Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5247 lines
151 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#include "cmdlib.h"
#include "mathlib/mathlib.h"
#include "bsplib.h"
#include "zip_utils.h"
#include "scriplib.h"
#include "utllinkedlist.h"
#include "bsptreedata.h"
#include "cmodel.h"
#include "gamebspfile.h"
#include "materialsystem/imaterial.h"
#include "materialsystem/hardwareverts.h"
#include "utlbuffer.h"
#include "utlrbtree.h"
#include "utlsymbol.h"
#include "utlstring.h"
#include "checksum_crc.h"
#include "physdll.h"
#include "tier0/dbg.h"
#include "lumpfiles.h"
#include "vtf/vtf.h"
#include "lzma/lzma.h"
#include "tier1/lzmaDecoder.h"
#include "tier0/memdbgon.h"
//=============================================================================
// Boundary each lump should be aligned to
#define LUMP_ALIGNMENT 4
// Data descriptions for byte swapping - only needed
// for structures that are written to file for use by the game.
BEGIN_BYTESWAP_DATADESC( dheader_t )
DEFINE_FIELD( ident, FIELD_INTEGER ),
DEFINE_FIELD( version, FIELD_INTEGER ),
DEFINE_EMBEDDED_ARRAY( lumps, HEADER_LUMPS ),
DEFINE_FIELD( mapRevision, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( lump_t )
DEFINE_FIELD( fileofs, FIELD_INTEGER ),
DEFINE_FIELD( filelen, FIELD_INTEGER ),
DEFINE_FIELD( version, FIELD_INTEGER ),
DEFINE_FIELD( uncompressedSize, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dflagslump_t )
DEFINE_FIELD( m_LevelFlags, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dplane_t )
DEFINE_FIELD( normal, FIELD_VECTOR ),
DEFINE_FIELD( dist, FIELD_FLOAT ),
DEFINE_FIELD( type, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleaf_version_0_t )
DEFINE_FIELD( contents, FIELD_INTEGER ),
DEFINE_FIELD( cluster, FIELD_SHORT ),
DEFINE_BITFIELD( bf, FIELD_SHORT, 16 ),
DEFINE_ARRAY( mins, FIELD_SHORT, 3 ),
DEFINE_ARRAY( maxs, FIELD_SHORT, 3 ),
DEFINE_FIELD( firstleafface, FIELD_SHORT ),
DEFINE_FIELD( numleaffaces, FIELD_SHORT ),
DEFINE_FIELD( firstleafbrush, FIELD_SHORT ),
DEFINE_FIELD( numleafbrushes, FIELD_SHORT ),
DEFINE_FIELD( leafWaterDataID, FIELD_SHORT ),
DEFINE_EMBEDDED( m_AmbientLighting ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleaf_t )
DEFINE_FIELD( contents, FIELD_INTEGER ),
DEFINE_FIELD( cluster, FIELD_SHORT ),
DEFINE_BITFIELD( bf, FIELD_SHORT, 16 ),
DEFINE_ARRAY( mins, FIELD_SHORT, 3 ),
DEFINE_ARRAY( maxs, FIELD_SHORT, 3 ),
DEFINE_FIELD( firstleafface, FIELD_SHORT ),
DEFINE_FIELD( numleaffaces, FIELD_SHORT ),
DEFINE_FIELD( firstleafbrush, FIELD_SHORT ),
DEFINE_FIELD( numleafbrushes, FIELD_SHORT ),
DEFINE_FIELD( leafWaterDataID, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CompressedLightCube ) // array of 6 ColorRGBExp32 (3 bytes and 1 char)
DEFINE_ARRAY( m_Color, FIELD_CHARACTER, 6 * sizeof(ColorRGBExp32) ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleafambientindex_t )
DEFINE_FIELD( ambientSampleCount, FIELD_SHORT ),
DEFINE_FIELD( firstAmbientSample, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleafambientlighting_t ) // array of 6 ColorRGBExp32 (3 bytes and 1 char)
DEFINE_EMBEDDED( cube ),
DEFINE_FIELD( x, FIELD_CHARACTER ),
DEFINE_FIELD( y, FIELD_CHARACTER ),
DEFINE_FIELD( z, FIELD_CHARACTER ),
DEFINE_FIELD( pad, FIELD_CHARACTER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dvertex_t )
DEFINE_FIELD( point, FIELD_VECTOR ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dnode_t )
DEFINE_FIELD( planenum, FIELD_INTEGER ),
DEFINE_ARRAY( children, FIELD_INTEGER, 2 ),
DEFINE_ARRAY( mins, FIELD_SHORT, 3 ),
DEFINE_ARRAY( maxs, FIELD_SHORT, 3 ),
DEFINE_FIELD( firstface, FIELD_SHORT ),
DEFINE_FIELD( numfaces, FIELD_SHORT ),
DEFINE_FIELD( area, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( texinfo_t )
DEFINE_ARRAY( textureVecsTexelsPerWorldUnits, FIELD_FLOAT, 2 * 4 ),
DEFINE_ARRAY( lightmapVecsLuxelsPerWorldUnits, FIELD_FLOAT, 2 * 4 ),
DEFINE_FIELD( flags, FIELD_INTEGER ),
DEFINE_FIELD( texdata, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dtexdata_t )
DEFINE_FIELD( reflectivity, FIELD_VECTOR ),
DEFINE_FIELD( nameStringTableID, FIELD_INTEGER ),
DEFINE_FIELD( width, FIELD_INTEGER ),
DEFINE_FIELD( height, FIELD_INTEGER ),
DEFINE_FIELD( view_width, FIELD_INTEGER ),
DEFINE_FIELD( view_height, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( ddispinfo_t )
DEFINE_FIELD( startPosition, FIELD_VECTOR ),
DEFINE_FIELD( m_iDispVertStart, FIELD_INTEGER ),
DEFINE_FIELD( m_iDispTriStart, FIELD_INTEGER ),
DEFINE_FIELD( power, FIELD_INTEGER ),
DEFINE_FIELD( minTess, FIELD_INTEGER ),
DEFINE_FIELD( smoothingAngle, FIELD_FLOAT ),
DEFINE_FIELD( contents, FIELD_INTEGER ),
DEFINE_FIELD( m_iMapFace, FIELD_SHORT ),
DEFINE_FIELD( m_iLightmapAlphaStart, FIELD_INTEGER ),
DEFINE_FIELD( m_iLightmapSamplePositionStart, FIELD_INTEGER ),
DEFINE_EMBEDDED_ARRAY( m_EdgeNeighbors, 4 ),
DEFINE_EMBEDDED_ARRAY( m_CornerNeighbors, 4 ),
DEFINE_ARRAY( m_AllowedVerts, FIELD_INTEGER, ddispinfo_t::ALLOWEDVERTS_SIZE ), // unsigned long
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispNeighbor )
DEFINE_EMBEDDED_ARRAY( m_SubNeighbors, 2 ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispCornerNeighbors )
DEFINE_ARRAY( m_Neighbors, FIELD_SHORT, MAX_DISP_CORNER_NEIGHBORS ),
DEFINE_FIELD( m_nNeighbors, FIELD_CHARACTER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispSubNeighbor )
DEFINE_FIELD( m_iNeighbor, FIELD_SHORT ),
DEFINE_FIELD( m_NeighborOrientation, FIELD_CHARACTER ),
DEFINE_FIELD( m_Span, FIELD_CHARACTER ),
DEFINE_FIELD( m_NeighborSpan, FIELD_CHARACTER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispVert )
DEFINE_FIELD( m_vVector, FIELD_VECTOR ),
DEFINE_FIELD( m_flDist, FIELD_FLOAT ),
DEFINE_FIELD( m_flAlpha, FIELD_FLOAT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CDispTri )
DEFINE_FIELD( m_uiTags, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( CFaceMacroTextureInfo )
DEFINE_FIELD( m_MacroTextureNameID, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dprimitive_t )
DEFINE_FIELD( type, FIELD_CHARACTER ),
DEFINE_FIELD( firstIndex, FIELD_SHORT ),
DEFINE_FIELD( indexCount, FIELD_SHORT ),
DEFINE_FIELD( firstVert, FIELD_SHORT ),
DEFINE_FIELD( vertCount, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dprimvert_t )
DEFINE_FIELD( pos, FIELD_VECTOR ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dface_t )
DEFINE_FIELD( planenum, FIELD_SHORT ),
DEFINE_FIELD( side, FIELD_CHARACTER ),
DEFINE_FIELD( onNode, FIELD_CHARACTER ),
DEFINE_FIELD( firstedge, FIELD_INTEGER ),
DEFINE_FIELD( numedges, FIELD_SHORT ),
DEFINE_FIELD( texinfo, FIELD_SHORT ),
DEFINE_FIELD( dispinfo, FIELD_SHORT ),
DEFINE_FIELD( surfaceFogVolumeID, FIELD_SHORT ),
DEFINE_ARRAY( styles, FIELD_CHARACTER, MAXLIGHTMAPS ),
DEFINE_FIELD( lightofs, FIELD_INTEGER ),
DEFINE_FIELD( area, FIELD_FLOAT ),
DEFINE_ARRAY( m_LightmapTextureMinsInLuxels, FIELD_INTEGER, 2 ),
DEFINE_ARRAY( m_LightmapTextureSizeInLuxels, FIELD_INTEGER, 2 ),
DEFINE_FIELD( origFace, FIELD_INTEGER ),
DEFINE_FIELD( m_NumPrims, FIELD_SHORT ),
DEFINE_FIELD( firstPrimID, FIELD_SHORT ),
DEFINE_FIELD( smoothingGroups, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dfaceid_t )
DEFINE_FIELD( hammerfaceid, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dbrush_t )
DEFINE_FIELD( firstside, FIELD_INTEGER ),
DEFINE_FIELD( numsides, FIELD_INTEGER ),
DEFINE_FIELD( contents, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dbrushside_t )
DEFINE_FIELD( planenum, FIELD_SHORT ),
DEFINE_FIELD( texinfo, FIELD_SHORT ),
DEFINE_FIELD( dispinfo, FIELD_SHORT ),
DEFINE_FIELD( bevel, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dedge_t )
DEFINE_ARRAY( v, FIELD_SHORT, 2 ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dmodel_t )
DEFINE_FIELD( mins, FIELD_VECTOR ),
DEFINE_FIELD( maxs, FIELD_VECTOR ),
DEFINE_FIELD( origin, FIELD_VECTOR ),
DEFINE_FIELD( headnode, FIELD_INTEGER ),
DEFINE_FIELD( firstface, FIELD_INTEGER ),
DEFINE_FIELD( numfaces, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dphysmodel_t )
DEFINE_FIELD( modelIndex, FIELD_INTEGER ),
DEFINE_FIELD( dataSize, FIELD_INTEGER ),
DEFINE_FIELD( keydataSize, FIELD_INTEGER ),
DEFINE_FIELD( solidCount, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dphysdisp_t )
DEFINE_FIELD( numDisplacements, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( darea_t )
DEFINE_FIELD( numareaportals, FIELD_INTEGER ),
DEFINE_FIELD( firstareaportal, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dareaportal_t )
DEFINE_FIELD( m_PortalKey, FIELD_SHORT ),
DEFINE_FIELD( otherarea, FIELD_SHORT ),
DEFINE_FIELD( m_FirstClipPortalVert, FIELD_SHORT ),
DEFINE_FIELD( m_nClipPortalVerts, FIELD_SHORT ),
DEFINE_FIELD( planenum, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dworldlight_t )
DEFINE_FIELD( origin, FIELD_VECTOR ),
DEFINE_FIELD( intensity, FIELD_VECTOR ),
DEFINE_FIELD( normal, FIELD_VECTOR ),
DEFINE_FIELD( cluster, FIELD_INTEGER ),
DEFINE_FIELD( type, FIELD_INTEGER ), // enumeration
DEFINE_FIELD( style, FIELD_INTEGER ),
DEFINE_FIELD( stopdot, FIELD_FLOAT ),
DEFINE_FIELD( stopdot2, FIELD_FLOAT ),
DEFINE_FIELD( exponent, FIELD_FLOAT ),
DEFINE_FIELD( radius, FIELD_FLOAT ),
DEFINE_FIELD( constant_attn, FIELD_FLOAT ),
DEFINE_FIELD( linear_attn, FIELD_FLOAT ),
DEFINE_FIELD( quadratic_attn, FIELD_FLOAT ),
DEFINE_FIELD( flags, FIELD_INTEGER ),
DEFINE_FIELD( texinfo, FIELD_INTEGER ),
DEFINE_FIELD( owner, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dleafwaterdata_t )
DEFINE_FIELD( surfaceZ, FIELD_FLOAT ),
DEFINE_FIELD( minZ, FIELD_FLOAT ),
DEFINE_FIELD( surfaceTexInfoID, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doccluderdata_t )
DEFINE_FIELD( flags, FIELD_INTEGER ),
DEFINE_FIELD( firstpoly, FIELD_INTEGER ),
DEFINE_FIELD( polycount, FIELD_INTEGER ),
DEFINE_FIELD( mins, FIELD_VECTOR ),
DEFINE_FIELD( maxs, FIELD_VECTOR ),
DEFINE_FIELD( area, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doccluderpolydata_t )
DEFINE_FIELD( firstvertexindex, FIELD_INTEGER ),
DEFINE_FIELD( vertexcount, FIELD_INTEGER ),
DEFINE_FIELD( planenum, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dcubemapsample_t )
DEFINE_ARRAY( origin, FIELD_INTEGER, 3 ),
DEFINE_FIELD( size, FIELD_CHARACTER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doverlay_t )
DEFINE_FIELD( nId, FIELD_INTEGER ),
DEFINE_FIELD( nTexInfo, FIELD_SHORT ),
DEFINE_FIELD( m_nFaceCountAndRenderOrder, FIELD_SHORT ),
DEFINE_ARRAY( aFaces, FIELD_INTEGER, OVERLAY_BSP_FACE_COUNT ),
DEFINE_ARRAY( flU, FIELD_FLOAT, 2 ),
DEFINE_ARRAY( flV, FIELD_FLOAT, 2 ),
DEFINE_ARRAY( vecUVPoints, FIELD_VECTOR, 4 ),
DEFINE_FIELD( vecOrigin, FIELD_VECTOR ),
DEFINE_FIELD( vecBasisNormal, FIELD_VECTOR ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dwateroverlay_t )
DEFINE_FIELD( nId, FIELD_INTEGER ),
DEFINE_FIELD( nTexInfo, FIELD_SHORT ),
DEFINE_FIELD( m_nFaceCountAndRenderOrder, FIELD_SHORT ),
DEFINE_ARRAY( aFaces, FIELD_INTEGER, WATEROVERLAY_BSP_FACE_COUNT ),
DEFINE_ARRAY( flU, FIELD_FLOAT, 2 ),
DEFINE_ARRAY( flV, FIELD_FLOAT, 2 ),
DEFINE_ARRAY( vecUVPoints, FIELD_VECTOR, 4 ),
DEFINE_FIELD( vecOrigin, FIELD_VECTOR ),
DEFINE_FIELD( vecBasisNormal, FIELD_VECTOR ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( doverlayfade_t )
DEFINE_FIELD( flFadeDistMinSq, FIELD_FLOAT ),
DEFINE_FIELD( flFadeDistMaxSq, FIELD_FLOAT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dgamelumpheader_t )
DEFINE_FIELD( lumpCount, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( dgamelump_t )
DEFINE_FIELD( id, FIELD_INTEGER ), // GameLumpId_t
DEFINE_FIELD( flags, FIELD_SHORT ),
DEFINE_FIELD( version, FIELD_SHORT ),
DEFINE_FIELD( fileofs, FIELD_INTEGER ),
DEFINE_FIELD( filelen, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
// From gamebspfile.h
BEGIN_BYTESWAP_DATADESC( StaticPropDictLump_t )
DEFINE_ARRAY( m_Name, FIELD_CHARACTER, STATIC_PROP_NAME_LENGTH ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLump_t )
DEFINE_FIELD( m_Origin, FIELD_VECTOR ),
DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_PropType, FIELD_SHORT ),
DEFINE_FIELD( m_FirstLeaf, FIELD_SHORT ),
DEFINE_FIELD( m_LeafCount, FIELD_SHORT ),
DEFINE_FIELD( m_Solid, FIELD_CHARACTER ),
DEFINE_FIELD( m_Flags, FIELD_CHARACTER ),
DEFINE_FIELD( m_Skin, FIELD_INTEGER ),
DEFINE_FIELD( m_FadeMinDist, FIELD_FLOAT ),
DEFINE_FIELD( m_FadeMaxDist, FIELD_FLOAT ),
DEFINE_FIELD( m_LightingOrigin, FIELD_VECTOR ),
DEFINE_FIELD( m_flForcedFadeScale, FIELD_FLOAT ),
DEFINE_FIELD( m_nMinDXLevel, FIELD_SHORT ),
DEFINE_FIELD( m_nMaxDXLevel, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLumpV4_t )
DEFINE_FIELD( m_Origin, FIELD_VECTOR ),
DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_PropType, FIELD_SHORT ),
DEFINE_FIELD( m_FirstLeaf, FIELD_SHORT ),
DEFINE_FIELD( m_LeafCount, FIELD_SHORT ),
DEFINE_FIELD( m_Solid, FIELD_CHARACTER ),
DEFINE_FIELD( m_Flags, FIELD_CHARACTER ),
DEFINE_FIELD( m_Skin, FIELD_INTEGER ),
DEFINE_FIELD( m_FadeMinDist, FIELD_FLOAT ),
DEFINE_FIELD( m_FadeMaxDist, FIELD_FLOAT ),
DEFINE_FIELD( m_LightingOrigin, FIELD_VECTOR ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLumpV5_t )
DEFINE_FIELD( m_Origin, FIELD_VECTOR ),
DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_PropType, FIELD_SHORT ),
DEFINE_FIELD( m_FirstLeaf, FIELD_SHORT ),
DEFINE_FIELD( m_LeafCount, FIELD_SHORT ),
DEFINE_FIELD( m_Solid, FIELD_CHARACTER ),
DEFINE_FIELD( m_Flags, FIELD_CHARACTER ),
DEFINE_FIELD( m_Skin, FIELD_INTEGER ),
DEFINE_FIELD( m_FadeMinDist, FIELD_FLOAT ),
DEFINE_FIELD( m_FadeMaxDist, FIELD_FLOAT ),
DEFINE_FIELD( m_LightingOrigin, FIELD_VECTOR ),
DEFINE_FIELD( m_flForcedFadeScale, FIELD_FLOAT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( StaticPropLeafLump_t )
DEFINE_FIELD( m_Leaf, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailObjectDictLump_t )
DEFINE_ARRAY( m_Name, FIELD_CHARACTER, DETAIL_NAME_LENGTH ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailObjectLump_t )
DEFINE_FIELD( m_Origin, FIELD_VECTOR ),
DEFINE_FIELD( m_Angles, FIELD_VECTOR ), // QAngle
DEFINE_FIELD( m_DetailModel, FIELD_SHORT ),
DEFINE_FIELD( m_Leaf, FIELD_SHORT ),
DEFINE_ARRAY( m_Lighting, FIELD_CHARACTER, 4 ), // ColorRGBExp32
DEFINE_FIELD( m_LightStyles, FIELD_INTEGER ),
DEFINE_FIELD( m_LightStyleCount, FIELD_CHARACTER ),
DEFINE_FIELD( m_SwayAmount, FIELD_CHARACTER ),
DEFINE_FIELD( m_ShapeAngle, FIELD_CHARACTER ),
DEFINE_FIELD( m_ShapeSize, FIELD_CHARACTER ),
DEFINE_FIELD( m_Orientation, FIELD_CHARACTER ),
DEFINE_ARRAY( m_Padding2, FIELD_CHARACTER, 3 ),
DEFINE_FIELD( m_Type, FIELD_CHARACTER ),
DEFINE_ARRAY( m_Padding3, FIELD_CHARACTER, 3 ),
DEFINE_FIELD( m_flScale, FIELD_FLOAT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailSpriteDictLump_t )
DEFINE_FIELD( m_UL, FIELD_VECTOR2D ),
DEFINE_FIELD( m_LR, FIELD_VECTOR2D ),
DEFINE_FIELD( m_TexUL, FIELD_VECTOR2D ),
DEFINE_FIELD( m_TexLR, FIELD_VECTOR2D ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( DetailPropLightstylesLump_t )
DEFINE_ARRAY( m_Lighting, FIELD_CHARACTER, 4 ), // ColorRGBExp32
DEFINE_FIELD( m_Style, FIELD_CHARACTER ),
END_BYTESWAP_DATADESC()
// From vradstaticprops.h
namespace HardwareVerts
{
BEGIN_BYTESWAP_DATADESC( MeshHeader_t )
DEFINE_FIELD( m_nLod, FIELD_INTEGER ),
DEFINE_FIELD( m_nVertexes, FIELD_INTEGER ),
DEFINE_FIELD( m_nOffset, FIELD_INTEGER ),
DEFINE_ARRAY( m_nUnused, FIELD_INTEGER, 4 ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC( FileHeader_t )
DEFINE_FIELD( m_nVersion, FIELD_INTEGER ),
DEFINE_FIELD( m_nChecksum, FIELD_INTEGER ),
DEFINE_FIELD( m_nVertexFlags, FIELD_INTEGER ),
DEFINE_FIELD( m_nVertexSize, FIELD_INTEGER ),
DEFINE_FIELD( m_nVertexes, FIELD_INTEGER ),
DEFINE_FIELD( m_nMeshes, FIELD_INTEGER ),
DEFINE_ARRAY( m_nUnused, FIELD_INTEGER, 4 ),
END_BYTESWAP_DATADESC()
} // end namespace
static const char *s_LumpNames[] = {
"LUMP_ENTITIES", // 0
"LUMP_PLANES", // 1
"LUMP_TEXDATA", // 2
"LUMP_VERTEXES", // 3
"LUMP_VISIBILITY", // 4
"LUMP_NODES", // 5
"LUMP_TEXINFO", // 6
"LUMP_FACES", // 7
"LUMP_LIGHTING", // 8
"LUMP_OCCLUSION", // 9
"LUMP_LEAFS", // 10
"LUMP_FACEIDS", // 11
"LUMP_EDGES", // 12
"LUMP_SURFEDGES", // 13
"LUMP_MODELS", // 14
"LUMP_WORLDLIGHTS", // 15
"LUMP_LEAFFACES", // 16
"LUMP_LEAFBRUSHES", // 17
"LUMP_BRUSHES", // 18
"LUMP_BRUSHSIDES", // 19
"LUMP_AREAS", // 20
"LUMP_AREAPORTALS", // 21
"LUMP_UNUSED0", // 22
"LUMP_UNUSED1", // 23
"LUMP_UNUSED2", // 24
"LUMP_UNUSED3", // 25
"LUMP_DISPINFO", // 26
"LUMP_ORIGINALFACES", // 27
"LUMP_PHYSDISP", // 28
"LUMP_PHYSCOLLIDE", // 29
"LUMP_VERTNORMALS", // 30
"LUMP_VERTNORMALINDICES", // 31
"LUMP_DISP_LIGHTMAP_ALPHAS", // 32
"LUMP_DISP_VERTS", // 33
"LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS", // 34
"LUMP_GAME_LUMP", // 35
"LUMP_LEAFWATERDATA", // 36
"LUMP_PRIMITIVES", // 37
"LUMP_PRIMVERTS", // 38
"LUMP_PRIMINDICES", // 39
"LUMP_PAKFILE", // 40
"LUMP_CLIPPORTALVERTS", // 41
"LUMP_CUBEMAPS", // 42
"LUMP_TEXDATA_STRING_DATA", // 43
"LUMP_TEXDATA_STRING_TABLE", // 44
"LUMP_OVERLAYS", // 45
"LUMP_LEAFMINDISTTOWATER", // 46
"LUMP_FACE_MACRO_TEXTURE_INFO", // 47
"LUMP_DISP_TRIS", // 48
"LUMP_PHYSCOLLIDESURFACE", // 49
"LUMP_WATEROVERLAYS", // 50
"LUMP_LEAF_AMBIENT_INDEX_HDR", // 51
"LUMP_LEAF_AMBIENT_INDEX", // 52
"LUMP_LIGHTING_HDR", // 53
"LUMP_WORLDLIGHTS_HDR", // 54
"LUMP_LEAF_AMBIENT_LIGHTING_HDR", // 55
"LUMP_LEAF_AMBIENT_LIGHTING", // 56
"LUMP_XZIPPAKFILE", // 57
"LUMP_FACES_HDR", // 58
"LUMP_MAP_FLAGS", // 59
"LUMP_OVERLAY_FADES", // 60
};
const char *GetLumpName( unsigned int lumpnum )
{
if ( lumpnum >= ARRAYSIZE( s_LumpNames ) )
{
return "UNKNOWN";
}
return s_LumpNames[lumpnum];
}
// "-hdr" tells us to use the HDR fields (if present) on the light sources. Also, tells us to write
// out the HDR lumps for lightmaps, ambient leaves, and lights sources.
