// BE VERY VERY CAREFUL what you do in these function. They are extremely hot, and calling the wrong GL API's in here will crush perf. (especially on NVidia threaded drivers). #include "togles/linuxwin/glmgr.h" FORCEINLINE uint32 bitmix32(uint32 a) { a -= (a<<6); //a ^= (a>>17); //a -= (a<<9); a ^= (a<<4); //a -= (a<<3); //a ^= (a<<10); a ^= (a>>15); return a; } #ifndef OSX FORCEINLINE GLuint GLMContext::FindSamplerObject( const GLMTexSamplingParams &desiredParams ) { int h = bitmix32( desiredParams.m_bits + desiredParams.m_borderColor ) & ( cSamplerObjectHashSize - 1 ); while ( ( m_samplerObjectHash[h].m_params.m_bits != desiredParams.m_bits ) || ( m_samplerObjectHash[h].m_params.m_borderColor != desiredParams.m_borderColor ) ) { if ( !m_samplerObjectHash[h].m_params.m_packed.m_isValid ) break; if ( ++h >= cSamplerObjectHashSize ) h = 0; } if ( !m_samplerObjectHash[h].m_params.m_packed.m_isValid ) { GLMTexSamplingParams &hashParams = m_samplerObjectHash[h].m_params; hashParams = desiredParams; hashParams.SetToSamplerObject( m_samplerObjectHash[h].m_samplerObject ); if ( ++m_nSamplerObjectHashNumEntries == cSamplerObjectHashSize ) { // TODO: Support resizing Error( "Sampler object hash is full, increase cSamplerObjectHashSize" ); } } return m_samplerObjectHash[h].m_samplerObject; } #endif // !OSX // BE VERY CAREFUL WHAT YOU DO IN HERE. This is called on every batch, even seemingly simple changes can kill perf. FORCEINLINE void GLMContext::FlushDrawStates( uint nStartIndex, uint nEndIndex, uint nBaseVertex ) // shadersOn = true for draw calls, false for clear calls { Assert( m_drawingLang == kGLMGLSL ); // no support for ARB shaders right now (and NVidia reports that they aren't worth targeting under Windows/Linux for various reasons anyway) Assert( ( m_drawingFBO == m_boundDrawFBO ) && ( m_drawingFBO == m_boundReadFBO ) ); // this check MUST succeed Assert( m_pDevice->m_pVertDecl ); #if GLMDEBUG GLM_FUNC; #endif GL_BATCH_PERF( m_FlushStats.m_nTotalBatchFlushes++; ) #if GLMDEBUG bool tex0_srgb = (m_boundDrawFBO[0].m_attach[0].m_tex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0; // you can only actually use the sRGB FB state on some systems.. check caps if (m_caps.m_hasGammaWrites) { GLBlendEnableSRGB_t writeSRGBState; m_BlendEnableSRGB.Read( &writeSRGBState, 0 ); // the client set value, not the API-written value yet.. bool draw_srgb = writeSRGBState.enable != 0; if (draw_srgb) { if (tex0_srgb) { // good - draw mode and color tex agree } else { // bad // Client has asked to write sRGB into a texture that can't do it. // there is no way to satisfy this unless we change the RT tex and we avoid doing that. // (although we might consider a ** ONE TIME ** promotion. // this shouldn't be a big deal if the tex format is one where it doesn't matter like 32F. GLMPRINTF(("-Z- srgb-enabled FBO conflict: attached tex %08x [%s] is not SRGB", m_boundDrawFBO[0].m_attach[0].m_tex, m_boundDrawFBO[0].m_attach[0].m_tex->m_layout->m_layoutSummary )); // do we shoot down the srgb-write state for this batch? // I think the runtime will just ignore it. } } else { if (tex0_srgb) { // odd - client is not writing sRGB into a texture which *can* do it. //GLMPRINTF(( "-Z- srgb-disabled FBO conflict: attached tex %08x [%s] is SRGB", m_boundFBO[0].m_attach[0].m_tex, m_boundFBO[0].m_attach[0].m_tex->m_layout->m_layoutSummary )); //writeSRGBState.enable = true; //m_BlendEnableSRGB.Write( &writeSRGBState ); } else { // good - draw mode and color tex agree } } } #endif Assert( m_drawingProgram[ kGLMVertexProgram ] ); Assert( m_drawingProgram[ kGLMFragmentProgram ] ); Assert( ( m_drawingProgram[kGLMVertexProgram]->m_type == kGLMVertexProgram ) && ( m_drawingProgram[kGLMFragmentProgram]->m_type == kGLMFragmentProgram ) ); Assert( m_drawingProgram[ kGLMVertexProgram ]->m_bTranslatedProgram && m_drawingProgram[ kGLMFragmentProgram ]->m_bTranslatedProgram ); #if GLMDEBUG // Depth compare mode check uint nCurMask = 1, nShaderSamplerMask = m_drawingProgram[kGLMFragmentProgram]->m_samplerMask; for ( int nSamplerIndex = 0; nSamplerIndex < GLM_SAMPLER_COUNT; ++nSamplerIndex, nCurMask <<= 1 ) { if ( !m_samplers[nSamplerIndex].m_pBoundTex ) continue; if ( m_samplers[nSamplerIndex].m_pBoundTex->m_layout->m_mipCount == 1 ) { if ( m_samplers[nSamplerIndex].m_samp.m_packed.m_mipFilter == D3DTEXF_LINEAR ) { GLMDebugPrintf( "Sampler %u has mipmap filtering enabled on a texture without mipmaps! (texture name: %s, pixel shader: %s)!