You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1517 lines
56 KiB
1517 lines
56 KiB
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
// |
|
// Purpose: |
|
// |
|
// $NoKeywords: $ |
|
// |
|
//=============================================================================// |
|
|
|
|
|
#include "render_pch.h" |
|
#include "gl_lightmap.h" |
|
#include "view.h" |
|
#include "gl_cvars.h" |
|
#include "zone.h" |
|
#include "gl_water.h" |
|
#include "r_local.h" |
|
#include "gl_model_private.h" |
|
#include "mathlib/bumpvects.h" |
|
#include "gl_matsysiface.h" |
|
#include <float.h> |
|
#include "materialsystem/imaterialsystemhardwareconfig.h" |
|
#include "materialsystem/imesh.h" |
|
#include "tier0/dbg.h" |
|
#include "tier0/vprof.h" |
|
#include "tier1/callqueue.h" |
|
#include "lightcache.h" |
|
#include "cl_main.h" |
|
#include "materialsystem/imaterial.h" |
|
|
|
// memdbgon must be the last include file in a .cpp file!!! |
|
#include "tier0/memdbgon.h" |
|
|
|
//----------------------------------------------------------------------------- |
|
// globals |
|
//----------------------------------------------------------------------------- |
|
|
|
// Only enable this if you are testing lightstyle performance. |
|
//#define UPDATE_LIGHTSTYLES_EVERY_FRAME |
|
|
|
ALIGN128 Vector4D blocklights[NUM_BUMP_VECTS+1][ MAX_LIGHTMAP_DIM_INCLUDING_BORDER * MAX_LIGHTMAP_DIM_INCLUDING_BORDER ]; |
|
|
|
ConVar r_avglightmap( "r_avglightmap", "0", FCVAR_CHEAT | FCVAR_MATERIAL_SYSTEM_THREAD ); |
|
ConVar r_maxdlights( "r_maxdlights", "32" ); |
|
extern ConVar r_unloadlightmaps; |
|
extern bool g_bHunkAllocLightmaps; |
|
|
|
static int r_dlightvisible; |
|
static int r_dlightvisiblethisframe; |
|
static int s_nVisibleDLightCount; |
|
static int s_nMaxVisibleDLightCount; |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Visible, not visible DLights |
|
//----------------------------------------------------------------------------- |
|
void R_MarkDLightVisible( int dlight ) |
|
{ |
|
if ( (r_dlightvisible & ( 1 << dlight )) == 0 ) |
|
{ |
|
++s_nVisibleDLightCount; |
|
r_dlightvisible |= 1 << dlight; |
|
} |
|
} |
|
|
|
void R_MarkDLightNotVisible( int dlight ) |
|
{ |
|
if ( r_dlightvisible & ( 1 << dlight )) |
|
{ |
|
--s_nVisibleDLightCount; |
|
r_dlightvisible &= ~( 1 << dlight ); |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Must call these at the start + end of rendering each view |
|
//----------------------------------------------------------------------------- |
|
void R_DLightStartView() |
|
{ |
|
r_dlightvisiblethisframe = 0; |
|
s_nMaxVisibleDLightCount = r_maxdlights.GetInt(); |
|
} |
|
|
|
void R_DLightEndView() |
|
{ |
|
if ( !g_bActiveDlights ) |
|
return; |
|
for( int lnum=0 ; lnum<MAX_DLIGHTS; lnum++ ) |
|
{ |
|
if ( r_dlightvisiblethisframe & ( 1 << lnum )) |
|
continue; |
|
|
|
R_MarkDLightNotVisible( lnum ); |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Can we use another dynamic light, or is it just too expensive? |
|
//----------------------------------------------------------------------------- |
|
bool R_CanUseVisibleDLight( int dlight ) |
|
{ |
|
r_dlightvisiblethisframe |= (1 << dlight); |
|
|
|
if ( r_dlightvisible & ( 1 << dlight ) ) |
|
return true; |
|
|
|
if ( s_nVisibleDLightCount >= s_nMaxVisibleDLightCount ) |
|
return false; |
|
|
|
R_MarkDLightVisible( dlight ); |
|
return true; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Adds a single dynamic light |
|
//----------------------------------------------------------------------------- |
|
static bool AddSingleDynamicLight( dlight_t& dl, SurfaceHandle_t surfID, const Vector &lightOrigin, float perpDistSq, float lightRadiusSq ) |
|
{ |
|
// transform the light into brush local space |
|
Vector local; |
|
// Spotlight early outs... |
|
if (dl.m_OuterAngle) |
|
{ |
|
if (dl.m_OuterAngle < 180.0f) |
|
{ |
|
// Can't light anything from the rear... |
|
if (DotProduct(dl.m_Direction, MSurf_Plane( surfID ).normal) >= 0.0f) |
|
return false; |
|
} |
|
} |
|
|
|
// Transform the light center point into (u,v) space of the lightmap |
|
mtexinfo_t* tex = MSurf_TexInfo( surfID ); |
|
local[0] = DotProduct (lightOrigin, tex->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + |
|
tex->lightmapVecsLuxelsPerWorldUnits[0][3]; |
|
local[1] = DotProduct (lightOrigin, tex->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + |
|
tex->lightmapVecsLuxelsPerWorldUnits[1][3]; |
|
|
|
// Now put the center points into the space of the lightmap rectangle |
|
// defined by the lightmapMins + lightmapExtents |
|
local[0] -= MSurf_LightmapMins( surfID )[0]; |
|
local[1] -= MSurf_LightmapMins( surfID )[1]; |
|
|
|
// Figure out the quadratic attenuation factor... |
|
Vector intensity; |
|
float lightStyleValue = LightStyleValue( dl.style ); |
|
intensity[0] = TexLightToLinear( dl.color.r, dl.color.exponent ) * lightStyleValue; |
|
intensity[1] = TexLightToLinear( dl.color.g, dl.color.exponent ) * lightStyleValue; |
|
intensity[2] = TexLightToLinear( dl.color.b, dl.color.exponent ) * lightStyleValue; |
|
|
|
float minlight = fpmax( g_flMinLightingValue, dl.minlight ); |
|
float ooQuadraticAttn = lightRadiusSq * minlight; |
|
float ooRadiusSq = 1.0f / lightRadiusSq; |
|
|
|
// Compute a color at each luxel |
|
// We want to know the square distance from luxel center to light |
|
// so we can compute an 1/r^2 falloff in light color |
|
int smax = MSurf_LightmapExtents( surfID )[0] + 1; |
|
int tmax = MSurf_LightmapExtents( surfID )[1] + 1; |
|
for (int t=0; t<tmax; ++t) |
|
{ |
|
float td = (local[1] - t) * tex->worldUnitsPerLuxel; |
|
|
|
for (int s=0; s<smax; ++s) |
|
{ |
|
float sd = (local[0] - s) * tex->worldUnitsPerLuxel; |
|
|
|
float inPlaneDistSq = sd * sd + td * td; |
|
float totalDistSq = inPlaneDistSq + perpDistSq; |
|
if (totalDistSq < lightRadiusSq) |
|
{ |
|
// at least all floating point only happens when a luxel is lit. |
|
float scale = (totalDistSq != 0.0f) ? ooQuadraticAttn / totalDistSq : 1.0f; |
|
|
|
// Apply a little extra attenuation |
|
scale *= (1.0f - totalDistSq * ooRadiusSq); |
|
|
|
if (scale > 2.0f) |
|
scale = 2.0f; |
|
|
|
int idx = t*smax + s; |
|
|
|
// Compute the base lighting just as is done in the non-bump case... |
|
blocklights[0][idx][0] += scale * intensity[0]; |
|
blocklights[0][idx][1] += scale * intensity[1]; |
|
blocklights[0][idx][2] += scale * intensity[2]; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Adds a dynamic light to the bumped lighting |
|
//----------------------------------------------------------------------------- |
|
static void AddSingleDynamicLightToBumpLighting( dlight_t& dl, SurfaceHandle_t surfID, |
|
const Vector &lightOrigin, float perpDistSq, float lightRadiusSq, Vector* pBumpBasis, const Vector& luxelBasePosition ) |
|
{ |
|
Vector local; |
|
// FIXME: For now, only elights can be spotlights |
|
// the lightmap computation could get expensive for spotlights... |
|
Assert( dl.m_OuterAngle == 0.0f ); |
|
|
|
// Transform the light center point into (u,v) space of the lightmap |
|
mtexinfo_t *pTexInfo = MSurf_TexInfo( surfID ); |
|
local[0] = DotProduct (lightOrigin, pTexInfo->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + |
|
pTexInfo->lightmapVecsLuxelsPerWorldUnits[0][3]; |
|
local[1] = DotProduct (lightOrigin, pTexInfo->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + |
|
pTexInfo->lightmapVecsLuxelsPerWorldUnits[1][3]; |
|
|
|
// Now put the center points into the space of the lightmap rectangle |
