := a6
|
|
// r5 := b6
|
|
// r6 := a7
|
|
// r7 := b7
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s16(
|
|
vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
#else
|
|
int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
|
|
int16x4x2_t result = vzip_s16(a1, b1);
|
|
return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
|
|
// upper 2 signed or unsigned 32-bit integers in b.
|
|
// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s32(
|
|
vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
#else
|
|
int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
|
|
int32x2x2_t result = vzip_s32(a1, b1);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Interleaves the upper signed or unsigned 64-bit integer in a with the
|
|
// upper signed or unsigned 64-bit integer in b.
|
|
//
|
|
// r0 := a1
|
|
// r1 := b1
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
|
|
{
|
|
int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
|
|
int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
|
|
return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
|
|
}
|
|
|
|
// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
|
|
// 8 signed or unsigned 8-bit integers in b.
|
|
//
|
|
// r0 := a8
|
|
// r1 := b8
|
|
// r2 := a9
|
|
// r3 := b9
|
|
// ...
|
|
// r14 := a15
|
|
// r15 := b15
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s8(
|
|
vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
#else
|
|
int8x8_t a1 =
|
|
vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
|
|
int8x8_t b1 =
|
|
vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
|
|
int8x8x2_t result = vzip_s8(a1, b1);
|
|
return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave double-precision (64-bit) floating-point elements from
|
|
// the high half of a and b, and store the results in dst.
|
|
//
|
|
// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) {
|
|
// dst[63:0] := src1[127:64]
|
|
// dst[127:64] := src2[127:64]
|
|
// RETURN dst[127:0]
|
|
// }
|
|
// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd
|
|
FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
return vreinterpretq_m128d_s64(
|
|
vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
|
|
vget_high_s64(vreinterpretq_s64_m128d(b))));
|
|
#endif
|
|
}
|
|
|
|
// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
|
|
// lower 4 signed or unsigned 16-bit integers in b.
|
|
//
|
|
// r0 := a0
|
|
// r1 := b0
|
|
// r2 := a1
|
|
// r3 := b1
|
|
// r4 := a2
|
|
// r5 := b2
|
|
// r6 := a3
|
|
// r7 := b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s16(
|
|
vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
#else
|
|
int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
|
|
int16x4x2_t result = vzip_s16(a1, b1);
|
|
return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
|
|
// lower 2 signed or unsigned 32 - bit integers in b.
|
|
//
|
|
// r0 := a0
|
|
// r1 := b0
|
|
// r2 := a1
|
|
// r3 := b1
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s32(
|
|
vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
#else
|
|
int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
|
|
int32x2x2_t result = vzip_s32(a1, b1);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
|
|
{
|
|
int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
|
|
int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
|
|
return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
|
|
}
|
|
|
|
// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
|
|
// 8 signed or unsigned 8-bit integers in b.
|
|
//
|
|
// r0 := a0
|
|
// r1 := b0
|
|
// r2 := a1
|
|
// r3 := b1
|
|
// ...
|
|
// r14 := a7
|
|
// r15 := b7
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s8(
|
|
vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
#else
|
|
int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
|
|
int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
|
|
int8x8x2_t result = vzip_s8(a1, b1);
|
|
return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave double-precision (64-bit) floating-point elements from
|
|
// the low half of a and b, and store the results in dst.
|
|
//
|
|
// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) {
|
|
// dst[63:0] := src1[63:0]
|
|
// dst[127:64] := src2[63:0]
|
|
// RETURN dst[127:0]
|
|
// }
|
|
// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0])
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd
|
|
FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
return vreinterpretq_m128d_s64(
|
|
vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
|
|
vget_low_s64(vreinterpretq_s64_m128d(b))));
|
|
#endif
|
|
}
|
|
|
|
// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
|
|
FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_s64(
|
|
veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
|
|
}
|
|
|
|
// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
|
|
// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
/* SSE3 */
|
|
|
|
// Alternatively add and subtract packed double-precision (64-bit)
|
|
// floating-point elements in a to/from packed elements in b, and store the
|
|
// results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*64
|
|
// IF ((j & 1) == 0)
|
|
// dst[i+63:i] := a[i+63:i] - b[i+63:i]
|
|
// ELSE
|
|
// dst[i+63:i] := a[i+63:i] + b[i+63:i]
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd
|
|
FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
|
|
{
|
|
_sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
|
|
vreinterpretq_f64_m128d(b),
|
|
vreinterpretq_f64_m128d(mask)));
|
|
#else
|
|
return _mm_add_pd(_mm_mul_pd(b, mask), a);
|
|
#endif
|
|
}
|
|
|
|
// Alternatively add and subtract packed single-precision (32-bit)
|
|
// floating-point elements in a to/from packed elements in b, and store the
|
|
// results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
|
|
FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
|
|
{
|
|
_sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f);
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */
|
|
return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
|
|
vreinterpretq_f32_m128(mask),
|
|
vreinterpretq_f32_m128(b)));
|
|
#else
|
|
return _mm_add_ps(_mm_mul_ps(b, mask), a);
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
|
|
// elements in a and b, and pack the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd
|
|
FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double *da = (double *) &a;
|
|
double *db = (double *) &b;
|
|
double c[] = {da[0] + da[1], db[0] + db[1]};
|
|
return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Computes pairwise add of each argument as single-precision, floating-point
|
|
// values a and b.
|
|
// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
|
|
FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128_f32(
|
|
vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of double-precision (64-bit)
|
|
// floating-point elements in a and b, and pack the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd
|
|
FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
float64x2_t a = vreinterpretq_f64_m128d(_a);
|
|
float64x2_t b = vreinterpretq_f64_m128d(_b);
|
|
return vreinterpretq_m128d_f64(
|
|
vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b)));
|
|
#else
|
|
double *da = (double *) &_a;
|
|
double *db = (double *) &_b;
|
|
double c[] = {da[0] - da[1], db[0] - db[1]};
|
|
return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of single-precision (32-bit)
|
|
// floating-point elements in a and b, and pack the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
|
|
FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
|
|
{
|
|
float32x4_t a = vreinterpretq_f32_m128(_a);
|
|
float32x4_t b = vreinterpretq_f32_m128(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128_f32(
|
|
vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b)));
|
|
#else
|
|
float32x4x2_t c = vuzpq_f32(a, b);
|
|
return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
|
|
// may perform better than _mm_loadu_si128 when the data crosses a cache line
|
|
// boundary.
|
|
//
|
|
// dst[127:0] := MEM[mem_addr+127:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
|
|
#define _mm_lddqu_si128 _mm_loadu_si128
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into both
|
|
// elements of dst.
|
|
//
|
|
// dst[63:0] := MEM[mem_addr+63:mem_addr]
|
|
// dst[127:64] := MEM[mem_addr+63:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
|
|
#define _mm_loaddup_pd _mm_load1_pd
|
|
|
|
// Duplicate the low double-precision (64-bit) floating-point element from a,
|
|
// and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd
|
|
FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(
|
|
vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
return vreinterpretq_m128d_u64(
|
|
vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
|
|
#endif
|
|
}
|
|
|
|
// Duplicate odd-indexed single-precision (32-bit) floating-point elements
|
|
// from a, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
|
|
FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
|
|
{
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
return vreinterpretq_m128_f32(__builtin_shufflevector(
|
|
vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
|
|
#else
|
|
float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
|
|
float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
|
|
float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
// Duplicate even-indexed single-precision (32-bit) floating-point elements
|
|
// from a, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
|
|
FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
|
|
{
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
return vreinterpretq_m128_f32(__builtin_shufflevector(
|
|
vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
|
|
#else
|
|
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
|
|
float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
/* SSSE3 */
|
|
|
|
// Compute the absolute value of packed signed 16-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// dst[i+15:i] := ABS(a[i+15:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
|
|
FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 32-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*32
|
|
// dst[i+31:i] := ABS(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
|
|
FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 8-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
//
|
|
// FOR j := 0 to 15
|
|
// i := j*8
|
|
// dst[i+7:i] := ABS(a[i+7:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
|
|
FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 16-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// dst[i+15:i] := ABS(a[i+15:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
|
|
FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
|
|
{
|
|
return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 32-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*32
|
|
// dst[i+31:i] := ABS(a[i+31:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
|
|
FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
|
|
{
|
|
return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 8-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// dst[i+7:i] := ABS(a[i+7:i])
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
|
|
FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
|
|
{
|
|
return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
|
|
}
|
|
|
|
// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
|
|
// the result right by imm8 bytes, and store the low 16 bytes in dst.