bool g_bHDR = false;
// Set to true to generate Xbox360 native output files
static bool g_bSwapOnLoad = false;
static bool g_bSwapOnWrite = false;
VTFConvertFunc_t g_pVTFConvertFunc;
VHVFixupFunc_t g_pVHVFixupFunc;
CompressFunc_t g_pCompressFunc;
CUtlVector< CUtlString > g_StaticPropNames;
CUtlVector< int > g_StaticPropInstances;
CByteswap g_Swap;
uint32 g_LevelFlags = 0;
int nummodels;
dmodel_t dmodels[MAX_MAP_MODELS];
int visdatasize;
byte dvisdata[MAX_MAP_VISIBILITY];
dvis_t *dvis = (dvis_t *)dvisdata;
CUtlVector<byte> dlightdataHDR;
CUtlVector<byte> dlightdataLDR;
CUtlVector<byte> *pdlightdata = &dlightdataLDR;
CUtlVector<char> dentdata;
int numleafs;
#if !defined( BSP_USE_LESS_MEMORY )
dleaf_t dleafs[MAX_MAP_LEAFS];
#else
dleaf_t *dleafs;
#endif
CUtlVector<dleafambientindex_t> g_LeafAmbientIndexLDR;
CUtlVector<dleafambientindex_t> g_LeafAmbientIndexHDR;
CUtlVector<dleafambientindex_t> *g_pLeafAmbientIndex = NULL;
CUtlVector<dleafambientlighting_t> g_LeafAmbientLightingLDR;
CUtlVector<dleafambientlighting_t> g_LeafAmbientLightingHDR;
CUtlVector<dleafambientlighting_t> *g_pLeafAmbientLighting = NULL;
unsigned short g_LeafMinDistToWater[MAX_MAP_LEAFS];
int numplanes;
dplane_t dplanes[MAX_MAP_PLANES];
int numvertexes;
dvertex_t dvertexes[MAX_MAP_VERTS];
int g_numvertnormalindices; // dfaces reference these. These index g_vertnormals.
unsigned short g_vertnormalindices[MAX_MAP_VERTNORMALS];
int g_numvertnormals;
Vector g_vertnormals[MAX_MAP_VERTNORMALS];
int numnodes;
dnode_t dnodes[MAX_MAP_NODES];
CUtlVector<texinfo_t> texinfo( MAX_MAP_TEXINFO );
int numtexdata;
dtexdata_t dtexdata[MAX_MAP_TEXDATA];
//
// displacement map bsp file info: dispinfo
//
CUtlVector<ddispinfo_t> g_dispinfo;
CUtlVector<CDispVert> g_DispVerts;
CUtlVector<CDispTri> g_DispTris;
CUtlVector<unsigned char> g_DispLightmapSamplePositions; // LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS
int numorigfaces;
dface_t dorigfaces[MAX_MAP_FACES];
int g_numprimitives = 0;
dprimitive_t g_primitives[MAX_MAP_PRIMITIVES];
int g_numprimverts = 0;
dprimvert_t g_primverts[MAX_MAP_PRIMVERTS];
int g_numprimindices = 0;
unsigned short g_primindices[MAX_MAP_PRIMINDICES];
int numfaces;
dface_t dfaces[MAX_MAP_FACES];
int numfaceids;
CUtlVector<dfaceid_t> dfaceids;
int numfaces_hdr;
dface_t dfaces_hdr[MAX_MAP_FACES];
int numedges;
dedge_t dedges[MAX_MAP_EDGES];
int numleaffaces;
unsigned short dleaffaces[MAX_MAP_LEAFFACES];
int numleafbrushes;
unsigned short dleafbrushes[MAX_MAP_LEAFBRUSHES];
int numsurfedges;
int dsurfedges[MAX_MAP_SURFEDGES];
int numbrushes;
dbrush_t dbrushes[MAX_MAP_BRUSHES];
int numbrushsides;
dbrushside_t dbrushsides[MAX_MAP_BRUSHSIDES];
int numareas;
darea_t dareas[MAX_MAP_AREAS];
int numareaportals;
dareaportal_t dareaportals[MAX_MAP_AREAPORTALS];
int numworldlightsLDR;
dworldlight_t dworldlightsLDR[MAX_MAP_WORLDLIGHTS];
int numworldlightsHDR;
dworldlight_t dworldlightsHDR[MAX_MAP_WORLDLIGHTS];
int *pNumworldlights = &numworldlightsLDR;
dworldlight_t *dworldlights = dworldlightsLDR;
int numleafwaterdata = 0;
dleafwaterdata_t dleafwaterdata[MAX_MAP_LEAFWATERDATA];
CUtlVector<CFaceMacroTextureInfo> g_FaceMacroTextureInfos;
Vector g_ClipPortalVerts[MAX_MAP_PORTALVERTS];
int g_nClipPortalVerts;
dcubemapsample_t g_CubemapSamples[MAX_MAP_CUBEMAPSAMPLES];
int g_nCubemapSamples = 0;
int g_nOverlayCount;
doverlay_t g_Overlays[MAX_MAP_OVERLAYS];
doverlayfade_t g_OverlayFades[MAX_MAP_OVERLAYS];
int g_nWaterOverlayCount;
dwateroverlay_t g_WaterOverlays[MAX_MAP_WATEROVERLAYS];
CUtlVector<char> g_TexDataStringData;
CUtlVector<int> g_TexDataStringTable;
byte *g_pPhysCollide = NULL;
int g_PhysCollideSize = 0;
int g_MapRevision = 0;
byte *g_pPhysDisp = NULL;
int g_PhysDispSize = 0;
CUtlVector<doccluderdata_t> g_OccluderData( 256, 256 );
CUtlVector<doccluderpolydata_t> g_OccluderPolyData( 1024, 1024 );
CUtlVector<int> g_OccluderVertexIndices( 2048, 2048 );
template <class T> static void WriteData( T *pData, int count = 1 );
template <class T> static void WriteData( int fieldType, T *pData, int count = 1 );
template< class T > static void AddLump( int lumpnum, T *pData, int count, int version = 0 );
template< class T > static void AddLump( int lumpnum, CUtlVector<T> &data, int version = 0 );
dheader_t *g_pBSPHeader;
FileHandle_t g_hBSPFile;
struct Lump_t
{
void *pLumps[HEADER_LUMPS];
int size[HEADER_LUMPS];
bool bLumpParsed[HEADER_LUMPS];
} g_Lumps;
CGameLump g_GameLumps;
static IZip *s_pakFile = 0;
//-----------------------------------------------------------------------------
// Keep the file position aligned to an arbitrary boundary.
// Returns updated file position.
//-----------------------------------------------------------------------------
static unsigned int AlignFilePosition( FileHandle_t hFile, int alignment )
{
unsigned int currPosition = g_pFileSystem->Tell( hFile );
if ( alignment >= 2 )
{
unsigned int newPosition = AlignValue( currPosition, alignment );
unsigned int count = newPosition - currPosition;
if ( count )
{
char *pBuffer;
char smallBuffer[4096];
if ( count > sizeof( smallBuffer ) )
{
pBuffer = (char *)malloc( count );
}
else
{
pBuffer = smallBuffer;
}
memset( pBuffer, 0, count );
SafeWrite( hFile, pBuffer, count );
if ( pBuffer != smallBuffer )
{
free( pBuffer );
}
currPosition = newPosition;
}
}
return currPosition;
}
//-----------------------------------------------------------------------------
// Purpose: // Get a pakfile instance
// Output : IZip*
//-----------------------------------------------------------------------------
IZip* GetPakFile( void )
{
if ( !s_pakFile )
{
s_pakFile = IZip::CreateZip();
}
return s_pakFile;
}
//-----------------------------------------------------------------------------
// Purpose: Free the pak files
//-----------------------------------------------------------------------------
void ReleasePakFileLumps( void )
{
// Release the pak files
IZip::ReleaseZip( s_pakFile );
s_pakFile = NULL;
}
//-----------------------------------------------------------------------------
// Purpose: Set the sector alignment for all subsequent zip operations
//-----------------------------------------------------------------------------
void ForceAlignment( IZip *pak, bool bAlign, bool bCompatibleFormat, unsigned int alignmentSize )
{
pak->ForceAlignment( bAlign, bCompatibleFormat, alignmentSize );
}
//-----------------------------------------------------------------------------
// Purpose: Store data back out to .bsp file
//-----------------------------------------------------------------------------
static void WritePakFileLump( void )
{
CUtlBuffer buf( 0, 0 );
GetPakFile()->ActivateByteSwapping( IsX360() );
GetPakFile()->SaveToBuffer( buf );
// must respect pak file alignment
// pad up and ensure lump starts on same aligned boundary
AlignFilePosition( g_hBSPFile, GetPakFile()->GetAlignment() );
// Now store final buffers out to file
AddLump( LUMP_PAKFILE, (byte*)buf.Base(), buf.TellPut() );
}
//-----------------------------------------------------------------------------
// Purpose: Remove all entries
//-----------------------------------------------------------------------------
void ClearPakFile( IZip *pak )
{
pak->Reset();
}
//-----------------------------------------------------------------------------
// Purpose: Add file from disk to .bsp PAK lump
// Input : *relativename -
// *fullpath -
//-----------------------------------------------------------------------------
void AddFileToPak( IZip *pak, const char *relativename, const char *fullpath, IZip::eCompressionType compressionType )
{
DevMsg( "Adding file to pakfile [ %s ]\n", fullpath );
pak->AddFileToZip( relativename, fullpath, compressionType );
}
//-----------------------------------------------------------------------------
// Purpose: Add buffer to .bsp PAK lump as named file
// Input : *relativename -
// *data -
// length -
//-----------------------------------------------------------------------------
void AddBufferToPak( IZip *pak, const char *pRelativeName, void *data, int length, bool bTextMode, IZip::eCompressionType compressionType )
{
pak->AddBufferToZip( pRelativeName, data, length, bTextMode, compressionType );
}
//-----------------------------------------------------------------------------
// Purpose: Add entire directory to .bsp PAK lump as named file
// Input : *relativename -
// *data -
// length -
//-----------------------------------------------------------------------------
void AddDirToPak( IZip *pak, const char *pDirPath, const char *pPakPrefix )
{
if ( !g_pFullFileSystem->IsDirectory( pDirPath ) )
{
Warning( "Passed non-directory to AddDirToPak [ %s ]\n", pDirPath );
return;
}
DevMsg( "Adding directory to pakfile [ %s ]\n", pDirPath );
// Enumerate dir
char szEnumerateDir[MAX_PATH] = { 0 };
V_snprintf( szEnumerateDir, sizeof( szEnumerateDir ), "%s/*.*", pDirPath );
V_FixSlashes( szEnumerateDir );
FileFindHandle_t handle;
const char *szFindResult = g_pFullFileSystem->FindFirst( szEnumerateDir, &handle );
do
{
if ( szFindResult[0] != '.' )
{
char szPakName[MAX_PATH] = { 0 };
char szFullPath[MAX_PATH] = { 0 };
if ( pPakPrefix )
{
V_snprintf( szPakName, sizeof( szPakName ), "%s/%s", pPakPrefix, szFindResult );
}
else
{
V_strncpy( szPakName, szFindResult, sizeof( szPakName ) );
}
V_snprintf( szFullPath, sizeof( szFullPath ), "%s/%s", pDirPath, szFindResult );
V_FixDoubleSlashes( szFullPath );
V_FixDoubleSlashes( szPakName );
if ( g_pFullFileSystem->FindIsDirectory( handle ) )
{
// Recurse
AddDirToPak( pak, szFullPath, szPakName );
}
else
{
// Just add this file
AddFileToPak( pak, szPakName, szFullPath );
}
}
szFindResult = g_pFullFileSystem->FindNext( handle );
} while ( szFindResult);
}
//-----------------------------------------------------------------------------
// Purpose: Check if a file already exists in the pack file.
// Input : *relativename -
//-----------------------------------------------------------------------------
bool FileExistsInPak( IZip *pak, const char *pRelativeName )
{
return pak->FileExistsInZip( pRelativeName );
}
//-----------------------------------------------------------------------------
// Read a file from the pack file
//-----------------------------------------------------------------------------
bool ReadFileFromPak( IZip *pak, const char *pRelativeName, bool bTextMode, CUtlBuffer &buf )
{
return pak->ReadFileFromZip( pRelativeName, bTextMode, buf );
}
//-----------------------------------------------------------------------------
// Purpose: Remove file from .bsp PAK lump
// Input : *relativename -
//-----------------------------------------------------------------------------
void RemoveFileFromPak( IZip *pak, const char *relativename )
{
pak->RemoveFileFromZip( relativename );
}
//-----------------------------------------------------------------------------
// Purpose: Get next filename in directory
// Input : id, -1 to start, returns next id, or -1 at list conclusion
//-----------------------------------------------------------------------------
int GetNextFilename( IZip *pak, int id, char *pBuffer, int bufferSize, int &fileSize )
{
return pak->GetNextFilename( id, pBuffer, bufferSize, fileSize );
}
//-----------------------------------------------------------------------------
// Convert four-CC code to a handle + back
//-----------------------------------------------------------------------------
GameLumpHandle_t CGameLump::GetGameLumpHandle( GameLumpId_t id )
{
// NOTE: I'm also expecting game lump id's to be four-CC codes
Assert( id > HEADER_LUMPS );
FOR_EACH_LL(m_GameLumps, i)
{
if (m_GameLumps[i].m_Id == id)
return i;
}
return InvalidGameLump();
}
GameLumpId_t CGameLump::GetGameLumpId( GameLumpHandle_t handle )
{
return m_GameLumps[handle].m_Id;
}
int CGameLump::GetGameLumpFlags( GameLumpHandle_t handle )
{
return m_GameLumps[handle].m_Flags;
}
int CGameLump::GetGameLumpVersion( GameLumpHandle_t handle )
{
return m_GameLumps[handle].m_Version;
}
//-----------------------------------------------------------------------------
// Game lump accessor methods
//-----------------------------------------------------------------------------
void* CGameLump::GetGameLump( GameLumpHandle_t id )
{
return m_GameLumps[id].m_Memory.Base();
}
int CGameLump::GameLumpSize( GameLumpHandle_t id )
{
return m_GameLumps[id].m_Memory.NumAllocated();
}
//-----------------------------------------------------------------------------
// Game lump iteration methods
//-----------------------------------------------------------------------------
GameLumpHandle_t CGameLump::FirstGameLump()
{
return (m_GameLumps.Count()) ? m_GameLumps.Head() : InvalidGameLump();
}
GameLumpHandle_t CGameLump::NextGameLump( GameLumpHandle_t handle )
{
return (m_GameLumps.IsValidIndex(handle)) ? m_GameLumps.Next(handle) : InvalidGameLump();
}
GameLumpHandle_t CGameLump::InvalidGameLump()
{
return 0xFFFF;
}
//-----------------------------------------------------------------------------
// Game lump creation/destruction method
//-----------------------------------------------------------------------------
GameLumpHandle_t CGameLump::CreateGameLump( GameLumpId_t id, int size, int flags, int version )
{
Assert( GetGameLumpHandle(id) == InvalidGameLump() );
GameLumpHandle_t handle = m_GameLumps.AddToTail();
m_GameLumps[handle].m_Id = id;
m_GameLumps[handle].m_Flags = flags;
m_GameLumps[handle].m_Version = version;
m_GameLumps[handle].m_Memory.EnsureCapacity( size );
return handle;
}
void CGameLump::DestroyGameLump( GameLumpHandle_t handle )
{
m_GameLumps.Remove( handle );
}
void CGameLump::DestroyAllGameLumps()
{
m_GameLumps.RemoveAll();
}
//-----------------------------------------------------------------------------
// Compute file size and clump count
//-----------------------------------------------------------------------------
void CGameLump::ComputeGameLumpSizeAndCount( int& size, int& clumpCount )
{
// Figure out total size of the client lumps
size = 0;
clumpCount = 0;
GameLumpHandle_t h;
for( h = FirstGameLump(); h != InvalidGameLump(); h = NextGameLump( h ) )
{
++clumpCount;
size += GameLumpSize( h );
}
// Add on headers
size += sizeof( dgamelumpheader_t ) + clumpCount * sizeof( dgamelump_t );
}
void CGameLump::SwapGameLump( GameLumpId_t id, int version, byte *dest, byte *src, int length )
{
int count = 0;
switch( id )
{
case GAMELUMP_STATIC_PROPS:
// Swap the static prop model dict
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (StaticPropDictLump_t*)dest, (StaticPropDictLump_t*)src, count );
src += sizeof(StaticPropDictLump_t) * count;
dest += sizeof(StaticPropDictLump_t) * count;
// Swap the leaf list
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (StaticPropLeafLump_t*)dest, (StaticPropLeafLump_t*)src, count );
src += sizeof(StaticPropLeafLump_t) * count;
dest += sizeof(StaticPropLeafLump_t) * count;
// Swap the models
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
// The one-at-a-time swap is to compensate for these structures
// possibly being misaligned, which crashes the Xbox 360.
if ( version == 4 )
{
StaticPropLumpV4_t lump;
for ( int i = 0; i < count; ++i )
{
Q_memcpy( &lump, src, sizeof(StaticPropLumpV4_t) );
g_Swap.SwapFieldsToTargetEndian( &lump, &lump );
Q_memcpy( dest, &lump, sizeof(StaticPropLumpV4_t) );
src += sizeof( StaticPropLumpV4_t );
dest += sizeof( StaticPropLumpV4_t );
}
}
else if ( version == 5 )
{
StaticPropLumpV5_t lump;
for ( int i = 0; i < count; ++i )
{
Q_memcpy( &lump, src, sizeof(StaticPropLumpV5_t) );
g_Swap.SwapFieldsToTargetEndian( &lump, &lump );
Q_memcpy( dest, &lump, sizeof(StaticPropLumpV5_t) );
src += sizeof( StaticPropLumpV5_t );
dest += sizeof( StaticPropLumpV5_t );
}
}
else
{
if ( version != 6 )
{
Error( "Unknown Static Prop Lump version %d didn't get swapped!\n", version );
}
StaticPropLump_t lump;
for ( int i = 0; i < count; ++i )
{
Q_memcpy( &lump, src, sizeof(StaticPropLump_t) );
g_Swap.SwapFieldsToTargetEndian( &lump, &lump );
Q_memcpy( dest, &lump, sizeof(StaticPropLump_t) );
src += sizeof( StaticPropLump_t );
dest += sizeof( StaticPropLump_t );
}
}
break;
case GAMELUMP_DETAIL_PROPS:
// Swap the detail prop model dict
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (DetailObjectDictLump_t*)dest, (DetailObjectDictLump_t*)src, count );
src += sizeof(DetailObjectDictLump_t) * count;
dest += sizeof(DetailObjectDictLump_t) * count;
if ( version == 4 )
{
// Swap the detail sprite dict
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
DetailSpriteDictLump_t spritelump;
for ( int i = 0; i < count; ++i )
{
Q_memcpy( &spritelump, src, sizeof(DetailSpriteDictLump_t) );
g_Swap.SwapFieldsToTargetEndian( &spritelump, &spritelump );
Q_memcpy( dest, &spritelump, sizeof(DetailSpriteDictLump_t) );
src += sizeof(DetailSpriteDictLump_t);
dest += sizeof(DetailSpriteDictLump_t);
}
// Swap the models
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
DetailObjectLump_t objectlump;
for ( int i = 0; i < count; ++i )
{
Q_memcpy( &objectlump, src, sizeof(DetailObjectLump_t) );
g_Swap.SwapFieldsToTargetEndian( &objectlump, &objectlump );
Q_memcpy( dest, &objectlump, sizeof(DetailObjectLump_t) );
src += sizeof(DetailObjectLump_t);
dest += sizeof(DetailObjectLump_t);
}
}
break;
case GAMELUMP_DETAIL_PROP_LIGHTING:
// Swap the LDR light styles
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (DetailPropLightstylesLump_t*)dest, (DetailPropLightstylesLump_t*)src, count );
src += sizeof(DetailObjectDictLump_t) * count;
dest += sizeof(DetailObjectDictLump_t) * count;
break;
case GAMELUMP_DETAIL_PROP_LIGHTING_HDR:
// Swap the HDR light styles
count = *(int*)src;
g_Swap.SwapBufferToTargetEndian( (int*)dest, (int*)src );
count = g_bSwapOnLoad ? *(int*)dest : count;
src += sizeof(int);
dest += sizeof(int);
g_Swap.SwapFieldsToTargetEndian( (DetailPropLightstylesLump_t*)dest, (DetailPropLightstylesLump_t*)src, count );
src += sizeof(DetailObjectDictLump_t) * count;
dest += sizeof(DetailObjectDictLump_t) * count;
break;
default:
char idchars[5] = {0};
Q_memcpy( idchars, &id, 4 );
Warning( "Unknown game lump '%s' didn't get swapped!\n", idchars );
memcpy ( dest, src, length);
break;
}
}
//-----------------------------------------------------------------------------
// Game lump file I/O
//-----------------------------------------------------------------------------
void CGameLump::ParseGameLump( dheader_t* pHeader )
{
g_GameLumps.DestroyAllGameLumps();
g_Lumps.bLumpParsed[LUMP_GAME_LUMP] = true;
int length = pHeader->lumps[LUMP_GAME_LUMP].filelen;
int ofs = pHeader->lumps[LUMP_GAME_LUMP].fileofs;
if (length > 0)
{
// Read dictionary...