|
// defined by the lightmapMins + lightmapExtents |
|
local[0] -= MSurf_LightmapMins( surfID )[0]; |
|
local[1] -= MSurf_LightmapMins( surfID )[1]; |
|
|
|
// Figure out the quadratic attenuation factor... |
|
Vector intensity; |
|
float lightStyleValue = LightStyleValue( dl.style ); |
|
intensity[0] = TexLightToLinear( dl.color.r, dl.color.exponent ) * lightStyleValue; |
|
intensity[1] = TexLightToLinear( dl.color.g, dl.color.exponent ) * lightStyleValue; |
|
intensity[2] = TexLightToLinear( dl.color.b, dl.color.exponent ) * lightStyleValue; |
|
|
|
float minlight = fpmax( g_flMinLightingValue, dl.minlight ); |
|
float ooQuadraticAttn = lightRadiusSq * minlight; |
|
float ooRadiusSq = 1.0f / lightRadiusSq; |
|
|
|
// The algorithm here is necessary to make dynamic lights live in the |
|
// same world as the non-bumped dynamic lights. Therefore, we compute |
|
// the intensity of the flat lightmap the exact same way here as when |
|
// we've got a non-bumped surface. |
|
|
|
// Then, I compute an actual light direction vector per luxel (FIXME: !!expensive!!) |
|
// and compute what light would have to come in along that direction |
|
// in order to produce the same illumination on the flat lightmap. That's |
|
// computed by dividing the flat lightmap color by n dot l. |
|
Vector lightDirection(0, 0, 0), texelWorldPosition; |
|
#if 1 |
|
bool useLightDirection = (dl.m_OuterAngle != 0.0f) && |
|
(fabs(dl.m_Direction.LengthSqr() - 1.0f) < 1e-3); |
|
if (useLightDirection) |
|
VectorMultiply( dl.m_Direction, -1.0f, lightDirection ); |
|
#endif |
|
|
|
// Since there's a scale factor used when going from world to luxel, |
|
// we gotta undo that scale factor when going from luxel to world |
|
float fixupFactor = pTexInfo->worldUnitsPerLuxel * pTexInfo->worldUnitsPerLuxel; |
|
|
|
// Compute a color at each luxel |
|
// We want to know the square distance from luxel center to light |
|
// so we can compute an 1/r^2 falloff in light color |
|
int smax = MSurf_LightmapExtents( surfID )[0] + 1; |
|
int tmax = MSurf_LightmapExtents( surfID )[1] + 1; |
|
for (int t=0; t<tmax; ++t) |
|
{ |
|
float td = (local[1] - t) * pTexInfo->worldUnitsPerLuxel; |
|
|
|
// Move along the v direction |
|
VectorMA( luxelBasePosition, t * fixupFactor, pTexInfo->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D(), |
|
texelWorldPosition ); |
|
|
|
for (int s=0; s<smax; ++s) |
|
{ |
|
float sd = (local[0] - s) * pTexInfo->worldUnitsPerLuxel; |
|
|
|
float inPlaneDistSq = sd * sd + td * td; |
|
float totalDistSq = inPlaneDistSq + perpDistSq; |
|
|
|
if (totalDistSq < lightRadiusSq) |
|
{ |
|
// at least all floating point only happens when a luxel is lit. |
|
float scale = (totalDistSq != 0.0f) ? ooQuadraticAttn / totalDistSq : 1.0f; |
|
|
|
// Apply a little extra attenuation |
|
scale *= (1.0f - totalDistSq * ooRadiusSq); |
|
|
|
if (scale > 2.0f) |
|
scale = 2.0f; |
|
|
|
int idx = t*smax + s; |
|
|
|
// Compute the base lighting just as is done in the non-bump case... |
|
VectorMA( blocklights[0][idx].AsVector3D(), scale, intensity, blocklights[0][idx].AsVector3D() ); |
|
|
|
#if 1 |
|
if (!useLightDirection) |
|
{ |
|
VectorSubtract( lightOrigin, texelWorldPosition, lightDirection ); |
|
VectorNormalize( lightDirection ); |
|
} |
|
|
|
float lDotN = DotProduct( lightDirection, MSurf_Plane( surfID ).normal ); |
|
if (lDotN < 1e-3) |
|
lDotN = 1e-3; |
|
scale /= lDotN; |
|
|
|
int i; |
|
for( i = 1; i < NUM_BUMP_VECTS + 1; i++ ) |
|
{ |
|
float dot = DotProduct( lightDirection, pBumpBasis[i-1] ); |
|
if( dot <= 0.0f ) |
|
continue; |
|
|
|
VectorMA( blocklights[i][idx].AsVector3D(), dot * scale, intensity, |
|
blocklights[i][idx].AsVector3D() ); |
|
} |
|
#else |
|
VectorMA( blocklights[1][idx].AsVector3D(), scale, intensity, blocklights[1][idx].AsVector3D() ); |
|
VectorMA( blocklights[2][idx].AsVector3D(), scale, intensity, blocklights[2][idx].AsVector3D() ); |
|
VectorMA( blocklights[3][idx].AsVector3D(), scale, intensity, blocklights[3][idx].AsVector3D() ); |
|
#endif |
|
} |
|
} |
|
|
|
// Move along u |
|
VectorMA( texelWorldPosition, fixupFactor, |
|
pTexInfo->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D(), texelWorldPosition ); |
|
|
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Compute the bumpmap basis for this surface |
|
//----------------------------------------------------------------------------- |
|
static void R_ComputeSurfaceBasis( SurfaceHandle_t surfID, Vector *pBumpNormals, Vector &luxelBasePosition ) |
|
{ |
|
// Get the bump basis vects in the space of the surface. |
|
Vector sVect, tVect; |
|
VectorCopy( MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D(), sVect ); |
|
VectorNormalize( sVect ); |
|
VectorCopy( MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D(), tVect ); |
|
VectorNormalize( tVect ); |
|
GetBumpNormals( sVect, tVect, MSurf_Plane( surfID ).normal, MSurf_Plane( surfID ).normal, pBumpNormals ); |
|
|
|
// Compute the location of the first luxel in worldspace |
|
|
|
// Since there's a scale factor used when going from world to luxel, |
|
// we gotta undo that scale factor when going from luxel to world |
|
float fixupFactor = |
|
MSurf_TexInfo( surfID )->worldUnitsPerLuxel * |
|
MSurf_TexInfo( surfID )->worldUnitsPerLuxel; |
|
|
|
// The starting u of the surface is surf->lightmapMins[0]; |
|
// since N * P + D = u, N * P = u - D, therefore we gotta move (u-D) along uvec |
|
VectorMultiply( MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D(), |
|
(MSurf_LightmapMins( surfID )[0] - MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[0][3]) * fixupFactor, |
|
luxelBasePosition ); |
|
|
|
// Do the same thing for the v direction. |
|
VectorMA( luxelBasePosition, |
|
(MSurf_LightmapMins( surfID )[1] - |
|
MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[1][3]) * fixupFactor, |
|
MSurf_TexInfo( surfID )->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D(), |
|
luxelBasePosition ); |
|
|
|
// Move out in the direction of the plane normal... |
|
VectorMA( luxelBasePosition, MSurf_Plane( surfID ).dist, MSurf_Plane( surfID ).normal, luxelBasePosition ); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Compute the mask of which dlights affect a surface |
|
// NOTE: Also has the side effect of updating the surface lighting dlight flags! |
|
//----------------------------------------------------------------------------- |
|
unsigned int R_ComputeDynamicLightMask( dlight_t *pLights, SurfaceHandle_t surfID, msurfacelighting_t *pLighting, const matrix3x4_t& entityToWorld ) |
|
{ |
|
ASSERT_SURF_VALID( surfID ); |
|
Vector bumpNormals[3]; |
|
Vector luxelBasePosition; |
|
|
|
// Displacements do dynamic lights different |
|
if( SurfaceHasDispInfo( surfID ) ) |
|
{ |
|
return MSurf_DispInfo( surfID )->ComputeDynamicLightMask(pLights); |
|
} |
|
|
|
if ( !g_bActiveDlights ) |
|
return 0; |
|
|
|
int lightMask = 0; |
|
for ( int lnum = 0, testBit = 1, mask = r_dlightactive; lnum < MAX_DLIGHTS; lnum++, mask >>= 1, testBit <<= 1 ) |
|
{ |
|
if ( mask & 1 ) |
|
{ |
|
// not lit by this light |
|
if ( !(pLighting->m_fDLightBits & testBit ) ) |
|
continue; |
|
|
|
// This light doesn't affect the world |
|
if ( pLights[lnum].flags & (DLIGHT_NO_WORLD_ILLUMINATION|DLIGHT_DISPLACEMENT_MASK)) |
|
continue; |
|
|
|
// This is used to ensure a maximum number of dlights in a frame |
|
if ( !R_CanUseVisibleDLight( lnum ) ) |
|
continue; |
|
|
|
// Cull surface to light radius |
|
Vector lightOrigin; |
|
|
|