|
|
//
|
|
// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8)
|
|
// dst[127:0] := tmp[127:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8
|
|
FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~31))
|
|
return _mm_setzero_si128();
|
|
int idx;
|
|
uint8x16_t tmp[2];
|
|
if (imm >= 16) {
|
|
idx = imm - 16;
|
|
tmp[0] = vreinterpretq_u8_m128i(a);
|
|
tmp[1] = vdupq_n_u8(0);
|
|
} else {
|
|
idx = imm;
|
|
tmp[0] = vreinterpretq_u8_m128i(b);
|
|
tmp[1] = vreinterpretq_u8_m128i(a);
|
|
}
|
|
return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx));
|
|
}
|
|
|
|
// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
|
|
// the result right by imm8 bytes, and store the low 8 bytes in dst.
|
|
//
|
|
// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8)
|
|
// dst[63:0] := tmp[63:0]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8
|
|
#define _mm_alignr_pi8(a, b, imm) \
|
|
__extension__({ \
|
|
__m64 ret; \
|
|
if (_sse2neon_unlikely((imm) >= 16)) { \
|
|
ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
|
|
} else { \
|
|
uint8x8_t tmp_low, tmp_high; \
|
|
if ((imm) >= 8) { \
|
|
const int idx = (imm) -8; \
|
|
tmp_low = vreinterpret_u8_m64(a); \
|
|
tmp_high = vdup_n_u8(0); \
|
|
ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
|
|
} else { \
|
|
const int idx = (imm); \
|
|
tmp_low = vreinterpret_u8_m64(b); \
|
|
tmp_high = vreinterpret_u8_m64(a); \
|
|
ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
|
|
} \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
// Computes pairwise add of each argument as a 16-bit signed or unsigned integer
|
|
// values a and b.
|
|
FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
|
|
#else
|
|
return vreinterpretq_m128i_s16(
|
|
vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
|
|
vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
|
|
#endif
|
|
}
|
|
|
|
// Computes pairwise add of each argument as a 32-bit signed or unsigned integer
|
|
// values a and b.
|
|
FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
|
|
{
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
return vreinterpretq_m128i_s32(
|
|
vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
|
|
vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
|
|
// signed 16-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
|
|
FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
|
|
// signed 32-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
|
|
FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s32(
|
|
vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
|
|
}
|
|
|
|
// Computes saturated pairwise sub of each argument as a 16-bit signed
|
|
// integer values a and b.
|
|
FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
return vreinterpretq_s64_s16(
|
|
vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
|
|
#else
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
// Interleave using vshrn/vmovn
|
|
// [a0|a2|a4|a6|b0|b2|b4|b6]
|
|
// [a1|a3|a5|a7|b1|b3|b5|b7]
|
|
int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
|
|
int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
|
|
// Saturated add
|
|
return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
|
|
// saturation, and pack the signed 16-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16
|
|
FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
|
|
#else
|
|
int16x4x2_t res = vuzp_s16(a, b);
|
|
return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
|
|
// the signed 16-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi16
|
|
FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s16(
|
|
vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
|
|
#else
|
|
int16x8x2_t c = vuzpq_s16(a, b);
|
|
return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
|
|
// the signed 32-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi32
|
|
FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
|
|
{
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s32(
|
|
vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b)));
|
|
#else
|
|
int32x4x2_t c = vuzpq_s32(a, b);
|
|
return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
|
|
// the signed 16-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16
|
|
FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
|
|
#else
|
|
int16x4x2_t c = vuzp_s16(a, b);
|
|
return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
|
|
// the signed 32-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32
|
|
FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
|
|
{
|
|
int32x2_t a = vreinterpret_s32_m64(_a);
|
|
int32x2_t b = vreinterpret_s32_m64(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b)));
|
|
#else
|
|
int32x2x2_t c = vuzp_s32(a, b);
|
|
return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Computes saturated pairwise difference of each argument as a 16-bit signed
|
|
// integer values a and b.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
|
|
FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s16(
|
|
vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
|
|
#else
|
|
int16x8x2_t c = vuzpq_s16(a, b);
|
|
return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
|
|
// using saturation, and pack the signed 16-bit results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16
|
|
FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
#if defined(__aarch64__)
|
|
return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
|
|
#else
|
|
int16x4x2_t c = vuzp_s16(a, b);
|
|
return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Vertically multiply each unsigned 8-bit integer from a with the corresponding
|
|
// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
|
|
// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
|
|
// and pack the saturated results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
|
|
// a[i+7:i]*b[i+7:i] )
|
|
// ENDFOR
|
|
FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
uint8x16_t a = vreinterpretq_u8_m128i(_a);
|
|
int8x16_t b = vreinterpretq_s8_m128i(_b);
|
|
int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
|
|
vmovl_s8(vget_low_s8(b)));
|
|
int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
|
|
vmovl_s8(vget_high_s8(b)));
|
|
return vreinterpretq_m128i_s16(
|
|
vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
|
|
#else
|
|
// This would be much simpler if x86 would choose to zero extend OR sign
|
|
// extend, not both. This could probably be optimized better.
|
|
uint16x8_t a = vreinterpretq_u16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
|
|
// Zero extend a
|
|
int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
|
|
int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
|
|
|
|
// Sign extend by shifting left then shifting right.
|
|
int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
|
|
int16x8_t b_odd = vshrq_n_s16(b, 8);
|
|
|
|
// multiply
|
|
int16x8_t prod1 = vmulq_s16(a_even, b_even);
|
|
int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
|
|
|
|
// saturated add
|
|
return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
|
|
#endif
|
|
}
|
|
|
|
// Vertically multiply each unsigned 8-bit integer from a with the corresponding
|
|
// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
|
|
// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
|
|
// pack the saturated results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16
|
|
FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
uint16x4_t a = vreinterpret_u16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
|
|
// Zero extend a
|
|
int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
|
|
int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
|
|
|
|
// Sign extend by shifting left then shifting right.
|
|
int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
|
|
int16x4_t b_odd = vshr_n_s16(b, 8);
|
|
|
|
// multiply
|
|
int16x4_t prod1 = vmul_s16(a_even, b_even);
|
|
int16x4_t prod2 = vmul_s16(a_odd, b_odd);
|
|
|
|
// saturated add
|
|
return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
|
|
}
|
|
|
|
// Multiply packed signed 16-bit integers in a and b, producing intermediate
|
|
// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
|
|
// the packed 16-bit integers in dst.
|
|
//
|
|
// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
|
|
// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
|
|
// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
|
|
// ...