dgamelumpheader_t* pGameLumpHeader = (dgamelumpheader_t*)((byte *)pHeader + ofs);
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( pGameLumpHeader );
}
dgamelump_t* pGameLump = (dgamelump_t*)(pGameLumpHeader + 1);
for (int i = 0; i < pGameLumpHeader->lumpCount; ++i )
{
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( &pGameLump[i] );
}
int length = pGameLump[i].filelen;
GameLumpHandle_t lump = g_GameLumps.CreateGameLump( pGameLump[i].id, length, pGameLump[i].flags, pGameLump[i].version );
if ( g_bSwapOnLoad )
{
SwapGameLump( pGameLump[i].id, pGameLump[i].version, (byte*)g_GameLumps.GetGameLump(lump), (byte *)pHeader + pGameLump[i].fileofs, length );
}
else
{
memcpy( g_GameLumps.GetGameLump(lump), (byte *)pHeader + pGameLump[i].fileofs, length );
}
}
}
}
//-----------------------------------------------------------------------------
// String table methods
//-----------------------------------------------------------------------------
const char *TexDataStringTable_GetString( int stringID )
{
return &g_TexDataStringData[g_TexDataStringTable[stringID]];
}
int TexDataStringTable_AddOrFindString( const char *pString )
{
int i;
// garymcthack: Make this use an RBTree!
for( i = 0; i < g_TexDataStringTable.Count(); i++ )
{
if( stricmp( pString, &g_TexDataStringData[g_TexDataStringTable[i]] ) == 0 )
{
return i;
}
}
int len = strlen( pString );
int outOffset = g_TexDataStringData.AddMultipleToTail( len+1, pString );
int outIndex = g_TexDataStringTable.AddToTail( outOffset );
return outIndex;
}
//-----------------------------------------------------------------------------
// Adds all game lumps into one big block
//-----------------------------------------------------------------------------
static void AddGameLumps( )
{
// Figure out total size of the client lumps
int size, clumpCount;
g_GameLumps.ComputeGameLumpSizeAndCount( size, clumpCount );
// Set up the main lump dictionary entry
g_Lumps.size[LUMP_GAME_LUMP] = 0; // mark it written
lump_t* lump = &g_pBSPHeader->lumps[LUMP_GAME_LUMP];
lump->fileofs = g_pFileSystem->Tell( g_hBSPFile );
lump->filelen = size;
// write header
dgamelumpheader_t header;
header.lumpCount = clumpCount;
WriteData( &header );
// write dictionary
dgamelump_t dict;
int offset = lump->fileofs + sizeof(header) + clumpCount * sizeof(dgamelump_t);
GameLumpHandle_t h;
for( h = g_GameLumps.FirstGameLump(); h != g_GameLumps.InvalidGameLump(); h = g_GameLumps.NextGameLump( h ) )
{
dict.id = g_GameLumps.GetGameLumpId(h);
dict.version = g_GameLumps.GetGameLumpVersion(h);
dict.flags = g_GameLumps.GetGameLumpFlags(h);
dict.fileofs = offset;
dict.filelen = g_GameLumps.GameLumpSize( h );
offset += dict.filelen;
WriteData( &dict );
}
// write lumps..
for( h = g_GameLumps.FirstGameLump(); h != g_GameLumps.InvalidGameLump(); h = g_GameLumps.NextGameLump( h ) )
{
unsigned int lumpsize = g_GameLumps.GameLumpSize(h);
if ( g_bSwapOnWrite )
{
g_GameLumps.SwapGameLump( g_GameLumps.GetGameLumpId(h), g_GameLumps.GetGameLumpVersion(h), (byte*)g_GameLumps.GetGameLump(h), (byte*)g_GameLumps.GetGameLump(h), lumpsize );
}
SafeWrite( g_hBSPFile, g_GameLumps.GetGameLump(h), lumpsize );
}
// align to doubleword
AlignFilePosition( g_hBSPFile, 4 );
}
//-----------------------------------------------------------------------------
// Adds the occluder lump...
//-----------------------------------------------------------------------------
static void AddOcclusionLump( )
{
g_Lumps.size[LUMP_OCCLUSION] = 0; // mark it written
int nOccluderCount = g_OccluderData.Count();
int nOccluderPolyDataCount = g_OccluderPolyData.Count();
int nOccluderVertexIndices = g_OccluderVertexIndices.Count();
int nLumpLength = nOccluderCount * sizeof(doccluderdata_t) +
nOccluderPolyDataCount * sizeof(doccluderpolydata_t) +
nOccluderVertexIndices * sizeof(int) +
3 * sizeof(int);
lump_t *lump = &g_pBSPHeader->lumps[LUMP_OCCLUSION];
lump->fileofs = g_pFileSystem->Tell( g_hBSPFile );
lump->filelen = nLumpLength;
lump->version = LUMP_OCCLUSION_VERSION;
lump->uncompressedSize = 0;
// Data is swapped in place, so the 'Count' variables aren't safe to use after they're written
WriteData( FIELD_INTEGER, &nOccluderCount );
WriteData( (doccluderdata_t*)g_OccluderData.Base(), g_OccluderData.Count() );
WriteData( FIELD_INTEGER, &nOccluderPolyDataCount );
WriteData( (doccluderpolydata_t*)g_OccluderPolyData.Base(), g_OccluderPolyData.Count() );
WriteData( FIELD_INTEGER, &nOccluderVertexIndices );
WriteData( FIELD_INTEGER, (int*)g_OccluderVertexIndices.Base(), g_OccluderVertexIndices.Count() );
}
//-----------------------------------------------------------------------------
// Loads the occluder lump...
//-----------------------------------------------------------------------------
static void UnserializeOcclusionLumpV2( CUtlBuffer &buf )
{
int nCount = buf.GetInt();
if ( nCount )
{
g_OccluderData.SetCount( nCount );
buf.GetObjects( g_OccluderData.Base(), nCount );
}
nCount = buf.GetInt();
if ( nCount )
{
g_OccluderPolyData.SetCount( nCount );
buf.GetObjects( g_OccluderPolyData.Base(), nCount );
}
nCount = buf.GetInt();
if ( nCount )
{
if ( g_bSwapOnLoad )
{
g_Swap.SwapBufferToTargetEndian( (int*)buf.PeekGet(), (int*)buf.PeekGet(), nCount );
}
g_OccluderVertexIndices.SetCount( nCount );
buf.Get( g_OccluderVertexIndices.Base(), nCount * sizeof(g_OccluderVertexIndices[0]) );
}
}
static void LoadOcclusionLump()
{
g_OccluderData.RemoveAll();
g_OccluderPolyData.RemoveAll();
g_OccluderVertexIndices.RemoveAll();
int length, ofs;
g_Lumps.bLumpParsed[LUMP_OCCLUSION] = true;
length = g_pBSPHeader->lumps[LUMP_OCCLUSION].filelen;
ofs = g_pBSPHeader->lumps[LUMP_OCCLUSION].fileofs;
CUtlBuffer buf( (byte *)g_pBSPHeader + ofs, length, CUtlBuffer::READ_ONLY );
buf.ActivateByteSwapping( g_bSwapOnLoad );
switch ( g_pBSPHeader->lumps[LUMP_OCCLUSION].version )
{
case 2:
UnserializeOcclusionLumpV2( buf );
break;
case 0:
break;
default:
Error("Unknown occlusion lump version!\n");
break;
}
}
/*
===============
CompressVis
===============
*/
int CompressVis (byte *vis, byte *dest)
{
int j;
int rep;
int visrow;
byte *dest_p;
dest_p = dest;
// visrow = (r_numvisleafs + 7)>>3;
visrow = (dvis->numclusters + 7)>>3;
for (j=0 ; j<visrow ; j++)
{
*dest_p++ = vis[j];
if (vis[j])
continue;
rep = 1;
for ( j++; j<visrow ; j++)
if (vis[j] || rep == 255)
break;
else
rep++;
*dest_p++ = rep;
j--;
}
return dest_p - dest;
}
/*
===================
DecompressVis
===================
*/
void DecompressVis (byte *in, byte *decompressed)
{
int c;
byte *out;
int row;
// row = (r_numvisleafs+7)>>3;
row = (dvis->numclusters+7)>>3;
out = decompressed;
do
{
if (*in)
{
*out++ = *in++;
continue;
}
c = in[1];
if (!c)
Error ("DecompressVis: 0 repeat");
in += 2;
if ((out - decompressed) + c > row)
{
c = row - (out - decompressed);
Warning( "warning: Vis decompression overrun\n" );
}
while (c)
{
*out++ = 0;
c--;
}
} while (out - decompressed < row);
}
//-----------------------------------------------------------------------------
// Lump-specific swap functions
//-----------------------------------------------------------------------------
struct swapcollideheader_t
{
DECLARE_BYTESWAP_DATADESC();
int size;
int vphysicsID;
short version;
short modelType;
};
struct swapcompactsurfaceheader_t : swapcollideheader_t
{
DECLARE_BYTESWAP_DATADESC();
int surfaceSize;
Vector dragAxisAreas;
int axisMapSize;
};
struct swapmoppsurfaceheader_t : swapcollideheader_t
{
DECLARE_BYTESWAP_DATADESC();
int moppSize;
};
BEGIN_BYTESWAP_DATADESC( swapcollideheader_t )
DEFINE_FIELD( size, FIELD_INTEGER ),
DEFINE_FIELD( vphysicsID, FIELD_INTEGER ),
DEFINE_FIELD( version, FIELD_SHORT ),
DEFINE_FIELD( modelType, FIELD_SHORT ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC_( swapcompactsurfaceheader_t, swapcollideheader_t )
DEFINE_FIELD( surfaceSize, FIELD_INTEGER ),
DEFINE_FIELD( dragAxisAreas, FIELD_VECTOR ),
DEFINE_FIELD( axisMapSize, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC_( swapmoppsurfaceheader_t, swapcollideheader_t )
DEFINE_FIELD( moppSize, FIELD_INTEGER ),
END_BYTESWAP_DATADESC()
static void SwapPhyscollideLump( byte *pDestBase, byte *pSrcBase, unsigned int &count )
{
IPhysicsCollision *physcollision = NULL;
CSysModule *pPhysicsModule = g_pFullFileSystem->LoadModule( "vphysics.dll" );
if ( pPhysicsModule )
{
CreateInterfaceFn physicsFactory = Sys_GetFactory( pPhysicsModule );
if ( physicsFactory )
{
physcollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL );
}
}
if ( !physcollision )
{
Warning("!!! WARNING: Can't swap the physcollide lump!\n" );
return;
}
// physics data is variable length. The last physmodel is a NULL pointer
// with modelIndex -1, dataSize -1
dphysmodel_t *pPhysModel;
byte *pSrc = pSrcBase;
// first the src chunks have to be aligned properly
// swap increases size, allocate enough expansion room
byte *pSrcAlignedBase = (byte*)malloc( 2*count );
byte *basePtr = pSrcAlignedBase;
byte *pSrcAligned = pSrcAlignedBase;
do
{
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( (dphysmodel_t*)pSrcAligned, (dphysmodel_t*)pSrc );
}
else
{
Q_memcpy( pSrcAligned, pSrc, sizeof(dphysmodel_t) );
}
pPhysModel = (dphysmodel_t*)pSrcAligned;
pSrc += sizeof(dphysmodel_t);
pSrcAligned += sizeof(dphysmodel_t);
if ( pPhysModel->dataSize > 0 )
{
// Align the collide headers
for ( int i = 0; i < pPhysModel->solidCount; ++i )
{
// Get data size
int size;
Q_memcpy( &size, pSrc, sizeof(int) );
if ( g_bSwapOnLoad )
size = SwapLong( size );
// Fixup size
int padBytes = 0;
if ( size % 4 != 0 )
{
padBytes = ( 4 - size % 4 );
count += padBytes;
pPhysModel->dataSize += padBytes;
}
// Copy data and size into alligned buffer
int newsize = size + padBytes;
if ( g_bSwapOnLoad )
newsize = SwapLong( newsize );
Q_memcpy( pSrcAligned, &newsize, sizeof(int) );
Q_memcpy( pSrcAligned + sizeof(int), pSrc + sizeof(int), size );
pSrcAligned += size + padBytes + sizeof(int);
pSrc += size + sizeof(int);
}
int padBytes = 0;
int dataSize = pPhysModel->dataSize + pPhysModel->keydataSize;
Q_memcpy( pSrcAligned, pSrc, pPhysModel->keydataSize );
pSrc += pPhysModel->keydataSize;
pSrcAligned += pPhysModel->keydataSize;
if ( dataSize % 4 != 0 )
{
// Next chunk will be unaligned
padBytes = ( 4 - dataSize % 4 );
pPhysModel->keydataSize += padBytes;
count += padBytes;
Q_memset( pSrcAligned, 0, padBytes );
pSrcAligned += padBytes;
}
}
} while ( pPhysModel->dataSize > 0 );
// Now the data can be swapped properly
pSrcBase = pSrcAlignedBase;
pSrc = pSrcBase;
byte *pDest = pDestBase;
do
{
// src headers are in native format
pPhysModel = (dphysmodel_t*)pSrc;
if ( g_bSwapOnWrite )
{
g_Swap.SwapFieldsToTargetEndian( (dphysmodel_t*)pDest, (dphysmodel_t*)pSrc );
}
else
{
Q_memcpy( pDest, pSrc, sizeof(dphysmodel_t) );
}
pSrc += sizeof(dphysmodel_t);
pDest += sizeof(dphysmodel_t);
pSrcBase = pSrc;
pDestBase = pDest;
if ( pPhysModel->dataSize > 0 )
{
vcollide_t collide = {0};
int dataSize = pPhysModel->dataSize + pPhysModel->keydataSize;
if ( g_bSwapOnWrite )
{
// Load the collide data
physcollision->VCollideLoad( &collide, pPhysModel->solidCount, (const char *)pSrc, dataSize, false );
}
int *offsets = new int[ pPhysModel->solidCount ];
// Swap the collision data headers
for ( int i = 0; i < pPhysModel->solidCount; ++i )
{
int headerSize = 0;
swapcollideheader_t *baseHdr = (swapcollideheader_t*)pSrc;
short modelType = baseHdr->modelType;
if ( g_bSwapOnLoad )
{
g_Swap.SwapBufferToTargetEndian( &modelType );
}
if ( modelType == 0 ) // COLLIDE_POLY
{
headerSize = sizeof(swapcompactsurfaceheader_t);
swapcompactsurfaceheader_t swapHdr;
Q_memcpy( &swapHdr, pSrc, headerSize );
g_Swap.SwapFieldsToTargetEndian( &swapHdr, &swapHdr );
Q_memcpy( pDest, &swapHdr, headerSize );
}
else if ( modelType == 1 ) // COLLIDE_MOPP
{
// The PC still unserializes these, but we don't support them
if ( g_bSwapOnWrite )
{
collide.solids[i] = NULL;
}
headerSize = sizeof(swapmoppsurfaceheader_t);
swapmoppsurfaceheader_t swapHdr;
Q_memcpy( &swapHdr, pSrc, headerSize );
g_Swap.SwapFieldsToTargetEndian( &swapHdr, &swapHdr );
Q_memcpy( pDest, &swapHdr, headerSize );
}
else
{
// Shouldn't happen
Assert( 0 );
}
if ( g_bSwapOnLoad )
{
// src needs the native header data to load the vcollides
Q_memcpy( pSrc, pDest, headerSize );
}
// HACK: Need either surfaceSize or moppSize - both sit at the same offset in the structure
swapmoppsurfaceheader_t *hdr = (swapmoppsurfaceheader_t*)pSrc;
pSrc += hdr->size + sizeof(int);
pDest += hdr->size + sizeof(int);
offsets[i] = hdr->size;
}
pSrc = pSrcBase;
pDest = pDestBase;
if ( g_bSwapOnLoad )
{
physcollision->VCollideLoad( &collide, pPhysModel->solidCount, (const char *)pSrc, dataSize, true );
}
// Write out the ledge tree data
for ( int i = 0; i < pPhysModel->solidCount; ++i )
{
if ( collide.solids[i] )
{
// skip over the size member
pSrc += sizeof(int);
pDest += sizeof(int);
int offset = physcollision->CollideWrite( (char*)pDest, collide.solids[i], g_bSwapOnWrite );
pSrc += offset;
pDest += offset;
}
else
{
pSrc += offsets[i] + sizeof(int);
pDest += offsets[i] + sizeof(int);
}
}
// copy the keyvalues data
Q_memcpy( pDest, pSrc, pPhysModel->keydataSize );
pDest += pPhysModel->keydataSize;
pSrc += pPhysModel->keydataSize;
// Free the memory
physcollision->VCollideUnload( &collide );
delete [] offsets;
}
// avoid infinite loop on badly formed file
if ( (pSrc - basePtr) > count )
break;
} while ( pPhysModel->dataSize > 0 );
free( pSrcAlignedBase );
}
// UNDONE: This code is not yet tested.