VectorITransform( pLights[lnum].origin, entityToWorld, lightOrigin ); |
|
|
|
// NOTE: Dist can be negative because muzzle flashes can actually get behind walls |
|
// since the gun isn't checked for collision tests. |
|
float perpDistSq = DotProduct (lightOrigin, MSurf_Plane( surfID ).normal) - MSurf_Plane( surfID ).dist; |
|
if (perpDistSq < DLIGHT_BEHIND_PLANE_DIST) |
|
{ |
|
// update the surfacelighting and remove this light's bit |
|
pLighting->m_fDLightBits &= ~testBit; |
|
continue; |
|
} |
|
|
|
perpDistSq *= perpDistSq; |
|
|
|
// If the perp distance > radius of light, blow it off |
|
float lightRadiusSq = pLights[lnum].GetRadiusSquared(); |
|
if (lightRadiusSq <= perpDistSq) |
|
{ |
|
// update the surfacelighting and remove this light's bit |
|
pLighting->m_fDLightBits &= ~testBit; |
|
continue; |
|
} |
|
|
|
lightMask |= testBit; |
|
} |
|
} |
|
|
|
return lightMask; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Modifies blocklights[][][] to include the state of the dlights |
|
// affecting this surface. |
|
// NOTE: Can be threaded, should not reference or modify any global state |
|
// other than blocklights. |
|
//----------------------------------------------------------------------------- |
|
void R_AddDynamicLights( dlight_t *pLights, SurfaceHandle_t surfID, const matrix3x4_t& entityToWorld, bool needsBumpmap, unsigned int lightMask ) |
|
{ |
|
ASSERT_SURF_VALID( surfID ); |
|
VPROF( "R_AddDynamicLights" ); |
|
|
|
Vector bumpNormals[3]; |
|
bool computedBumpBasis = false; |
|
Vector luxelBasePosition; |
|
|
|
// Displacements do dynamic lights different |
|
if( SurfaceHasDispInfo( surfID ) ) |
|
{ |
|
MSurf_DispInfo( surfID )->AddDynamicLights(pLights, lightMask); |
|
return; |
|
} |
|
|
|
// iterate all of the active dynamic lights. Uses several iterators to keep |
|
// the light mask (bit), light index, and active mask current |
|
for ( int lnum = 0, testBit = 1, mask = lightMask; lnum < MAX_DLIGHTS && mask != 0; lnum++, mask >>= 1, testBit <<= 1 ) |
|
{ |
|
// shift over the mask of active lights each iteration, if this one is active, apply it |
|
if ( mask & 1 ) |
|
{ |
|
// Cull surface to light radius |
|
Vector lightOrigin; |
|
|
|
VectorITransform( pLights[lnum].origin, entityToWorld, lightOrigin ); |
|
|
|
// NOTE: Dist can be negative because muzzle flashes can actually get behind walls |
|
// since the gun isn't checked for collision tests. |
|
float perpDistSq = DotProduct (lightOrigin, MSurf_Plane( surfID ).normal) - MSurf_Plane( surfID ).dist; |
|
if (perpDistSq < DLIGHT_BEHIND_PLANE_DIST) |
|
continue; |
|
|
|
perpDistSq *= perpDistSq; |
|
|
|
// If the perp distance > radius of light, blow it off |
|
float lightRadiusSq = pLights[lnum].GetRadiusSquared(); |
|
if (lightRadiusSq <= perpDistSq) |
|
continue; |
|
|
|
if (!needsBumpmap) |
|
{ |
|
AddSingleDynamicLight( pLights[lnum], surfID, lightOrigin, perpDistSq, lightRadiusSq ); |
|
continue; |
|
} |
|
|
|
// Here, I'm precomputing things needed by bumped lighting that |
|
// are the same for a surface... |
|
if (!computedBumpBasis) |
|
{ |
|
R_ComputeSurfaceBasis( surfID, bumpNormals, luxelBasePosition ); |
|
computedBumpBasis = true; |
|
} |
|
|
|
AddSingleDynamicLightToBumpLighting( pLights[lnum], surfID, lightOrigin, perpDistSq, lightRadiusSq, bumpNormals, luxelBasePosition ); |
|
} |
|
} |
|
} |
|
|
|
|
|
// Fixed point (8.8) color/intensity ratios |
|
#define I_RED ((int)(0.299*255)) |
|
#define I_GREEN ((int)(0.587*255)) |
|
#define I_BLUE ((int)(0.114*255)) |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Sets all elements in a lightmap to a particular opaque greyscale value |
|
//----------------------------------------------------------------------------- |
|
static void InitLMSamples( Vector4D *pSamples, int nSamples, float value ) |
|
{ |
|
for( int i=0; i < nSamples; i++ ) |
|
{ |
|
pSamples[i][0] = pSamples[i][1] = pSamples[i][2] = value; |
|
pSamples[i][3] = 1.0f; |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Computes the lightmap size |
|
//----------------------------------------------------------------------------- |
|
static int ComputeLightmapSize( SurfaceHandle_t surfID ) |
|
{ |
|
int smax = ( MSurf_LightmapExtents( surfID )[0] ) + 1; |
|
int tmax = ( MSurf_LightmapExtents( surfID )[1] ) + 1; |
|
int size = smax * tmax; |
|
|
|
int nMaxSize = MSurf_MaxLightmapSizeWithBorder( surfID ); |
|
if (size > nMaxSize * nMaxSize) |
|
{ |
|
ConMsg("Bad lightmap extents on material \"%s\"\n", |
|
materialSortInfoArray[MSurf_MaterialSortID( surfID )].material->GetName()); |
|
return 0; |
|
} |
|
|
|
return size; |
|
} |
|
|
|
|
|
#ifndef _X360 |
|
//----------------------------------------------------------------------------- |
|
// Compute the portion of the lightmap generated from lightstyles |
|
//----------------------------------------------------------------------------- |
|
static void AccumulateLightstyles( ColorRGBExp32* pLightmap, int lightmapSize, float scalar ) |
|
{ |
|
Assert( pLightmap ); |
|
for (int i=0; i<lightmapSize ; ++i) |
|
{ |
|
blocklights[0][i][0] += scalar * TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ); |
|
blocklights[0][i][1] += scalar * TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ); |
|
blocklights[0][i][2] += scalar * TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ); |
|
} |
|
} |
|
|
|
static void AccumulateLightstylesFlat( ColorRGBExp32* pLightmap, int lightmapSize, float scalar ) |
|
{ |
|
Assert( pLightmap ); |
|
for (int i=0; i<lightmapSize ; ++i) |
|
{ |
|
blocklights[0][i][0] += scalar * TexLightToLinear( pLightmap->r, pLightmap->exponent ); |
|
blocklights[0][i][1] += scalar * TexLightToLinear( pLightmap->g, pLightmap->exponent ); |
|
blocklights[0][i][2] += scalar * TexLightToLinear( pLightmap->b, pLightmap->exponent ); |
|
} |
|
} |
|
|
|
|
|
static void AccumulateBumpedLightstyles( ColorRGBExp32* pLightmap, int lightmapSize, float scalar ) |
|
{ |
|
ColorRGBExp32 *pBumpedLightmaps[3]; |
|
pBumpedLightmaps[0] = pLightmap + lightmapSize; |
|
pBumpedLightmaps[1] = pLightmap + 2 * lightmapSize; |
|
pBumpedLightmaps[2] = pLightmap + 3 * lightmapSize; |
|
|
|
// I chose to split up the loops this way because it was the best tradeoff |
|
// based on profiles between cache miss + loop overhead |
|
for (int i=0 ; i<lightmapSize ; ++i) |
|
{ |
|
blocklights[0][i][0] += scalar * TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ); |
|
blocklights[0][i][1] += scalar * TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ); |
|
blocklights[0][i][2] += scalar * TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ); |
|
Assert( blocklights[0][i][0] >= 0.0f ); |
|
Assert( blocklights[0][i][1] >= 0.0f ); |
|
Assert( blocklights[0][i][2] >= 0.0f ); |
|
|
|
blocklights[1][i][0] += scalar * TexLightToLinear( pBumpedLightmaps[0][i].r, pBumpedLightmaps[0][i].exponent ); |
|
blocklights[1][i][1] += scalar * TexLightToLinear( pBumpedLightmaps[0][i].g, pBumpedLightmaps[0][i].exponent ); |
|
blocklights[1][i][2] += scalar * TexLightToLinear( pBumpedLightmaps[0][i].b, pBumpedLightmaps[0][i].exponent ); |
|
Assert( blocklights[1][i][0] >= 0.0f ); |
|
Assert( blocklights[1][i][1] >= 0.0f ); |
|
Assert( blocklights[1][i][2] >= 0.0f ); |
|
} |
|
for ( int i=0 ; i<lightmapSize ; ++i) |
|
{ |
|
blocklights[2][i][0] += scalar * TexLightToLinear( pBumpedLightmaps[1][i].r, pBumpedLightmaps[1][i].exponent ); |
|
blocklights[2][i][1] += scalar * TexLightToLinear( pBumpedLightmaps[1][i].g, pBumpedLightmaps[1][i].exponent ); |
