mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-11 23:57:59 +00:00
518 lines
19 KiB
C++
518 lines
19 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose: low-level code to write IVP_Compact_Ledge/IVP_Compact_Triangle.
|
|
// also includes code to pack/unpack outer hull ledges to 8-bit rep
|
|
//
|
|
//=============================================================================
|
|
#include "cbase.h"
|
|
#include "convert.h"
|
|
|
|
#include <ivp_surface_manager.hxx>
|
|
#include <ivp_surman_polygon.hxx>
|
|
#include <ivp_template_surbuild.hxx>
|
|
#include <ivp_compact_surface.hxx>
|
|
#include <ivp_compact_ledge.hxx>
|
|
|
|
#include "utlbuffer.h"
|
|
#include "ledgewriter.h"
|
|
|
|
// gets the max vertex index referenced by a compact ledge
|
|
static int MaxLedgeVertIndex( const IVP_Compact_Ledge *pLedge )
|
|
{
|
|
int maxIndex = -1;
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
|
for ( int j = 0; j < 3; j++ )
|
|
{
|
|
int ivpIndex = pTri->get_edge(j)->get_start_point_index();
|
|
maxIndex = max(maxIndex, ivpIndex);
|
|
}
|
|
}
|
|
return maxIndex;
|
|
}
|
|
|
|
|
|
struct vertmap_t
|
|
{
|
|
|
|
CUtlVector<int> map;
|
|
int minRef;
|
|
int maxRef;
|
|
};
|
|
|
|
// searches pVerts for each vert used by pLedge and builds a one way map from ledge indices to pVerts indices
|
|
// NOTE: pVerts is in HL coords, pLedge is in IVP coords
|
|
static void BuildVertMap( vertmap_t &out, const Vector *pVerts, int vertexCount, const IVP_Compact_Ledge *pLedge )
|
|
{
|
|
out.map.EnsureCount(MaxLedgeVertIndex(pLedge)+1);
|
|
for ( int i = 0; i < out.map.Count(); i++ )
|
|
{
|
|
out.map[i] = -1;
|
|
}
|
|
out.minRef = vertexCount;
|
|
out.maxRef = 0;
|
|
const IVP_Compact_Poly_Point *pVertList = pLedge->get_point_array();
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
// iterate each triangle, for each referenced vert that hasn't yet been mapped, search for the nearest match
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
|
for ( int j = 0; j < 3; j++ )
|
|
{
|
|
int ivpIndex = pTri->get_edge(j)->get_start_point_index();
|
|
if ( out.map[ivpIndex] < 0 )
|
|
{
|
|
int index = -1;
|
|
Vector tmp;
|
|
ConvertPositionToHL( &pVertList[ivpIndex], tmp);
|
|
float minDist = 1e24;
|
|
for ( int k = 0; k < vertexCount; k++ )
|
|
{
|
|
float dist = (tmp-pVerts[k]).Length();
|
|
if ( dist < minDist )
|
|
{
|
|
index = k;
|
|
minDist = dist;
|
|
}
|
|
}
|
|
Assert(minDist<0.1f);
|
|
out.map[ivpIndex] = index;
|
|
out.minRef = min(out.minRef, index);
|
|
out.maxRef = max(out.maxRef, index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Each IVP_Compact_Triangle and IVP_Compact_Edge occupies an index
|
|
// 0,1,2,3 is tri, edge, edge, edge (tris and edges are both 16 bytes)
|
|
// So you can just add the index to get_first_triangle to get a pointer
|
|
inline int EdgeIndex( const IVP_Compact_Ledge *pLedge, const IVP_Compact_Edge *pEdge )