static void SwapPhysdispLump( byte *pDest, byte *pSrc, int count )
{
// the format of this lump is one unsigned short dispCount, then dispCount unsigned shorts of sizes
// followed by an array of variable length (each element is the length of the corresponding entry in the
// previous table) byte-stream data structure of the displacement collision models
// these byte-stream structs are endian-neutral because each element is byte-sized
unsigned short dispCount = *(unsigned short*)pSrc;
if ( g_bSwapOnLoad )
{
g_Swap.SwapBufferToTargetEndian( &dispCount );
}
g_Swap.SwapBufferToTargetEndian( (unsigned short*)pDest, (unsigned short*)pSrc, dispCount + 1 );
const int nBytes = (dispCount + 1) * sizeof( unsigned short );
pSrc += nBytes;
pDest += nBytes;
count -= nBytes;
g_Swap.SwapBufferToTargetEndian( pDest, pSrc, count );
}
static void SwapVisibilityLump( byte *pDest, byte *pSrc, int count )
{
int firstInt = *(int*)pSrc;
if ( g_bSwapOnLoad )
{
g_Swap.SwapBufferToTargetEndian( &firstInt );
}
int intCt = firstInt * 2 + 1;
const int hdrSize = intCt * sizeof(int);
g_Swap.SwapBufferToTargetEndian( (int*)pDest, (int*)pSrc, intCt );
g_Swap.SwapBufferToTargetEndian( pDest + hdrSize, pSrc + hdrSize, count - hdrSize );
}
//=============================================================================
void Lumps_Init( void )
{
memset( &g_Lumps, 0, sizeof(g_Lumps) );
}
int LumpVersion( int lump )
{
return g_pBSPHeader->lumps[lump].version;
}
bool HasLump( int lump )
{
return g_pBSPHeader->lumps[lump].filelen > 0;
}
void ValidateLump( int lump, int length, int size, int forceVersion )
{
if ( length % size )
{
Error( "ValidateLump: odd size for lump %d", lump );
}
if ( forceVersion >= 0 && forceVersion != g_pBSPHeader->lumps[lump].version )
{
Error( "ValidateLump: old version for lump %d in map!", lump );
}
}
//-----------------------------------------------------------------------------
// Add Lumps of integral types without datadescs
//-----------------------------------------------------------------------------
template< class T >
int CopyLumpInternal( int fieldType, int lump, T *dest, int forceVersion )
{
g_Lumps.bLumpParsed[lump] = true;
// Vectors are passed in as floats
int fieldSize = ( fieldType == FIELD_VECTOR ) ? sizeof(Vector) : sizeof(T);
unsigned int length = g_pBSPHeader->lumps[lump].filelen;
unsigned int ofs = g_pBSPHeader->lumps[lump].fileofs;
// count must be of the integral type
unsigned int count = length / sizeof(T);
ValidateLump( lump, length, fieldSize, forceVersion );
if ( g_bSwapOnLoad )
{
switch( lump )
{
case LUMP_VISIBILITY:
SwapVisibilityLump( (byte*)dest, ((byte*)g_pBSPHeader + ofs), count );
break;
case LUMP_PHYSCOLLIDE:
// SwapPhyscollideLump may change size
SwapPhyscollideLump( (byte*)dest, ((byte*)g_pBSPHeader + ofs), count );
length = count;
break;
case LUMP_PHYSDISP:
SwapPhysdispLump( (byte*)dest, ((byte*)g_pBSPHeader + ofs), count );
break;
default:
g_Swap.SwapBufferToTargetEndian( dest, (T*)((byte*)g_pBSPHeader + ofs), count );
break;
}
}
else
{
memcpy( dest, (byte*)g_pBSPHeader + ofs, length );
}
// Return actual count of elements
return length / fieldSize;
}
template< class T >
int CopyLump( int fieldType, int lump, T *dest, int forceVersion = -1 )
{
return CopyLumpInternal( fieldType, lump, dest, forceVersion );
}
template< class T >
void CopyLump( int fieldType, int lump, CUtlVector<T> &dest, int forceVersion = -1 )
{
Assert( fieldType != FIELD_VECTOR ); // TODO: Support this if necessary
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) );
CopyLumpInternal( fieldType, lump, dest.Base(), forceVersion );
}
template< class T >
void CopyOptionalLump( int fieldType, int lump, CUtlVector<T> &dest, int forceVersion = -1 )
{
// not fatal if not present
if ( !HasLump( lump ) )
return;
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) );
CopyLumpInternal( fieldType, lump, dest.Base(), forceVersion );
}
template< class T >
int CopyVariableLump( int fieldType, int lump, void **dest, int forceVersion = -1 )
{
int length = g_pBSPHeader->lumps[lump].filelen;
*dest = malloc( length );
return CopyLumpInternal<T>( fieldType, lump, (T*)*dest, forceVersion );
}
//-----------------------------------------------------------------------------
// Add Lumps of object types with datadescs
//-----------------------------------------------------------------------------
template< class T >
int CopyLumpInternal( int lump, T *dest, int forceVersion )
{
g_Lumps.bLumpParsed[lump] = true;
unsigned int length = g_pBSPHeader->lumps[lump].filelen;
unsigned int ofs = g_pBSPHeader->lumps[lump].fileofs;
unsigned int count = length / sizeof(T);
ValidateLump( lump, length, sizeof(T), forceVersion );
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( dest, (T*)((byte*)g_pBSPHeader + ofs), count );
}
else
{
memcpy( dest, (byte*)g_pBSPHeader + ofs, length );
}
return count;
}
template< class T >
int CopyLump( int lump, T *dest, int forceVersion = -1 )
{
return CopyLumpInternal( lump, dest, forceVersion );
}
template< class T >
void CopyLump( int lump, CUtlVector<T> &dest, int forceVersion = -1 )
{
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) );
CopyLumpInternal( lump, dest.Base(), forceVersion );
}
template< class T >
void CopyOptionalLump( int lump, CUtlVector<T> &dest, int forceVersion = -1 )
{
// not fatal if not present
if ( !HasLump( lump ) )
return;
dest.SetSize( g_pBSPHeader->lumps[lump].filelen / sizeof(T) );
CopyLumpInternal( lump, dest.Base(), forceVersion );
}
template< class T >
int CopyVariableLump( int lump, void **dest, int forceVersion = -1 )
{
int length = g_pBSPHeader->lumps[lump].filelen;
*dest = malloc( length );
return CopyLumpInternal<T>( lump, (T*)*dest, forceVersion );
}
//-----------------------------------------------------------------------------
// Add/Write unknown lumps
//-----------------------------------------------------------------------------
void Lumps_Parse( void )
{
int i;
for ( i = 0; i < HEADER_LUMPS; i++ )
{
if ( !g_Lumps.bLumpParsed[i] && g_pBSPHeader->lumps[i].filelen )
{
g_Lumps.size[i] = CopyVariableLump<byte>( FIELD_CHARACTER, i, &g_Lumps.pLumps[i], -1 );
Msg( "Reading unknown lump #%d (%d bytes)\n", i, g_Lumps.size[i] );
}
}
}
void Lumps_Write( void )
{
int i;
for ( i = 0; i < HEADER_LUMPS; i++ )
{
if ( g_Lumps.size[i] )
{
Msg( "Writing unknown lump #%d (%d bytes)\n", i, g_Lumps.size[i] );
AddLump( i, (byte*)g_Lumps.pLumps[i], g_Lumps.size[i] );
}
if ( g_Lumps.pLumps[i] )
{
free( g_Lumps.pLumps[i] );
g_Lumps.pLumps[i] = NULL;
}
}
}
int LoadLeafs( void )
{
#if defined( BSP_USE_LESS_MEMORY )
dleafs = (dleaf_t*)malloc( g_pBSPHeader->lumps[LUMP_LEAFS].filelen );
#endif
switch ( LumpVersion( LUMP_LEAFS ) )
{
case 0:
{
g_Lumps.bLumpParsed[LUMP_LEAFS] = true;
int length = g_pBSPHeader->lumps[LUMP_LEAFS].filelen;
int size = sizeof( dleaf_version_0_t );
if ( length % size )
{
Error( "odd size for LUMP_LEAFS\n" );
}
int count = length / size;
void *pSrcBase = ( ( byte * )g_pBSPHeader + g_pBSPHeader->lumps[LUMP_LEAFS].fileofs );
dleaf_version_0_t *pSrc = (dleaf_version_0_t *)pSrcBase;
dleaf_t *pDst = dleafs;
// version 0 predates HDR, build the LDR
g_LeafAmbientLightingLDR.SetCount( count );
g_LeafAmbientIndexLDR.SetCount( count );
dleafambientlighting_t *pDstLeafAmbientLighting = &g_LeafAmbientLightingLDR[0];
for ( int i = 0; i < count; i++ )
{
g_LeafAmbientIndexLDR[i].ambientSampleCount = 1;
g_LeafAmbientIndexLDR[i].firstAmbientSample = i;
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( pSrc );
}
// pDst is a subset of pSrc;
*pDst = *( ( dleaf_t * )( void * )pSrc );
pDstLeafAmbientLighting->cube = pSrc->m_AmbientLighting;
pDstLeafAmbientLighting->x = pDstLeafAmbientLighting->y = pDstLeafAmbientLighting->z = pDstLeafAmbientLighting->pad = 0;
pDst++;
pSrc++;
pDstLeafAmbientLighting++;
}
return count;
}
case 1:
return CopyLump( LUMP_LEAFS, dleafs );
default:
Assert( 0 );
Error( "Unknown LUMP_LEAFS version\n" );
return 0;
}
}
void LoadLeafAmbientLighting( int numLeafs )
{
if ( LumpVersion( LUMP_LEAFS ) == 0 )
{
// an older leaf version already built the LDR ambient lighting on load
return;
}
// old BSP with ambient, or new BSP with no lighting, convert ambient light to new format or create dummy ambient
if ( !HasLump( LUMP_LEAF_AMBIENT_INDEX ) )
{
// a bunch of legacy maps, have these lumps with garbage versions
// expect them to be NOT the current version
if ( HasLump(LUMP_LEAF_AMBIENT_LIGHTING) )
{
Assert( LumpVersion( LUMP_LEAF_AMBIENT_LIGHTING ) != LUMP_LEAF_AMBIENT_LIGHTING_VERSION );
}
if ( HasLump(LUMP_LEAF_AMBIENT_LIGHTING_HDR) )
{
Assert( LumpVersion( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) != LUMP_LEAF_AMBIENT_LIGHTING_VERSION );
}
void *pSrcBase = ( ( byte * )g_pBSPHeader + g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].fileofs );
CompressedLightCube *pSrc = NULL;
if ( HasLump( LUMP_LEAF_AMBIENT_LIGHTING ) )
{
pSrc = (CompressedLightCube*)pSrcBase;
}
g_LeafAmbientIndexLDR.SetCount( numLeafs );
g_LeafAmbientLightingLDR.SetCount( numLeafs );
void *pSrcBaseHDR = ( ( byte * )g_pBSPHeader + g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].fileofs );
CompressedLightCube *pSrcHDR = NULL;
if ( HasLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) )
{
pSrcHDR = (CompressedLightCube*)pSrcBaseHDR;
}
g_LeafAmbientIndexHDR.SetCount( numLeafs );
g_LeafAmbientLightingHDR.SetCount( numLeafs );
for ( int i = 0; i < numLeafs; i++ )
{
g_LeafAmbientIndexLDR[i].ambientSampleCount = 1;
g_LeafAmbientIndexLDR[i].firstAmbientSample = i;
g_LeafAmbientIndexHDR[i].ambientSampleCount = 1;
g_LeafAmbientIndexHDR[i].firstAmbientSample = i;
Q_memset( &g_LeafAmbientLightingLDR[i], 0, sizeof(g_LeafAmbientLightingLDR[i]) );
Q_memset( &g_LeafAmbientLightingHDR[i], 0, sizeof(g_LeafAmbientLightingHDR[i]) );
if ( pSrc )
{
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( &pSrc[i] );
}
g_LeafAmbientLightingLDR[i].cube = pSrc[i];
}
if ( pSrcHDR )
{
if ( g_bSwapOnLoad )
{
g_Swap.SwapFieldsToTargetEndian( &pSrcHDR[i] );
}
g_LeafAmbientLightingHDR[i].cube = pSrcHDR[i];
}
}
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING] = true;
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX] = true;
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING_HDR] = true;
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX_HDR] = true;
}
else
{
CopyOptionalLump( LUMP_LEAF_AMBIENT_LIGHTING, g_LeafAmbientLightingLDR );
CopyOptionalLump( LUMP_LEAF_AMBIENT_INDEX, g_LeafAmbientIndexLDR );
CopyOptionalLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR, g_LeafAmbientLightingHDR );
CopyOptionalLump( LUMP_LEAF_AMBIENT_INDEX_HDR, g_LeafAmbientIndexHDR );
}
}
void ValidateHeader( const char *filename, const dheader_t *pHeader )
{
if ( pHeader->ident != IDBSPHEADER )
{
Error ("%s is not a IBSP file", filename);
}
if ( pHeader->version < MINBSPVERSION || pHeader->version > BSPVERSION )
{
Error ("%s is version %i, not %i", filename, pHeader->version, BSPVERSION);
}
}
//-----------------------------------------------------------------------------
// Low level BSP opener for external parsing. Parses headers, but nothing else.
// You must close the BSP, via CloseBSPFile().
//-----------------------------------------------------------------------------
void OpenBSPFile( const char *filename )
{
Lumps_Init();
// load the file header
LoadFile( filename, (void **)&g_pBSPHeader );
if ( g_bSwapOnLoad )
{
g_Swap.ActivateByteSwapping( true );
g_Swap.SwapFieldsToTargetEndian( g_pBSPHeader );
}
ValidateHeader( filename, g_pBSPHeader );
g_MapRevision = g_pBSPHeader->mapRevision;
}
//-----------------------------------------------------------------------------
// CloseBSPFile
//-----------------------------------------------------------------------------
void CloseBSPFile( void )
{
free( g_pBSPHeader );
g_pBSPHeader = NULL;
}
//-----------------------------------------------------------------------------
// LoadBSPFile
//-----------------------------------------------------------------------------
void LoadBSPFile( const char *filename )
{
OpenBSPFile( filename );
nummodels = CopyLump( LUMP_MODELS, dmodels );
numvertexes = CopyLump( LUMP_VERTEXES, dvertexes );
numplanes = CopyLump( LUMP_PLANES, dplanes );
numleafs = LoadLeafs();
numnodes = CopyLump( LUMP_NODES, dnodes );
CopyLump( LUMP_TEXINFO, texinfo );
numtexdata = CopyLump( LUMP_TEXDATA, dtexdata );
CopyLump( LUMP_DISPINFO, g_dispinfo );
CopyLump( LUMP_DISP_VERTS, g_DispVerts );
CopyLump( LUMP_DISP_TRIS, g_DispTris );
CopyLump( FIELD_CHARACTER, LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS, g_DispLightmapSamplePositions );
CopyLump( LUMP_FACE_MACRO_TEXTURE_INFO, g_FaceMacroTextureInfos );
numfaces = CopyLump(LUMP_FACES, dfaces, LUMP_FACES_VERSION);
if ( HasLump( LUMP_FACES_HDR ) )
numfaces_hdr = CopyLump( LUMP_FACES_HDR, dfaces_hdr, LUMP_FACES_VERSION );
else
numfaces_hdr = 0;
CopyOptionalLump( LUMP_FACEIDS, dfaceids );
g_numprimitives = CopyLump( LUMP_PRIMITIVES, g_primitives );
g_numprimverts = CopyLump( LUMP_PRIMVERTS, g_primverts );
g_numprimindices = CopyLump( FIELD_SHORT, LUMP_PRIMINDICES, g_primindices );
numorigfaces = CopyLump( LUMP_ORIGINALFACES, dorigfaces ); // original faces
numleaffaces = CopyLump( FIELD_SHORT, LUMP_LEAFFACES, dleaffaces );
numleafbrushes = CopyLump( FIELD_SHORT, LUMP_LEAFBRUSHES, dleafbrushes );
numsurfedges = CopyLump( FIELD_INTEGER, LUMP_SURFEDGES, dsurfedges );
numedges = CopyLump( LUMP_EDGES, dedges );
numbrushes = CopyLump( LUMP_BRUSHES, dbrushes );
numbrushsides = CopyLump( LUMP_BRUSHSIDES, dbrushsides );
numareas = CopyLump( LUMP_AREAS, dareas );
numareaportals = CopyLump( LUMP_AREAPORTALS, dareaportals );
visdatasize = CopyLump ( FIELD_CHARACTER, LUMP_VISIBILITY, dvisdata );
CopyOptionalLump( FIELD_CHARACTER, LUMP_LIGHTING, dlightdataLDR, LUMP_LIGHTING_VERSION );
CopyOptionalLump( FIELD_CHARACTER, LUMP_LIGHTING_HDR, dlightdataHDR, LUMP_LIGHTING_VERSION );
LoadLeafAmbientLighting( numleafs );
CopyLump( FIELD_CHARACTER, LUMP_ENTITIES, dentdata );
numworldlightsLDR = CopyLump( LUMP_WORLDLIGHTS, dworldlightsLDR );
numworldlightsHDR = CopyLump( LUMP_WORLDLIGHTS_HDR, dworldlightsHDR );
numleafwaterdata = CopyLump( LUMP_LEAFWATERDATA, dleafwaterdata );
g_PhysCollideSize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PHYSCOLLIDE, (void**)&g_pPhysCollide );
g_PhysDispSize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PHYSDISP, (void**)&g_pPhysDisp );
g_numvertnormals = CopyLump( FIELD_VECTOR, LUMP_VERTNORMALS, (float*)g_vertnormals );
g_numvertnormalindices = CopyLump( FIELD_SHORT, LUMP_VERTNORMALINDICES, g_vertnormalindices );
g_nClipPortalVerts = CopyLump( FIELD_VECTOR, LUMP_CLIPPORTALVERTS, (float*)g_ClipPortalVerts );
g_nCubemapSamples = CopyLump( LUMP_CUBEMAPS, g_CubemapSamples );
CopyLump( FIELD_CHARACTER, LUMP_TEXDATA_STRING_DATA, g_TexDataStringData );
CopyLump( FIELD_INTEGER, LUMP_TEXDATA_STRING_TABLE, g_TexDataStringTable );
g_nOverlayCount = CopyLump( LUMP_OVERLAYS, g_Overlays );
g_nWaterOverlayCount = CopyLump( LUMP_WATEROVERLAYS, g_WaterOverlays );
CopyLump( LUMP_OVERLAY_FADES, g_OverlayFades );
dflagslump_t flags_lump;
if ( HasLump( LUMP_MAP_FLAGS ) )
CopyLump ( LUMP_MAP_FLAGS, &flags_lump );
else
memset( &flags_lump, 0, sizeof( flags_lump ) ); // default flags to 0
g_LevelFlags = flags_lump.m_LevelFlags;
LoadOcclusionLump();
CopyLump( FIELD_SHORT, LUMP_LEAFMINDISTTOWATER, g_LeafMinDistToWater );
/*
int crap;
for( crap = 0; crap < g_nBSPStringTable; crap++ )
{
Msg( "stringtable %d", ( int )crap );
Msg( " %d:", ( int )g_BSPStringTable[crap] );
puts( &g_BSPStringData[g_BSPStringTable[crap]] );
puts( "\n" );
}
*/
// Load PAK file lump into appropriate data structure
byte *pakbuffer = NULL;
int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer );
if ( paksize > 0 )
{
GetPakFile()->ActivateByteSwapping( IsX360() );
GetPakFile()->ParseFromBuffer( pakbuffer, paksize );
}
else
{
GetPakFile()->Reset();
}
free( pakbuffer );
g_GameLumps.ParseGameLump( g_pBSPHeader );
// NOTE: Do NOT call CopyLump after Lumps_Parse() it parses all un-Copied lumps
// parse any additional lumps
Lumps_Parse();
// everything has been copied out
CloseBSPFile();
g_Swap.ActivateByteSwapping( false );
}
//-----------------------------------------------------------------------------
// Reset any state.
//-----------------------------------------------------------------------------
void UnloadBSPFile()
{
nummodels = 0;
numvertexes = 0;
numplanes = 0;
numleafs = 0;
#if defined( BSP_USE_LESS_MEMORY )
if ( dleafs )
{
free( dleafs );
dleafs = NULL;
}
#endif
numnodes = 0;
texinfo.Purge();
numtexdata = 0;
g_dispinfo.Purge();
g_DispVerts.Purge();
g_DispTris.Purge();
g_DispLightmapSamplePositions.Purge();
g_FaceMacroTextureInfos.Purge();
numfaces = 0;
numfaces_hdr = 0;
dfaceids.Purge();
g_numprimitives = 0;
g_numprimverts = 0;
g_numprimindices = 0;
numorigfaces = 0;
numleaffaces = 0;
numleafbrushes = 0;
numsurfedges = 0;
numedges = 0;
numbrushes = 0;
numbrushsides = 0;
numareas = 0;
numareaportals = 0;
visdatasize = 0;
dlightdataLDR.Purge();
dlightdataHDR.Purge();
g_LeafAmbientLightingLDR.Purge();
g_LeafAmbientLightingHDR.Purge();
g_LeafAmbientIndexHDR.Purge();
g_LeafAmbientIndexLDR.Purge();
dentdata.Purge();
numworldlightsLDR = 0;
numworldlightsHDR = 0;
numleafwaterdata = 0;
if ( g_pPhysCollide )
{
free( g_pPhysCollide );
g_pPhysCollide = NULL;
}
g_PhysCollideSize = 0;
if ( g_pPhysDisp )
{
free( g_pPhysDisp );
g_pPhysDisp = NULL;
}
g_PhysDispSize = 0;
g_numvertnormals = 0;
g_numvertnormalindices = 0;
g_nClipPortalVerts = 0;
g_nCubemapSamples = 0;
g_TexDataStringData.Purge();
g_TexDataStringTable.Purge();
g_nOverlayCount = 0;
g_nWaterOverlayCount = 0;
g_LevelFlags = 0;
g_OccluderData.Purge();
g_OccluderPolyData.Purge();
g_OccluderVertexIndices.Purge();
g_GameLumps.DestroyAllGameLumps();
for ( int i = 0; i < HEADER_LUMPS; i++ )
{
if ( g_Lumps.pLumps[i] )
{
free( g_Lumps.pLumps[i] );
g_Lumps.pLumps[i] = NULL;
}
}
ReleasePakFileLumps();
}
//-----------------------------------------------------------------------------
// LoadBSPFileFilesystemOnly
//-----------------------------------------------------------------------------
void LoadBSPFile_FileSystemOnly( const char *filename )
{
Lumps_Init();
//
// load the file header
//
LoadFile( filename, (void **)&g_pBSPHeader );
ValidateHeader( filename, g_pBSPHeader );
// Load PAK file lump into appropriate data structure
byte *pakbuffer = NULL;
int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer, 1 );
if ( paksize > 0 )
{
GetPakFile()->ParseFromBuffer( pakbuffer, paksize );
}
else
{
GetPakFile()->Reset();
}
free( pakbuffer );
// everything has been copied out
free( g_pBSPHeader );
g_pBSPHeader = NULL;
}
void ExtractZipFileFromBSP( char *pBSPFileName, char *pZipFileName )
{
Lumps_Init();
//
// load the file header
//
LoadFile( pBSPFileName, (void **)&g_pBSPHeader);
ValidateHeader( pBSPFileName, g_pBSPHeader );
byte *pakbuffer = NULL;
int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer );
if ( paksize > 0 )
{
FILE *fp;
fp = fopen( pZipFileName, "wb" );
if( !fp )
{
fprintf( stderr, "can't open %s\n", pZipFileName );
return;
}
fwrite( pakbuffer, paksize, 1, fp );
fclose( fp );
}
else
{
fprintf( stderr, "zip file is zero length!\n" );
}
}
/*
=============
LoadBSPFileTexinfo
Only loads the texinfo lump, so qdata can scan for textures
=============
*/
void LoadBSPFileTexinfo( const char *filename )
{
FILE *f;
int length, ofs;
g_pBSPHeader = (dheader_t*)malloc( sizeof(dheader_t) );
f = fopen( filename, "rb" );
fread( g_pBSPHeader, sizeof(dheader_t), 1, f);
ValidateHeader( filename, g_pBSPHeader );
length = g_pBSPHeader->lumps[LUMP_TEXINFO].filelen;
ofs = g_pBSPHeader->lumps[LUMP_TEXINFO].fileofs;
int nCount = length / sizeof(texinfo_t);
texinfo.Purge();
texinfo.AddMultipleToTail( nCount );
fseek( f, ofs, SEEK_SET );
fread( texinfo.Base(), length, 1, f );
fclose( f );
// everything has been copied out
free( g_pBSPHeader );
g_pBSPHeader = NULL;
}
static void AddLumpInternal( int lumpnum, void *data, int len, int version )
{
lump_t *lump;
g_Lumps.size[lumpnum] = 0; // mark it written
lump = &g_pBSPHeader->lumps[lumpnum];
lump->fileofs = g_pFileSystem->Tell( g_hBSPFile );
lump->filelen = len;
lump->version = version;
lump->uncompressedSize = 0;
SafeWrite( g_hBSPFile, data, len );
// pad out to the next dword
AlignFilePosition( g_hBSPFile, 4 );
}
template< class T >
static void SwapInPlace( T *pData, int count )
{
if ( !pData )
return;
