You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
8.8 KiB
283 lines
8.8 KiB
/* |
|
--------------------------------------------------------------------------- |
|
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved. |
|
|
|
The redistribution and use of this software (with or without changes) |
|
is allowed without the payment of fees or royalties provided that: |
|
|
|
source code distributions include the above copyright notice, this |
|
list of conditions and the following disclaimer; |
|
|
|
binary distributions include the above copyright notice, this list |
|
of conditions and the following disclaimer in their documentation. |
|
|
|
This software is provided 'as is' with no explicit or implied warranties |
|
in respect of its operation, including, but not limited to, correctness |
|
and fitness for purpose. |
|
--------------------------------------------------------------------------- |
|
Issue Date: 20/12/2007 |
|
*/ |
|
|
|
#include <string.h> /* for memcpy() etc. */ |
|
|
|
#include "sha1.h" |
|
#include "brg_endian.h" |
|
|
|
#if defined(__cplusplus) |
|
extern "C" |
|
{ |
|
#endif |
|
|
|
#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) |
|
#pragma intrinsic(memcpy) |
|
#pragma intrinsic(memset) |
|
#endif |
|
|
|
#if 0 && defined(_MSC_VER) |
|
#define rotl32 _lrotl |
|
#define rotr32 _lrotr |
|
#else |
|
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) |
|
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n))) |
|
#endif |
|
|
|
#if !defined(bswap_32) |
|
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00)) |
|
#endif |
|
|
|
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) |
|
#define SWAP_BYTES |
|
#else |
|
#undef SWAP_BYTES |
|
#endif |
|
|
|
#if defined(SWAP_BYTES) |
|
#define bsw_32(p,n) \ |
|
{ int _i = (n); while(_i--) ((uint32_t*)p)[_i] = bswap_32(((uint32_t*)p)[_i]); } |
|
#else |
|
#define bsw_32(p,n) |
|
#endif |
|
|
|
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1) |
|
|
|
#if 0 |
|
|
|
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) |
|
#define parity(x,y,z) ((x) ^ (y) ^ (z)) |
|
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
|
|
|
#else /* Discovered by Rich Schroeppel and Colin Plumb */ |
|
|
|
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) |
|
#define parity(x,y,z) ((x) ^ (y) ^ (z)) |
|
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) |
|
|
|
#endif |
|
|
|
/* Compile 64 bytes of hash data into SHA1 context. Note */ |
|
/* that this routine assumes that the byte order in the */ |
|
/* ctx->wbuf[] at this point is in such an order that low */ |
|
/* address bytes in the ORIGINAL byte stream will go in */ |
|
/* this buffer to the high end of 32-bit words on BOTH big */ |
|
/* and little endian systems */ |
|
|
|
#ifdef ARRAY |
|
#define q(v,n) v[n] |
|
#else |
|
#define q(v,n) v##n |
|
#endif |
|
|
|
#ifdef SHA_1 |
|
|
|
#define one_cycle(v,a,b,c,d,e,f,k,h) \ |
|
q(v,e) += rotr32(q(v,a),27) + \ |
|
f(q(v,b),q(v,c),q(v,d)) + k + h; \ |
|
q(v,b) = rotr32(q(v,b), 2) |
|
|
|
#define five_cycle(v,f,k,i) \ |
|
one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \ |
|
one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \ |
|
one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \ |
|
one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \ |
|
one_cycle(v, 1,2,3,4,0, f,k,hf(i+4)) |
|
|
|
VOID_RETURN sha1_compile(sha1_ctx ctx[1]) |
|
{ uint32_t *w = ctx->wbuf; |
|
|
|
#ifdef ARRAY |
|
uint32_t v[5]; |
|
memcpy(v, ctx->hash, sizeof(ctx->hash)); |
|
#else |
|
uint32_t v0, v1, v2, v3, v4; |
|
v0 = ctx->hash[0]; v1 = ctx->hash[1]; |
|
v2 = ctx->hash[2]; v3 = ctx->hash[3]; |
|
v4 = ctx->hash[4]; |
|
#endif |
|
|
|
#define hf(i) w[i] |
|
|
|
five_cycle(v, ch, 0x5a827999, 0); |
|
five_cycle(v, ch, 0x5a827999, 5); |
|
five_cycle(v, ch, 0x5a827999, 10); |
|
one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \ |
|
|
|
#undef hf |
|
#define hf(i) (w[(i) & 15] = rotl32( \ |
|
w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \ |
|
^ w[((i) + 2) & 15] ^ w[(i) & 15], 1)) |
|
|
|
one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16)); |
|
one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17)); |
|
one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18)); |
|
one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19)); |
|
|
|
five_cycle(v, parity, 0x6ed9eba1, 20); |
|
five_cycle(v, parity, 0x6ed9eba1, 25); |
|
five_cycle(v, parity, 0x6ed9eba1, 30); |
|
five_cycle(v, parity, 0x6ed9eba1, 35); |
|
|
|
five_cycle(v, maj, 0x8f1bbcdc, 40); |