|
blocklights[2][i][2] += scalar * TexLightToLinear( pBumpedLightmaps[1][i].b, pBumpedLightmaps[1][i].exponent ); |
|
Assert( blocklights[2][i][0] >= 0.0f ); |
|
Assert( blocklights[2][i][1] >= 0.0f ); |
|
Assert( blocklights[2][i][2] >= 0.0f ); |
|
|
|
blocklights[3][i][0] += scalar * TexLightToLinear( pBumpedLightmaps[2][i].r, pBumpedLightmaps[2][i].exponent ); |
|
blocklights[3][i][1] += scalar * TexLightToLinear( pBumpedLightmaps[2][i].g, pBumpedLightmaps[2][i].exponent ); |
|
blocklights[3][i][2] += scalar * TexLightToLinear( pBumpedLightmaps[2][i].b, pBumpedLightmaps[2][i].exponent ); |
|
Assert( blocklights[3][i][0] >= 0.0f ); |
|
Assert( blocklights[3][i][1] >= 0.0f ); |
|
Assert( blocklights[3][i][2] >= 0.0f ); |
|
} |
|
} |
|
#else |
|
/* |
|
// unpack four ColorRGBExp32's loaded into a single vector register |
|
// into four. Can't do this as a function coz you can't return four |
|
// values and even the inliner falls down on pass-by-ref. |
|
#define UNPACK_COLORRGBEXP(fromVec, toVec0, toVec1, toVec2, toVec3) {\ |
|
|
|
} |
|
*/ |
|
|
|
// because the e component of the colors is signed, we need to mask |
|
// off the corresponding channel in the intermediate halfword expansion |
|
// when we combine it with the unsigned unpack for the other channels |
|
static const int32 ALIGN16 g_SIMD_HalfWordMask[4]= { 0x0000000, 0x0000FFFF, 0x0000000, 0x0000FFFF }; |
|
static const fltx4 vOneOverTwoFiftyFive = { 1.0f / 255.0f , 1.0f / 255.0f , 1.0f / 255.0f , 1.0f / 255.0f }; |
|
|
|
// grind through accumlating onto the blocklights, |
|
// one cache line at a time. Input pointers are assumed |
|
// to be cache aligned. |
|
// For a simpler reference implementation, see the PC version in the ifdef above. |
|
// This function makes heavy use of the special XBOX360 opcodes for |
|
// packing and unpacking integer d3d data. (Not available in SSE, sadly.) |
|
static void AccumulateLightstyles_EightAtAtime( ColorRGBExp32* RESTRICT pLightmap, // the input lightmap (not necessarily aligned) |
|
int lightmapSize, |
|
fltx4 vScalar, |
|
Vector4D * RESTRICT bLights // pointer to the blocklights row we'll be writing into -- should be cache aligned, but only hurts perf if it's not |
|
) |
|
{ |
|
// We process blockLights in groups of four at a time, because we load the pLightmap four |
|
// at a time (four words fit into a vector register). |
|
// On top of that, we do two groups at once, because that's the length |
|
// of a cache line, and it helps us better hide latency. |
|
AssertMsg((lightmapSize & 7) == 0, "Input to Accumulate...EightAtATime not divisible by eight. Data corruption is the likely result." ); |
|
|
|
const fltx4 vHalfWordMask = XMLoadVector4A(g_SIMD_HalfWordMask); |
|
|
|
fltx4 zero = Four_Zeros; |
|
for (int i = 0 ; i < lightmapSize ; i += 8 ) |
|
{ |
|
// cache prefetch two lines ahead on bLights, and one on pLightmap |
|
__dcbt(256, bLights); |
|
__dcbt(128, pLightmap); |
|
|
|
// the naming convention on these psuedoarrays (they are actually |
|
// registers) is that the number before the index is the group id, |
|
// and the index itself is which word in the group. If this seems |
|
// unclear to you, feel free to just use array indices 0..7 |
|
// The compiler doesn't seem to deal properly with multidim arrays |
|
// (at least in the sense of aliasing them to registers) |
|
// However, if you always access through the arrays by using |
|
// compile-time immediate constants (eg, foo[2] rather than |
|
// int x = 2; foo[x] |
|
// it will at least treat them as register variables. |
|
|
|
// load four blockLights entries, and four colors |
|
fltx4 vLight0[4], vLight1[4]; |
|
fltx4 colorLightMap0[4], colorLightMap1[4]; |
|
|
|
fltx4 bytePackedLightMap0 = XMLoadVector4(pLightmap+i); // because each colorrgbexp is actually a 32-bit struct, |
|
// this loads four of them into one vector -- they are ubytes for rgb and sbyte for e |
|
fltx4 bytePackedLightMap1 = XMLoadVector4(pLightmap+i+4); |
|
|
|
// load group 0 |
|
vLight0[0] = LoadAlignedSIMD( &(bLights + i + 0)->x ); |
|
vLight0[1] = LoadAlignedSIMD( &(bLights + i + 1)->x ); |
|
vLight0[2] = LoadAlignedSIMD( &(bLights + i + 2)->x ); |
|
vLight0[3] = LoadAlignedSIMD( &(bLights + i + 3)->x ); |
|
|
|
// load group 1 |
|
vLight1[0] = LoadAlignedSIMD( &(bLights + i + 4)->x ); |
|
vLight1[1] = LoadAlignedSIMD( &(bLights + i + 5)->x ); |
|
vLight1[2] = LoadAlignedSIMD( &(bLights + i + 6)->x ); |
|
vLight1[3] = LoadAlignedSIMD( &(bLights + i + 7)->x ); |
|
|
|
// unpack the color light maps now that they have loaded |
|
// interleaving (four-vector) group 0 and 1 |
|
|
|
// unpack rgbe 0 and 1: |
|
// like an unsigned unpack: { 0x00, colorLightMap[0].r, 0x00, colorLightMap[0].g, 0x00, colorLightMap[0].b, 0x00, colorLightMap[0].e, |
|
// 0x00, colorLightMap[1].r, 0x00, colorLightMap[1].g, 0x00, colorLightMap[1].b, 0x00, colorLightMap[1].e} |
|
fltx4 unsignedUnpackHi0 = __vmrghb(zero, bytePackedLightMap0); // GROUP 0 |
|
fltx4 unsignedUnpackLo0 = __vmrglb(zero, bytePackedLightMap0); // rgbe words 2 and 3 |
|
fltx4 unsignedUnpackHi1 = __vmrghb(zero, bytePackedLightMap1); // GROUP 1 |
|
fltx4 unsignedUnpackLo1 = __vmrglb(zero, bytePackedLightMap1); // rgbe words 2 and 3 |
|
|
|
fltx4 signedUnpackHi0 = __vupkhsb(bytePackedLightMap0); // signed unpack of words 0 and 1, like the unsigned unpack but replaces 0x00 w/ sign extension |
|
fltx4 signedUnpackLo0 = __vupklsb(bytePackedLightMap0); // GROUP 0 |
|
fltx4 signedUnpackHi1 = __vupkhsb(bytePackedLightMap1); // signed unpack of words 0 and 1, like the unsigned unpack but replaces 0x00 w/ sign extension |
|
fltx4 signedUnpackLo1 = __vupklsb(bytePackedLightMap1); // GROUP 1 |
|
|
|
// merge the signed and unsigned unpacks together to make the full halfwords |
|
unsignedUnpackHi0 = MaskedAssign(vHalfWordMask, signedUnpackHi0, unsignedUnpackHi0 ); |
|
unsignedUnpackLo0 = MaskedAssign(vHalfWordMask, signedUnpackLo0, unsignedUnpackLo0 ); |
|
unsignedUnpackHi1 = MaskedAssign(vHalfWordMask, signedUnpackHi1, unsignedUnpackHi1 ); |
|
unsignedUnpackLo1 = MaskedAssign(vHalfWordMask, signedUnpackLo1, unsignedUnpackLo1 ); |
|
|
|
// now complete the unpack from halfwords to words (we can just use signed because there are 0x00's above the rgb channels) |
|
colorLightMap0[0] = __vupkhsh(unsignedUnpackHi0); // vector unpack high signed halfword |
|
colorLightMap0[1] = __vupklsh(unsignedUnpackHi0); // vector unpack low signed halfword |
|
colorLightMap0[2] = __vupkhsh(unsignedUnpackLo0); |
|
colorLightMap0[3] = __vupklsh(unsignedUnpackLo0); |
|
colorLightMap0[0] = __vcfsx( colorLightMap0[0], 0); // convert to floats |
|
colorLightMap1[0] = __vupkhsh(unsignedUnpackHi1); // interleave group 1 unpacks |
|
colorLightMap0[1] = __vcfsx( colorLightMap0[1], 0); // convert to floats |
|
colorLightMap1[1] = __vupklsh(unsignedUnpackHi1); // should dual issue |
|
colorLightMap0[2] = __vcfsx( colorLightMap0[2], 0); // convert to floats |
|
colorLightMap1[2] = __vupkhsh(unsignedUnpackLo1); |
|
colorLightMap0[3] = __vcfsx( colorLightMap0[3], 0); // convert to floats |
|
colorLightMap1[3] = __vupklsh(unsignedUnpackLo1); |
|
|
|
// finish unpacking group 1 (giving group 0 time to finish converting) |
|
colorLightMap1[0] = __vcfsx( colorLightMap1[0], 0); |
|
colorLightMap1[1] = __vcfsx( colorLightMap1[1], 0); |
|
colorLightMap1[2] = __vcfsx( colorLightMap1[2], 0); |
|
colorLightMap1[3] = __vcfsx( colorLightMap1[3], 0); |
|
|
|
// manufacture exponent splats and start normalizing the rgb channels (eg *= 1/255) |