// use the datadesc to swap the fields in place
g_Swap.SwapFieldsToTargetEndian<T>( (T*)pData, pData, count );
}
template< class T >
static void SwapInPlace( int fieldType, T *pData, int count )
{
if ( !pData )
return;
// swap the data in place
g_Swap.SwapBufferToTargetEndian<T>( (T*)pData, (T*)pData, count );
}
//-----------------------------------------------------------------------------
// Add raw data chunk to file (not a lump)
//-----------------------------------------------------------------------------
template< class T >
static void WriteData( int fieldType, T *pData, int count )
{
if ( g_bSwapOnWrite )
{
SwapInPlace( fieldType, pData, count );
}
SafeWrite( g_hBSPFile, pData, count * sizeof(T) );
}
template< class T >
static void WriteData( T *pData, int count )
{
if ( g_bSwapOnWrite )
{
SwapInPlace( pData, count );
}
SafeWrite( g_hBSPFile, pData, count * sizeof(T) );
}
//-----------------------------------------------------------------------------
// Add Lump of object types with datadescs
//-----------------------------------------------------------------------------
template< class T >
static void AddLump( int lumpnum, T *pData, int count, int version )
{
AddLumpInternal( lumpnum, pData, count * sizeof(T), version );
}
template< class T >
static void AddLump( int lumpnum, CUtlVector<T> &data, int version )
{
AddLumpInternal( lumpnum, data.Base(), data.Count() * sizeof(T), version );
}
/*
=============
WriteBSPFile
Swaps the bsp file in place, so it should not be referenced again
=============
*/
void WriteBSPFile( const char *filename, char *pUnused )
{
if ( texinfo.Count() > MAX_MAP_TEXINFO )
{
Error( "Map has too many texinfos (has %d, can have at most %d)\n", texinfo.Count(), MAX_MAP_TEXINFO );
return;
}
dheader_t outHeader;
g_pBSPHeader = &outHeader;
memset( g_pBSPHeader, 0, sizeof( dheader_t ) );
g_pBSPHeader->ident = IDBSPHEADER;
g_pBSPHeader->version = BSPVERSION;
g_pBSPHeader->mapRevision = g_MapRevision;
g_hBSPFile = SafeOpenWrite( filename );
WriteData( g_pBSPHeader ); // overwritten later
AddLump( LUMP_PLANES, dplanes, numplanes );
AddLump( LUMP_LEAFS, dleafs, numleafs, LUMP_LEAFS_VERSION );
AddLump( LUMP_LEAF_AMBIENT_LIGHTING, g_LeafAmbientLightingLDR, LUMP_LEAF_AMBIENT_LIGHTING_VERSION );
AddLump( LUMP_LEAF_AMBIENT_INDEX, g_LeafAmbientIndexLDR );
AddLump( LUMP_LEAF_AMBIENT_INDEX_HDR, g_LeafAmbientIndexHDR );
AddLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR, g_LeafAmbientLightingHDR, LUMP_LEAF_AMBIENT_LIGHTING_VERSION );
AddLump( LUMP_VERTEXES, dvertexes, numvertexes );
AddLump( LUMP_NODES, dnodes, numnodes );
AddLump( LUMP_TEXINFO, texinfo );
AddLump( LUMP_TEXDATA, dtexdata, numtexdata );
AddLump( LUMP_DISPINFO, g_dispinfo );
AddLump( LUMP_DISP_VERTS, g_DispVerts );
AddLump( LUMP_DISP_TRIS, g_DispTris );
AddLump( LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS, g_DispLightmapSamplePositions );
AddLump( LUMP_FACE_MACRO_TEXTURE_INFO, g_FaceMacroTextureInfos );
AddLump( LUMP_PRIMITIVES, g_primitives, g_numprimitives );
AddLump( LUMP_PRIMVERTS, g_primverts, g_numprimverts );
AddLump( LUMP_PRIMINDICES, g_primindices, g_numprimindices );
AddLump( LUMP_FACES, dfaces, numfaces, LUMP_FACES_VERSION );
if (numfaces_hdr)
AddLump( LUMP_FACES_HDR, dfaces_hdr, numfaces_hdr, LUMP_FACES_VERSION );
AddLump ( LUMP_FACEIDS, dfaceids, numfaceids );
AddLump( LUMP_ORIGINALFACES, dorigfaces, numorigfaces ); // original faces lump
AddLump( LUMP_BRUSHES, dbrushes, numbrushes );
AddLump( LUMP_BRUSHSIDES, dbrushsides, numbrushsides );
AddLump( LUMP_LEAFFACES, dleaffaces, numleaffaces );
AddLump( LUMP_LEAFBRUSHES, dleafbrushes, numleafbrushes );
AddLump( LUMP_SURFEDGES, dsurfedges, numsurfedges );
AddLump( LUMP_EDGES, dedges, numedges );
AddLump( LUMP_MODELS, dmodels, nummodels );
AddLump( LUMP_AREAS, dareas, numareas );
AddLump( LUMP_AREAPORTALS, dareaportals, numareaportals );
AddLump( LUMP_LIGHTING, dlightdataLDR, LUMP_LIGHTING_VERSION );
AddLump( LUMP_LIGHTING_HDR, dlightdataHDR, LUMP_LIGHTING_VERSION );
AddLump( LUMP_VISIBILITY, dvisdata, visdatasize );
AddLump( LUMP_ENTITIES, dentdata );
AddLump( LUMP_WORLDLIGHTS, dworldlightsLDR, numworldlightsLDR );
AddLump( LUMP_WORLDLIGHTS_HDR, dworldlightsHDR, numworldlightsHDR );
AddLump( LUMP_LEAFWATERDATA, dleafwaterdata, numleafwaterdata );
AddOcclusionLump();
dflagslump_t flags_lump;
flags_lump.m_LevelFlags = g_LevelFlags;
AddLump( LUMP_MAP_FLAGS, &flags_lump, 1 );
// NOTE: This is just for debugging, so it is disabled in release maps
#if 0
// add the vis portals to the BSP for visualization
AddLump( LUMP_PORTALS, dportals, numportals );
AddLump( LUMP_CLUSTERS, dclusters, numclusters );
AddLump( LUMP_PORTALVERTS, dportalverts, numportalverts );
AddLump( LUMP_CLUSTERPORTALS, dclusterportals, numclusterportals );
#endif
AddLump( LUMP_CLIPPORTALVERTS, (float*)g_ClipPortalVerts, g_nClipPortalVerts * 3 );
AddLump( LUMP_CUBEMAPS, g_CubemapSamples, g_nCubemapSamples );
AddLump( LUMP_TEXDATA_STRING_DATA, g_TexDataStringData );
AddLump( LUMP_TEXDATA_STRING_TABLE, g_TexDataStringTable );
AddLump( LUMP_OVERLAYS, g_Overlays, g_nOverlayCount );
AddLump( LUMP_WATEROVERLAYS, g_WaterOverlays, g_nWaterOverlayCount );
AddLump( LUMP_OVERLAY_FADES, g_OverlayFades, g_nOverlayCount );
if ( g_pPhysCollide )
{
AddLump( LUMP_PHYSCOLLIDE, g_pPhysCollide, g_PhysCollideSize );
}
if ( g_pPhysDisp )
{
AddLump ( LUMP_PHYSDISP, g_pPhysDisp, g_PhysDispSize );
}
AddLump( LUMP_VERTNORMALS, (float*)g_vertnormals, g_numvertnormals * 3 );
AddLump( LUMP_VERTNORMALINDICES, g_vertnormalindices, g_numvertnormalindices );
AddLump( LUMP_LEAFMINDISTTOWATER, g_LeafMinDistToWater, numleafs );
AddGameLumps();
// Write pakfile lump to disk
WritePakFileLump();
// NOTE: Do NOT call AddLump after Lumps_Write() it writes all un-Added lumps
// write any additional lumps
Lumps_Write();
g_pFileSystem->Seek( g_hBSPFile, 0, FILESYSTEM_SEEK_HEAD );
WriteData( g_pBSPHeader );
g_pFileSystem->Close( g_hBSPFile );
}
// Generate the next clear lump filename for the bsp file
bool GenerateNextLumpFileName( const char *bspfilename, char *lumpfilename, int buffsize )
{
for (int i = 0; i < MAX_LUMPFILES; i++)
{
GenerateLumpFileName( bspfilename, lumpfilename, buffsize, i );
if ( !g_pFileSystem->FileExists( lumpfilename ) )
return true;
}
return false;
}
void WriteLumpToFile( char *filename, int lump )
{
if ( !HasLump(lump) )
return;
char lumppre[MAX_PATH];
if ( !GenerateNextLumpFileName( filename, lumppre, MAX_PATH ) )
{
Warning( "Failed to find valid lump filename for bsp %s.\n", filename );
return;
}
// Open the file
FileHandle_t lumpfile = g_pFileSystem->Open(lumppre, "wb");
if ( !lumpfile )
{
Error ("Error opening %s! (Check for write enable)\n",filename);
return;
}
int ofs = g_pBSPHeader->lumps[lump].fileofs;
int length = g_pBSPHeader->lumps[lump].filelen;
// Write the header
lumpfileheader_t lumpHeader;
lumpHeader.lumpID = lump;
lumpHeader.lumpVersion = LumpVersion(lump);
lumpHeader.lumpLength = length;
lumpHeader.mapRevision = LittleLong( g_MapRevision );
lumpHeader.lumpOffset = sizeof(lumpfileheader_t); // Lump starts after the header
SafeWrite (lumpfile, &lumpHeader, sizeof(lumpfileheader_t));
// Write the lump
SafeWrite (lumpfile, (byte *)g_pBSPHeader + ofs, length);
}
void WriteLumpToFile( char *filename, int lump, int nLumpVersion, void *pBuffer, size_t nBufLen )
{
char lumppre[MAX_PATH];
if ( !GenerateNextLumpFileName( filename, lumppre, MAX_PATH ) )
{
Warning( "Failed to find valid lump filename for bsp %s.\n", filename );
return;
}
// Open the file
FileHandle_t lumpfile = g_pFileSystem->Open(lumppre, "wb");
if ( !lumpfile )
{
Error ("Error opening %s! (Check for write enable)\n",filename);
return;
}
// Write the header
lumpfileheader_t lumpHeader;
lumpHeader.lumpID = lump;
lumpHeader.lumpVersion = nLumpVersion;
lumpHeader.lumpLength = nBufLen;
lumpHeader.mapRevision = LittleLong( g_MapRevision );
lumpHeader.lumpOffset = sizeof(lumpfileheader_t); // Lump starts after the header
SafeWrite( lumpfile, &lumpHeader, sizeof(lumpfileheader_t));
// Write the lump
SafeWrite( lumpfile, pBuffer, nBufLen );
g_pFileSystem->Close( lumpfile );
}
//============================================================================
#define ENTRIES(a) (sizeof(a)/sizeof(*(a)))
#define ENTRYSIZE(a) (sizeof(*(a)))
int ArrayUsage( const char *szItem, int items, int maxitems, int itemsize )
{
float percentage = maxitems ? items * 100.0 / maxitems : 0.0;
Msg("%-17.17s %8i/%-8i %8i/%-8i (%4.1f%%) ",
szItem, items, maxitems, items * itemsize, maxitems * itemsize, percentage );
if ( percentage > 80.0 )
Msg( "VERY FULL!\n" );
else if ( percentage > 95.0 )
Msg( "SIZE DANGER!\n" );
else if ( percentage > 99.9 )
Msg( "SIZE OVERFLOW!!!\n" );
else
Msg( "\n" );
return items * itemsize;
}
int GlobUsage( const char *szItem, int itemstorage, int maxstorage )
{
float percentage = maxstorage ? itemstorage * 100.0 / maxstorage : 0.0;
Msg("%-17.17s [variable] %8i/%-8i (%4.1f%%) ",
szItem, itemstorage, maxstorage, percentage );
if ( percentage > 80.0 )
Msg( "VERY FULL!\n" );
else if ( percentage > 95.0 )
Msg( "SIZE DANGER!\n" );
else if ( percentage > 99.9 )
Msg( "SIZE OVERFLOW!!!\n" );
else
Msg( "\n" );
return itemstorage;
}
/*
=============
PrintBSPFileSizes
Dumps info about current file
=============
*/
void PrintBSPFileSizes (void)
{
int totalmemory = 0;
// if (!num_entities)
// ParseEntities ();
Msg("\n");
Msg( "%-17s %16s %16s %9s \n", "Object names", "Objects/Maxobjs", "Memory / Maxmem", "Fullness" );
Msg( "%-17s %16s %16s %9s \n", "------------", "---------------", "---------------", "--------" );
totalmemory += ArrayUsage( "models", nummodels, ENTRIES(dmodels), ENTRYSIZE(dmodels) );
totalmemory += ArrayUsage( "brushes", numbrushes, ENTRIES(dbrushes), ENTRYSIZE(dbrushes) );
totalmemory += ArrayUsage( "brushsides", numbrushsides, ENTRIES(dbrushsides), ENTRYSIZE(dbrushsides) );
totalmemory += ArrayUsage( "planes", numplanes, ENTRIES(dplanes), ENTRYSIZE(dplanes) );
totalmemory += ArrayUsage( "vertexes", numvertexes, ENTRIES(dvertexes), ENTRYSIZE(dvertexes) );
totalmemory += ArrayUsage( "nodes", numnodes, ENTRIES(dnodes), ENTRYSIZE(dnodes) );
totalmemory += ArrayUsage( "texinfos", texinfo.Count(),MAX_MAP_TEXINFO, sizeof(texinfo_t) );
totalmemory += ArrayUsage( "texdata", numtexdata, ENTRIES(dtexdata), ENTRYSIZE(dtexdata) );
totalmemory += ArrayUsage( "dispinfos", g_dispinfo.Count(), 0, sizeof( ddispinfo_t ) );
totalmemory += ArrayUsage( "disp_verts", g_DispVerts.Count(), 0, sizeof( g_DispVerts[0] ) );
totalmemory += ArrayUsage( "disp_tris", g_DispTris.Count(), 0, sizeof( g_DispTris[0] ) );
totalmemory += ArrayUsage( "disp_lmsamples",g_DispLightmapSamplePositions.Count(),0,sizeof( g_DispLightmapSamplePositions[0] ) );
totalmemory += ArrayUsage( "faces", numfaces, ENTRIES(dfaces), ENTRYSIZE(dfaces) );
totalmemory += ArrayUsage( "hdr faces", numfaces_hdr, ENTRIES(dfaces_hdr), ENTRYSIZE(dfaces_hdr) );
totalmemory += ArrayUsage( "origfaces", numorigfaces, ENTRIES(dorigfaces), ENTRYSIZE(dorigfaces) ); // original faces
totalmemory += ArrayUsage( "leaves", numleafs, ENTRIES(dleafs), ENTRYSIZE(dleafs) );
totalmemory += ArrayUsage( "leaffaces", numleaffaces, ENTRIES(dleaffaces), ENTRYSIZE(dleaffaces) );
totalmemory += ArrayUsage( "leafbrushes", numleafbrushes, ENTRIES(dleafbrushes), ENTRYSIZE(dleafbrushes) );
totalmemory += ArrayUsage( "areas", numareas, ENTRIES(dareas), ENTRYSIZE(dareas) );
totalmemory += ArrayUsage( "surfedges", numsurfedges, ENTRIES(dsurfedges), ENTRYSIZE(dsurfedges) );
totalmemory += ArrayUsage( "edges", numedges, ENTRIES(dedges), ENTRYSIZE(dedges) );
totalmemory += ArrayUsage( "LDR worldlights", numworldlightsLDR, ENTRIES(dworldlightsLDR), ENTRYSIZE(dworldlightsLDR) );
totalmemory += ArrayUsage( "HDR worldlights", numworldlightsHDR, ENTRIES(dworldlightsHDR), ENTRYSIZE(dworldlightsHDR) );
totalmemory += ArrayUsage( "leafwaterdata", numleafwaterdata,ENTRIES(dleafwaterdata), ENTRYSIZE(dleafwaterdata) );
totalmemory += ArrayUsage( "waterstrips", g_numprimitives,ENTRIES(g_primitives), ENTRYSIZE(g_primitives) );
totalmemory += ArrayUsage( "waterverts", g_numprimverts, ENTRIES(g_primverts), ENTRYSIZE(g_primverts) );
totalmemory += ArrayUsage( "waterindices", g_numprimindices,ENTRIES(g_primindices),ENTRYSIZE(g_primindices) );
totalmemory += ArrayUsage( "cubemapsamples", g_nCubemapSamples,ENTRIES(g_CubemapSamples),ENTRYSIZE(g_CubemapSamples) );
totalmemory += ArrayUsage( "overlays", g_nOverlayCount, ENTRIES(g_Overlays), ENTRYSIZE(g_Overlays) );
totalmemory += GlobUsage( "LDR lightdata", dlightdataLDR.Count(), 0 );
totalmemory += GlobUsage( "HDR lightdata", dlightdataHDR.Count(), 0 );
totalmemory += GlobUsage( "visdata", visdatasize, sizeof(dvisdata) );
totalmemory += GlobUsage( "entdata", dentdata.Count(), 384*1024 ); // goal is <384K
totalmemory += ArrayUsage( "LDR ambient table", g_LeafAmbientIndexLDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientIndexLDR[0] ) );
totalmemory += ArrayUsage( "HDR ambient table", g_LeafAmbientIndexHDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientIndexHDR[0] ) );
totalmemory += ArrayUsage( "LDR leaf ambient lighting", g_LeafAmbientLightingLDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientLightingLDR[0] ) );
totalmemory += ArrayUsage( "HDR leaf ambient lighting", g_LeafAmbientLightingHDR.Count(), MAX_MAP_LEAFS, sizeof( g_LeafAmbientLightingHDR[0] ) );
totalmemory += ArrayUsage( "occluders", g_OccluderData.Count(), 0, sizeof( g_OccluderData[0] ) );
totalmemory += ArrayUsage( "occluder polygons", g_OccluderPolyData.Count(), 0, sizeof( g_OccluderPolyData[0] ) );
totalmemory += ArrayUsage( "occluder vert ind",g_OccluderVertexIndices.Count(),0, sizeof( g_OccluderVertexIndices[0] ) );
GameLumpHandle_t h = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROPS );
if (h != g_GameLumps.InvalidGameLump())
totalmemory += GlobUsage( "detail props", 1, g_GameLumps.GameLumpSize(h) );
h = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROP_LIGHTING );
if (h != g_GameLumps.InvalidGameLump())
totalmemory += GlobUsage( "dtl prp lght", 1, g_GameLumps.GameLumpSize(h) );
h = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROP_LIGHTING_HDR );
if (h != g_GameLumps.InvalidGameLump())
totalmemory += GlobUsage( "HDR dtl prp lght", 1, g_GameLumps.GameLumpSize(h) );
h = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS );
if (h != g_GameLumps.InvalidGameLump())
totalmemory += GlobUsage( "static props", 1, g_GameLumps.GameLumpSize(h) );
totalmemory += GlobUsage( "pakfile", GetPakFile()->EstimateSize(), 0 );
// HACKHACK: Set physics limit at 4MB, in reality this is totally dynamic
totalmemory += GlobUsage( "physics", g_PhysCollideSize, 4*1024*1024 );
totalmemory += GlobUsage( "physics terrain", g_PhysDispSize, 1*1024*1024 );
Msg( "\nLevel flags = %x\n", g_LevelFlags );
Msg( "\n" );
int triangleCount = 0;
for ( int i = 0; i < numfaces; i++ )
{
// face tris = numedges - 2
triangleCount += dfaces[i].numedges - 2;
}
Msg("Total triangle count: %d\n", triangleCount );
// UNDONE:
// areaportals, portals, texdata, clusters, worldlights, portalverts
}
/*
=============
PrintBSPPackDirectory
Dumps a list of files stored in the bsp pack.
=============
*/
void PrintBSPPackDirectory( void )
{
GetPakFile()->PrintDirectory();
}
//============================================
int num_entities;
entity_t entities[MAX_MAP_ENTITIES];
void StripTrailing (char *e)
{
char *s;
s = e + strlen(e)-1;
while (s >= e && *s <= 32)
{
*s = 0;
s--;
}
}
/*
=================
ParseEpair
=================
*/
epair_t *ParseEpair (void)
{
epair_t *e;
e = (epair_t*)malloc (sizeof(epair_t));
memset (e, 0, sizeof(epair_t));
if (strlen(token) >= MAX_KEY-1)
Error ("ParseEpar: token too long");
e->key = copystring(token);
GetToken (false);
if (strlen(token) >= MAX_VALUE-1)
Error ("ParseEpar: token too long");
e->value = copystring(token);
// strip trailing spaces
StripTrailing (e->key);
StripTrailing (e->value);
return e;
}
/*
================
ParseEntity
================
*/
qboolean ParseEntity (void)
{
epair_t *e;
entity_t *mapent;
if (!GetToken (true))
return false;
if (Q_stricmp (token, "{") )
Error ("ParseEntity: { not found");
if (num_entities == MAX_MAP_ENTITIES)
Error ("num_entities == MAX_MAP_ENTITIES");
mapent = &entities[num_entities];
num_entities++;
do
{
if (!GetToken (true))
Error ("ParseEntity: EOF without closing brace");
if (!Q_stricmp (token, "}") )
break;
e = ParseEpair ();
e->next = mapent->epairs;
mapent->epairs = e;
} while (1);
return true;
}
/*
================
ParseEntities
Parses the dentdata string into entities
================
*/
void ParseEntities (void)
{
num_entities = 0;
ParseFromMemory (dentdata.Base(), dentdata.Count());
while (ParseEntity ())
{
}
}
/*
================
UnparseEntities
Generates the dentdata string from all the entities
================
*/
void UnparseEntities (void)
{
epair_t *ep;
char line[2048];
int i;
char key[1024], value[1024];
CUtlBuffer buffer( 0, 0, CUtlBuffer::TEXT_BUFFER );
buffer.EnsureCapacity( 256 * 1024 );
for (i=0 ; i<num_entities ; i++)
{
ep = entities[i].epairs;
if (!ep)
continue; // ent got removed
buffer.PutString( "{\n" );
for (ep = entities[i].epairs ; ep ; ep=ep->next)
{
strcpy (key, ep->key);
StripTrailing (key);
strcpy (value, ep->value);
StripTrailing (value);
sprintf(line, "\"%s\" \"%s\"\n", key, value);
buffer.PutString( line );
}
buffer.PutString("}\n");
}
int entdatasize = buffer.TellPut()+1;
dentdata.SetSize( entdatasize );
memcpy( dentdata.Base(), buffer.Base(), entdatasize-1 );
dentdata[entdatasize-1] = 0;
}
void PrintEntity (entity_t *ent)
{
epair_t *ep;
Msg ("------- entity %p -------\n", ent);
for (ep=ent->epairs ; ep ; ep=ep->next)
{
Msg ("%s = %s\n", ep->key, ep->value);
}
}
void SetKeyValue(entity_t *ent, const char *key, const char *value)
{
epair_t *ep;
for (ep=ent->epairs ; ep ; ep=ep->next)
if (!Q_stricmp (ep->key, key) )
{
free (ep->value);
ep->value = copystring(value);
return;
}
ep = (epair_t*)malloc (sizeof(*ep));
ep->next = ent->epairs;
ent->epairs = ep;
ep->key = copystring(key);
ep->value = copystring(value);
}
char *ValueForKey (entity_t *ent, char *key)
{
for (epair_t *ep=ent->epairs ; ep ; ep=ep->next)
if (!Q_stricmp (ep->key, key) )
return ep->value;
return "";
}
vec_t FloatForKey (entity_t *ent, char *key)
{
char *k = ValueForKey (ent, key);
return atof(k);
}
vec_t FloatForKeyWithDefault (entity_t *ent, char *key, float default_value)
{
for (epair_t *ep=ent->epairs ; ep ; ep=ep->next)
if (!Q_stricmp (ep->key, key) )
return atof( ep->value );
return default_value;
}
int IntForKey (entity_t *ent, char *key)
{
char *k = ValueForKey (ent, key);
return atol(k);
}
int IntForKeyWithDefault(entity_t *ent, char *key, int nDefault )
{
char *k = ValueForKey (ent, key);
if ( !k[0] )
return nDefault;
return atol(k);
}
void GetVectorForKey (entity_t *ent, char *key, Vector& vec)
{
char *k = ValueForKey (ent, key);
// scanf into doubles, then assign, so it is vec_t size independent
double v1, v2, v3;
v1 = v2 = v3 = 0;
sscanf (k, "%lf %lf %lf", &v1, &v2, &v3);
vec[0] = v1;
vec[1] = v2;
vec[2] = v3;
}
void GetVector2DForKey (entity_t *ent, char *key, Vector2D& vec)
{
double v1, v2;
char *k = ValueForKey (ent, key);
// scanf into doubles, then assign, so it is vec_t size independent
v1 = v2 = 0;
sscanf (k, "%lf %lf", &v1, &v2);
vec[0] = v1;
vec[1] = v2;
}
void GetAnglesForKey (entity_t *ent, char *key, QAngle& angle)
{
char *k;
double v1, v2, v3;
k = ValueForKey (ent, key);
// scanf into doubles, then assign, so it is vec_t size independent
v1 = v2 = v3 = 0;
sscanf (k, "%lf %lf %lf", &v1, &v2, &v3);
angle[0] = v1;
angle[1] = v2;
angle[2] = v3;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void BuildFaceCalcWindingData( dface_t *pFace, int *points )
{
for( int i = 0; i < pFace->numedges; i++ )
{
int eIndex = dsurfedges[pFace->firstedge+i];
if( eIndex < 0 )
{
points[i] = dedges[-eIndex].v[1];
}
else
{
points[i] = dedges[eIndex].v[0];
}
}
}
void TriStripToTriList(
unsigned short const *pTriStripIndices,
int nTriStripIndices,
unsigned short **pTriListIndices,
int *pnTriListIndices )
{
int nMaxTriListIndices = (nTriStripIndices - 2) * 3;
*pTriListIndices = new unsigned short[ nMaxTriListIndices ];
*pnTriListIndices = 0;
for( int i=0; i < nTriStripIndices - 2; i++ )
{
if( pTriStripIndices[i] == pTriStripIndices[i+1] ||
pTriStripIndices[i] == pTriStripIndices[i+2] ||
pTriStripIndices[i+1] == pTriStripIndices[i+2] )
{
}
else
{
// Flip odd numbered tris..