|
|
// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
|
|
FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
|
|
{
|
|
// Has issues due to saturation
|
|
// return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
|
|
|
|
// Multiply
|
|
int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_low_s16(vreinterpretq_s16_m128i(b)));
|
|
int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_high_s16(vreinterpretq_s16_m128i(b)));
|
|
|
|
// Rounding narrowing shift right
|
|
// narrow = (int16_t)((mul + 16384) >> 15);
|
|
int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
|
|
int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
|
|
|
|
// Join together
|
|
return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
|
|
}
|
|
|
|
// Multiply packed signed 16-bit integers in a and b, producing intermediate
|
|
// signed 32-bit integers. Truncate each intermediate integer to the 18 most
|
|
// significant bits, round by adding 1, and store bits [16:1] to dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16
|
|
FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
|
|
{
|
|
int32x4_t mul_extend =
|
|
vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
|
|
|
|
// Rounding narrowing shift right
|
|
return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
|
|
}
|
|
|
|
// Shuffle packed 8-bit integers in a according to shuffle control mask in the
|
|
// corresponding 8-bit element of b, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
|
|
FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
|
|
{
|
|
int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
|
|
uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
|
|
uint8x16_t idx_masked =
|
|
vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
|
|
#elif defined(__GNUC__)
|
|
int8x16_t ret;
|
|
// %e and %f represent the even and odd D registers
|
|
// respectively.
|
|
__asm__ __volatile__(
|
|
"vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
|
|
"vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
|
|
: [ret] "=&w"(ret)
|
|
: [tbl] "w"(tbl), [idx] "w"(idx_masked));
|
|
return vreinterpretq_m128i_s8(ret);
|
|
#else
|
|
// use this line if testing on aarch64
|
|
int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
|
|
return vreinterpretq_m128i_s8(
|
|
vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
|
|
vtbl2_s8(a_split, vget_high_u8(idx_masked))));
|
|
#endif
|
|
}
|
|
|
|
// Shuffle packed 8-bit integers in a according to shuffle control mask in the
|
|
// corresponding 8-bit element of b, and store the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// IF b[i+7] == 1
|
|
// dst[i+7:i] := 0
|
|
// ELSE
|
|
// index[2:0] := b[i+2:i]
|
|
// dst[i+7:i] := a[index*8+7:index*8]
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8
|
|
FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
|
|
{
|
|
const int8x8_t controlMask =
|
|
vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07)));
|
|
int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
|
|
return vreinterpret_m64_s8(res);
|
|
}
|
|
|
|
// Negate packed 16-bit integers in a when the corresponding signed
|
|
// 16-bit integer in b is negative, and store the results in dst.
|
|
// Element in dst are zeroed out when the corresponding element
|
|
// in b is zero.
|
|
//
|
|
// for i in 0..7
|
|
// if b[i] < 0
|
|
// r[i] := -a[i]
|
|
// else if b[i] == 0
|
|
// r[i] := 0
|
|
// else
|
|
// r[i] := a[i]
|
|
// fi
|
|
// done
|
|
FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFF : 0
|
|
uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
|
|
// (b == 0) ? 0xFFFF : 0
|
|
#if defined(__aarch64__)
|
|
int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
|
|
#else
|
|
int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
|
|
// 'a') based on ltMask
|
|
int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int16x8_t res = vbicq_s16(masked, zeroMask);
|
|
return vreinterpretq_m128i_s16(res);
|
|
}
|
|
|
|
// Negate packed 32-bit integers in a when the corresponding signed
|
|
// 32-bit integer in b is negative, and store the results in dst.
|
|
// Element in dst are zeroed out when the corresponding element
|
|
// in b is zero.
|
|
//
|
|
// for i in 0..3
|
|
// if b[i] < 0
|
|
// r[i] := -a[i]
|
|
// else if b[i] == 0
|
|
// r[i] := 0
|
|
// else
|
|
// r[i] := a[i]
|
|
// fi
|
|
// done
|
|
FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
|
|
{
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFFFFFF : 0
|
|
uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
|
|
|
|
// (b == 0) ? 0xFFFFFFFF : 0
|
|
#if defined(__aarch64__)
|
|
int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
|
|
#else
|
|
int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
|
|
// 'a') based on ltMask
|
|
int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int32x4_t res = vbicq_s32(masked, zeroMask);
|
|
return vreinterpretq_m128i_s32(res);
|
|
}
|
|
|
|
// Negate packed 8-bit integers in a when the corresponding signed
|
|
// 8-bit integer in b is negative, and store the results in dst.
|
|
// Element in dst are zeroed out when the corresponding element
|
|
// in b is zero.
|
|
//
|
|
// for i in 0..15
|
|
// if b[i] < 0
|
|
// r[i] := -a[i]
|
|
// else if b[i] == 0
|
|
// r[i] := 0
|
|
// else
|
|
// r[i] := a[i]
|
|
// fi
|
|
// done
|
|
FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
|
|
{
|
|
int8x16_t a = vreinterpretq_s8_m128i(_a);
|
|
int8x16_t b = vreinterpretq_s8_m128i(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFF : 0
|
|
uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
|
|
|
|
// (b == 0) ? 0xFF : 0
|
|
#if defined(__aarch64__)
|
|
int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
|
|
#else
|
|
int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a')
|
|
// based on ltMask
|
|
int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int8x16_t res = vbicq_s8(masked, zeroMask);
|
|
|
|
return vreinterpretq_m128i_s8(res);
|
|
}
|
|
|
|
// Negate packed 16-bit integers in a when the corresponding signed 16-bit
|
|
// integer in b is negative, and store the results in dst. Element in dst are
|
|
// zeroed out when the corresponding element in b is zero.
|
|
//
|
|
// FOR j := 0 to 3
|
|
// i := j*16
|
|
// IF b[i+15:i] < 0
|
|
// dst[i+15:i] := -(a[i+15:i])
|
|
// ELSE IF b[i+15:i] == 0
|
|
// dst[i+15:i] := 0
|
|
// ELSE
|
|
// dst[i+15:i] := a[i+15:i]
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
|
|
FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFF : 0
|
|
uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
|
|
|
|
// (b == 0) ? 0xFFFF : 0
|
|
#if defined(__aarch64__)
|
|
int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
|
|
#else
|
|
int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a')
|
|
// based on ltMask
|
|
int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int16x4_t res = vbic_s16(masked, zeroMask);
|
|
|
|
return vreinterpret_m64_s16(res);
|
|
}
|
|
|
|
// Negate packed 32-bit integers in a when the corresponding signed 32-bit
|
|
// integer in b is negative, and store the results in dst. Element in dst are
|
|
// zeroed out when the corresponding element in b is zero.