|
fltx4 expW0[4], expW1[4]; |
|
expW0[0] = XMVectorSplatW(colorLightMap0[0]); |
|
colorLightMap0[0] = MulSIMD(colorLightMap0[0], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
expW0[1] = XMVectorSplatW(colorLightMap0[1]); |
|
colorLightMap0[1] = MulSIMD(colorLightMap0[1], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
expW0[2] = XMVectorSplatW(colorLightMap0[2]); |
|
colorLightMap0[2] = MulSIMD(colorLightMap0[2], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
expW0[3] = XMVectorSplatW(colorLightMap0[3]); |
|
colorLightMap0[3] = MulSIMD(colorLightMap0[3], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
|
|
// scale each of the color channels by the exponent channel |
|
// (the estimate operation is exact for integral inputs, as here) |
|
expW0[0] = XMVectorExpEst( expW0[0] ); // x = 2^x |
|
expW1[0] = XMVectorSplatW(colorLightMap1[0]); // interleave splats on exp group 1 (dual issue) |
|
colorLightMap1[0] = MulSIMD(colorLightMap1[0], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
expW0[1] = XMVectorExpEst( expW0[1] ); |
|
expW1[1] = XMVectorSplatW(colorLightMap1[1]); |
|
colorLightMap1[1] = MulSIMD(colorLightMap1[1], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
expW0[2] = XMVectorExpEst( expW0[2] ); |
|
expW1[2] = XMVectorSplatW(colorLightMap1[2]); |
|
colorLightMap1[2] = MulSIMD(colorLightMap1[2], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
expW0[3] = XMVectorExpEst( expW0[3] ); |
|
expW1[3] = XMVectorSplatW(colorLightMap1[3]); |
|
colorLightMap1[3] = MulSIMD(colorLightMap1[3], vOneOverTwoFiftyFive); // normalize the rgb channels |
|
|
|
// finish scale-by-exponent on group 1 |
|
expW1[0] = XMVectorExpEst( expW1[0] ); |
|
expW1[1] = XMVectorExpEst( expW1[1] ); |
|
expW1[2] = XMVectorExpEst( expW1[2] ); |
|
expW1[3] = XMVectorExpEst( expW1[3] ); |
|
|
|
colorLightMap0[0] = MulSIMD(expW0[0], colorLightMap0[0]); |
|
colorLightMap0[1] = MulSIMD(expW0[1], colorLightMap0[1]); |
|
colorLightMap0[2] = MulSIMD(expW0[2], colorLightMap0[2]); |
|
colorLightMap0[3] = MulSIMD(expW0[3], colorLightMap0[3]); |
|
colorLightMap1[0] = MulSIMD(expW1[0], colorLightMap1[0]); |
|
colorLightMap1[1] = MulSIMD(expW1[1], colorLightMap1[1]); |
|
colorLightMap1[2] = MulSIMD(expW1[2], colorLightMap1[2]); |
|
colorLightMap1[3] = MulSIMD(expW1[3], colorLightMap1[3]); |
|
|
|
#ifdef X360_DOUBLECHECK_LIGHTMAPS |
|
for (int group = 0 ; group < 4 ; ++group) |
|
{ |
|
Assert( colorLightMap0[group].v[0] == TexLightToLinear( pLightmap[i + group].r, pLightmap[i + group].exponent ) && |
|
colorLightMap0[group].v[1] == TexLightToLinear( pLightmap[i + group].g, pLightmap[i + group].exponent ) && |
|
colorLightMap0[group].v[2] == TexLightToLinear( pLightmap[i + group].b, pLightmap[i + group].exponent ) ); |
|
} |
|
#endif |
|
|
|
|
|
// accumulate into blocklights |
|
vLight0[0] = XMVectorMultiplyAdd(vScalar, colorLightMap0[0], vLight0[0]); |
|
vLight0[1] = XMVectorMultiplyAdd(vScalar, colorLightMap0[1], vLight0[1]); |
|
vLight0[2] = XMVectorMultiplyAdd(vScalar, colorLightMap0[2], vLight0[2]); |
|
vLight0[3] = XMVectorMultiplyAdd(vScalar, colorLightMap0[3], vLight0[3]); |
|
vLight1[0] = XMVectorMultiplyAdd(vScalar, colorLightMap1[0], vLight1[0]); |
|
vLight1[1] = XMVectorMultiplyAdd(vScalar, colorLightMap1[1], vLight1[1]); |
|
vLight1[2] = XMVectorMultiplyAdd(vScalar, colorLightMap1[2], vLight1[2]); |
|
vLight1[3] = XMVectorMultiplyAdd(vScalar, colorLightMap1[3], vLight1[3]); |
|
|
|
// save |
|
XMStoreVector4A( bLights + i + 0, vLight0[0]); |
|
XMStoreVector4A( bLights + i + 1, vLight0[1]); |
|
XMStoreVector4A( bLights + i + 2, vLight0[2]); |
|
XMStoreVector4A( bLights + i + 3, vLight0[3]); |
|
XMStoreVector4A( bLights + i + 4, vLight1[0]); |
|
XMStoreVector4A( bLights + i + 5, vLight1[1]); |
|
XMStoreVector4A( bLights + i + 6, vLight1[2]); |
|
XMStoreVector4A( bLights + i + 7, vLight1[3]); |
|
} |
|
} |
|
|
|
// just like XMLoadByte4 only no asserts |
|
FORCEINLINE XMVECTOR LoadSignedByte4NoAssert ( CONST XMBYTE4* pSource ) |
|
{ |
|
XMVECTOR V; |
|
|
|
V = __lvlx(pSource, 0); |
|
V = __vupkhsb(V); |
|
V = __vupkhsh(V); |
|
V = __vcfsx(V, 0); |
|
|
|
return V; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Compute the portion of the lightmap generated from lightstyles |
|
//----------------------------------------------------------------------------- |
|
static void AccumulateLightstyles( ColorRGBExp32* pLightmap, int lightmapSize, fltx4 vScalar ) |
|
{ |
|
Assert( pLightmap ); |
|
// crush w of the scalar to zero (so we don't overwrite blocklight[x][y][3] in the madds) |
|
vScalar = __vrlimi(vScalar, Four_Zeros, 1, 0); |
|
int lightmapSizeEightAligned = lightmapSize & (~0x07); |
|
|
|
// crunch as many groups of eight as possible, then deal with the remainder |
|
AccumulateLightstyles_EightAtAtime(pLightmap, lightmapSizeEightAligned, vScalar, blocklights[0]); |
|
|
|
// handle remainders |
|
for (int i = lightmapSizeEightAligned; i < lightmapSize ; ++i ) |
|
{ |
|
// load four blockLights entries, and four colors |
|
fltx4 vLight; |
|
fltx4 colorLightMap; |
|
vLight = LoadAlignedSIMD(blocklights[0][i].Base()); |
|
|
|
// unpack the color light maps |
|
// load the unsigned bytes |
|
colorLightMap = XMLoadUByte4(reinterpret_cast<XMUBYTE4 *>(pLightmap + i)); |
|
// fish out the exponent component from a signed load |
|
fltx4 exponentiator = XMVectorExpEst(XMVectorSplatW(LoadSignedByte4NoAssert(reinterpret_cast<XMBYTE4 *>(pLightmap + i)))); |
|
|
|
// scale each of the color light channels by the exponent |
|
colorLightMap = MulSIMD( MulSIMD(colorLightMap, vOneOverTwoFiftyFive ), exponentiator ); |
|
|
|
Assert( colorLightMap.v[0] == TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ) && |
|
colorLightMap.v[1] == TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ) && |
|
colorLightMap.v[2] == TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ) ); |
|
|
|
// accumulate onto blocklights |
|
vLight = MaddSIMD(vScalar, colorLightMap, vLight); |
|
|
|
StoreAlignedSIMD(blocklights[0][i].Base(), vLight); |
|
} |
|
} |
|
|
|
static void AccumulateLightstylesFlat( ColorRGBExp32* pLightmap, int lightmapSize, fltx4 vScalar ) |
|
{ |
|
Assert( pLightmap ); |
|
|
|
// this isn't a terribly fast way of doing things, but |
|
// this function doesn't seem to be called much (so |
|
// it's not worth the trouble of custom loop scheduling) |
|
fltx4 colorLightMap; |
|
// unpack the color light maps |
|
// load the unsigned bytes |
|
colorLightMap = XMLoadUByte4(reinterpret_cast<XMUBYTE4 *>(pLightmap)); |
|
// fish out the exponent component from a signed load |
|
fltx4 exponentiator = XMVectorExpEst(XMVectorSplatW(LoadSignedByte4NoAssert(reinterpret_cast<XMBYTE4 *>(pLightmap)))); |
|
|
|
// scale each of the color light channels by the exponent |
|
colorLightMap = MulSIMD( MulSIMD(colorLightMap, vOneOverTwoFiftyFive ), exponentiator ); |
|
|
|
for (int i = 0; i < lightmapSize ; ++i ) |
|
{ |
|
// load four blockLights entries, and four colors |
|
fltx4 vLight; |
|
vLight = LoadAlignedSIMD(blocklights[0][i].Base()); |
|
|
|
// accumulate onto blocklights |
|
vLight = MaddSIMD(vScalar, colorLightMap, vLight); |
|
|
|
StoreAlignedSIMD(blocklights[0][i].Base(), vLight); |
|
} |
|
} |
|
|
|
|
|
|
|
static void AccumulateBumpedLightstyles( ColorRGBExp32* RESTRICT pLightmap, int lightmapSize, fltx4 vScalar ) |
|
{ |
|
COMPILE_TIME_ASSERT(sizeof(ColorRGBExp32) == 4); // This function is carefully scheduled around four-byte colors |