if( i & 1 )
{
(*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+2];
(*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+1];
(*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i];
}
else
{
(*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i];
(*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+1];
(*pTriListIndices)[(*pnTriListIndices)++] = pTriStripIndices[i+2];
}
}
}
}
void CalcTextureCoordsAtPoints(
float const texelsPerWorldUnits[2][4],
int const subtractOffset[2],
Vector const *pPoints,
int const nPoints,
Vector2D *pCoords )
{
for( int i=0; i < nPoints; i++ )
{
for( int iCoord=0; iCoord < 2; iCoord++ )
{
float *pDestCoord = &pCoords[i][iCoord];
*pDestCoord = 0;
for( int iDot=0; iDot < 3; iDot++ )
*pDestCoord += pPoints[i][iDot] * texelsPerWorldUnits[iCoord][iDot];
*pDestCoord += texelsPerWorldUnits[iCoord][3];
*pDestCoord -= subtractOffset[iCoord];
}
}
}
/*
================
CalcFaceExtents
Fills in s->texmins[] and s->texsize[]
================
*/
void CalcFaceExtents(dface_t *s, int lightmapTextureMinsInLuxels[2], int lightmapTextureSizeInLuxels[2])
{
vec_t mins[2], maxs[2], val=0;
int i,j, e=0;
dvertex_t *v=NULL;
texinfo_t *tex=NULL;
mins[0] = mins[1] = 1e24;
maxs[0] = maxs[1] = -1e24;
tex = &texinfo[s->texinfo];
for (i=0 ; i<s->numedges ; i++)
{
e = dsurfedges[s->firstedge+i];
if (e >= 0)
v = dvertexes + dedges[e].v[0];
else
v = dvertexes + dedges[-e].v[1];
for (j=0 ; j<2 ; j++)
{
val = v->point[0] * tex->lightmapVecsLuxelsPerWorldUnits[j][0] +
v->point[1] * tex->lightmapVecsLuxelsPerWorldUnits[j][1] +
v->point[2] * tex->lightmapVecsLuxelsPerWorldUnits[j][2] +
tex->lightmapVecsLuxelsPerWorldUnits[j][3];
if (val < mins[j])
mins[j] = val;
if (val > maxs[j])
maxs[j] = val;
}
}
int nMaxLightmapDim = (s->dispinfo == -1) ? MAX_LIGHTMAP_DIM_WITHOUT_BORDER : MAX_DISP_LIGHTMAP_DIM_WITHOUT_BORDER;
for (i=0 ; i<2 ; i++)
{
mins[i] = ( float )floor( mins[i] );
maxs[i] = ( float )ceil( maxs[i] );
lightmapTextureMinsInLuxels[i] = ( int )mins[i];
lightmapTextureSizeInLuxels[i] = ( int )( maxs[i] - mins[i] );
if( lightmapTextureSizeInLuxels[i] > nMaxLightmapDim + 1 )
{
Vector point = vec3_origin;
for (int j=0 ; j<s->numedges ; j++)
{
e = dsurfedges[s->firstedge+j];
v = (e<0)?dvertexes + dedges[-e].v[1] : dvertexes + dedges[e].v[0];
point += v->point;
Warning( "Bad surface extents point: %f %f %f\n", v->point.x, v->point.y, v->point.z );
}
point *= 1.0f/s->numedges;
Error( "Bad surface extents - surface is too big to have a lightmap\n\tmaterial %s around point (%.1f %.1f %.1f)\n\t(dimension: %d, %d>%d)\n",
TexDataStringTable_GetString( dtexdata[texinfo[s->texinfo].texdata].nameStringTableID ),
point.x, point.y, point.z,
( int )i,
( int )lightmapTextureSizeInLuxels[i],
( int )( nMaxLightmapDim + 1 )
);
}
}
}
void UpdateAllFaceLightmapExtents()
{
for( int i=0; i < numfaces; i++ )
{
dface_t *pFace = &dfaces[i];
if ( texinfo[pFace->texinfo].flags & (SURF_SKY|SURF_NOLIGHT) )
continue; // non-lit texture
CalcFaceExtents( pFace, pFace->m_LightmapTextureMinsInLuxels, pFace->m_LightmapTextureSizeInLuxels );
}
}
//-----------------------------------------------------------------------------
//
// Helper class to iterate over leaves, used by tools
//
//-----------------------------------------------------------------------------
#define TEST_EPSILON (0.03125)
class CToolBSPTree : public ISpatialQuery
{
public:
// Returns the number of leaves
int LeafCount() const;
// Enumerates the leaves along a ray, box, etc.
bool EnumerateLeavesAtPoint( Vector const& pt, ISpatialLeafEnumerator* pEnum, int context );
bool EnumerateLeavesInBox( Vector const& mins, Vector const& maxs, ISpatialLeafEnumerator* pEnum, int context );
bool EnumerateLeavesInSphere( Vector const& center, float radius, ISpatialLeafEnumerator* pEnum, int context );
bool EnumerateLeavesAlongRay( Ray_t const& ray, ISpatialLeafEnumerator* pEnum, int context );
};
//-----------------------------------------------------------------------------
// Returns the number of leaves
//-----------------------------------------------------------------------------
int CToolBSPTree::LeafCount() const
{
return numleafs;
}
//-----------------------------------------------------------------------------
// Enumerates the leaves at a point
//-----------------------------------------------------------------------------
bool CToolBSPTree::EnumerateLeavesAtPoint( Vector const& pt,
ISpatialLeafEnumerator* pEnum, int context )
{
int node = 0;
while( node >= 0 )
{
dnode_t* pNode = &dnodes[node];
dplane_t* pPlane = &dplanes[pNode->planenum];
if (DotProduct( pPlane->normal, pt ) <= pPlane->dist)
{
node = pNode->children[1];
}
else
{
node = pNode->children[0];
}
}
return pEnum->EnumerateLeaf( - node - 1, context );
}
//-----------------------------------------------------------------------------
// Enumerates the leaves in a box
//-----------------------------------------------------------------------------
static bool EnumerateLeavesInBox_R( int node, Vector const& mins,
Vector const& maxs, ISpatialLeafEnumerator* pEnum, int context )
{
Vector cornermin, cornermax;
while( node >= 0 )
{
dnode_t* pNode = &dnodes[node];
dplane_t* pPlane = &dplanes[pNode->planenum];
// Arbitrary split plane here
for (int i = 0; i < 3; ++i)
{
if (pPlane->normal[i] >= 0)
{
cornermin[i] = mins[i];
cornermax[i] = maxs[i];
}
else
{
cornermin[i] = maxs[i];
cornermax[i] = mins[i];
}
}
if ( (DotProduct( pPlane->normal, cornermax ) - pPlane->dist) <= -TEST_EPSILON )
{
node = pNode->children[1];
}
else if ( (DotProduct( pPlane->normal, cornermin ) - pPlane->dist) >= TEST_EPSILON )
{
node = pNode->children[0];
}
else
{
if (!EnumerateLeavesInBox_R( pNode->children[0], mins, maxs, pEnum, context ))
{
return false;
}
return EnumerateLeavesInBox_R( pNode->children[1], mins, maxs, pEnum, context );
}
}
return pEnum->EnumerateLeaf( - node - 1, context );
}
bool CToolBSPTree::EnumerateLeavesInBox( Vector const& mins, Vector const& maxs,
ISpatialLeafEnumerator* pEnum, int context )
{
return EnumerateLeavesInBox_R( 0, mins, maxs, pEnum, context );
}
//-----------------------------------------------------------------------------
// Enumerate leaves within a sphere
//-----------------------------------------------------------------------------
static bool EnumerateLeavesInSphere_R( int node, Vector const& origin,
float radius, ISpatialLeafEnumerator* pEnum, int context )
{
while( node >= 0 )
{
dnode_t* pNode = &dnodes[node];
dplane_t* pPlane = &dplanes[pNode->planenum];
if (DotProduct( pPlane->normal, origin ) + radius - pPlane->dist <= -TEST_EPSILON )
{
node = pNode->children[1];
}
else if (DotProduct( pPlane->normal, origin ) - radius - pPlane->dist >= TEST_EPSILON )
{
node = pNode->children[0];
}
else
{
if (!EnumerateLeavesInSphere_R( pNode->children[0],
origin, radius, pEnum, context ))
{
return false;
}
return EnumerateLeavesInSphere_R( pNode->children[1],
origin, radius, pEnum, context );
}
}
return pEnum->EnumerateLeaf( - node - 1, context );
}
bool CToolBSPTree::EnumerateLeavesInSphere( Vector const& center, float radius, ISpatialLeafEnumerator* pEnum, int context )
{
return EnumerateLeavesInSphere_R( 0, center, radius, pEnum, context );
}
//-----------------------------------------------------------------------------
// Enumerate leaves along a ray
//-----------------------------------------------------------------------------
static bool EnumerateLeavesAlongRay_R( int node, Ray_t const& ray,
Vector const& start, Vector const& end, ISpatialLeafEnumerator* pEnum, int context )
{
float front,back;
while (node >= 0)
{
dnode_t* pNode = &dnodes[node];
dplane_t* pPlane = &dplanes[pNode->planenum];
if ( pPlane->type <= PLANE_Z )
{
front = start[pPlane->type] - pPlane->dist;
back = end[pPlane->type] - pPlane->dist;
}
else
{
front = DotProduct(start, pPlane->normal) - pPlane->dist;
back = DotProduct(end, pPlane->normal) - pPlane->dist;
}
if (front <= -TEST_EPSILON && back <= -TEST_EPSILON)
{
node = pNode->children[1];
}
else if (front >= TEST_EPSILON && back >= TEST_EPSILON)
{
node = pNode->children[0];
}
else
{
// test the front side first
bool side = front < 0;
// Compute intersection point based on the original ray
float splitfrac;
float denom = DotProduct( ray.m_Delta, pPlane->normal );
if ( denom == 0.0f )
{
splitfrac = 1.0f;
}
else
{
splitfrac = ( pPlane->dist - DotProduct( ray.m_Start, pPlane->normal ) ) / denom;
if (splitfrac < 0)
splitfrac = 0;
else if (splitfrac > 1)
splitfrac = 1;
}
// Compute the split point
Vector split;
VectorMA( ray.m_Start, splitfrac, ray.m_Delta, split );
bool r = EnumerateLeavesAlongRay_R (pNode->children[side], ray, start, split, pEnum, context );
if (!r)
return r;
return EnumerateLeavesAlongRay_R (pNode->children[!side], ray, split, end, pEnum, context);
}
}
return pEnum->EnumerateLeaf( - node - 1, context );
}
bool CToolBSPTree::EnumerateLeavesAlongRay( Ray_t const& ray, ISpatialLeafEnumerator* pEnum, int context )
{
if (!ray.m_IsSwept)
{
Vector mins, maxs;
VectorAdd( ray.m_Start, ray.m_Extents, maxs );
VectorSubtract( ray.m_Start, ray.m_Extents, mins );
return EnumerateLeavesInBox_R( 0, mins, maxs, pEnum, context );
}
// FIXME: Extruded ray not implemented yet
Assert( ray.m_IsRay );
Vector end;
VectorAdd( ray.m_Start, ray.m_Delta, end );
return EnumerateLeavesAlongRay_R( 0, ray, ray.m_Start, end, pEnum, context );
}
//-----------------------------------------------------------------------------
// Singleton accessor
//-----------------------------------------------------------------------------
ISpatialQuery* ToolBSPTree()
{
static CToolBSPTree s_ToolBSPTree;
return &s_ToolBSPTree;
}
//-----------------------------------------------------------------------------
// Enumerates nodes in front to back order...
//-----------------------------------------------------------------------------
// FIXME: Do we want this in the IBSPTree interface?
static bool EnumerateNodesAlongRay_R( int node, Ray_t const& ray, float start, float end,
IBSPNodeEnumerator* pEnum, int context )
{
float front, back;
float startDotN, deltaDotN;
while (node >= 0)
{
dnode_t* pNode = &dnodes[node];
dplane_t* pPlane = &dplanes[pNode->planenum];
if ( pPlane->type <= PLANE_Z )
{
startDotN = ray.m_Start[pPlane->type];
deltaDotN = ray.m_Delta[pPlane->type];
}
else
{
startDotN = DotProduct( ray.m_Start, pPlane->normal );
deltaDotN = DotProduct( ray.m_Delta, pPlane->normal );
}
front = startDotN + start * deltaDotN - pPlane->dist;
back = startDotN + end * deltaDotN - pPlane->dist;
if (front <= -TEST_EPSILON && back <= -TEST_EPSILON)
{
node = pNode->children[1];
}
else if (front >= TEST_EPSILON && back >= TEST_EPSILON)
{
node = pNode->children[0];
}
else
{
// test the front side first
bool side = front < 0;
// Compute intersection point based on the original ray
float splitfrac;
if ( deltaDotN == 0.0f )
{
splitfrac = 1.0f;
}
else
{
splitfrac = ( pPlane->dist - startDotN ) / deltaDotN;
if (splitfrac < 0.0f)
splitfrac = 0.0f;
else if (splitfrac > 1.0f)
splitfrac = 1.0f;
}
bool r = EnumerateNodesAlongRay_R (pNode->children[side], ray, start, splitfrac, pEnum, context );
if (!r)
return r;
// Visit the node...
if (!pEnum->EnumerateNode( node, ray, splitfrac, context ))
return false;
return EnumerateNodesAlongRay_R (pNode->children[!side], ray, splitfrac, end, pEnum, context);
}
}
// Visit the leaf...
return pEnum->EnumerateLeaf( - node - 1, ray, start, end, context );
}
bool EnumerateNodesAlongRay( Ray_t const& ray, IBSPNodeEnumerator* pEnum, int context )
{
Vector end;
VectorAdd( ray.m_Start, ray.m_Delta, end );
return EnumerateNodesAlongRay_R( 0, ray, 0.0f, 1.0f, pEnum, context );
}
//-----------------------------------------------------------------------------
// Helps us find all leaves associated with a particular cluster
//-----------------------------------------------------------------------------
CUtlVector<clusterlist_t> g_ClusterLeaves;
void BuildClusterTable( void )
{
int i, j;
int leafCount;
int leafList[MAX_MAP_LEAFS];
g_ClusterLeaves.SetCount( dvis->numclusters );
for ( i = 0; i < dvis->numclusters; i++ )
{
leafCount = 0;
for ( j = 0; j < numleafs; j++ )
{
if ( dleafs[j].cluster == i )
{
leafList[ leafCount ] = j;
leafCount++;
}
}
g_ClusterLeaves[i].leafCount = leafCount;
if ( leafCount )
{
g_ClusterLeaves[i].leafs.SetCount( leafCount );
memcpy( g_ClusterLeaves[i].leafs.Base(), leafList, sizeof(int) * leafCount );
}
}
}
// There's a version of this in checksum_engine.cpp!!! Make sure that they match.
static bool CRC_MapFile(CRC32_t *crcvalue, const char *pszFileName)
{
byte chunk[1024];
lump_t *curLump;
FileHandle_t fp = g_pFileSystem->Open( pszFileName, "rb" );
if ( !fp )
return false;
// CRC across all lumps except for the Entities lump
for ( int l = 0; l < HEADER_LUMPS; ++l )
{
if (l == LUMP_ENTITIES)
continue;
curLump = &g_pBSPHeader->lumps[l];
unsigned int nSize = curLump->filelen;
g_pFileSystem->Seek( fp, curLump->fileofs, FILESYSTEM_SEEK_HEAD );
// Now read in 1K chunks
while ( nSize > 0 )
{
int nBytesRead = 0;
if ( nSize > 1024 )
nBytesRead = g_pFileSystem->Read( chunk, 1024, fp );
else
nBytesRead = g_pFileSystem->Read( chunk, nSize, fp );
// If any data was received, CRC it.
if ( nBytesRead > 0 )
{
nSize -= nBytesRead;
CRC32_ProcessBuffer( crcvalue, chunk, nBytesRead );
}
else
{
g_pFileSystem->Close( fp );
return false;
}
}
}
g_pFileSystem->Close( fp );
return true;
}
void SetHDRMode( bool bHDR )
{
g_bHDR = bHDR;
if ( bHDR )
{
pdlightdata = &dlightdataHDR;
g_pLeafAmbientLighting = &g_LeafAmbientLightingHDR;
g_pLeafAmbientIndex = &g_LeafAmbientIndexHDR;
pNumworldlights = &numworldlightsHDR;
dworldlights = dworldlightsHDR;
#ifdef VRAD
extern void VRadDetailProps_SetHDRMode( bool bHDR );
VRadDetailProps_SetHDRMode( bHDR );
#endif
}
else
{
pdlightdata = &dlightdataLDR;
g_pLeafAmbientLighting = &g_LeafAmbientLightingLDR;
g_pLeafAmbientIndex = &g_LeafAmbientIndexLDR;
pNumworldlights = &numworldlightsLDR;
dworldlights = dworldlightsLDR;
#ifdef VRAD
extern void VRadDetailProps_SetHDRMode( bool bHDR );
VRadDetailProps_SetHDRMode( bHDR );
#endif
}
}
bool SwapVHV( void *pDestBase, void *pSrcBase )
{
byte *pDest = (byte*)pDestBase;
byte *pSrc = (byte*)pSrcBase;
HardwareVerts::FileHeader_t *pHdr = (HardwareVerts::FileHeader_t*)( g_bSwapOnLoad ? pDest : pSrc );
g_Swap.SwapFieldsToTargetEndian<HardwareVerts::FileHeader_t>( (HardwareVerts::FileHeader_t*)pDest, (HardwareVerts::FileHeader_t*)pSrc );
pSrc += sizeof(HardwareVerts::FileHeader_t);
pDest += sizeof(HardwareVerts::FileHeader_t);
// This swap is pretty format specific
Assert( pHdr->m_nVersion == VHV_VERSION );
if ( pHdr->m_nVersion != VHV_VERSION )
return false;
HardwareVerts::MeshHeader_t *pSrcMesh = (HardwareVerts::MeshHeader_t*)pSrc;
HardwareVerts::MeshHeader_t *pDestMesh = (HardwareVerts::MeshHeader_t*)pDest;
HardwareVerts::MeshHeader_t *pMesh = (HardwareVerts::MeshHeader_t*)( g_bSwapOnLoad ? pDest : pSrc );
for ( int i = 0; i < pHdr->m_nMeshes; ++i, ++pMesh, ++pSrcMesh, ++pDestMesh )
{
g_Swap.SwapFieldsToTargetEndian( pDestMesh, pSrcMesh );
pSrc = (byte*)pSrcBase + pMesh->m_nOffset;
pDest = (byte*)pDestBase + pMesh->m_nOffset;
// Swap as a buffer of integers
// (source is bgra for an Intel swap to argb. PowerPC won't swap, so we need argb source.