|
|
//
|
|
// FOR j := 0 to 1
|
|
// i := j*32
|
|
// IF b[i+31:i] < 0
|
|
// dst[i+31:i] := -(a[i+31:i])
|
|
// ELSE IF b[i+31:i] == 0
|
|
// dst[i+31:i] := 0
|
|
// ELSE
|
|
// dst[i+31:i] := a[i+31:i]
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
|
|
FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
|
|
{
|
|
int32x2_t a = vreinterpret_s32_m64(_a);
|
|
int32x2_t b = vreinterpret_s32_m64(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFFFFFF : 0
|
|
uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
|
|
|
|
// (b == 0) ? 0xFFFFFFFF : 0
|
|
#if defined(__aarch64__)
|
|
int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
|
|
#else
|
|
int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a')
|
|
// based on ltMask
|
|
int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int32x2_t res = vbic_s32(masked, zeroMask);
|
|
|
|
return vreinterpret_m64_s32(res);
|
|
}
|
|
|
|
// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
|
|
// in b is negative, and store the results in dst. Element in dst are zeroed out
|
|
// when the corresponding element in b is zero.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*8
|
|
// IF b[i+7:i] < 0
|
|
// dst[i+7:i] := -(a[i+7:i])
|
|
// ELSE IF b[i+7:i] == 0
|
|
// dst[i+7:i] := 0
|
|
// ELSE
|
|
// dst[i+7:i] := a[i+7:i]
|
|
// FI
|
|
// ENDFOR
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
|
|
FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
|
|
{
|
|
int8x8_t a = vreinterpret_s8_m64(_a);
|
|
int8x8_t b = vreinterpret_s8_m64(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFF : 0
|
|
uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
|
|
|
|
// (b == 0) ? 0xFF : 0
|
|
#if defined(__aarch64__)
|
|
int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
|
|
#else
|
|
int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a')
|
|
// based on ltMask
|
|
int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int8x8_t res = vbic_s8(masked, zeroMask);
|
|
|
|
return vreinterpret_m64_s8(res);
|
|
}
|
|
|
|
/* SSE4.1 */
|
|
|
|
// Blend packed 16-bit integers from a and b using control mask imm8, and store
|
|
// the results in dst.
|
|
//
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF imm8[j]
|
|
// dst[i+15:i] := b[i+15:i]
|
|
// ELSE
|
|
// dst[i+15:i] := a[i+15:i]
|
|
// FI
|
|
// ENDFOR
|
|
// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
|
|
// __constrange(0,255) int imm)
|
|
#define _mm_blend_epi16(a, b, imm) \
|
|
__extension__({ \
|
|
const uint16_t _mask[8] = {((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0}; \
|
|
uint16x8_t _mask_vec = vld1q_u16(_mask); \
|
|
uint16x8_t _a = vreinterpretq_u16_m128i(a); \
|
|
uint16x8_t _b = vreinterpretq_u16_m128i(b); \
|
|
vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \
|
|
})
|
|
|
|
// Blend packed double-precision (64-bit) floating-point elements from a and b
|
|
// using control mask imm8, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd
|
|
#define _mm_blend_pd(a, b, imm) \
|
|
__extension__({ \
|
|
const uint64_t _mask[2] = { \
|
|
((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \
|
|
((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \
|
|
uint64x2_t _mask_vec = vld1q_u64(_mask); \
|
|
uint64x2_t _a = vreinterpretq_u64_m128d(a); \
|
|
uint64x2_t _b = vreinterpretq_u64_m128d(b); \
|
|
vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \
|
|
})
|
|
|
|
// Blend packed single-precision (32-bit) floating-point elements from a and b
|
|
// using mask, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps
|
|
FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
|
|
{
|
|
const uint32_t ALIGN_STRUCT(16)
|
|
data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
|
|
((imm8) & (1 << 1)) ? UINT32_MAX : 0,
|
|
((imm8) & (1 << 2)) ? UINT32_MAX : 0,
|
|
((imm8) & (1 << 3)) ? UINT32_MAX : 0};
|
|
uint32x4_t mask = vld1q_u32(data);
|
|
float32x4_t a = vreinterpretq_f32_m128(_a);
|
|
float32x4_t b = vreinterpretq_f32_m128(_b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
|
|
}
|
|
|
|
// Blend packed 8-bit integers from a and b using mask, and store the results in
|
|
// dst.
|
|
//
|
|
// FOR j := 0 to 15
|
|
// i := j*8
|
|
// IF mask[i+7]
|
|
// dst[i+7:i] := b[i+7:i]
|
|
// ELSE
|
|
// dst[i+7:i] := a[i+7:i]
|
|
// FI
|
|
// ENDFOR
|
|
FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
|
|
{
|
|
// Use a signed shift right to create a mask with the sign bit
|
|
uint8x16_t mask =
|
|
vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
|
|
uint8x16_t a = vreinterpretq_u8_m128i(_a);
|
|
uint8x16_t b = vreinterpretq_u8_m128i(_b);
|
|
return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
|
|
}
|
|
|
|
// Blend packed double-precision (64-bit) floating-point elements from a and b
|
|
// using mask, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd
|
|
FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
|
|
{
|
|
uint64x2_t mask =
|
|
vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
|
|
#if defined(__aarch64__)
|
|
float64x2_t a = vreinterpretq_f64_m128d(_a);
|
|
float64x2_t b = vreinterpretq_f64_m128d(_b);
|
|
return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
|
|
#else
|
|
uint64x2_t a = vreinterpretq_u64_m128d(_a);
|
|
uint64x2_t b = vreinterpretq_u64_m128d(_b);
|
|
return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
|
|
#endif
|
|
}
|
|
|
|
// Blend packed single-precision (32-bit) floating-point elements from a and b
|
|
// using mask, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
|
|
FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
|
|
{
|
|
// Use a signed shift right to create a mask with the sign bit
|
|
uint32x4_t mask =
|
|
vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
|
|
float32x4_t a = vreinterpretq_f32_m128(_a);
|
|
float32x4_t b = vreinterpretq_f32_m128(_b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
|
|
}
|
|
|
|
// Round the packed double-precision (64-bit) floating-point elements in a up
|
|
// to an integer value, and store the results as packed double-precision
|
|
// floating-point elements in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd
|
|
FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
double *f = (double *) &a;
|
|
return _mm_set_pd(ceil(f[1]), ceil(f[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the packed single-precision (32-bit) floating-point elements in a up to
|
|
// an integer value, and store the results as packed single-precision
|
|
// floating-point elements in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
|
|
FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
|
|
#else
|
|
float *f = (float *) &a;
|
|
return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the lower double-precision (64-bit) floating-point element in b up to
|
|
// an integer value, store the result as a double-precision floating-point
|
|
// element in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd
|
|
FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_ceil_pd(b));
|
|
}
|
|
|
|
// Round the lower single-precision (32-bit) floating-point element in b up to
|
|
// an integer value, store the result as a single-precision floating-point
|
|
// element in the lower element of dst, and copy the upper 3 packed elements
|
|
// from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := CEIL(b[31:0])
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss
|
|
FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_ceil_ps(b));
|
|
}
|
|
|
|
// Compare packed 64-bit integers in a and b for equality, and store the results
|
|
// in dst
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_u64(
|
|
vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
|
|
#else
|
|
// ARMv7 lacks vceqq_u64
|
|
// (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
|
|
uint32x4_t cmp =
|
|
vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
|
|
uint32x4_t swapped = vrev64q_u32(cmp);
|
|
return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
|
|
#endif
|
|
}
|
|
|
|
// Converts the four signed 16-bit integers in the lower 64 bits to four signed
|
|
// 32-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
|
|
}
|
|
|
|
// Converts the two signed 16-bit integers in the lower 32 bits two signed
|
|
// 32-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
|
|
{
|
|
int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
|
|
int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
|
|
int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_s64(s64x2);
|
|
}
|
|
|
|
// Converts the two signed 32-bit integers in the lower 64 bits to two signed
|
|
// 64-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
|
|
}
|
|
|
|
// Converts the four unsigned 8-bit integers in the lower 16 bits to four
|
|
// unsigned 32-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
|
|
{
|
|
int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
|
|
int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
|
|
return vreinterpretq_m128i_s16(s16x8);
|
|
}
|
|
|
|
// Converts the four unsigned 8-bit integers in the lower 32 bits to four
|
|
// unsigned 32-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
|
|
{
|
|
int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
|
|
int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
|
|
int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
|
|
return vreinterpretq_m128i_s32(s32x4);
|
|
}
|
|
|
|
// Converts the two signed 8-bit integers in the lower 32 bits to four
|
|
// signed 64-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
|
|
{
|
|
int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
|
|
int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
|
|
int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
|
|
int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_s64(s64x2);
|
|
}
|
|
|
|
// Converts the four unsigned 16-bit integers in the lower 64 bits to four
|
|
// unsigned 32-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
|
|
}
|
|
|
|
// Converts the two unsigned 16-bit integers in the lower 32 bits to two
|
|
// unsigned 64-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
|
|
{
|
|
uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
|
|
uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
|
|
uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_u64(u64x2);
|
|
}
|
|
|
|
// Converts the two unsigned 32-bit integers in the lower 64 bits to two
|
|
// unsigned 64-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_u64(
|
|
vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
|
|
}
|
|
|
|
// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
|
|
// and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16
|
|
FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
|
|
{
|
|
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */
|
|
uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
|
|
return vreinterpretq_m128i_u16(u16x8);
|
|
}
|
|
|
|
// Converts the four unsigned 8-bit integers in the lower 32 bits to four
|
|
// unsigned 32-bit integers.