|
|
{
|
|
return pEdge - (const IVP_Compact_Edge *)pLedge->get_first_triangle();
|
|
}
|
|
|
|
// Builds a packedhull_t from a IVP_Compact_Ledge. Assumes that the utlbuffer points at the memory following pHull (pHull is the header, utlbuffer is the body)
|
|
void PackLedgeIntoBuffer( packedhull_t *pHull, CUtlBuffer &buf, const IVP_Compact_Ledge *pLedge, const virtualmeshlist_t &list )
|
|
{
|
|
if ( !pLedge )
|
|
return;
|
|
|
|
// The lists store the ivp index of each element to be written out
|
|
// The maps store the output packed index for each ivp index
|
|
CUtlVector<int> triangleList, triangleMap;
|
|
CUtlVector<int> edgeList, edgeMap;
|
|
vertmap_t vertMap;
|
|
BuildVertMap( vertMap, list.pVerts, list.vertexCount, pLedge );
|
|
pHull->baseVert = vertMap.minRef;
|
|
// clear the maps
|
|
triangleMap.EnsureCount(pLedge->get_n_triangles());
|
|
for ( int i = 0; i < triangleMap.Count(); i++ )
|
|
{
|
|
triangleMap[i] = -1;
|
|
}
|
|
edgeMap.EnsureCount(pLedge->get_n_triangles()*4); // each triangle also occupies an edge index
|
|
for ( int i = 0; i < edgeMap.Count(); i++ )
|
|
{
|
|
edgeMap[i] = -1;
|
|
}
|
|
|
|
// we're going to reorder the triangles and edges so that the ones marked virtual
|
|
// appear first in the list. This way we only need a virtual count, not a per-item
|
|
// flag.
|
|
|
|
// also, the edges are stored relative to the first triangle that references them
|
|
// so an edge from 0->1 means that the first triangle that references the edge is 0->1 and the
|
|
// second triangle is 1->0. This way we store half the edges and the winged edge pointers are implicit
|
|
|
|
// sort triangles in two passes
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
|
if ( pTri->get_is_virtual() )
|
|
{
|
|
triangleMap[i] = triangleList.AddToTail(i);
|
|
}
|
|
}
|
|
pHull->vtriCount = triangleList.Count();
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
|
if ( !pTri->get_is_virtual() )
|
|
{
|
|
triangleMap[i] = triangleList.AddToTail(i);
|
|
}
|
|
}
|
|
// sort edges in two passes
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + triangleList[i];
|
|
for ( int j = 0; j < 3; j++ )
|
|
{
|
|
const IVP_Compact_Edge *pEdge = pTri->get_edge(j);
|
|
if ( pEdge->get_is_virtual() && edgeMap[EdgeIndex(pLedge, pEdge->get_opposite())] < 0 )
|
|
{
|
|
edgeMap[EdgeIndex(pLedge, pEdge)] = edgeList.AddToTail(EdgeIndex(pLedge, pEdge));
|
|
}
|
|
}
|
|
}
|
|
pHull->vedgeCount = edgeList.Count();
|
|
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + triangleList[i];
|
|
for ( int j = 0; j < 3; j++ )
|
|
{
|
|
const IVP_Compact_Edge *pEdge = pTri->get_edge(j);
|
|
int index = EdgeIndex(pLedge, pEdge);
|
|
int oppositeIndex = EdgeIndex(pLedge, pEdge->get_opposite());
|
|
if ( !pEdge->get_is_virtual() && edgeMap[oppositeIndex] < 0 )
|
|
{
|
|
edgeMap[index] = edgeList.AddToTail(index);
|
|
}
|
|
if ( edgeMap[index] < 0 )
|