g_Swap.SwapBufferToTargetEndian<int>( (int*)pDest, (int*)pSrc, pMesh->m_nVertexes );
}
return true;
}
const char *ResolveStaticPropToModel( const char *pPropName )
{
// resolve back to static prop
int iProp = -1;
// filename should be sp_???.vhv or sp_hdr_???.vhv
if ( V_strnicmp( pPropName, "sp_", 3 ) )
{
return NULL;
}
const char *pPropNumber = V_strrchr( pPropName, '_' );
if ( pPropNumber )
{
sscanf( pPropNumber+1, "%d.vhv", &iProp );
}
else
{
return NULL;
}
// look up the prop to get to the actual model
if ( iProp < 0 || iProp >= g_StaticPropInstances.Count() )
{
// prop out of range
return NULL;
}
int iModel = g_StaticPropInstances[iProp];
if ( iModel < 0 || iModel >= g_StaticPropNames.Count() )
{
// model out of range
return NULL;
}
return g_StaticPropNames[iModel].String();
}
//-----------------------------------------------------------------------------
// Iterate files in pak file, distribute to converters
// pak file will be ready for serialization upon completion
//-----------------------------------------------------------------------------
void ConvertPakFileContents( const char *pInFilename )
{
IZip *newPakFile = IZip::CreateZip( NULL );
CUtlBuffer sourceBuf;
CUtlBuffer targetBuf;
bool bConverted;
CUtlVector< CUtlString > hdrFiles;
int id = -1;
int fileSize;
while ( 1 )
{
char relativeName[MAX_PATH];
id = GetNextFilename( GetPakFile(), id, relativeName, sizeof( relativeName ), fileSize );
if ( id == -1)
break;
bConverted = false;
sourceBuf.Purge();
targetBuf.Purge();
const char* pExtension = V_GetFileExtension( relativeName );
const char* pExt = 0;
bool bOK = ReadFileFromPak( GetPakFile(), relativeName, false, sourceBuf );
if ( !bOK )
{
Warning( "Failed to load '%s' from lump pak for conversion or copy in '%s'.\n", relativeName, pInFilename );
continue;
}
if ( pExtension && !V_stricmp( pExtension, "vtf" ) )
{
bOK = g_pVTFConvertFunc( relativeName, sourceBuf, targetBuf, g_pCompressFunc );
if ( !bOK )
{
Warning( "Failed to convert '%s' in '%s'.\n", relativeName, pInFilename );
continue;
}
bConverted = true;
pExt = ".vtf";
}
else if ( pExtension && !V_stricmp( pExtension, "vhv" ) )
{
CUtlBuffer tempBuffer;
if ( g_pVHVFixupFunc )
{
// caller supplied a fixup
const char *pModelName = ResolveStaticPropToModel( relativeName );
if ( !pModelName )
{
Warning( "Static Prop '%s' failed to resolve actual model in '%s'.\n", relativeName, pInFilename );
continue;
}
// output temp buffer may shrink, must use TellPut() to determine size
bOK = g_pVHVFixupFunc( relativeName, pModelName, sourceBuf, tempBuffer );
if ( !bOK )
{
Warning( "Failed to convert '%s' in '%s'.\n", relativeName, pInFilename );
continue;
}
}
else
{
// use the source buffer as-is
tempBuffer.EnsureCapacity( sourceBuf.TellMaxPut() );
tempBuffer.Put( sourceBuf.Base(), sourceBuf.TellMaxPut() );
}
// swap the VHV
targetBuf.EnsureCapacity( tempBuffer.TellPut() );
bOK = SwapVHV( targetBuf.Base(), tempBuffer.Base() );
if ( !bOK )
{
Warning( "Failed to swap '%s' in '%s'.\n", relativeName, pInFilename );
continue;
}
targetBuf.SeekPut( CUtlBuffer::SEEK_HEAD, tempBuffer.TellPut() );
if ( g_pCompressFunc )
{
CUtlBuffer compressedBuffer;
targetBuf.SeekGet( CUtlBuffer::SEEK_HEAD, sizeof( HardwareVerts::FileHeader_t ) );
bool bCompressed = g_pCompressFunc( targetBuf, compressedBuffer );
if ( bCompressed )
{
// copy all the header data off
CUtlBuffer headerBuffer;
headerBuffer.EnsureCapacity( sizeof( HardwareVerts::FileHeader_t ) );
headerBuffer.Put( targetBuf.Base(), sizeof( HardwareVerts::FileHeader_t ) );
// reform the target with the header and then the compressed data
targetBuf.Clear();
targetBuf.Put( headerBuffer.Base(), sizeof( HardwareVerts::FileHeader_t ) );
targetBuf.Put( compressedBuffer.Base(), compressedBuffer.TellPut() );
}
targetBuf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 );
}
bConverted = true;
pExt = ".vhv";
}
if ( !bConverted )
{
// straight copy
AddBufferToPak( newPakFile, relativeName, sourceBuf.Base(), sourceBuf.TellMaxPut(), false, IZip::eCompressionType_None );
}
else
{
// converted filename
V_StripExtension( relativeName, relativeName, sizeof( relativeName ) );
V_strcat( relativeName, ".360", sizeof( relativeName ) );
V_strcat( relativeName, pExt, sizeof( relativeName ) );
AddBufferToPak( newPakFile, relativeName, targetBuf.Base(), targetBuf.TellMaxPut(), false, IZip::eCompressionType_None );
}
if ( V_stristr( relativeName, ".hdr" ) || V_stristr( relativeName, "_hdr" ) )
{
hdrFiles.AddToTail( relativeName );
}
DevMsg( "Created '%s' in lump pak in '%s'.\n", relativeName, pInFilename );
}
// strip ldr version of hdr files
for ( int i=0; i<hdrFiles.Count(); i++ )
{
char ldrFileName[MAX_PATH];
strcpy( ldrFileName, hdrFiles[i].String() );
char *pHDRExtension = V_stristr( ldrFileName, ".hdr" );
if ( !pHDRExtension )
{
pHDRExtension = V_stristr( ldrFileName, "_hdr" );
}
if ( pHDRExtension )
{
// strip .hdr or _hdr to get ldr filename
memcpy( pHDRExtension, pHDRExtension+4, strlen( pHDRExtension+4 )+1 );
DevMsg( "Stripping LDR: %s\n", ldrFileName );
newPakFile->RemoveFileFromZip( ldrFileName );
}
}
// discard old pak in favor of new pak
IZip::ReleaseZip( s_pakFile );
s_pakFile = newPakFile;
}
void SetAlignedLumpPosition( int lumpnum, int alignment = LUMP_ALIGNMENT )
{
g_pBSPHeader->lumps[lumpnum].fileofs = AlignFilePosition( g_hBSPFile, alignment );
}
template< class T >
int SwapLumpToDisk( int fieldType, int lumpnum )
{
if ( g_pBSPHeader->lumps[lumpnum].filelen == 0 )
return 0;
DevMsg( "Swapping %s\n", GetLumpName( lumpnum ) );
// lump swap may expand, allocate enough expansion room
void *pBuffer = malloc( 2*g_pBSPHeader->lumps[lumpnum].filelen );
// CopyLumpInternal will handle the swap on load case
unsigned int fieldSize = ( fieldType == FIELD_VECTOR ) ? sizeof(Vector) : sizeof(T);
unsigned int count = CopyLumpInternal<T>( fieldType, lumpnum, (T*)pBuffer, g_pBSPHeader->lumps[lumpnum].version );
g_pBSPHeader->lumps[lumpnum].filelen = count * fieldSize;
if ( g_bSwapOnWrite )
{
// Swap the lump in place before writing
switch( lumpnum )
{
case LUMP_VISIBILITY:
SwapVisibilityLump( (byte*)pBuffer, (byte*)pBuffer, count );
break;
case LUMP_PHYSCOLLIDE:
// SwapPhyscollideLump may change size
SwapPhyscollideLump( (byte*)pBuffer, (byte*)pBuffer, count );
g_pBSPHeader->lumps[lumpnum].filelen = count;
break;
case LUMP_PHYSDISP:
SwapPhysdispLump( (byte*)pBuffer, (byte*)pBuffer, count );
break;
default:
g_Swap.SwapBufferToTargetEndian( (T*)pBuffer, (T*)pBuffer, g_pBSPHeader->lumps[lumpnum].filelen / sizeof(T) );
break;
}
}
SetAlignedLumpPosition( lumpnum );
SafeWrite( g_hBSPFile, pBuffer, g_pBSPHeader->lumps[lumpnum].filelen );
free( pBuffer );
return g_pBSPHeader->lumps[lumpnum].filelen;
}
template< class T >
int SwapLumpToDisk( int lumpnum )
{
if ( g_pBSPHeader->lumps[lumpnum].filelen == 0 || g_Lumps.bLumpParsed[lumpnum] )
return 0;
DevMsg( "Swapping %s\n", GetLumpName( lumpnum ) );
// lump swap may expand, allocate enough room
void *pBuffer = malloc( 2*g_pBSPHeader->lumps[lumpnum].filelen );
// CopyLumpInternal will handle the swap on load case
int count = CopyLumpInternal<T>( lumpnum, (T*)pBuffer, g_pBSPHeader->lumps[lumpnum].version );
g_pBSPHeader->lumps[lumpnum].filelen = count * sizeof(T);
if ( g_bSwapOnWrite )
{
// Swap the lump in place before writing
g_Swap.SwapFieldsToTargetEndian( (T*)pBuffer, (T*)pBuffer, count );
}
SetAlignedLumpPosition( lumpnum );
SafeWrite( g_hBSPFile, pBuffer, g_pBSPHeader->lumps[lumpnum].filelen );
free( pBuffer );
return g_pBSPHeader->lumps[lumpnum].filelen;
}
void SwapLeafAmbientLightingLumpToDisk()
{
if ( HasLump( LUMP_LEAF_AMBIENT_INDEX ) || HasLump( LUMP_LEAF_AMBIENT_INDEX_HDR ) )
{
// current version, swap in place
if ( HasLump( LUMP_LEAF_AMBIENT_INDEX_HDR ) )
{
// write HDR
SwapLumpToDisk< dleafambientlighting_t >( LUMP_LEAF_AMBIENT_LIGHTING_HDR );
SwapLumpToDisk< dleafambientindex_t >( LUMP_LEAF_AMBIENT_INDEX_HDR );
// cull LDR
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen = 0;
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen = 0;
}
else
{
// no HDR, keep LDR version
SwapLumpToDisk< dleafambientlighting_t >( LUMP_LEAF_AMBIENT_LIGHTING );
SwapLumpToDisk< dleafambientindex_t >( LUMP_LEAF_AMBIENT_INDEX );
}
}
else
{
// older ambient lighting version (before index)
// load older ambient lighting into memory and build ambient/index
// an older leaf version would have already built the new LDR leaf ambient/index
int numLeafs = g_pBSPHeader->lumps[LUMP_LEAFS].filelen / sizeof( dleaf_t );
LoadLeafAmbientLighting( numLeafs );
if ( HasLump( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) )
{
DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_LIGHTING_HDR ) );
DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_INDEX_HDR ) );
// write HDR
if ( g_bSwapOnWrite )
{
g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientLightingHDR.Base(), g_LeafAmbientLightingHDR.Count() );
g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientIndexHDR.Base(), g_LeafAmbientIndexHDR.Count() );
}
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_LIGHTING_HDR );
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].version = LUMP_LEAF_AMBIENT_LIGHTING_VERSION;
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].filelen = g_LeafAmbientLightingHDR.Count() * sizeof( dleafambientlighting_t );
SafeWrite( g_hBSPFile, g_LeafAmbientLightingHDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING_HDR].filelen );
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_INDEX_HDR );
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX_HDR].filelen = g_LeafAmbientIndexHDR.Count() * sizeof( dleafambientindex_t );
SafeWrite( g_hBSPFile, g_LeafAmbientIndexHDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX_HDR].filelen );
// mark as processed
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING_HDR] = true;
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX_HDR] = true;
// cull LDR
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen = 0;
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen = 0;
}
else
{
// no HDR, keep LDR version
DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_LIGHTING ) );
DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAF_AMBIENT_INDEX ) );
if ( g_bSwapOnWrite )
{
g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientLightingLDR.Base(), g_LeafAmbientLightingLDR.Count() );
g_Swap.SwapFieldsToTargetEndian( g_LeafAmbientIndexLDR.Base(), g_LeafAmbientIndexLDR.Count() );
}
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_LIGHTING );
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].version = LUMP_LEAF_AMBIENT_LIGHTING_VERSION;
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen = g_LeafAmbientLightingLDR.Count() * sizeof( dleafambientlighting_t );
SafeWrite( g_hBSPFile, g_LeafAmbientLightingLDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_LIGHTING].filelen );
SetAlignedLumpPosition( LUMP_LEAF_AMBIENT_INDEX );
g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen = g_LeafAmbientIndexLDR.Count() * sizeof( dleafambientindex_t );
SafeWrite( g_hBSPFile, g_LeafAmbientIndexLDR.Base(), g_pBSPHeader->lumps[LUMP_LEAF_AMBIENT_INDEX].filelen );
// mark as processed
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_LIGHTING] = true;
g_Lumps.bLumpParsed[LUMP_LEAF_AMBIENT_INDEX] = true;
}
g_LeafAmbientLightingLDR.Purge();
g_LeafAmbientIndexLDR.Purge();
g_LeafAmbientLightingHDR.Purge();
g_LeafAmbientIndexHDR.Purge();
}
}
void SwapLeafLumpToDisk( void )
{
DevMsg( "Swapping %s\n", GetLumpName( LUMP_LEAFS ) );
// load the leafs
int count = LoadLeafs();
if ( g_bSwapOnWrite )
{
g_Swap.SwapFieldsToTargetEndian( dleafs, count );
}
bool bOldLeafVersion = ( LumpVersion( LUMP_LEAFS ) == 0 );
if ( bOldLeafVersion )
{
// version has been converted in the load process
// not updating the version ye, SwapLeafAmbientLightingLumpToDisk() can detect
g_pBSPHeader->lumps[LUMP_LEAFS].filelen = count * sizeof( dleaf_t );
}
SetAlignedLumpPosition( LUMP_LEAFS );
SafeWrite( g_hBSPFile, dleafs, g_pBSPHeader->lumps[LUMP_LEAFS].filelen );
SwapLeafAmbientLightingLumpToDisk();
if ( bOldLeafVersion )
{
// version has been converted in the load process
// can now safely change
g_pBSPHeader->lumps[LUMP_LEAFS].version = 1;
}
#if defined( BSP_USE_LESS_MEMORY )
if ( dleafs )
{
free( dleafs );
dleafs = NULL;
}
#endif
}
void SwapOcclusionLumpToDisk( void )
{
DevMsg( "Swapping %s\n", GetLumpName( LUMP_OCCLUSION ) );
LoadOcclusionLump();
SetAlignedLumpPosition( LUMP_OCCLUSION );
AddOcclusionLump();
}
void SwapPakfileLumpToDisk( const char *pInFilename )
{
DevMsg( "Swapping %s\n", GetLumpName( LUMP_PAKFILE ) );
byte *pakbuffer = NULL;
int paksize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, ( void ** )&pakbuffer );
if ( paksize > 0 )
{
GetPakFile()->ActivateByteSwapping( IsX360() );
GetPakFile()->ParseFromBuffer( pakbuffer, paksize );
ConvertPakFileContents( pInFilename );
}
free( pakbuffer );
SetAlignedLumpPosition( LUMP_PAKFILE, XBOX_DVD_SECTORSIZE );
WritePakFileLump();
ReleasePakFileLumps();
}
void SwapGameLumpsToDisk( void )
{
DevMsg( "Swapping %s\n", GetLumpName( LUMP_GAME_LUMP ) );
g_GameLumps.ParseGameLump( g_pBSPHeader );
SetAlignedLumpPosition( LUMP_GAME_LUMP );
AddGameLumps();
}
//-----------------------------------------------------------------------------
// Generate a table of all static props, used for resolving static prop lighting
// files back to their actual mdl.
//-----------------------------------------------------------------------------
void BuildStaticPropNameTable()
{
g_StaticPropNames.Purge();
g_StaticPropInstances.Purge();
g_GameLumps.ParseGameLump( g_pBSPHeader );
GameLumpHandle_t hGameLump = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS );
if ( hGameLump != g_GameLumps.InvalidGameLump() )
{
int nVersion = g_GameLumps.GetGameLumpVersion( hGameLump );
if ( nVersion < 4 )
{
// old unsupported version
return;
}
if ( nVersion != 4 && nVersion != 5 && nVersion != 6 )
{
Error( "Unknown Static Prop Lump version %d!\n", nVersion );
}
byte *pGameLumpData = (byte *)g_GameLumps.GetGameLump( hGameLump );
if ( pGameLumpData && g_GameLumps.GameLumpSize( hGameLump ) )
{
// get the model dictionary
int count = ((int *)pGameLumpData)[0];
pGameLumpData += sizeof( int );
StaticPropDictLump_t *pStaticPropDictLump = (StaticPropDictLump_t *)pGameLumpData;
for ( int i = 0; i < count; i++ )
{
g_StaticPropNames.AddToTail( pStaticPropDictLump[i].m_Name );
}
pGameLumpData += count * sizeof( StaticPropDictLump_t );
// skip the leaf list
count = ((int *)pGameLumpData)[0];
pGameLumpData += sizeof( int );
pGameLumpData += count * sizeof( StaticPropLeafLump_t );
// get the instances
count = ((int *)pGameLumpData)[0];
pGameLumpData += sizeof( int );
for ( int i = 0; i < count; i++ )
{
int propType;
if ( nVersion == 4 )
{
propType = ((StaticPropLumpV4_t *)pGameLumpData)->m_PropType;
pGameLumpData += sizeof( StaticPropLumpV4_t );
}
else if ( nVersion == 5 )
{
propType = ((StaticPropLumpV5_t *)pGameLumpData)->m_PropType;
pGameLumpData += sizeof( StaticPropLumpV5_t );
}
else
{
propType = ((StaticPropLump_t *)pGameLumpData)->m_PropType;
pGameLumpData += sizeof( StaticPropLump_t );
}
g_StaticPropInstances.AddToTail( propType );
}
}
}
g_GameLumps.DestroyAllGameLumps();
}
int AlignBuffer( CUtlBuffer &buffer, int alignment )
{
unsigned int newPosition = AlignValue( buffer.TellPut(), alignment );
int padLength = newPosition - buffer.TellPut();
for ( int i = 0; i<padLength; i++ )
{
buffer.PutChar( '\0' );
}
return buffer.TellPut();
}
struct SortedLump_t
{
int lumpNum;
lump_t *pLump;
};
int SortLumpsByOffset( const SortedLump_t *pSortedLumpA, const SortedLump_t *pSortedLumpB )
{
int fileOffsetA = pSortedLumpA->pLump->fileofs;
int fileOffsetB = pSortedLumpB->pLump->fileofs;
int fileSizeA = pSortedLumpA->pLump->filelen;
int fileSizeB = pSortedLumpB->pLump->filelen;
// invalid or empty lumps get sorted together
if ( !fileSizeA )
{
fileOffsetA = 0;
}
if ( !fileSizeB )
{
fileOffsetB = 0;
}
// compare by offset, want ascending
if ( fileOffsetA < fileOffsetB )
{
return -1;
}
else if ( fileOffsetA > fileOffsetB )
{
return 1;
}
return 0;
}
bool CompressGameLump( dheader_t *pInBSPHeader, dheader_t *pOutBSPHeader, CUtlBuffer &outputBuffer, CompressFunc_t pCompressFunc )
{
CByteswap byteSwap;
dgamelumpheader_t* pInGameLumpHeader = (dgamelumpheader_t*)(((byte *)pInBSPHeader) + pInBSPHeader->lumps[LUMP_GAME_LUMP].fileofs);
dgamelump_t* pInGameLump = (dgamelump_t*)(pInGameLumpHeader + 1);
if ( IsX360() )
{
byteSwap.ActivateByteSwapping( true );
byteSwap.SwapFieldsToTargetEndian( pInGameLumpHeader );
byteSwap.SwapFieldsToTargetEndian( pInGameLump, pInGameLumpHeader->lumpCount );
}
unsigned int newOffset = outputBuffer.TellPut();
// Make room for gamelump header and gamelump structs, which we'll write at the end
outputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, sizeof( dgamelumpheader_t ) );
outputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, pInGameLumpHeader->lumpCount * sizeof( dgamelump_t ) );
// Start with input lumps, and fixup
dgamelumpheader_t sOutGameLumpHeader = *pInGameLumpHeader;
CUtlBuffer sOutGameLumpBuf;
sOutGameLumpBuf.Put( pInGameLump, pInGameLumpHeader->lumpCount * sizeof( dgamelump_t ) );
dgamelump_t *sOutGameLump = (dgamelump_t *)sOutGameLumpBuf.Base();
// add a dummy terminal gamelump
// purposely NOT updating the .filelen to reflect the compressed size, but leaving as original size
// callers use the next entry offset to determine compressed size
sOutGameLumpHeader.lumpCount++;
dgamelump_t dummyLump = { 0 };
outputBuffer.Put( &dummyLump, sizeof( dgamelump_t ) );
for ( int i = 0; i < pInGameLumpHeader->lumpCount; i++ )
{
CUtlBuffer inputBuffer;
CUtlBuffer compressedBuffer;
sOutGameLump[i].fileofs = AlignBuffer( outputBuffer, 4 );
if ( pInGameLump[i].filelen )
{
if ( pInGameLump[i].flags & GAMELUMPFLAG_COMPRESSED )
{
byte *pCompressedLump = ((byte *)pInBSPHeader) + pInGameLump[i].fileofs;
if ( CLZMA::IsCompressed( pCompressedLump ) )
{
inputBuffer.EnsureCapacity( CLZMA::GetActualSize( pCompressedLump ) );
unsigned int outSize = CLZMA::Uncompress( pCompressedLump, (unsigned char *)inputBuffer.Base() );
inputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, outSize );
if ( outSize != CLZMA::GetActualSize( pCompressedLump ) )
{
Warning( "Decompressed size differs from header, BSP may be corrupt\n" );
}
}
else
{
Assert( CLZMA::IsCompressed( pCompressedLump ) );
Warning( "Unsupported BSP: Unrecognized compressed game lump\n" );
}
}
else
{
inputBuffer.SetExternalBuffer( ((byte *)pInBSPHeader) + pInGameLump[i].fileofs,
pInGameLump[i].filelen, pInGameLump[i].filelen );
}
bool bCompressed = pCompressFunc ? pCompressFunc( inputBuffer, compressedBuffer ) : false;
if ( bCompressed )
{
sOutGameLump[i].flags |= GAMELUMPFLAG_COMPRESSED;
outputBuffer.Put( compressedBuffer.Base(), compressedBuffer.TellPut() );
compressedBuffer.Purge();
}
else
{
// as is, clear compression flag from input lump
sOutGameLump[i].flags &= ~GAMELUMPFLAG_COMPRESSED;
outputBuffer.Put( inputBuffer.Base(), inputBuffer.TellPut() );
}
}
}
// fix the dummy terminal lump
int lastLump = sOutGameLumpHeader.lumpCount-1;
sOutGameLump[lastLump].fileofs = outputBuffer.TellPut();
if ( IsX360() )
{
// fix the output for 360, swapping it back
byteSwap.SwapFieldsToTargetEndian( sOutGameLump, sOutGameLumpHeader.lumpCount );
byteSwap.SwapFieldsToTargetEndian( &sOutGameLumpHeader );
}
pOutBSPHeader->lumps[LUMP_GAME_LUMP].fileofs = newOffset;
pOutBSPHeader->lumps[LUMP_GAME_LUMP].filelen = outputBuffer.TellPut() - newOffset;
// We set GAMELUMPFLAG_COMPRESSED and handle compression at the sub-lump level, this whole lump is not
// decompressable as a block.
pOutBSPHeader->lumps[LUMP_GAME_LUMP].uncompressedSize = 0;
// Rewind to start and write lump headers
unsigned int endOffset = outputBuffer.TellPut();
outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, newOffset );
outputBuffer.Put( &sOutGameLumpHeader, sizeof( dgamelumpheader_t ) );
outputBuffer.Put( sOutGameLumpBuf.Base(), sOutGameLumpBuf.TellPut() );
outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, endOffset );
return true;
}
//-----------------------------------------------------------------------------
// Compress callback for RepackBSP
//-----------------------------------------------------------------------------
bool RepackBSPCallback_LZMA( CUtlBuffer &inputBuffer, CUtlBuffer &outputBuffer )
{
if ( !inputBuffer.TellPut() )
{
// nothing to do
return false;
}
unsigned int originalSize = inputBuffer.TellPut() - inputBuffer.TellGet();
unsigned int compressedSize = 0;
unsigned char *pCompressedOutput = LZMA_Compress( (unsigned char *)inputBuffer.Base() + inputBuffer.TellGet(),
originalSize, &compressedSize );
if ( pCompressedOutput )
{
outputBuffer.Put( pCompressedOutput, compressedSize );
DevMsg( "Compressed bsp lump %u -> %u bytes\n", originalSize, compressedSize );
free( pCompressedOutput );
return true;
}
return false;
}
bool RepackBSP( CUtlBuffer &inputBuffer, CUtlBuffer &outputBuffer, CompressFunc_t pCompressFunc, IZip::eCompressionType packfileCompression )
{
dheader_t *pInBSPHeader = (dheader_t *)inputBuffer.Base();
// The 360 swaps this header to disk. For some reason.
if ( pInBSPHeader->ident != ( IsX360() ? BigLong( IDBSPHEADER ) : IDBSPHEADER ) )
{
Warning( "RepackBSP given invalid input data\n" );
return false;
}
CByteswap byteSwap;
if ( IsX360() )
{
// bsp is 360, swap the header back
byteSwap.ActivateByteSwapping( true );
byteSwap.SwapFieldsToTargetEndian( pInBSPHeader );
}
unsigned int headerOffset = outputBuffer.TellPut();
outputBuffer.Put( pInBSPHeader, sizeof( dheader_t ) );
// This buffer grows dynamically, don't keep pointers to it around. Write out header at end.