|
|
// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
|
|
FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
|
|
{
|
|
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
|
|
uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
|
|
uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
|
|
return vreinterpretq_m128i_u32(u32x4);
|
|
}
|
|
|
|
// Converts the two unsigned 8-bit integers in the lower 16 bits to two
|
|
// unsigned 64-bit integers.
|
|
FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
|
|
{
|
|
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
|
|
uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
|
|
uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
|
|
uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_u64(u64x2);
|
|
}
|
|
|
|
// Conditionally multiply the packed double-precision (64-bit) floating-point
|
|
// elements in a and b using the high 4 bits in imm8, sum the four products, and
|
|
// conditionally store the sum in dst using the low 4 bits of imm8.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd
|
|
FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
|
|
{
|
|
// Generate mask value from constant immediate bit value
|
|
const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
|
|
const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
|
|
#if !SSE2NEON_PRECISE_DP
|
|
const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
|
|
const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
|
|
#endif
|
|
// Conditional multiplication
|
|
#if !SSE2NEON_PRECISE_DP
|
|
__m128d mul = _mm_mul_pd(a, b);
|
|
const __m128d mulMask =
|
|
_mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
|
|
__m128d tmp = _mm_and_pd(mul, mulMask);
|
|
#else
|
|
#if defined(__aarch64__)
|
|
double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
|
|
vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
|
|
: 0;
|
|
double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
|
|
vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
|
|
: 0;
|
|
#else
|
|
double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0;
|
|
double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0;
|
|
#endif
|
|
__m128d tmp = _mm_set_pd(d1, d0);
|
|
#endif
|
|
// Sum the products
|
|
#if defined(__aarch64__)
|
|
double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
|
|
#else
|
|
double sum = *((double *) &tmp) + *(((double *) &tmp) + 1);
|
|
#endif
|
|
// Conditionally store the sum
|
|
const __m128d sumMask =
|
|
_mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
|
|
__m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
|
|
return res;
|
|
}
|
|
|
|
// Conditionally multiply the packed single-precision (32-bit) floating-point
|
|
// elements in a and b using the high 4 bits in imm8, sum the four products,
|
|
// and conditionally store the sum in dst using the low 4 bits of imm.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
|
|
FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
|
|
{
|
|
#if defined(__aarch64__)
|
|
/* shortcuts */
|
|
if (imm == 0xFF) {
|
|
return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
|
|
}
|
|
if (imm == 0x7F) {
|
|
float32x4_t m = _mm_mul_ps(a, b);
|
|
m[3] = 0;
|
|
return _mm_set1_ps(vaddvq_f32(m));
|
|
}
|
|
#endif
|
|
|
|
float s = 0, c = 0;
|
|
float32x4_t f32a = vreinterpretq_f32_m128(a);
|
|
float32x4_t f32b = vreinterpretq_f32_m128(b);
|
|
|
|
/* To improve the accuracy of floating-point summation, Kahan algorithm
|
|
* is used for each operation.
|
|
*/
|
|
if (imm & (1 << 4))
|
|
_sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
|
|
if (imm & (1 << 5))
|
|
_sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
|
|
if (imm & (1 << 6))
|
|
_sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
|
|
if (imm & (1 << 7))
|
|
_sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
|
|
s += c;
|
|
|
|
float32x4_t res = {
|
|
(imm & 0x1) ? s : 0,
|
|
(imm & 0x2) ? s : 0,
|
|
(imm & 0x4) ? s : 0,
|
|
(imm & 0x8) ? s : 0,
|
|
};
|
|
return vreinterpretq_m128_f32(res);
|
|
}
|
|
|
|
// Extracts the selected signed or unsigned 32-bit integer from a and zero
|
|
// extends.
|
|
// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
|
|
#define _mm_extract_epi32(a, imm) \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
|
|
|
|
// Extracts the selected signed or unsigned 64-bit integer from a and zero
|
|
// extends.
|
|
// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
|
|
#define _mm_extract_epi64(a, imm) \
|
|
vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
|
|
|
|
// Extracts the selected signed or unsigned 8-bit integer from a and zero
|
|
// extends.
|
|
// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8
|
|
#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
|
|
|
|
// Extracts the selected single-precision (32-bit) floating-point from a.
|
|
// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
|
|
#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
|
|
|
|
// Round the packed double-precision (64-bit) floating-point elements in a down
|
|
// to an integer value, and store the results as packed double-precision
|
|
// floating-point elements in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd
|
|
FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
double *f = (double *) &a;
|
|
return _mm_set_pd(floor(f[1]), floor(f[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the packed single-precision (32-bit) floating-point elements in a down
|
|
// to an integer value, and store the results as packed single-precision
|
|
// floating-point elements in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
|
|
FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
|
|
#else
|
|
float *f = (float *) &a;
|
|
return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the lower double-precision (64-bit) floating-point element in b down to
|
|
// an integer value, store the result as a double-precision floating-point
|
|
// element in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd
|
|
FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_floor_pd(b));
|
|
}
|
|
|
|
// Round the lower single-precision (32-bit) floating-point element in b down to
|
|
// an integer value, store the result as a single-precision floating-point
|
|
// element in the lower element of dst, and copy the upper 3 packed elements
|
|
// from a to the upper elements of dst.
|
|
//
|
|
// dst[31:0] := FLOOR(b[31:0])
|
|
// dst[127:32] := a[127:32]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss
|
|
FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_floor_ps(b));
|
|
}
|
|
|
|
// Inserts the least significant 32 bits of b into the selected 32-bit integer
|
|
// of a.
|
|
// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
|
|
// __constrange(0,4) int imm)
|
|
#define _mm_insert_epi32(a, b, imm) \
|
|
__extension__({ \
|
|
vreinterpretq_m128i_s32( \
|
|
vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
|
|
})
|
|
|
|
// Inserts the least significant 64 bits of b into the selected 64-bit integer
|
|
// of a.
|
|
// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
|
|
// __constrange(0,2) int imm)
|
|
#define _mm_insert_epi64(a, b, imm) \
|
|
__extension__({ \
|
|
vreinterpretq_m128i_s64( \
|
|
vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
|
|
})
|
|
|
|
// Inserts the least significant 8 bits of b into the selected 8-bit integer
|
|
// of a.
|
|
// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
|
|
// __constrange(0,16) int imm)
|
|
#define _mm_insert_epi8(a, b, imm) \
|
|
__extension__({ \
|
|
vreinterpretq_m128i_s8( \
|
|
vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
|
|
})
|
|
|
|
// Copy a to tmp, then insert a single-precision (32-bit) floating-point
|
|
// element from b into tmp using the control in imm8. Store tmp to dst using
|
|
// the mask in imm8 (elements are zeroed out when the corresponding bit is set).