|
|
|
// crush w of the scalar to zero (so we don't overwrite blocklight[x][y][3] in the madds) |
|
vScalar = __vrlimi(vScalar, Four_Zeros, 1, 0); |
|
|
|
/* |
|
ColorRGBExp32 * RESTRICT pBumpedLightmaps[3]; |
|
pBumpedLightmaps[1] = pLightmap + lightmapSize; |
|
pBumpedLightmaps[2] = pLightmap + 2 * lightmapSize; |
|
pBumpedLightmaps[3] = pLightmap + 3 * lightmapSize; |
|
*/ |
|
|
|
// assert word (not vector) alignment |
|
AssertMsg( ((reinterpret_cast<unsigned int>(pLightmap) & 0x03 ) == 0), "Lightmap was not word-aligned: AccumulateBumpedLightstyles must fail." ); |
|
// assert vector alignment |
|
AssertMsg( (reinterpret_cast<unsigned int>(blocklights) & 0x0F ) == 0, "Blocklights is not vector-aligned. You're doomed." ); |
|
AssertMsg( (reinterpret_cast<unsigned int>(blocklights) & 127 ) == 0, "Blocklights is not cache-aligned. Performance will suffer." ); |
|
|
|
#if 0 // reference: This is the simple version -- four-way accumulate (no interleaving) |
|
for (int i = 0 ; i < lightmapSize ; i+= 4) |
|
{ |
|
// load four blockLights entries, and four colors |
|
fltx4 vLight[4]; |
|
fltx4 colorLightMap[4]; |
|
vLight[0] = LoadUnalignedSIMD(&blocklights[0][i]); |
|
vLight[1] = LoadUnalignedSIMD(&blocklights[0][i+1]); |
|
vLight[2] = LoadUnalignedSIMD(&blocklights[0][i+2]); |
|
vLight[3] = LoadUnalignedSIMD(&blocklights[0][i+3]); |
|
// unpack the color light maps |
|
{ |
|
fltx4 zero = Four_Zeros; |
|
fltx4 colorLightmap = LoadUnalignedSIMD(pLightmap+i); // because each colorrgbexp is actually a 32-bit struct, |
|
// this loads four of them into one vector -- they are ubytes for rgb and sbyte for e |
|
// unpack rgbe 0 and 1: |
|
// like an unsigned unpack: { 0x00, colorLightMap[0].r, 0x00, colorLightMap[0].g, 0x00, colorLightMap[0].b, 0x00, colorLightMap[0].e, |
|
// 0x00, colorLightMap[1].r, 0x00, colorLightMap[1].g, 0x00, colorLightMap[1].b, 0x00, colorLightMap[1].e} |
|
fltx4 unsignedUnpackHi = __vmrghb(zero, colorLightMap); |
|
fltx4 unsignedUnpackLo = __vmrghb(zero, colorLightMap); // rgbe words 2 and 3 |
|
fltx4 signedUnpackHi = __vupkhsb(colorLightMap); // signed unpack of words 0 and 1, like the unsigned unpack but repl 0x00 w/ sign extension |
|
fltx4 signedUnpackLo = __vupklsb(colorLightMap); |
|
// merge the signed and unsigned unpacks together to make the full halfwords |
|
unsignedUnpackHi = MaskedAssign(vHalfWordMask, signedUnpackHi, unsignedUnpackHi ); |
|
unsignedUnpackLo = MaskedAssign(vHalfWordMask, signedUnpackLo, unsignedUnpackLo ); |
|
// now complete the unpack from halfwords to words (we can just use signed because there are 0x00's above the rgb channels) |
|
// and convert to float |
|
colorLightMap[0] = __vcfsx( __vupkhsh(unsignedUnpackHi), 0); |
|
colorLightMap[1] = __vcfsx( __vupklsh(unsignedUnpackHi), 0); |
|
colorLightMap[2] = __vcfsx( __vupkhsh(unsignedUnpackLo), 0); |
|
colorLightMap[3] = __vcfsx( __vupklsh(unsignedUnpackLo), 0); |
|
} |
|
|
|
// scale each of the color channels by the exponent channel |
|
colorLightMap[0] = XMVectorExpEst( XMVectorSplatW(colorLightMap[0]) ); |
|
colorLightMap[1] = XMVectorExpEst( XMVectorSplatW(colorLightMap[1]) ); |
|
colorLightMap[2] = XMVectorExpEst( XMVectorSplatW(colorLightMap[2]) ); |
|
colorLightMap[3] = XMVectorExpEst( XMVectorSplatW(colorLightMap[3]) ); |
|
|
|
// accumulate into blocklights |
|
vLight[0] = XMVectorMultiplyAdd(vScalar, colorLightMap[0], vLight[0]); |
|
vLight[1] = XMVectorMultiplyAdd(vScalar, colorLightMap[1], vLight[1]); |
|
vLight[2] = XMVectorMultiplyAdd(vScalar, colorLightMap[2], vLight[2]); |
|
vLight[3] = XMVectorMultiplyAdd(vScalar, colorLightMap[3], vLight[3]); |
|
|
|
// save |
|
XMStoreVector4(&blocklights[0][i], vLight[0]); |
|
XMStoreVector4(&blocklights[1][i], vLight[1]); |
|
XMStoreVector4(&blocklights[2][i], vLight[2]); |
|
XMStoreVector4(&blocklights[3][i], vLight[3]); |
|
} |
|
#endif |
|
|
|
int lightmapSizeEightAligned = lightmapSize & (~0x07); |
|
|
|
// crunch each of the lightmap groups. |
|
for (int mapGroup = 0 ; mapGroup <= 3 ; ++mapGroup, pLightmap += lightmapSize ) |
|
{ |
|
// process the base lightmap |
|
AccumulateLightstyles_EightAtAtime(pLightmap, lightmapSizeEightAligned, vScalar, blocklights[mapGroup]); |
|
// handle remainders |
|
for (int i = lightmapSizeEightAligned; i < lightmapSize ; ++i ) |
|
{ |
|
// load four blockLights entries, and four colors |
|
fltx4 vLight; |
|
fltx4 colorLightMap; |
|
vLight = LoadAlignedSIMD(blocklights[mapGroup][i].Base()); |
|
|
|
// unpack the color light maps |
|
// load the unsigned bytes |
|
colorLightMap = XMLoadUByte4(reinterpret_cast<XMUBYTE4 *>(pLightmap + i)); |
|
// fish out the exponent component from a signed load |
|
fltx4 exponentiator = XMVectorExpEst(XMVectorSplatW(LoadSignedByte4NoAssert(reinterpret_cast<XMBYTE4 *>(pLightmap + i)))); |
|
|
|
// scale each of the color light channels by the exponent |
|
colorLightMap = MulSIMD( MulSIMD(colorLightMap, vOneOverTwoFiftyFive ), exponentiator ); |
|
|
|
Assert( colorLightMap.v[0] == TexLightToLinear( pLightmap[i].r, pLightmap[i].exponent ) && |
|
colorLightMap.v[1] == TexLightToLinear( pLightmap[i].g, pLightmap[i].exponent ) && |
|
colorLightMap.v[2] == TexLightToLinear( pLightmap[i].b, pLightmap[i].exponent ) ); |
|
|
|
|
|
// accumulate onto blocklights |
|
vLight = MaddSIMD(vScalar, colorLightMap, vLight); |
|
|
|
StoreAlignedSIMD(blocklights[mapGroup][i].Base(), vLight); |
|
} |
|
|
|
// note: pLightmap is incremented as well. |
|
} |
|
} |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Compute the portion of the lightmap generated from lightstyles |
|
//----------------------------------------------------------------------------- |
|
static void ComputeLightmapFromLightstyle( msurfacelighting_t *pLighting, bool computeLightmap, |
|
bool computeBumpmap, int lightmapSize, bool hasBumpmapLightmapData ) |
|
{ |
|
VPROF( "ComputeLightmapFromLightstyle" ); |
|
|
|
ColorRGBExp32 *pLightmap = pLighting->m_pSamples; |
|
|
|
// Compute iteration range |
|
int minmap, maxmap; |
|
#ifdef USE_CONVARS |
|
if( r_lightmap.GetInt() != -1 ) |
|
{ |
|
minmap = r_lightmap.GetInt(); |
|
maxmap = minmap + 1; |
|
} |
|
else |
|
#endif |
|
{ |
|
minmap = 0; maxmap = MAXLIGHTMAPS; |
|
} |
|
|
|
for (int maps = minmap; maps < maxmap && pLighting->m_nStyles[maps] != 255; ++maps) |
|
{ |
|
if( r_lightstyle.GetInt() != -1 && pLighting->m_nStyles[maps] != r_lightstyle.GetInt()) |
|
{ |
|
continue; |
|
} |
|
|
|
float fscalar = LightStyleValue( pLighting->m_nStyles[maps] ); |
|
|
|
// hack - don't know why we are getting negative values here. |
|
// if (scalar > 0.0f && maps > 0 ) |
|
if (fscalar > 0.0f) |
|
{ |
|
#ifdef _X360 |
|
fltx4 scalar = ReplicateX4(fscalar); // we use SIMD versions of these functions on 360 |
|
#else |
|
const float &scalar = fscalar; |
|
#endif |
|
|
|
if( computeBumpmap ) |
|
{ |
|
AccumulateBumpedLightstyles( pLightmap, lightmapSize, scalar ); |
|
} |
|
else if( computeLightmap ) |
|
{ |
|
if (r_avglightmap.GetInt()) |
|
{ |
|
pLightmap = pLighting->AvgLightColor(maps); |
|
AccumulateLightstylesFlat( pLightmap, lightmapSize, scalar ); |
|
} |
|
else |
|
{ |
|
AccumulateLightstyles( pLightmap, lightmapSize, scalar ); |
|
} |
|
} |
|
} |
|
|
|
// skip to next lightmap. If we store lightmap data, we need to jump forward 4 |
|
pLightmap += hasBumpmapLightmapData ? lightmapSize * ( NUM_BUMP_VECTS + 1 ) : lightmapSize; |
|
} |
|
} |
|
|
|
// instrumentation to measure locks |
|
/* |
|
static CUtlVector<int> g_LightmapLocks; |