dheader_t sOutBSPHeader = *pInBSPHeader;
// must adhere to input lump's offset order and process according to that, NOT lump num
// sort by offset order
CUtlVector< SortedLump_t > sortedLumps;
for ( int i = 0; i < HEADER_LUMPS; i++ )
{
int iIndex = sortedLumps.AddToTail();
sortedLumps[iIndex].lumpNum = i;
sortedLumps[iIndex].pLump = &pInBSPHeader->lumps[i];
}
sortedLumps.Sort( SortLumpsByOffset );
// iterate in sorted order
for ( int i = 0; i < HEADER_LUMPS; ++i )
{
SortedLump_t *pSortedLump = &sortedLumps[i];
int lumpNum = pSortedLump->lumpNum;
// Should be set below, don't copy over old data
sOutBSPHeader.lumps[lumpNum].fileofs = 0;
sOutBSPHeader.lumps[lumpNum].filelen = 0;
// Only set by compressed lumps
sOutBSPHeader.lumps[lumpNum].uncompressedSize = 0;
if ( pSortedLump->pLump->filelen ) // Otherwise its degenerate
{
int alignment = 4;
if ( lumpNum == LUMP_PAKFILE )
{
alignment = 2048;
}
unsigned int newOffset = AlignBuffer( outputBuffer, alignment );
CUtlBuffer inputBuffer;
if ( pSortedLump->pLump->uncompressedSize )
{
byte *pCompressedLump = ((byte *)pInBSPHeader) + pSortedLump->pLump->fileofs;
if ( CLZMA::IsCompressed( pCompressedLump ) && pSortedLump->pLump->uncompressedSize == CLZMA::GetActualSize( pCompressedLump ) )
{
inputBuffer.EnsureCapacity( CLZMA::GetActualSize( pCompressedLump ) );
unsigned int outSize = CLZMA::Uncompress( pCompressedLump, (unsigned char *)inputBuffer.Base() );
inputBuffer.SeekPut( CUtlBuffer::SEEK_CURRENT, outSize );
if ( outSize != pSortedLump->pLump->uncompressedSize )
{
Warning( "Decompressed size differs from header, BSP may be corrupt\n" );
}
}
else
{
Assert( CLZMA::IsCompressed( pCompressedLump ) &&
pSortedLump->pLump->uncompressedSize == CLZMA::GetActualSize( pCompressedLump ) );
Warning( "Unsupported BSP: Unrecognized compressed lump\n" );
}
}
else
{
// Just use input
inputBuffer.SetExternalBuffer( ((byte *)pInBSPHeader) + pSortedLump->pLump->fileofs,
pSortedLump->pLump->filelen, pSortedLump->pLump->filelen );
}
if ( lumpNum == LUMP_GAME_LUMP )
{
// the game lump has to have each of its components individually compressed
CompressGameLump( pInBSPHeader, &sOutBSPHeader, outputBuffer, pCompressFunc );
}
else if ( lumpNum == LUMP_PAKFILE )
{
IZip *newPakFile = IZip::CreateZip( NULL );
IZip *oldPakFile = IZip::CreateZip( NULL );
oldPakFile->ParseFromBuffer( inputBuffer.Base(), inputBuffer.Size() );
int id = -1;
int fileSize;
while ( 1 )
{
char relativeName[MAX_PATH];
id = GetNextFilename( oldPakFile, id, relativeName, sizeof( relativeName ), fileSize );
if ( id == -1 )
break;
CUtlBuffer sourceBuf;
CUtlBuffer targetBuf;
bool bOK = ReadFileFromPak( oldPakFile, relativeName, false, sourceBuf );
if ( !bOK )
{
Error( "Failed to load '%s' from lump pak for repacking.\n", relativeName );
continue;
}
AddBufferToPak( newPakFile, relativeName, sourceBuf.Base(), sourceBuf.TellMaxPut(), false, packfileCompression );
DevMsg( "Repacking BSP: Created '%s' in lump pak\n", relativeName );
}
// save new pack to buffer
newPakFile->SaveToBuffer( outputBuffer );
sOutBSPHeader.lumps[lumpNum].fileofs = newOffset;
sOutBSPHeader.lumps[lumpNum].filelen = outputBuffer.TellPut() - newOffset;
// Note that this *lump* is uncompressed, it just contains a packfile that uses compression, so we're
// not setting lumps[lumpNum].uncompressedSize
IZip::ReleaseZip( oldPakFile );
IZip::ReleaseZip( newPakFile );
}
else
{
CUtlBuffer compressedBuffer;
bool bCompressed = pCompressFunc ? pCompressFunc( inputBuffer, compressedBuffer ) : false;
if ( bCompressed )
{
sOutBSPHeader.lumps[lumpNum].uncompressedSize = inputBuffer.TellPut();
sOutBSPHeader.lumps[lumpNum].filelen = compressedBuffer.TellPut();
sOutBSPHeader.lumps[lumpNum].fileofs = newOffset;
outputBuffer.Put( compressedBuffer.Base(), compressedBuffer.TellPut() );
compressedBuffer.Purge();
}
else
{
// add as is
sOutBSPHeader.lumps[lumpNum].fileofs = newOffset;
sOutBSPHeader.lumps[lumpNum].filelen = inputBuffer.TellPut();
outputBuffer.Put( inputBuffer.Base(), inputBuffer.TellPut() );
}
}
}
}
if ( IsX360() )
{
// fix the output for 360, swapping it back
byteSwap.SetTargetBigEndian( true );
byteSwap.SwapFieldsToTargetEndian( &sOutBSPHeader );
}
// Write out header
unsigned int endOffset = outputBuffer.TellPut();
outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, headerOffset );
outputBuffer.Put( &sOutBSPHeader, sizeof( sOutBSPHeader ) );
outputBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, endOffset );
return true;
}
//-----------------------------------------------------------------------------
// For all lumps in a bsp: Loads the lump from file A, swaps it, writes it to file B.
// This limits the memory used for the swap process which helps the Xbox 360.
//
// NOTE: These lumps will be written to the file in exactly the order they appear here,
// so they can be shifted around if desired for file access optimization.
//-----------------------------------------------------------------------------
bool SwapBSPFile( const char *pInFilename, const char *pOutFilename, bool bSwapOnLoad, VTFConvertFunc_t pVTFConvertFunc, VHVFixupFunc_t pVHVFixupFunc, CompressFunc_t pCompressFunc )
{
DevMsg( "Creating %s\n", pOutFilename );
if ( !g_pFileSystem->FileExists( pInFilename ) )
{
Warning( "Error! Couldn't open input file %s - BSP swap failed!\n", pInFilename );
return false;
}
g_hBSPFile = SafeOpenWrite( pOutFilename );
if ( !g_hBSPFile )
{
Warning( "Error! Couldn't open output file %s - BSP swap failed!\n", pOutFilename );
return false;
}
if ( !pVTFConvertFunc )
{
Warning( "Error! Missing VTF Conversion function\n" );
return false;
}
g_pVTFConvertFunc = pVTFConvertFunc;
// optional VHV fixup
g_pVHVFixupFunc = pVHVFixupFunc;
// optional compression callback
g_pCompressFunc = pCompressFunc;
// These must be mutually exclusive
g_bSwapOnLoad = bSwapOnLoad;
g_bSwapOnWrite = !bSwapOnLoad;
g_Swap.ActivateByteSwapping( true );
OpenBSPFile( pInFilename );
// CRC the bsp first
CRC32_t mapCRC;
CRC32_Init(&mapCRC);
if ( !CRC_MapFile( &mapCRC, pInFilename ) )
{
Warning( "Failed to CRC the bsp\n" );
return false;
}
// hold a dictionary of all the static prop names
// this is needed to properly convert any VHV files inside the pak lump
BuildStaticPropNameTable();
// Set the output file pointer after the header
dheader_t dummyHeader = { 0 };
SafeWrite( g_hBSPFile, &dummyHeader, sizeof( dheader_t ) );
// To allow for alignment fixups, the lumps will be written to the
// output file in the order they appear in this function.
// NOTE: Flags for 360 !!!MUST!!! be first
SwapLumpToDisk< dflagslump_t >( LUMP_MAP_FLAGS );
// complex lump swaps first or for later contingent data
SwapLeafLumpToDisk();
SwapOcclusionLumpToDisk();
SwapGameLumpsToDisk();
// Strip dead or non relevant lumps
g_pBSPHeader->lumps[LUMP_DISP_LIGHTMAP_ALPHAS].filelen = 0;
g_pBSPHeader->lumps[LUMP_FACEIDS].filelen = 0;
// Strip obsolete LDR in favor of HDR
if ( SwapLumpToDisk<dface_t>( LUMP_FACES_HDR ) )
{
g_pBSPHeader->lumps[LUMP_FACES].filelen = 0;
}
else
{
// no HDR, keep LDR version
SwapLumpToDisk<dface_t>( LUMP_FACES );
}
if ( SwapLumpToDisk<dworldlight_t>( LUMP_WORLDLIGHTS_HDR ) )
{
g_pBSPHeader->lumps[LUMP_WORLDLIGHTS].filelen = 0;
}
else
{
// no HDR, keep LDR version
SwapLumpToDisk<dworldlight_t>( LUMP_WORLDLIGHTS );
}
// Simple lump swaps
SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_PHYSDISP );
SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_PHYSCOLLIDE );
SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_VISIBILITY );
SwapLumpToDisk<dmodel_t>( LUMP_MODELS );
SwapLumpToDisk<dvertex_t>( LUMP_VERTEXES );
SwapLumpToDisk<dplane_t>( LUMP_PLANES );
SwapLumpToDisk<dnode_t>( LUMP_NODES );
SwapLumpToDisk<texinfo_t>( LUMP_TEXINFO );
SwapLumpToDisk<dtexdata_t>( LUMP_TEXDATA );
SwapLumpToDisk<ddispinfo_t>( LUMP_DISPINFO );
SwapLumpToDisk<CDispVert>( LUMP_DISP_VERTS );
SwapLumpToDisk<CDispTri>( LUMP_DISP_TRIS );
SwapLumpToDisk<char>( FIELD_CHARACTER, LUMP_DISP_LIGHTMAP_SAMPLE_POSITIONS );
SwapLumpToDisk<CFaceMacroTextureInfo>( LUMP_FACE_MACRO_TEXTURE_INFO );
SwapLumpToDisk<dprimitive_t>( LUMP_PRIMITIVES );
SwapLumpToDisk<dprimvert_t>( LUMP_PRIMVERTS );
SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_PRIMINDICES );
SwapLumpToDisk<dface_t>( LUMP_ORIGINALFACES );
SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_LEAFFACES );
SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_LEAFBRUSHES );
SwapLumpToDisk<int>( FIELD_INTEGER, LUMP_SURFEDGES );
SwapLumpToDisk<dedge_t>( LUMP_EDGES );
SwapLumpToDisk<dbrush_t>( LUMP_BRUSHES );
SwapLumpToDisk<dbrushside_t>( LUMP_BRUSHSIDES );
SwapLumpToDisk<darea_t>( LUMP_AREAS );
SwapLumpToDisk<dareaportal_t>( LUMP_AREAPORTALS );
SwapLumpToDisk<char>( FIELD_CHARACTER, LUMP_ENTITIES );
SwapLumpToDisk<dleafwaterdata_t>( LUMP_LEAFWATERDATA );
SwapLumpToDisk<float>( FIELD_VECTOR, LUMP_VERTNORMALS );
SwapLumpToDisk<short>( FIELD_SHORT, LUMP_VERTNORMALINDICES );
SwapLumpToDisk<float>( FIELD_VECTOR, LUMP_CLIPPORTALVERTS );
SwapLumpToDisk<dcubemapsample_t>( LUMP_CUBEMAPS );
SwapLumpToDisk<char>( FIELD_CHARACTER, LUMP_TEXDATA_STRING_DATA );
SwapLumpToDisk<int>( FIELD_INTEGER, LUMP_TEXDATA_STRING_TABLE );
SwapLumpToDisk<doverlay_t>( LUMP_OVERLAYS );
SwapLumpToDisk<dwateroverlay_t>( LUMP_WATEROVERLAYS );
SwapLumpToDisk<unsigned short>( FIELD_SHORT, LUMP_LEAFMINDISTTOWATER );
SwapLumpToDisk<doverlayfade_t>( LUMP_OVERLAY_FADES );
// NOTE: this data placed at the end for the sake of 360:
{
// NOTE: lighting must be the penultimate lump
// (allows 360 to free this memory part-way through map loading)
if ( SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_LIGHTING_HDR ) )
{
g_pBSPHeader->lumps[LUMP_LIGHTING].filelen = 0;
}
else
{
// no HDR, keep LDR version
SwapLumpToDisk<byte>( FIELD_CHARACTER, LUMP_LIGHTING );
}
// NOTE: Pakfile for 360 !!!MUST!!! be last
SwapPakfileLumpToDisk( pInFilename );
}
// Store the crc in the flags lump version field
g_pBSPHeader->lumps[LUMP_MAP_FLAGS].version = mapCRC;
// Pad out the end of the file to a sector boundary for optimal IO
AlignFilePosition( g_hBSPFile, XBOX_DVD_SECTORSIZE );
// Warn of any lumps that didn't get swapped
for ( int i = 0; i < HEADER_LUMPS; ++i )
{
if ( HasLump( i ) && !g_Lumps.bLumpParsed[i] )
{
// a new lump got added that needs to have a swap function
Warning( "BSP: '%s', %s has no swap or copy function. Discarding!\n", pInFilename, GetLumpName(i) );
// the data didn't get copied, so don't reference garbage
g_pBSPHeader->lumps[i].filelen = 0;
}
}
// Write the updated header
g_pFileSystem->Seek( g_hBSPFile, 0, FILESYSTEM_SEEK_HEAD );
WriteData( g_pBSPHeader );
g_pFileSystem->Close( g_hBSPFile );
g_hBSPFile = 0;
// Cleanup
g_Swap.ActivateByteSwapping( false );
CloseBSPFile();
g_StaticPropNames.Purge();
g_StaticPropInstances.Purge();
DevMsg( "Finished BSP Swap\n" );
// caller provided compress func will further compress compatible lumps
if ( pCompressFunc )
{
CUtlBuffer inputBuffer;
if ( !g_pFileSystem->ReadFile( pOutFilename, NULL, inputBuffer ) )
{
Warning( "Error! Couldn't read file %s - final BSP compression failed!\n", pOutFilename );
return false;
}
CUtlBuffer outputBuffer;
if ( !RepackBSP( inputBuffer, outputBuffer, pCompressFunc, IZip::eCompressionType_None ) )
{
Warning( "Error! Failed to compress BSP '%s'!\n", pOutFilename );
return false;
}
g_hBSPFile = SafeOpenWrite( pOutFilename );
if ( !g_hBSPFile )
{
Warning( "Error! Couldn't open output file %s - BSP swap failed!\n", pOutFilename );
return false;
}
SafeWrite( g_hBSPFile, outputBuffer.Base(), outputBuffer.TellPut() );
g_pFileSystem->Close( g_hBSPFile );
g_hBSPFile = 0;
}
return true;
}
//-----------------------------------------------------------------------------
// Get the pak lump from a BSP
//-----------------------------------------------------------------------------
bool GetPakFileLump( const char *pBSPFilename, void **pPakData, int *pPakSize )
{
*pPakData = NULL;
*pPakSize = 0;
if ( !g_pFileSystem->FileExists( pBSPFilename ) )
{
Warning( "Error! Couldn't open file %s!\n", pBSPFilename );
return false;
}
// determine endian nature
dheader_t *pHeader;
LoadFile( pBSPFilename, (void **)&pHeader );
bool bSwap = ( pHeader->ident == BigLong( IDBSPHEADER ) );
free( pHeader );
g_bSwapOnLoad = bSwap;
g_bSwapOnWrite = !bSwap;
OpenBSPFile( pBSPFilename );
if ( g_pBSPHeader->lumps[LUMP_PAKFILE].filelen )
{
*pPakSize = CopyVariableLump<byte>( FIELD_CHARACTER, LUMP_PAKFILE, pPakData );
}
CloseBSPFile();
return true;
}
// compare function for qsort below
static int LumpOffsetCompare( const void *pElem1, const void *pElem2 )
{
int lump1 = *(byte *)pElem1;
int lump2 = *(byte *)pElem2;
if ( lump1 != lump2 )
{
// force LUMP_MAP_FLAGS to be first, always
if ( lump1 == LUMP_MAP_FLAGS )
{
return -1;
}
else if ( lump2 == LUMP_MAP_FLAGS )
{
return 1;
}
// force LUMP_PAKFILE to be last, always
if ( lump1 == LUMP_PAKFILE )
{
return 1;
}
else if ( lump2 == LUMP_PAKFILE )
{
return -1;
}
}
int fileOffset1 = g_pBSPHeader->lumps[lump1].fileofs;
int fileOffset2 = g_pBSPHeader->lumps[lump2].fileofs;
// invalid or empty lumps will get sorted together
if ( !g_pBSPHeader->lumps[lump1].filelen )
{
fileOffset1 = 0;
}
if ( !g_pBSPHeader->lumps[lump2].filelen )
{
fileOffset2 = 0;
}
// compare by offset
if ( fileOffset1 < fileOffset2 )
{
return -1;
}
else if ( fileOffset1 > fileOffset2 )
{
return 1;
}
return 0;
}
//-----------------------------------------------------------------------------
// Replace the pak lump in a BSP
//-----------------------------------------------------------------------------
bool SetPakFileLump( const char *pBSPFilename, const char *pNewFilename, void *pPakData, int pakSize )
{
if ( !g_pFileSystem->FileExists( pBSPFilename ) )
{
Warning( "Error! Couldn't open file %s!\n", pBSPFilename );
return false;
}
// determine endian nature
dheader_t *pHeader;
LoadFile( pBSPFilename, (void **)&pHeader );
bool bSwap = ( pHeader->ident == BigLong( IDBSPHEADER ) );
free( pHeader );
g_bSwapOnLoad = bSwap;
g_bSwapOnWrite = bSwap;
OpenBSPFile( pBSPFilename );
// save a copy of the old header
// generating a new bsp is a destructive operation
dheader_t oldHeader;
oldHeader = *g_pBSPHeader;
g_hBSPFile = SafeOpenWrite( pNewFilename );
if ( !g_hBSPFile )
{
return false;
}
// placeholder only, reset at conclusion
WriteData( &oldHeader );
// lumps must be reserialized in same relative offset order
// build sorted order table
int readOrder[HEADER_LUMPS];
for ( int i=0; i<HEADER_LUMPS; i++ )
{
readOrder[i] = i;
}
qsort( readOrder, HEADER_LUMPS, sizeof( int ), LumpOffsetCompare );
for ( int i = 0; i < HEADER_LUMPS; i++ )
{
int lump = readOrder[i];
if ( lump == LUMP_PAKFILE )
{
// pak lump always written last, with special alignment
continue;
}
int length = g_pBSPHeader->lumps[lump].filelen;
if ( length )
{
// save the lump data
int offset = g_pBSPHeader->lumps[lump].fileofs;
SetAlignedLumpPosition( lump );
SafeWrite( g_hBSPFile, (byte *)g_pBSPHeader + offset, length );
}
else
{
g_pBSPHeader->lumps[lump].fileofs = 0;
}
}
// Always write the pak file at the end
// Pad out the end of the file to a sector boundary for optimal IO
g_pBSPHeader->lumps[LUMP_PAKFILE].fileofs = AlignFilePosition( g_hBSPFile, XBOX_DVD_SECTORSIZE );
g_pBSPHeader->lumps[LUMP_PAKFILE].filelen = pakSize;
SafeWrite( g_hBSPFile, pPakData, pakSize );
// Pad out the end of the file to a sector boundary for optimal IO
AlignFilePosition( g_hBSPFile, XBOX_DVD_SECTORSIZE );
// Write the updated header
g_pFileSystem->Seek( g_hBSPFile, 0, FILESYSTEM_SEEK_HEAD );
WriteData( g_pBSPHeader );
g_pFileSystem->Close( g_hBSPFile );
CloseBSPFile();
return true;
}
//-----------------------------------------------------------------------------
// Build a list of files that BSP owns, world/cubemap materials, static props, etc.
//-----------------------------------------------------------------------------
bool GetBSPDependants( const char *pBSPFilename, CUtlVector< CUtlString > *pList )
{
if ( !g_pFileSystem->FileExists( pBSPFilename ) )
{
Warning( "Error! Couldn't open file %s!\n", pBSPFilename );
return false;
}
// must be set, but exact hdr not critical for dependant traversal
SetHDRMode( false );
LoadBSPFile( pBSPFilename );
char szBspName[MAX_PATH];
V_FileBase( pBSPFilename, szBspName, sizeof( szBspName ) );
V_SetExtension( szBspName, ".bsp", sizeof( szBspName ) );
// get embedded pak files, and internals
char szFilename[MAX_PATH];
int fileSize;
int fileId = -1;
for ( ;; )
{
fileId = GetPakFile()->GetNextFilename( fileId, szFilename, sizeof( szFilename ), fileSize );
if ( fileId == -1 )
{
break;
}
pList->AddToTail( szFilename );
}
// get all the world materials
for ( int i=0; i<numtexdata; i++ )
{
const char *pName = TexDataStringTable_GetString( dtexdata[i].nameStringTableID );
V_ComposeFileName( "materials", pName, szFilename, sizeof( szFilename ) );
V_SetExtension( szFilename, ".vmt", sizeof( szFilename ) );
pList->AddToTail( szFilename );
}
// get all the static props
GameLumpHandle_t hGameLump = g_GameLumps.GetGameLumpHandle( GAMELUMP_STATIC_PROPS );
if ( hGameLump != g_GameLumps.InvalidGameLump() )
{
byte *pGameLumpData = (byte *)g_GameLumps.GetGameLump( hGameLump );
if ( pGameLumpData && g_GameLumps.GameLumpSize( hGameLump ) )
{
int count = ((int *)pGameLumpData)[0];
pGameLumpData += sizeof( int );
StaticPropDictLump_t *pStaticPropDictLump = (StaticPropDictLump_t *)pGameLumpData;
for ( int i=0; i<count; i++ )
{
pList->AddToTail( pStaticPropDictLump[i].m_Name );
}
}
}
// get all the detail props
hGameLump = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROPS );
if ( hGameLump != g_GameLumps.InvalidGameLump() )
{
byte *pGameLumpData = (byte *)g_GameLumps.GetGameLump( hGameLump );
if ( pGameLumpData && g_GameLumps.GameLumpSize( hGameLump ) )
{
int count = ((int *)pGameLumpData)[0];
pGameLumpData += sizeof( int );
DetailObjectDictLump_t *pDetailObjectDictLump = (DetailObjectDictLump_t *)pGameLumpData;
for ( int i=0; i<count; i++ )
{
pList->AddToTail( pDetailObjectDictLump[i].m_Name );
}
pGameLumpData += count * sizeof( DetailObjectDictLump_t );
if ( g_GameLumps.GetGameLumpVersion( hGameLump ) == 4 )
{
count = ((int *)pGameLumpData)[0];
pGameLumpData += sizeof( int );
if ( count )
{
// All detail prop sprites must lie in the material detail/detailsprites
pList->AddToTail( "materials/detail/detailsprites.vmt" );
}
}
}
}
UnloadBSPFile();
return true;
}