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps
|
|
#define _mm_insert_ps(a, b, imm8) \
|
|
__extension__({ \
|
|
float32x4_t tmp1 = \
|
|
vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3), \
|
|
vreinterpretq_f32_m128(a), 0); \
|
|
float32x4_t tmp2 = \
|
|
vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \
|
|
((imm8 >> 4) & 0x3)); \
|
|
const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, \
|
|
((imm8) & (1 << 1)) ? UINT32_MAX : 0, \
|
|
((imm8) & (1 << 2)) ? UINT32_MAX : 0, \
|
|
((imm8) & (1 << 3)) ? UINT32_MAX : 0}; \
|
|
uint32x4_t mask = vld1q_u32(data); \
|
|
float32x4_t all_zeros = vdupq_n_f32(0); \
|
|
\
|
|
vreinterpretq_m128_f32( \
|
|
vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \
|
|
})
|
|
|
|
// epi versions of min/max
|
|
// Computes the pariwise maximums of the four signed 32-bit integer values of a
|
|
// and b.
|
|
//
|
|
// A 128-bit parameter that can be defined with the following equations:
|
|
// r0 := (a0 > b0) ? a0 : b0
|
|
// r1 := (a1 > b1) ? a1 : b1
|
|
// r2 := (a2 > b2) ? a2 : b2
|
|
// r3 := (a3 > b3) ? a3 : b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
|
|
FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16
|
|
FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
|
|
FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
|
|
}
|
|
|
|
// Computes the pariwise minima of the four signed 32-bit integer values of a
|
|
// and b.
|
|
//
|
|
// A 128-bit parameter that can be defined with the following equations:
|
|
// r0 := (a0 < b0) ? a0 : b0
|
|
// r1 := (a1 < b1) ? a1 : b1
|
|
// r2 := (a2 < b2) ? a2 : b2
|
|
// r3 := (a3 < b3) ? a3 : b3
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8
|
|
FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16
|
|
FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
|
|
FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
|
|
}
|
|
|
|
// Horizontally compute the minimum amongst the packed unsigned 16-bit integers
|
|
// in a, store the minimum and index in dst, and zero the remaining bits in dst.
|
|
//
|
|
// index[2:0] := 0
|
|
// min[15:0] := a[15:0]
|
|
// FOR j := 0 to 7
|
|
// i := j*16
|
|
// IF a[i+15:i] < min[15:0]
|
|
// index[2:0] := j
|
|
// min[15:0] := a[i+15:i]
|
|
// FI
|
|
// ENDFOR
|
|
// dst[15:0] := min[15:0]
|
|
// dst[18:16] := index[2:0]
|
|
// dst[127:19] := 0
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16
|
|
FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
|
|
{
|
|
__m128i dst;
|
|
uint16_t min, idx = 0;
|
|
// Find the minimum value
|
|
#if defined(__aarch64__)
|
|
min = vminvq_u16(vreinterpretq_u16_m128i(a));
|
|
#else
|
|
__m64 tmp;
|
|
tmp = vreinterpret_m64_u16(
|
|
vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
|
|
vget_high_u16(vreinterpretq_u16_m128i(a))));
|
|
tmp = vreinterpret_m64_u16(
|
|
vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
|
|
tmp = vreinterpret_m64_u16(
|
|
vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
|
|
min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
|
|
#endif
|
|
// Get the index of the minimum value
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
|
|
idx = (uint16_t) i;
|
|
break;
|
|
}
|
|
a = _mm_srli_si128(a, 2);
|
|
}
|
|
// Generate result
|
|
dst = _mm_setzero_si128();
|
|
dst = vreinterpretq_m128i_u16(
|
|
vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
|
|
dst = vreinterpretq_m128i_u16(
|
|
vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
|
|
return dst;
|
|
}
|
|
|
|
// Compute the sum of absolute differences (SADs) of quadruplets of unsigned
|
|
// 8-bit integers in a compared to those in b, and store the 16-bit results in
|
|
// dst. Eight SADs are performed using one quadruplet from b and eight
|
|
// quadruplets from a. One quadruplet is selected from b starting at on the
|
|
// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
|
|
// integers selected from a starting at the offset specified in imm8.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8
|
|
FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
|
|
{
|
|
uint8x16_t _a, _b;
|
|
|
|
switch (imm & 0x4) {
|
|
case 0:
|
|
// do nothing
|
|
_a = vreinterpretq_u8_m128i(a);
|
|
break;
|
|
case 4:
|
|
_a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
|
|
vreinterpretq_u32_m128i(a), 1));
|
|
break;
|
|
default:
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__builtin_unreachable();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
switch (imm & 0x3) {
|
|
case 0:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
|
|
break;
|
|
case 1:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
|
|
break;
|
|
case 2:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
|
|
break;
|
|
case 3:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
|
|
break;
|
|
default:
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__builtin_unreachable();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
int16x8_t c04, c15, c26, c37;
|
|
uint8x8_t low_b = vget_low_u8(_b);
|
|
c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
|
|
_a = vextq_u8(_a, _a, 1);
|
|
c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
|
|
_a = vextq_u8(_a, _a, 1);
|
|
c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
|
|
_a = vextq_u8(_a, _a, 1);
|
|
c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
|
|
#if defined(__aarch64__)
|
|
// |0|4|2|6|
|
|
c04 = vpaddq_s16(c04, c26);
|
|
// |1|5|3|7|
|
|
c15 = vpaddq_s16(c15, c37);
|
|
|
|
int32x4_t trn1_c =
|
|
vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
|
|
int32x4_t trn2_c =
|
|
vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
|
|
return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
|
|
vreinterpretq_s16_s32(trn2_c)));
|
|
#else
|
|
int16x4_t c01, c23, c45, c67;
|
|
c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
|
|
c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
|
|
c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
|
|
c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
|
|
|
|
return vreinterpretq_m128i_s16(
|
|
vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
|
|
#endif
|
|
}
|
|
|
|
// Multiply the low signed 32-bit integers from each packed 64-bit element in
|
|
// a and b, and store the signed 64-bit results in dst.
|
|
//
|
|
// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
|
|
// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
|
|
FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
|
|
{
|
|
// vmull_s32 upcasts instead of masking, so we downcast.
|
|
int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
|
|
int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
|
|
return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
|
|
}
|
|
|
|
// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
|
|
// unsigned 32-bit integers from b.
|
|
// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
|
|
FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
|
|
// integers and saturates.