|
static int g_Lastdlightframe = -1; |
|
static int g_lastlock = -1; |
|
static int g_unsorted = 0; |
|
void MarkPage( int pageID ) |
|
{ |
|
if ( g_Lastdlightframe != r_framecount ) |
|
{ |
|
int total = 0; |
|
int locks = 0; |
|
for ( int i = 0; i < g_LightmapLocks.Count(); i++ ) |
|
{ |
|
int count = g_LightmapLocks[i]; |
|
if ( count ) |
|
{ |
|
total++; |
|
locks += count; |
|
} |
|
g_LightmapLocks[i] = 0; |
|
} |
|
g_Lastdlightframe = r_framecount; |
|
g_lastlock = -1; |
|
if ( locks ) |
|
Msg("Total pages %d, locks %d, unsorted locks %d\n", total, locks, g_unsorted ); |
|
g_unsorted = 0; |
|
} |
|
if ( pageID != g_lastlock ) |
|
{ |
|
g_lastlock = pageID; |
|
g_unsorted++; |
|
} |
|
g_LightmapLocks.EnsureCount(pageID+1); |
|
g_LightmapLocks[pageID]++; |
|
} |
|
*/ |
|
//----------------------------------------------------------------------------- |
|
// Update the lightmaps... |
|
//----------------------------------------------------------------------------- |
|
static void UpdateLightmapTextures( SurfaceHandle_t surfID, bool needsBumpmap ) |
|
{ |
|
ASSERT_SURF_VALID( surfID ); |
|
|
|
if( materialSortInfoArray ) |
|
{ |
|
int lightmapSize[2]; |
|
int offsetIntoLightmapPage[2]; |
|
lightmapSize[0] = ( MSurf_LightmapExtents( surfID )[0] ) + 1; |
|
lightmapSize[1] = ( MSurf_LightmapExtents( surfID )[1] ) + 1; |
|
offsetIntoLightmapPage[0] = MSurf_OffsetIntoLightmapPage( surfID )[0]; |
|
offsetIntoLightmapPage[1] = MSurf_OffsetIntoLightmapPage( surfID )[1]; |
|
Assert( MSurf_MaterialSortID( surfID ) >= 0 && |
|
MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() ); |
|
// FIXME: Should differentiate between bumped and unbumped since the perf characteristics |
|
// are completely different? |
|
// MarkPage( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID ); |
|
|
|
if( needsBumpmap ) |
|
{ |
|
materials->UpdateLightmap( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID, |
|
lightmapSize, offsetIntoLightmapPage, |
|
&blocklights[0][0][0], &blocklights[1][0][0], &blocklights[2][0][0], &blocklights[3][0][0] ); |
|
} |
|
else |
|
{ |
|
materials->UpdateLightmap( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID, |
|
lightmapSize, offsetIntoLightmapPage, |
|
&blocklights[0][0][0], NULL, NULL, NULL ); |
|
} |
|
} |
|
} |
|
|
|
|
|
unsigned int R_UpdateDlightState( dlight_t *pLights, SurfaceHandle_t surfID, const matrix3x4_t& entityToWorld, bool bOnlyUseLightStyles, bool bLightmap ) |
|
{ |
|
unsigned int dlightMask = 0; |
|
// Mark the surface with the particular cached light values... |
|
msurfacelighting_t *pLighting = SurfaceLighting( surfID ); |
|
|
|
// Retire dlights that are no longer active |
|
pLighting->m_fDLightBits &= r_dlightactive; |
|
pLighting->m_nLastComputedFrame = r_framecount; |
|
|
|
// Here, it's got the data it needs. So use it! |
|
if ( !bOnlyUseLightStyles ) |
|
{ |
|
// add all the dynamic lights |
|
if( bLightmap && ( pLighting->m_nDLightFrame == r_framecount ) ) |
|
{ |
|
dlightMask = R_ComputeDynamicLightMask( pLights, surfID, pLighting, entityToWorld ); |
|
} |
|
|
|
if ( !dlightMask || !pLighting->m_fDLightBits ) |
|
{ |
|
pLighting->m_fDLightBits = 0; |
|
MSurf_Flags(surfID) &= ~SURFDRAW_HASDLIGHT; |
|
} |
|
} |
|
return dlightMask; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Build the blocklights array for a given surface and copy to dest |
|
// Combine and scale multiple lightmaps into the 8.8 format in blocklights |
|
// Input : *psurf - surface to rebuild |
|
// *dest - texture pointer to receive copy in lightmap texture format |
|
// stride - stride of *dest memory |
|
//----------------------------------------------------------------------------- |
|
void R_BuildLightMapGuts( dlight_t *pLights, SurfaceHandle_t surfID, const matrix3x4_t& entityToWorld, unsigned int dlightMask, bool needsBumpmap, bool needsLightmap ) |
|
{ |
|
VPROF_("R_BuildLightMapGuts", 1, VPROF_BUDGETGROUP_DLIGHT_RENDERING, false, 0); |
|
int bumpID; |
|
|
|
// Lightmap data can be dumped to save memory - this precludes any dynamic lighting on the world |
|
Assert( !host_state.worldbrush->unloadedlightmaps ); |
|
|
|
// Mark the surface with the particular cached light values... |
|
msurfacelighting_t *pLighting = SurfaceLighting( surfID ); |
|
|
|
int size = ComputeLightmapSize( surfID ); |
|
if (size == 0) |
|
return; |
|
|
|
bool hasBumpmap = SurfHasBumpedLightmaps( surfID ); |
|
bool hasLightmap = SurfHasLightmap( surfID ); |
|
|
|
// clear to no light |
|
if( needsLightmap ) |
|
{ |
|
// set to full bright if no light data |
|
InitLMSamples( blocklights[0], size, hasLightmap ? 0.0f : 1.0f ); |
|
} |
|
|
|
if( needsBumpmap ) |
|
{ |
|
// set to full bright if no light data |
|
for( bumpID = 1; bumpID < NUM_BUMP_VECTS + 1; bumpID++ ) |
|
{ |
|
InitLMSamples( blocklights[bumpID], size, hasBumpmap ? 0.0f : 1.0f ); |
|
} |
|
} |
|
|
|
// add all the lightmaps |
|
// Here, it's got the data it needs. So use it! |
|
if( ( hasLightmap && needsLightmap ) || ( hasBumpmap && needsBumpmap ) ) |
|
{ |
|
ComputeLightmapFromLightstyle( pLighting, ( hasLightmap && needsLightmap ), |
|
( hasBumpmap && needsBumpmap ), size, hasBumpmap ); |
|
} |
|
else if( !hasBumpmap && needsBumpmap && hasLightmap ) |
|
{ |
|
// make something up for the bumped lights if you need them but don't have the data |
|
// if you have a lightmap, use that, otherwise fullbright |
|
ComputeLightmapFromLightstyle( pLighting, true, false, size, hasBumpmap ); |
|
|
|
for( bumpID = 0; bumpID < ( hasBumpmap ? ( NUM_BUMP_VECTS + 1 ) : 1 ); bumpID++ ) |
|
{ |
|
for (int i=0 ; i<size ; i++) |
|
{ |
|
blocklights[bumpID][i].AsVector3D() = blocklights[0][i].AsVector3D(); |
|
} |
|
} |
|
} |
|
else if( needsBumpmap && !hasLightmap ) |
|
{ |
|
// set to full bright if no light data |
|
InitLMSamples( blocklights[1], size, 0.0f ); |
|
InitLMSamples( blocklights[2], size, 0.0f ); |
|
InitLMSamples( blocklights[3], size, 0.0f ); |
|
} |
|
else if( !needsBumpmap && !needsLightmap ) |
|
{ |
|
} |
|
else if( needsLightmap && !hasLightmap ) |
|
{ |
|
} |
|
else |
|
{ |
|
Assert( 0 ); |
|
} |
|
|
|
// add all the dynamic lights |
|
if ( dlightMask && (needsLightmap || needsBumpmap) ) |
|
{ |
|
R_AddDynamicLights( pLights, surfID, entityToWorld, needsBumpmap, dlightMask ); |
|
} |
|
|
|
// Update the texture state |
|
UpdateLightmapTextures( surfID, needsBumpmap ); |
|
} |
|
|
|
void R_BuildLightMap( dlight_t *pLights, ICallQueue *pCallQueue, SurfaceHandle_t surfID, const matrix3x4_t &entityToWorld, bool bOnlyUseLightStyles ) |
|
{ |
|
bool needsBumpmap = SurfNeedsBumpedLightmaps( surfID ); |
|
bool needsLightmap = SurfNeedsLightmap( surfID ); |
|
|
|
if( !needsBumpmap && !needsLightmap ) |
|
return; |
|
|
|
if( materialSortInfoArray ) |
|
{ |
|
Assert( MSurf_MaterialSortID( surfID ) >= 0 && |
|
MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() ); |
|
if (( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE ) || |
|
( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP ) ) |
|
{ |
|
return; |
|
} |
|
} |
|
|
|
bool bDlightsInLightmap = needsLightmap || needsBumpmap; |
|
unsigned int dlightMask = R_UpdateDlightState( pLights, surfID, entityToWorld, bOnlyUseLightStyles, bDlightsInLightmap ); |
|
|
|
// update the state, but don't render any dlights if only lightstyles requested |
|
if ( bOnlyUseLightStyles ) |
|
dlightMask = 0; |
|
|
|
if ( !pCallQueue ) |
|
{ |
|
R_BuildLightMapGuts( pLights, surfID, entityToWorld, dlightMask, needsBumpmap, needsLightmap ); |
|
} |