|
five_cycle(v, maj, 0x8f1bbcdc, 45); |
|
five_cycle(v, maj, 0x8f1bbcdc, 50); |
|
five_cycle(v, maj, 0x8f1bbcdc, 55); |
|
|
|
five_cycle(v, parity, 0xca62c1d6, 60); |
|
five_cycle(v, parity, 0xca62c1d6, 65); |
|
five_cycle(v, parity, 0xca62c1d6, 70); |
|
five_cycle(v, parity, 0xca62c1d6, 75); |
|
|
|
#ifdef ARRAY |
|
ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; |
|
ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; |
|
ctx->hash[4] += v[4]; |
|
#else |
|
ctx->hash[0] += v0; ctx->hash[1] += v1; |
|
ctx->hash[2] += v2; ctx->hash[3] += v3; |
|
ctx->hash[4] += v4; |
|
#endif |
|
} |
|
|
|
VOID_RETURN sha1_begin(sha1_ctx ctx[1]) |
|
{ |
|
memset(ctx, 0, sizeof(sha1_ctx)); |
|
ctx->hash[0] = 0x67452301; |
|
ctx->hash[1] = 0xefcdab89; |
|
ctx->hash[2] = 0x98badcfe; |
|
ctx->hash[3] = 0x10325476; |
|
ctx->hash[4] = 0xc3d2e1f0; |
|
} |
|
|
|
/* SHA1 hash data in an array of bytes into hash buffer and */ |
|
/* call the hash_compile function as required. For both the */ |
|
/* bit and byte orientated versions, the block length 'len' */ |
|
/* must not be greater than 2^32 - 1 bits (2^29 - 1 bytes) */ |
|
|
|
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]) |
|
{ uint32_t pos = (uint32_t)((ctx->count[0] >> 3) & SHA1_MASK); |
|
const unsigned char *sp = data; |
|
unsigned char *w = (unsigned char*)ctx->wbuf; |
|
#if SHA1_BITS == 1 |
|
uint32_t ofs = (ctx->count[0] & 7); |
|
#else |
|
len <<= 3; |
|
#endif |
|
if((ctx->count[0] += len) < len) |
|
++(ctx->count[1]); |
|
#if SHA1_BITS == 1 |
|
if(ofs) /* if not on a byte boundary */ |
|
{ |
|
if(ofs + len < 8) /* if no added bytes are needed */ |
|
{ |
|
w[pos] |= (*sp >> ofs); |
|
} |
|
else /* otherwise and add bytes */ |
|
{ unsigned char part = w[pos]; |
|
|
|
while((int)(ofs + (len -= 8)) >= 0) |
|
{ |
|
w[pos++] = part | (*sp >> ofs); |
|
part = *sp++ << (8 - ofs); |
|
if(pos == SHA1_BLOCK_SIZE) |
|
{ |
|
bsw_32(w, SHA1_BLOCK_SIZE >> 2); |
|
sha1_compile(ctx); pos = 0; |
|
} |
|
} |
|
|
|
w[pos] = part; |
|
} |
|
} |
|
else /* data is byte aligned */ |
|
#endif |
|
{ uint32_t space = SHA1_BLOCK_SIZE - pos; |
|
|
|
while(len >= (space << 3)) |
|
{ |
|
memcpy(w + pos, sp, space); |
|
bsw_32(w, SHA1_BLOCK_SIZE >> 2); |
|
sha1_compile(ctx); |
|
sp += space; len -= (space << 3); |
|
space = SHA1_BLOCK_SIZE; pos = 0; |
|
} |
|
memcpy(w + pos, sp, (len + 7 * SHA1_BITS) >> 3); |
|
} |
|
} |
|
|
|
/* SHA1 final padding and digest calculation */ |
|
|
|
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]) |
|
{ uint32_t i = (uint32_t)((ctx->count[0] >> 3) & SHA1_MASK), m1; |
|
|
|
/* put bytes in the buffer in an order in which references to */ |
|
/* 32-bit words will put bytes with lower addresses into the */ |
|
/* top of 32 bit words on BOTH big and little endian machines */ |
|
bsw_32(ctx->wbuf, (i + 3 + SHA1_BITS) >> 2); |
|
|
|
/* we now need to mask valid bytes and add the padding which is */ |
|
/* a single 1 bit and as many zero bits as necessary. Note that */ |
|
/* we can always add the first padding byte here because the */ |
|
/* buffer always has at least one empty slot */ |
|
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7); |
|
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3)); |
|
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3)); |
|
|
|
/* we need 9 or more empty positions, one for the padding byte */ |
|
/* (above) and eight for the length count. If there is not */ |
|
/* enough space, pad and empty the buffer */ |
|
if(i > SHA1_BLOCK_SIZE - 9) |
|
{ |
|
if(i < 60) ctx->wbuf[15] = 0; |
|
sha1_compile(ctx); |
|
i = 0; |
|
} |
|
else /* compute a word index for the empty buffer positions */ |
|
i = (i >> 2) + 1; |
|
|
|
while(i < 14) /* and zero pad all but last two positions */ |
|
ctx->wbuf[i++] = 0; |
|
|
|
/* the following 32-bit length fields are assembled in the */ |
|
/* wrong byte order on little endian machines but this is */ |
|
/* corrected later since they are only ever used as 32-bit */ |
|
/* word values. */ |
|
ctx->wbuf[14] = ctx->count[1]; |
|
ctx->wbuf[15] = ctx->count[0]; |
|
sha1_compile(ctx); |
|
|
|
/* extract the hash value as bytes in case the hash buffer is */ |
|
/* misaligned for 32-bit words */ |
|
for(i = 0; i < SHA1_DIGEST_SIZE; ++i) |
|
hval[i] = ((ctx->hash[i >> 2] >> (8 * (~i & 3))) & 0xff); |
|
} |
|
|
|
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len) |
|
{ sha1_ctx cx[1]; |
|
|
|
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx); |
|
} |
|
|
|
#endif |
|
|
|
#if defined(__cplusplus) |
|
} |
|
#endif
|
|
|