|
{
|
|
Assert(edgeMap[oppositeIndex] >= 0);
|
|
edgeMap[index] = edgeMap[oppositeIndex];
|
|
}
|
|
}
|
|
}
|
|
Assert( edgeList.Count() == pHull->edgeCount );
|
|
|
|
// now write the packed triangles
|
|
for ( int i = 0; i < pHull->triangleCount; i++ )
|
|
{
|
|
packedtriangle_t tri;
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + triangleList[i];
|
|
const IVP_Compact_Edge *pEdge;
|
|
pEdge = pTri->get_edge(0);
|
|
tri.opposite = triangleMap[pTri->get_pierce_index()];
|
|
Assert(tri.opposite<pHull->triangleCount);
|
|
tri.e0 = edgeMap[EdgeIndex(pLedge, pEdge)];
|
|
pEdge = pTri->get_edge(1);
|
|
tri.e1 = edgeMap[EdgeIndex(pLedge, pEdge)];
|
|
pEdge = pTri->get_edge(2);
|
|
tri.e2 = edgeMap[EdgeIndex(pLedge, pEdge)];
|
|
Assert(tri.e0<pHull->edgeCount);
|
|
Assert(tri.e1<pHull->edgeCount);
|
|
Assert(tri.e2<pHull->edgeCount);
|
|
buf.Put(&tri, sizeof(tri));
|
|
}
|
|
// now write the packed edges
|
|
for ( int i = 0; i < pHull->edgeCount; i++ )
|
|
{
|
|
packededge_t edge;
|
|
const IVP_Compact_Edge *pEdge = (const IVP_Compact_Edge *)pLedge->get_first_triangle() + edgeList[i];
|
|
Assert((edgeList[i]&3) != 0); // must not be a triangle
|
|
|
|
int v0 = vertMap.map[pEdge->get_start_point_index()] - pHull->baseVert;
|
|
int v1 = vertMap.map[pEdge->get_next()->get_start_point_index()] - pHull->baseVert;
|
|
Assert(v0>=0 && v0<256);
|
|
Assert(v1>=0 && v1<256);
|
|
edge.v0 = v0;
|
|
edge.v1 = v1;
|
|
buf.Put(&edge, sizeof(edge));
|
|
}
|
|
}
|
|
|
|
|
|
// decompress packed hull into a compact ledge
|
|
void CVPhysicsVirtualMeshWriter::UnpackCompactLedgeFromHull( IVP_Compact_Ledge *pLedge, int materialIndex, const IVP_Compact_Poly_Point *pPointList, const virtualmeshhull_t *pHullHeader, int hullIndex, bool isVirtualLedge )
|
|
{
|
|
const packedhull_t *pHull = pHullHeader->GetPackedHull(hullIndex);
|
|
const packedtriangle_t *pPackedTris = pHullHeader->GetPackedTriangles(hullIndex);
|
|
// write the ledge
|
|
pLedge->set_offset_ledge_points( (int)((char *)pPointList - (char *)pLedge) ); // byte offset from 'this' to (ledge) point array
|
|
pLedge->set_is_compact( IVP_TRUE );
|
|
pLedge->set_size(sizeof(IVP_Compact_Ledge) + sizeof(IVP_Compact_Triangle)*pHull->triangleCount); // <0 indicates a non compact compact ledge
|
|
pLedge->n_triangles = pHull->triangleCount;
|
|
pLedge->has_chilren_flag = isVirtualLedge ? IVP_TRUE : IVP_FALSE;
|
|
|
|
// Make the offset -pLedge so the result is a NULL ledgetree node - we haven't needed to create one of these as of yet
|
|
pLedge->ledgetree_node_offset = -((int)pLedge);
|
|
|
|
// keep track of which triangle edge referenced this edge (so the next one can swap the order and point to the first one)
|
|
int forwardEdgeIndex[255];
|
|
for ( int i = 0; i < pHull->edgeCount; i++ )
|
|
{
|
|
forwardEdgeIndex[i] = -1;
|
|
}
|
|
packededge_t *pPackedEdges = (packededge_t *)(pPackedTris + pHull->triangleCount);