|
else |
|
{ |
|
pCallQueue->QueueCall( R_BuildLightMapGuts, pLights, surfID, RefToVal( entityToWorld ), dlightMask, needsBumpmap, needsLightmap ); |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Save off the average light values, and dump the rest of the lightmap data. |
|
// Can be used to save memory, at the expense of dynamic lights and lightstyles. |
|
//----------------------------------------------------------------------------- |
|
void CacheAndUnloadLightmapData() |
|
{ |
|
Assert( !g_bHunkAllocLightmaps ); |
|
if ( g_bHunkAllocLightmaps ) |
|
{ |
|
return; |
|
} |
|
|
|
worldbrushdata_t *pBrushData = host_state.worldbrush; |
|
msurfacelighting_t *pLighting = pBrushData->surfacelighting; |
|
int numSurfaces = pBrushData->numsurfaces; |
|
|
|
// This will allocate more data than necessary, but only 1-2K max |
|
byte *pDestBase = (byte*)malloc( numSurfaces * MAXLIGHTMAPS * sizeof( ColorRGBExp32 ) ); |
|
byte *pDest = pDestBase; |
|
|
|
for ( int i = 0; i < numSurfaces; ++i, ++pLighting ) |
|
{ |
|
int nStyleCt = 0; |
|
for ( int map = 0 ; map < MAXLIGHTMAPS; ++map ) |
|
{ |
|
if ( pLighting->m_nStyles[map] != 255 ) |
|
++nStyleCt; |
|
} |
|
|
|
const int nHdrBytes = nStyleCt * sizeof( ColorRGBExp32 ); |
|
byte *pHdr = (byte*)pLighting->m_pSamples - nHdrBytes; |
|
|
|
// Copy just the 0-4 average color entries |
|
Q_memcpy( pDest, pHdr, nHdrBytes ); |
|
|
|
// m_pSamples needs to point AFTER the average color data |
|
pDest += nHdrBytes; |
|
pLighting->m_pSamples = (ColorRGBExp32*)pDest; |
|
} |
|
|
|
// Update the lightdata pointer |
|
free( host_state.worldbrush->lightdata ); |
|
host_state.worldbrush->lightdata = (ColorRGBExp32*)pDestBase; |
|
host_state.worldbrush->unloadedlightmaps = true; |
|
} |
|
|
|
//sorts the surfaces in place |
|
static void SortSurfacesByLightmapID( SurfaceHandle_t *pToSort, int iSurfaceCount ) |
|
{ |
|
SurfaceHandle_t *pSortTemp = (SurfaceHandle_t *)stackalloc( sizeof( SurfaceHandle_t ) * iSurfaceCount ); |
|
|
|
//radix sort |
|
for( int radix = 0; radix != 4; ++radix ) |
|
{ |
|
//swap the inputs for the next pass |
|
{ |
|
SurfaceHandle_t *pTemp = pToSort; |
|
pToSort = pSortTemp; |
|
pSortTemp = pTemp; |
|
} |
|
|
|
int iCounts[256] = { 0 }; |
|
int iBitOffset = radix * 8; |
|
for( int i = 0; i != iSurfaceCount; ++i ) |
|
{ |
|
uint8 val = (materialSortInfoArray[MSurf_MaterialSortID( pSortTemp[i] )].lightmapPageID >> iBitOffset) & 0xFF; |
|
++iCounts[val]; |
|
} |
|
|
|
int iOffsetTable[256]; |
|
iOffsetTable[0] = 0; |
|
for( int i = 0; i != 255; ++i ) |
|
{ |
|
iOffsetTable[i + 1] = iOffsetTable[i] + iCounts[i]; |
|
} |
|
|
|
for( int i = 0; i != iSurfaceCount; ++i ) |
|
{ |
|
uint8 val = (materialSortInfoArray[MSurf_MaterialSortID( pSortTemp[i] )].lightmapPageID >> iBitOffset) & 0xFF; |
|
int iWriteIndex = iOffsetTable[val]; |
|
pToSort[iWriteIndex] = pSortTemp[i]; |
|
++iOffsetTable[val]; |
|
} |
|
} |
|
} |
|
|
|
void R_RedownloadAllLightmaps() |
|
{ |
|
#ifdef _DEBUG |
|
static bool initializedBlockLights = false; |
|
if (!initializedBlockLights) |
|
{ |
|
memset( &blocklights[0][0][0], 0, MAX_LIGHTMAP_DIM_INCLUDING_BORDER * MAX_LIGHTMAP_DIM_INCLUDING_BORDER * (NUM_BUMP_VECTS + 1) * sizeof( Vector ) ); |
|
initializedBlockLights = true; |
|
} |
|
#endif |
|
|
|
double st = Sys_FloatTime(); |
|
|
|
bool bOnlyUseLightStyles = false; |
|
|
|
if( r_dynamic.GetInt() == 0 ) |
|
{ |
|
bOnlyUseLightStyles = true; |
|
} |
|
|
|
// Can't build lightmaps if the source data has been dumped |
|
CMatRenderContextPtr pRenderContext( materials ); |
|
ICallQueue *pCallQueue = pRenderContext->GetCallQueue(); |
|
if ( !host_state.worldbrush->unloadedlightmaps ) |
|
{ |
|
int iSurfaceCount = host_state.worldbrush->numsurfaces; |
|
|
|
SurfaceHandle_t *pSortedSurfaces = (SurfaceHandle_t *)stackalloc( sizeof( SurfaceHandle_t ) * iSurfaceCount ); |
|
for( int surfaceIndex = 0; surfaceIndex < iSurfaceCount; surfaceIndex++ ) |
|
{ |
|
SurfaceHandle_t surfID = SurfaceHandleFromIndex( surfaceIndex ); |
|
pSortedSurfaces[surfaceIndex] = surfID; |
|
} |
|
|
|
SortSurfacesByLightmapID( pSortedSurfaces, iSurfaceCount ); //sorts in place, so now the array really is sorted |
|
|
|
if( pCallQueue ) |
|
pCallQueue->QueueCall( materials, &IMaterialSystem::BeginUpdateLightmaps ); |
|
else |
|
materials->BeginUpdateLightmaps(); |
|
|
|
matrix3x4_t xform; |
|
SetIdentityMatrix(xform); |
|
for( int surfaceIndex = 0; surfaceIndex < iSurfaceCount; surfaceIndex++ ) |
|
{ |
|
SurfaceHandle_t surfID = pSortedSurfaces[surfaceIndex]; |
|
|
|
ASSERT_SURF_VALID( surfID ); |
|
R_BuildLightMap( &cl_dlights[0], pCallQueue, surfID, xform, bOnlyUseLightStyles ); |
|
} |
|
|
|
if( pCallQueue ) |
|
pCallQueue->QueueCall( materials, &IMaterialSystem::EndUpdateLightmaps ); |
|
else |
|
materials->EndUpdateLightmaps(); |
|
|
|
if ( !g_bHunkAllocLightmaps && r_unloadlightmaps.GetInt() == 1 ) |
|
{ |
|
// Delete the lightmap data from memory |
|
if ( !pCallQueue ) |
|
{ |
|
CacheAndUnloadLightmapData(); |
|
} |
|
else |
|
{ |
|
pCallQueue->QueueCall( CacheAndUnloadLightmapData ); |
|
} |
|
} |
|
} |
|
|
|
float elapsed = ( float )( Sys_FloatTime() - st ) * 1000.0; |
|
DevMsg( "R_RedownloadAllLightmaps took %.3f msec!\n", elapsed ); |
|
|
|
g_RebuildLightmaps = false; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: flag the lightmaps as needing to be rebuilt (gamma change) |
|
//----------------------------------------------------------------------------- |
|
bool g_RebuildLightmaps = false; |
|
|
|
void GL_RebuildLightmaps( void ) |
|
{ |
|
g_RebuildLightmaps = true; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: Update the in-RAM texture for the given surface's lightmap |
|
// Input : *fa - surface pointer |
|
//----------------------------------------------------------------------------- |
|
|
|
#ifdef UPDATE_LIGHTSTYLES_EVERY_FRAME |
|
ConVar mat_updatelightstyleseveryframe( "mat_updatelightstyleseveryframe", "0" ); |
|
#endif |
|
void FASTCALL R_RenderDynamicLightmaps ( dlight_t *pLights, ICallQueue *pCallQueue, SurfaceHandle_t surfID, const matrix3x4_t &xform ) |
|
{ |
|
VPROF_BUDGET( "R_RenderDynamicLightmaps", VPROF_BUDGETGROUP_DLIGHT_RENDERING ); |
|
ASSERT_SURF_VALID( surfID ); |
|
|
|
int fSurfFlags = MSurf_Flags( surfID ); |
|
|
|
if( fSurfFlags & SURFDRAW_NOLIGHT ) |
|
return; |
|
|
|
// check for lightmap modification |
|
bool bChanged = false; |
|
msurfacelighting_t *pLighting = SurfaceLighting( surfID ); |
|
if( fSurfFlags & SURFDRAW_HASLIGHTSYTLES ) |
|
{ |
|
#ifdef UPDATE_LIGHTSTYLES_EVERY_FRAME |
|
if( mat_updatelightstyleseveryframe.GetBool() && ( pLighting->m_nStyles[0] != 0 || pLighting->m_nStyles[1] != 255 ) ) |
|
{ |
|
bChanged = true; |
|
} |
|
#endif |
|
for( int maps = 0; maps < MAXLIGHTMAPS && pLighting->m_nStyles[maps] != 255; maps++ ) |
|
{ |
|
if( d_lightstyleframe[pLighting->m_nStyles[maps]] > pLighting->m_nLastComputedFrame ) |
|
{ |
|
bChanged = true; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// was it dynamic this frame (pLighting->m_nDLightFrame == r_framecount) |
|
// or dynamic previously (pLighting->m_fDLightBits) |
|
bool bDLightChanged = ( pLighting->m_nDLightFrame == r_framecount ) || pLighting->m_fDLightBits; |
|
bool bOnlyUseLightStyles = false; |
|
|
|
if( r_dynamic.GetInt() == 0 ) |
|
{ |
|
bOnlyUseLightStyles = true; |
|
bDLightChanged = false; |
|
} |
|
|
|
if ( bChanged || bDLightChanged ) |
|
{ |
|
R_BuildLightMap( pLights, pCallQueue, surfID, xform, bOnlyUseLightStyles ); |
|
} |
|
}
|
|
|