|
|
//
|
|
// r0 := UnsignedSaturate(a0)
|
|
// r1 := UnsignedSaturate(a1)
|
|
// r2 := UnsignedSaturate(a2)
|
|
// r3 := UnsignedSaturate(a3)
|
|
// r4 := UnsignedSaturate(b0)
|
|
// r5 := UnsignedSaturate(b1)
|
|
// r6 := UnsignedSaturate(b2)
|
|
// r7 := UnsignedSaturate(b3)
|
|
FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
|
|
vqmovun_s32(vreinterpretq_s32_m128i(b))));
|
|
}
|
|
|
|
// Round the packed double-precision (64-bit) floating-point elements in a using
|
|
// the rounding parameter, and store the results as packed double-precision
|
|
// floating-point elements in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd
|
|
FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
|
|
{
|
|
#if defined(__aarch64__)
|
|
switch (rounding) {
|
|
case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
|
|
case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_floor_pd(a);
|
|
case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_ceil_pd(a);
|
|
case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
|
|
default: //_MM_FROUND_CUR_DIRECTION
|
|
return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
|
|
}
|
|
#else
|
|
double *v_double = (double *) &a;
|
|
|
|
if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
|
|
double res[2], tmp;
|
|
for (int i = 0; i < 2; i++) {
|
|
tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
|
|
double roundDown = floor(tmp); // Round down value
|
|
double roundUp = ceil(tmp); // Round up value
|
|
double diffDown = tmp - roundDown;
|
|
double diffUp = roundUp - tmp;
|
|
if (diffDown < diffUp) {
|
|
/* If it's closer to the round down value, then use it */
|
|
res[i] = roundDown;
|
|
} else if (diffDown > diffUp) {
|
|
/* If it's closer to the round up value, then use it */
|
|
res[i] = roundUp;
|
|
} else {
|
|
/* If it's equidistant between round up and round down value,
|
|
* pick the one which is an even number */
|
|
double half = roundDown / 2;
|
|
if (half != floor(half)) {
|
|
/* If the round down value is odd, return the round up value
|
|
*/
|
|
res[i] = roundUp;
|
|
} else {
|
|
/* If the round up value is odd, return the round down value
|
|
*/
|
|
res[i] = roundDown;
|
|
}
|
|
}
|
|
res[i] = (v_double[i] < 0) ? -res[i] : res[i];
|
|
}
|
|
return _mm_set_pd(res[1], res[0]);
|
|
} else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
|
|
return _mm_floor_pd(a);
|
|
} else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
|
|
return _mm_ceil_pd(a);
|
|
}
|
|
return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
|
|
v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the packed single-precision (32-bit) floating-point elements in a using
|
|
// the rounding parameter, and store the results as packed single-precision
|
|
// floating-point elements in dst.
|
|
// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
|
|
FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
|
|
{
|
|
#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
switch (rounding) {
|
|
case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
|
|
case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_floor_ps(a);
|
|
case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_ceil_ps(a);
|
|
case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
|
|
default: //_MM_FROUND_CUR_DIRECTION
|
|
return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
|
|
}
|
|
#else
|
|
float *v_float = (float *) &a;
|
|
|
|
if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
|
|
uint32x4_t signmask = vdupq_n_u32(0x80000000);
|
|
float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
|
|
vdupq_n_f32(0.5f)); /* +/- 0.5 */
|
|
int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
|
|
vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
|
|
int32x4_t r_trunc = vcvtq_s32_f32(
|
|
vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
|
|
int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
|
|
vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
|
|
int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
|
|
vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
|
|
float32x4_t delta = vsubq_f32(
|
|
vreinterpretq_f32_m128(a),
|
|
vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
|
|
uint32x4_t is_delta_half =
|
|
vceqq_f32(delta, half); /* delta == +/- 0.5 */
|
|
return vreinterpretq_m128_f32(
|
|
vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
|
|
} else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
|
|
return _mm_floor_ps(a);
|
|
} else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
|
|
return _mm_ceil_ps(a);
|
|
}
|
|
return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
|
|
v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
|
|
v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
|
|
v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the lower double-precision (64-bit) floating-point element in b using
|
|
// the rounding parameter, store the result as a double-precision floating-point
|
|
// element in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd
|
|
FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
|
|
{
|
|
return _mm_move_sd(a, _mm_round_pd(b, rounding));
|
|
}
|
|
|
|
// Round the lower single-precision (32-bit) floating-point element in b using
|
|
// the rounding parameter, store the result as a single-precision floating-point
|
|
// element in the lower element of dst, and copy the upper 3 packed elements
|
|
// from a to the upper elements of dst. Rounding is done according to the
|
|
// rounding[3:0] parameter, which can be one of:
|
|
// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
|
|
// suppress exceptions
|
|
// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and
|
|
// suppress exceptions
|
|
// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress
|
|
// exceptions
|
|
// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress
|
|
// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
|
|
// _MM_SET_ROUNDING_MODE
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss
|
|
FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
|
|
{
|
|
return _mm_move_ss(a, _mm_round_ps(b, rounding));
|
|
}
|
|
|
|
// Load 128-bits of integer data from memory into dst using a non-temporal
|
|
// memory hint. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
//
|
|
// dst[127:0] := MEM[mem_addr+127:mem_addr]
|
|
//
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
|
|
FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
return __builtin_nontemporal_load(p);
|
|
#else
|
|
return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
|
|
#endif
|
|
}
|
|
|
|
// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
|
|
// all 1's, and return 1 if the result is zero, otherwise return 0.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
|
|
FORCE_INLINE int _mm_test_all_ones(__m128i a)
|
|
{
|
|
return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
|
|
~(uint64_t) 0;
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and
|
|
// mask, and return 1 if the result is zero, otherwise return 0.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
|
|
FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
|
|
{
|
|
int64x2_t a_and_mask =
|
|
vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
|
|
return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and
|
|
// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
|
|
// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
|
|
// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
|
|
// otherwise return 0.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero
|
|
FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
|
|
{
|
|
uint64x2_t zf =
|
|
vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
|
|
uint64x2_t cf =
|
|
vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
|
|
uint64x2_t result = vandq_u64(zf, cf);
|
|
return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1));
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
|
|
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
|
|
// otherwise set CF to 0. Return the CF value.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128
|
|
FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
|
|
{
|
|
int64x2_t s64 =
|
|
vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))),
|
|
vreinterpretq_s64_m128i(b));
|
|
return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
|
|
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
|
|
// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
|
|
// otherwise return 0.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128
|
|
#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
|
|
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
|
|
// otherwise set CF to 0. Return the ZF value.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128
|
|
FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
|
|
{
|
|
int64x2_t s64 =
|
|
vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
|
|
return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
|
|
}
|
|
|
|
/* SSE4.2 */
|
|
|
|
// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
|
|
// in b for greater than.
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__)
|
|
return vreinterpretq_m128i_u64(
|
|
vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
#else
|
|
return vreinterpretq_m128i_s64(vshrq_n_s64(
|
|
vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
|
|
63));
|
|
#endif
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 16-bit integer v.
|
|
// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
|
|
FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
|
|
crc = __crc32ch(crc, v);
|
|
#else
|
|
crc = _mm_crc32_u8(crc, v & 0xff);
|
|
crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 32-bit integer v.
|
|
// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
|
|
FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
|
|
crc = __crc32cw(crc, v);
|
|
#else
|
|
crc = _mm_crc32_u16(crc, v & 0xffff);
|
|
crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 64-bit integer v.
|
|
// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
|
|
FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#else
|
|
crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff);
|
|
crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 8-bit integer v.
|
|
// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
|
|
FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
|
|
crc = __crc32cb(crc, v);
|
|
#else
|
|
crc ^= v;
|
|
for (int bit = 0; bit < 8; bit++) {
|
|
if (crc & 1)
|
|
crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
|
|
else
|
|
crc = (crc >> 1);
|
|
}
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
/* AES */
|
|
|
|
#if !defined(__ARM_FEATURE_CRYPTO)
|
|
/* clang-format off */
|
|
#define SSE2NEON_AES_DATA(w) \
|
|
{ \
|
|
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
|
|
w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
|
|
w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
|
|
w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
|
|
w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
|
|
w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
|
|
w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
|
|
w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
|
|
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
|
|
w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
|
|
w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
|
|
w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
|
|
w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
|
|
w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
|
|
w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
|
|
w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
|
|
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
|
|
w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
|
|
w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
|
|
w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
|
|
w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
|
|
w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
|
|
w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
|
|
w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
|
|
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
|
|
w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
|
|
w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
|
|
w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
|
|
w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
|
|
w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
|
|
w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
|
|
w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
|
|
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
|
|
w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
|
|
w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
|
|
w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
|
|
w(0xb0), w(0x54), w(0xbb), w(0x16) \
|
|
}
|
|
/* clang-format on */
|
|
|
|
/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
|
|
#define SSE2NEON_AES_H0(x) (x)
|
|
static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0);
|
|
#undef SSE2NEON_AES_H0
|
|
|
|
// In the absence of crypto extensions, implement aesenc using regular neon
|
|
// intrinsics instead. See:
|
|
// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
|
|
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
|
|
// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
|
|
// for more information Reproduced with permission of the author.