|
|
IVP_Compact_Triangle *pOut = pLedge->get_first_triangle();
|
|
// now write the compact triangles and their edges
|
|
int baseVert = pHull->baseVert;
|
|
for ( int i = 0; i < pHull->triangleCount; i++ )
|
|
{
|
|
pOut[i].set_tri_index(i);
|
|
pOut[i].set_material_index(materialIndex);
|
|
pOut[i].set_is_virtual( i < pHull->vtriCount ? IVP_TRUE : IVP_FALSE );
|
|
pOut[i].set_pierce_index(pPackedTris[i].opposite);
|
|
Assert(pPackedTris[i].opposite<pHull->triangleCount);
|
|
int edges[3] = {pPackedTris[i].e0, pPackedTris[i].e1, pPackedTris[i].e2};
|
|
for ( int j = 0; j < 3; j++ )
|
|
{
|
|
Assert(edges[j]<pHull->edgeCount);
|
|
if ( forwardEdgeIndex[edges[j]] < 0 )
|
|
{
|
|
// this is the first triangle to use this edge, so it's forward (and the other triangle sharing (opposite edge pointer) is unknown)
|
|
int startVert = pPackedEdges[edges[j]].v0 + baseVert;
|
|
pOut[i].c_three_edges[j].set_start_point_index(startVert);
|
|
pOut[i].c_three_edges[j].set_is_virtual( edges[j] < pHull->vedgeCount ? IVP_TRUE : IVP_FALSE );
|
|
forwardEdgeIndex[edges[j]] = EdgeIndex(pLedge, &pOut[i].c_three_edges[j]);
|
|
}
|
|
else
|
|
{
|
|
// this is the second triangle to use this edge, so it's reversed (and the other triangle sharing is in the forward edge table)
|
|
int oppositeIndex = forwardEdgeIndex[edges[j]];
|
|
|
|
int startVert = pPackedEdges[edges[j]].v1 + baseVert;
|
|
pOut[i].c_three_edges[j].set_start_point_index(startVert);
|
|
pOut[i].c_three_edges[j].set_is_virtual( edges[j] < pHull->vedgeCount ? IVP_TRUE : IVP_FALSE );
|
|
// now build the links between the triangles sharing this edge
|
|
int thisEdgeIndex = EdgeIndex( pLedge, &pOut[i].c_three_edges[j] );
|
|
pOut[i].c_three_edges[j].set_opposite_index( oppositeIndex - thisEdgeIndex );
|
|
pOut[i].c_three_edges[j].get_opposite()->set_opposite_index( thisEdgeIndex - oppositeIndex );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// low-level code to initialize a 2-sided triangle
|
|
static void InitTriangle( IVP_Compact_Triangle *pTri, int index, int materialIndex, int v0, int v1, int v2, int opp0, int opp1, int opp2 )
|
|
{
|
|
pTri->set_tri_index(index);
|
|
pTri->set_material_index(materialIndex);
|
|
|
|
pTri->c_three_edges[0].set_start_point_index(v0);
|
|
pTri->c_three_edges[1].set_start_point_index(v1);
|
|
pTri->c_three_edges[2].set_start_point_index(v2);
|
|
|
|
pTri->c_three_edges[0].set_opposite_index(opp0);
|
|
pTri->c_three_edges[1].set_opposite_index(opp1);
|
|
pTri->c_three_edges[2].set_opposite_index(opp2);
|
|
}
|
|
|
|
void CVPhysicsVirtualMeshWriter::InitTwoSidedTriangleLege( triangleledge_t *pOut, const IVP_Compact_Poly_Point *pPoints, int v0, int v1, int v2, int materialIndex )
|
|
{
|
|
IVP_Compact_Ledge *pLedge = &pOut->ledge;
|
|
pLedge->set_offset_ledge_points( (int)((char *)pPoints - (char *)pLedge) ); // byte offset from 'this' to (ledge) point array
|
|
pLedge->set_is_compact( IVP_TRUE );
|
|
pLedge->set_size(sizeof(triangleledge_t)); // <0 indicates a non compact compact ledge
|
|
pLedge->n_triangles = 2;
|
|
pLedge->has_chilren_flag = IVP_FALSE;
|
|
// triangles
|
|
InitTriangle( &pOut->faces[0], 0, materialIndex, v0, v1, v2, 6, 4, 2 );
|
|
InitTriangle( &pOut->faces[1], 1, materialIndex, v0, v2, v1, -2, -4, -6);
|
|
pOut->faces[0].set_pierce_index(1);
|
|
pOut->faces[1].set_pierce_index(0);
|
|
}
|
|
|
|
bool CVPhysicsVirtualMeshWriter::LedgeCanBePacked(const IVP_Compact_Ledge *pLedge, const virtualmeshlist_t &list)
|
|
{
|
|
int edgeCount = pLedge->get_n_triangles() * 3;
|
|
if ( edgeCount > 512 )
|
|
return false;
|
|
vertmap_t vertMap;
|
|
BuildVertMap( vertMap, list.pVerts, list.vertexCount, pLedge );
|
|
if ( (vertMap.maxRef - vertMap.minRef) > 255 )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// this builds a packed hull array from a compact ledge array (needs the virtualmeshlist for reference)
|
|
virtualmeshhull_t *CVPhysicsVirtualMeshWriter::CreatePackedHullFromLedges( const virtualmeshlist_t &list, const IVP_Compact_Ledge **pLedges, int ledgeCount )
|
|
{
|
|
int triCount = 0;
|
|
int edgeCount = 0;
|
|
for ( int i = 0; i < ledgeCount; i++ )
|
|
{
|
|
triCount += pLedges[i]->get_n_triangles();
|
|
edgeCount += (pLedges[i]->get_n_triangles() * 3)/2;
|
|
Assert(LedgeCanBePacked(pLedges[i], list));
|
|
}
|
|
|
|
unsigned int totalSize = sizeof(packedtriangle_t)*triCount + sizeof(packededge_t)*edgeCount + sizeof(packedhull_t)*ledgeCount + sizeof(virtualmeshhull_t);
|
|
byte *pBuf = new byte[totalSize];
|
|
|
|
CUtlBuffer buf;
|
|
buf.SetExternalBuffer( pBuf, totalSize, 0, 0 );
|
|
|
|
if ( 1 )
|
|
{
|
|
virtualmeshhull_t tmp;
|
|
Q_memset( &tmp, 0, sizeof(tmp) );
|
|
tmp.hullCount = ledgeCount;
|
|
buf.Put(&tmp, sizeof(tmp));
|
|
}
|
|
|
|
// write the headers
|
|
Assert(ledgeCount < 16);
|
|
packedhull_t *pHulls[16];
|
|
for ( int i = 0; i < ledgeCount; i++ )
|
|
{
|
|
pHulls[i] = (packedhull_t *)buf.PeekPut();
|
|
packedhull_t hull;
|
|
hull.triangleCount = pLedges[i]->get_n_triangles();
|
|
hull.edgeCount = (hull.triangleCount * 3) / 2;
|
|
buf.Put(&hull, sizeof(hull));
|
|
}
|
|
|
|
// write the data itself
|
|
for ( int i = 0; i < ledgeCount; i++ )
|
|
{
|
|
PackLedgeIntoBuffer( pHulls[i], buf, pLedges[i], list );
|
|
}
|
|
|
|
return (virtualmeshhull_t *)pBuf;
|
|
}
|
|
|
|
// frees the memory associated with this packed hull
|
|
void CVPhysicsVirtualMeshWriter::DestroyPackedHull( virtualmeshhull_t *pHull )
|
|
{
|
|
byte *pData = (byte *)pHull;
|
|
delete[] pData;
|
|
}
|
|
|
|
|
|
unsigned int CVPhysicsVirtualMeshWriter::UnpackLedgeListFromHull( byte *pOut, virtualmeshhull_t *pHull, IVP_Compact_Poly_Point *pPoints )
|
|
{
|
|
unsigned int memOffset = 0;
|
|
for ( int i = 0; i < pHull->hullCount; i++ )
|
|
{
|
|
IVP_Compact_Ledge *pHullLedge = (IVP_Compact_Ledge *)(pOut + memOffset);