|
|
FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
|
|
{
|
|
#if defined(__aarch64__)
|
|
static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
|
|
0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
|
|
0xc, 0x1, 0x6, 0xb};
|
|
static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
|
|
0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};
|
|
|
|
uint8x16_t v;
|
|
uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
|
|
|
|
// shift rows
|
|
w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
|
|
|
|
// sub bytes
|
|
v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0);
|
|
|
|
// mix columns
|
|
w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
|
|
w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
|
|
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
|
|
|
|
// add round key
|
|
return vreinterpretq_m128i_u8(w) ^ RoundKey;
|
|
|
|
#else /* ARMv7-A NEON implementation */
|
|
#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
|
|
(((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \
|
|
((uint32_t) (b1) << 8) | (uint32_t) (b0))
|
|
#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
|
|
#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
|
|
#define SSE2NEON_AES_U0(p) \
|
|
SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
|
|
#define SSE2NEON_AES_U1(p) \
|
|
SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
|
|
#define SSE2NEON_AES_U2(p) \
|
|
SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
|
|
#define SSE2NEON_AES_U3(p) \
|
|
SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
|
|
static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
|
|
SSE2NEON_AES_DATA(SSE2NEON_AES_U0),
|
|
SSE2NEON_AES_DATA(SSE2NEON_AES_U1),
|
|
SSE2NEON_AES_DATA(SSE2NEON_AES_U2),
|
|
SSE2NEON_AES_DATA(SSE2NEON_AES_U3),
|
|
};
|
|
#undef SSE2NEON_AES_B2W
|
|
#undef SSE2NEON_AES_F2
|
|
#undef SSE2NEON_AES_F3
|
|
#undef SSE2NEON_AES_U0
|
|
#undef SSE2NEON_AES_U1
|
|
#undef SSE2NEON_AES_U2
|
|
#undef SSE2NEON_AES_U3
|
|
|
|
uint32_t x0 = _mm_cvtsi128_si32(EncBlock);
|
|
uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55));
|
|
uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA));
|
|
uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF));
|
|
|
|
__m128i out = _mm_set_epi32(
|
|
(aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
|
|
aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
|
|
(aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
|
|
aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
|
|
(aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
|
|
aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
|
|
(aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
|
|
aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
|
|
|
|
return _mm_xor_si128(out, RoundKey);
|
|
#endif
|
|
}
|
|
|
|
// Perform the last round of an AES encryption flow on data (state) in a using
|
|
// the round key in RoundKey, and store the result in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
|
|
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
/* FIXME: optimized for NEON */
|
|
uint8_t v[4][4] = {
|
|
{SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
|
|
{SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
|
|
{SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
|
|
{SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
|
|
SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
|
|
};
|
|
for (int i = 0; i < 16; i++)
|
|
vreinterpretq_nth_u8_m128i(a, i) =
|
|
v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i);
|
|
return a;
|
|
}
|
|
|
|
// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
|
|
// This instruction generates a round key for AES encryption. See
|
|
// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
|
|
// for details.
|
|
//
|
|
// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx
|
|
FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon)
|
|
{
|
|
uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55));
|
|
uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF));
|
|
for (int i = 0; i < 4; ++i) {
|
|
((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]];
|
|
((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]];
|
|
}
|
|
return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
|
|
((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
|
|
}
|
|
#undef SSE2NEON_AES_DATA
|
|
|
|
#else /* __ARM_FEATURE_CRYPTO */
|
|
// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
|
|
// AESMC and then manually applying the real key as an xor operation. This
|
|
// unfortunately means an additional xor op; the compiler should be able to
|
|
// optimize this away for repeated calls however. See
|
|
// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
|
|
// for more details.
|
|
FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
|
|
vreinterpretq_u8_m128i(b));
|
|
}
|
|
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
|
|
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
|
|
vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
|
|
RoundKey);
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
|
|
{
|
|
// AESE does ShiftRows and SubBytes on A
|
|
uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
|
|
|
|
uint8x16_t dest = {
|
|
// Undo ShiftRows step from AESE and extract X1 and X3
|
|
u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1)
|
|
u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1))
|
|
u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3)
|
|
u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3))
|
|
};
|
|
uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
|
|
return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
|
|
}
|
|
#endif
|
|
|
|
/* Others */
|
|
|
|
// Perform a carry-less multiplication of two 64-bit integers, selected from a
|
|
// and b according to imm8, and store the results in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128
|
|
FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
|
|
{
|
|
uint64x2_t a = vreinterpretq_u64_m128i(_a);
|
|
uint64x2_t b = vreinterpretq_u64_m128i(_b);
|
|
switch (imm & 0x11) {
|
|
case 0x00:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
|
|
case 0x01:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
|
|
case 0x10:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
|
|
case 0x11:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode()
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
|
|
}
|
|
|
|
// Count the number of bits set to 1 in unsigned 32-bit integer a, and
|
|
// return that count in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
|
|
FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
#if __has_builtin(__builtin_popcount)
|
|
return __builtin_popcount(a);
|
|
#else
|
|
return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
|
|
#endif
|
|
#else
|
|
uint32_t count = 0;
|
|
uint8x8_t input_val, count8x8_val;
|
|
uint16x4_t count16x4_val;
|
|
uint32x2_t count32x2_val;
|
|
|
|
input_val = vld1_u8((uint8_t *) &a);
|
|
count8x8_val = vcnt_u8(input_val);
|
|
count16x4_val = vpaddl_u8(count8x8_val);
|
|
count32x2_val = vpaddl_u16(count16x4_val);
|
|
|
|
vst1_u32(&count, count32x2_val);
|
|
return count;
|
|
#endif
|
|
}
|
|
|
|
// Count the number of bits set to 1 in unsigned 64-bit integer a, and
|
|
// return that count in dst.
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
|
|
FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
#if __has_builtin(__builtin_popcountll)
|
|
return __builtin_popcountll(a);
|
|
#else
|
|
return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
|
|
#endif
|
|
#else
|
|
uint64_t count = 0;
|
|
uint8x8_t input_val, count8x8_val;
|
|
uint16x4_t count16x4_val;
|
|
uint32x2_t count32x2_val;
|
|
uint64x1_t count64x1_val;
|
|
|
|
input_val = vld1_u8((uint8_t *) &a);
|
|
count8x8_val = vcnt_u8(input_val);
|
|
count16x4_val = vpaddl_u8(count8x8_val);
|
|
count32x2_val = vpaddl_u16(count16x4_val);
|
|
count64x1_val = vpaddl_u32(count32x2_val);
|
|
vst1_u64(&count, count64x1_val);
|
|
return count;
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
|
|
{
|
|
// AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
|
|
// regardless of the value of the FZ bit.
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
|
|
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
|
|
#else
|
|
__asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
|
|
#endif
|
|
}
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma pop_macro("ALIGN_STRUCT")
|
|
#pragma pop_macro("FORCE_INLINE")
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
#pragma GCC pop_options
|
|
#endif
|
|
|
|
#endif
|