|
|
CVPhysicsVirtualMeshWriter::UnpackCompactLedgeFromHull( pHullLedge, 0, pPoints, pHull, i, true );
|
|
memOffset += pHullLedge->get_size();
|
|
}
|
|
return memOffset;
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
#define DUMP_FILES 1
|
|
static bool DumpListToGLView( const char *pFilename, const virtualmeshlist_t &list )
|
|
{
|
|
#if DUMP_FILES
|
|
FILE *fp = fopen( pFilename, "a+" );
|
|
for ( int i = 0; i < list.triangleCount; i++ )
|
|
{
|
|
fprintf( fp, "3\n" );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f 1 0 0\n", list.pVerts[list.indices[i*3+0]].x, list.pVerts[list.indices[i*3+0]].y, list.pVerts[list.indices[i*3+0]].z );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f 0 1 0\n", list.pVerts[list.indices[i*3+1]].x, list.pVerts[list.indices[i*3+1]].y, list.pVerts[list.indices[i*3+1]].z );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f 0 0 1\n", list.pVerts[list.indices[i*3+2]].x, list.pVerts[list.indices[i*3+2]].y, list.pVerts[list.indices[i*3+2]].z );
|
|
}
|
|
fclose(fp);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
static bool DumpLedgeToGLView( const char *pFilename, const IVP_Compact_Ledge *pLedge, float r=1.0f, float g=1.0f, float b=1.0f, float offset=0.0f )
|
|
{
|
|
#if DUMP_FILES
|
|
FILE *fp = fopen( pFilename, "a+" );
|
|
int ivpIndex;
|
|
Vector tmp[3];
|
|
const IVP_Compact_Poly_Point *pPoints = pLedge->get_point_array();
|
|
for ( int i = 0; i < pLedge->get_n_triangles(); i++ )
|
|
{
|
|
// iterate each triangle, for each referenced vert that hasn't yet been mapped, search for the nearest match
|
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
|
ivpIndex = pTri->get_edge(2)->get_start_point_index();
|
|
ConvertPositionToHL( &pPoints[ivpIndex], tmp[0] );
|
|
ivpIndex = pTri->get_edge(1)->get_start_point_index();
|
|
ConvertPositionToHL( &pPoints[ivpIndex], tmp[1] );
|
|
ivpIndex = pTri->get_edge(0)->get_start_point_index();
|
|
ConvertPositionToHL( &pPoints[ivpIndex], tmp[2] );
|
|
tmp[0].x += offset;
|
|
tmp[1].x += offset;
|
|
tmp[2].x += offset;
|
|
fprintf( fp, "2\n" );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f %.1f %.1f %.1f\n", tmp[0].x, tmp[0].y, tmp[0].z, r, g, b );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f %.1f %.1f %.1f\n", tmp[1].x, tmp[1].y, tmp[1].z, r, g, b );
|
|
fprintf( fp, "2\n" );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f %.1f %.1f %.1f\n", tmp[1].x, tmp[1].y, tmp[1].z, r, g, b );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f %.1f %.1f %.1f\n", tmp[2].x, tmp[2].y, tmp[2].z, r, g, b );
|
|
fprintf( fp, "2\n" );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f %.1f %.1f %.1f\n", tmp[2].x, tmp[2].y, tmp[2].z, r, g, b );
|
|
fprintf( fp, "%6.3f %6.3f %6.3f %.1f %.1f %.1f\n", tmp[0].x, tmp[0].y, tmp[0].z, r, g, b );
|
|
}
|
|
fclose( fp );
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
static int ComputeSize( virtualmeshhull_t *pHeader )
|
|
{
|
|
packedhull_t *pHull = (packedhull_t *)(pHeader+1);
|
|
unsigned int size = pHeader->hullCount * sizeof(IVP_Compact_Ledge);
|
|
for ( int i = 0; i < pHeader->hullCount; i++ )
|
|
{
|
|
size += sizeof(IVP_Compact_Triangle) * pHull[i].triangleCount;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
bool CVPhysicsVirtualMeshWriter::CheckHulls( virtualmeshhull_t *pHull0, virtualmeshhull_t *pHull1, const virtualmeshlist_t &list )
|
|
{
|
|
for ( int i = 0; i < pHull0->hullCount; i++ )
|
|
{
|
|
const packedhull_t *pP0 = pHull0->GetPackedHull(i);
|
|
const packedhull_t *pP1 = pHull1->GetPackedHull(i);
|
|
Assert(pP0->triangleCount == pP1->triangleCount);
|
|
Assert(pP0->vtriCount == pP1->vtriCount);
|
|
Assert(pP0->edgeCount == pP1->edgeCount);
|
|
Assert(pP0->vedgeCount == pP1->vedgeCount);
|
|
Assert(pP0->baseVert == pP1->baseVert);
|
|
const packedtriangle_t *pTri0 = pHull0->GetPackedTriangles( i );
|
|
const packedtriangle_t *pTri1 = pHull1->GetPackedTriangles( i );
|
|
for ( int j = 0; j < pP0->triangleCount; j++ )
|
|
{
|
|
Assert(pTri0[j].e0 == pTri1[j].e0);
|
|
Assert(pTri0[j].e1 == pTri1[j].e1);
|
|
Assert(pTri0[j].e2 == pTri1[j].e2);
|
|
Assert(pTri0[j].opposite == pTri1[j].opposite);
|
|
}
|
|
}
|
|
{
|
|
int size0 = ComputeSize(pHull0);
|
|
int pointSize0 = sizeof(IVP_Compact_Poly_Point) * list.vertexCount;
|
|
byte *pMem0 = (byte *)ivp_malloc_aligned( size0+pointSize0, 16 );
|
|
IVP_Compact_Poly_Point *pPoints = (IVP_Compact_Poly_Point *)pMem0;
|
|
IVP_Compact_Ledge *pLedge0 = (IVP_Compact_Ledge *)(pPoints + list.vertexCount);
|
|
for ( int i = 0; i < list.vertexCount; i++ )
|
|
{
|
|
ConvertPositionToIVP( list.pVerts[i], pPoints[i] );
|
|
}
|
|
UnpackLedgeListFromHull( (byte *)pLedge0, pHull0, pPoints );
|
|
for ( int i = 0; i < pHull0->hullCount; i++ )
|
|
{
|
|
if ( i == i ) DumpLedgeToGLView( "c:\\jay.txt", pLedge0, 1, 0, 0, 0 );
|
|
pLedge0 = (IVP_Compact_Ledge *)( ((byte *)pLedge0 ) + pLedge0->get_size() );
|
|
}
|
|
ivp_free_aligned(pMem0);
|
|
}
|
|
|
|
{
|
|
int size1 = ComputeSize(pHull1);
|
|
int pointSize1 = sizeof(IVP_Compact_Poly_Point) * list.vertexCount;
|
|
byte *pMem1 = (byte *)ivp_malloc_aligned( size1+pointSize1, 16 );
|
|
IVP_Compact_Poly_Point *pPoints = (IVP_Compact_Poly_Point *)pMem1;
|
|
IVP_Compact_Ledge *pLedge1 = (IVP_Compact_Ledge *)(pPoints + list.vertexCount);
|
|
for ( int i = 0; i < list.vertexCount; i++ )
|
|
{
|
|
ConvertPositionToIVP( list.pVerts[i], pPoints[i] );
|
|
}
|
|
UnpackLedgeListFromHull( (byte *)pLedge1, pHull1, pPoints );
|
|
for ( int i = 0; i < pHull1->hullCount; i++ )
|
|
{
|
|
if ( i == i ) DumpLedgeToGLView( "c:\\jay.txt", pLedge1, 0, 1, 0, 1024 );
|
|
pLedge1 = (IVP_Compact_Ledge *)( ((byte *)pLedge1 ) + pLedge1->get_size() );
|
|
}
|
|
ivp_free_aligned(pMem1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
*/
|