\n", nSamplerIndex, m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?", m_drawingProgram[kGLMFragmentProgram]->m_shaderName ); } } if ( ( nShaderSamplerMask & nCurMask ) == 0 ) continue; if ( m_samplers[nSamplerIndex].m_pBoundTex->m_layout->m_mipCount == 1 ) { if ( m_samplers[nSamplerIndex].m_samp.m_packed.m_mipFilter == D3DTEXF_LINEAR ) { // Note this is not always an error - shadow buffer debug visualization shaders purposely want to read shadow depths (and not do the comparison) GLMDebugPrintf( "Sampler %u has mipmap filtering enabled on a texture without mipmaps! (texture name: %s, pixel shader: %s)!\n", nSamplerIndex, m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?", m_drawingProgram[kGLMFragmentProgram]->m_shaderName ); } } bool bSamplerIsDepth = ( m_samplers[nSamplerIndex].m_pBoundTex->m_layout->m_key.m_texFlags & kGLMTexIsDepth ) != 0; bool bSamplerShadow = m_samplers[nSamplerIndex].m_samp.m_packed.m_compareMode != 0; bool bShaderShadow = ( m_drawingProgram[kGLMFragmentProgram]->m_nShadowDepthSamplerMask & nCurMask ) != 0; if ( bShaderShadow ) { // Shader expects shadow depth sampling at this sampler index // Must have a depth texture and compare mode must be enabled if ( !bSamplerIsDepth || !bSamplerShadow ) { // FIXME: This occasionally occurs in L4D2 when CShaderAPIDx8::ExecuteCommandBuffer() sets the TEXTURE_WHITE texture in the flashlight depth texture slot. GLMDebugPrintf( "Sampler %u's compare mode (%u) or format (depth=%u) is not consistent with pixel shader's compare mode (%u) (texture name: %s, pixel shader: %s)!\n", nSamplerIndex, bSamplerShadow, bSamplerIsDepth, bShaderShadow, m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?", m_drawingProgram[kGLMFragmentProgram]->m_shaderName ); } } else { // Shader does not expect shadow depth sampling as this sampler index // We don't care if comparemode is enabled, but we can't have a depth texture in this sampler if ( bSamplerIsDepth ) { GLMDebugPrintf( "Sampler %u is a depth texture but the pixel shader's shadow depth sampler mask does not expect depth here (texture name: %s, pixel shader: %s)!\n", nSamplerIndex, m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel ? m_samplers[nSamplerIndex].m_pBoundTex->m_debugLabel : "?", m_drawingProgram[kGLMFragmentProgram]->m_shaderName ); } } } #endif if ( m_bDirtyPrograms ) { m_bDirtyPrograms = false; CGLMShaderPair *pNewPair = m_pairCache->SelectShaderPair( m_drawingProgram[ kGLMVertexProgram ], m_drawingProgram[ kGLMFragmentProgram ], 0 ); if ( pNewPair != m_pBoundPair ) { #if GL_BATCH_TELEMETRY_ZONES tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "NewProgram" ); #endif if ( !pNewPair->m_valid ) { if ( !pNewPair->ValidateProgramPair() ) { goto flush_error_exit; } } gGL->glUseProgram( (GLuint)pNewPair->m_program ); GL_BATCH_PERF( m_FlushStats.m_nTotalProgramPairChanges++; ) if ( !m_pBoundPair ) { GL_BATCH_PERF( m_FlushStats.m_nNewPS++; ) GL_BATCH_PERF( m_FlushStats.m_nNewVS++; ) } else { GL_BATCH_PERF( if ( pNewPair->m_fragmentProg != m_pBoundPair->m_fragmentProg ) m_FlushStats.m_nNewPS++; ) GL_BATCH_PERF( if ( pNewPair->m_vertexProg != m_pBoundPair->m_vertexProg ) m_FlushStats.m_nNewVS++; ) } #if GL_BATCH_PERF_ANALYSIS tmMessage( TELEMETRY_LEVEL2, TMMF_ICON_NOTE, "V:%s (V Regs:%u V Bone Regs:%u) F:%s (F Regs:%u)", m_drawingProgram[ kGLMVertexProgram ]->m_shaderName, m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_highWater, m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_VSHighWaterBone, m_drawingProgram[ kGLMFragmentProgram ]->m_shaderName, m_drawingProgram[ kGLMFragmentProgram ]->m_descs[kGLMGLSL].m_highWater ); #endif m_pBoundPair = pNewPair; // set the dirty levels appropriately since the program changed and has never seen any of the current values. m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = 0; m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_highWater; m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_VSHighWaterBone; m_programParamsF[kGLMFragmentProgram].m_firstDirtySlotNonBone = 0; m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone = m_drawingProgram[ kGLMFragmentProgram ]->m_descs[kGLMGLSL].m_highWater; // bool and int dirty levels get set to max, we don't have actual high water marks for them // code which sends the values must clamp on these types. m_programParamsB[kGLMVertexProgram].m_dirtySlotCount = kGLMProgramParamBoolLimit; m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount = kGLMProgramParamBoolLimit; m_programParamsI[kGLMVertexProgram].m_dirtySlotCount = kGLMProgramParamInt4Limit; m_programParamsI[kGLMFragmentProgram].m_dirtySlotCount = 0; // check fragment buffers used (MRT) if( pNewPair->m_fragmentProg->m_fragDataMask != m_fragDataMask ) { gGL->glDrawBuffers( pNewPair->m_fragmentProg->m_numDrawBuffers, pNewPair->m_fragmentProg->m_drawBuffers ); m_fragDataMask = pNewPair->m_fragmentProg->m_fragDataMask; } } } Assert( m_ViewportBox.GetData().width == (int)( m_ViewportBox.GetData().widthheight & 0xFFFF ) ); Assert( m_ViewportBox.GetData().height == (int)( m_ViewportBox.GetData().widthheight >> 16 ) ); m_pBoundPair->UpdateScreenUniform( m_ViewportBox.GetData().widthheight ); GL_BATCH_PERF( m_FlushStats.m_nNumChangedSamplers += m_nNumDirtySamplers ); #if !defined( OSX ) // no support for sampler objects in OSX 10.6 (GL 2.1 profile) if ( m_bUseSamplerObjects) { while ( m_nNumDirtySamplers ) { const uint nSamplerIndex = m_nDirtySamplers[--m_nNumDirtySamplers]; Assert( ( nSamplerIndex < GLM_SAMPLER_COUNT ) && ( !m_nDirtySamplerFlags[nSamplerIndex]) ); m_nDirtySamplerFlags[nSamplerIndex] = 1; gGL->glBindSampler( nSamplerIndex, FindSamplerObject( m_samplers[nSamplerIndex].m_samp ) ); GL_BATCH_PERF( m_FlushStats.m_nNumSamplingParamsChanged++ ); #if defined( OSX ) // valid for OSX only if using GL 3.3 context CGLMTex *pTex = m_samplers[nSamplerIndex].m_pBoundTex; if( pTex && !( gGL->m_bHave_GL_EXT_texture_sRGB_decode ) ) { // see if requested SRGB state differs from the known one bool texSRGB = ( pTex->m_layout->m_key.m_texFlags & kGLMTexSRGB ) != 0; bool glSampSRGB = m_samplers[nSamplerIndex].m_samp.m_packed.m_srgb; if ( texSRGB != glSampSRGB ) // mismatch { pTex->HandleSRGBMismatch( glSampSRGB, pTex->m_srgbFlipCount ); } } #endif } } else #endif // if !defined( OSX ) { while ( m_nNumDirtySamplers ) { const uint nSamplerIndex = m_nDirtySamplers[--m_nNumDirtySamplers]; Assert( ( nSamplerIndex < GLM_SAMPLER_COUNT ) && ( !m_nDirtySamplerFlags[nSamplerIndex]) ); m_nDirtySamplerFlags[nSamplerIndex] = 1; CGLMTex *pTex = m_samplers[nSamplerIndex].m_pBoundTex; if ( ( pTex ) && ( !( pTex->m_SamplingParams == m_samplers[nSamplerIndex].m_samp ) ) ) { SelectTMU( nSamplerIndex ); m_samplers[nSamplerIndex].m_samp.DeltaSetToTarget( pTex->m_texGLTarget, pTex->m_SamplingParams ); pTex->m_SamplingParams = m_samplers[nSamplerIndex].m_samp; #if defined( OSX ) if( pTex && !( gGL->m_bHave_GL_EXT_texture_sRGB_decode ) ) { // see if requested SRGB state differs from the known one bool texSRGB = ( pTex->m_layout->m_key.m_texFlags & kGLMTexSRGB ) != 0; bool glSampSRGB = m_samplers[nSamplerIndex].m_samp.m_packed.m_srgb; if ( texSRGB != glSampSRGB ) // mismatch { pTex->HandleSRGBMismatch( glSampSRGB, pTex->m_srgbFlipCount ); } } #endif } } } // vertex stage -------------------------------------------------------------------- if ( m_bUseBoneUniformBuffers ) { // vertex stage -------------------------------------------------------------------- if ( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone ) { int firstDirtySlot = m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone; int dirtySlotHighWater = MIN( m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_highWater, m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone ); GLint vconstLoc = m_pBoundPair->m_locVertexParams; if ( ( vconstLoc >= 0 ) && ( dirtySlotHighWater > firstDirtySlot ) ) { #if GL_BATCH_TELEMETRY_ZONES tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "VSNonBoneUniformUpdate %u %u", firstDirtySlot, dirtySlotHighWater ); #endif int numSlots = dirtySlotHighWater - DXABSTRACT_VS_FIRST_BONE_SLOT; // consts after the bones (c217 onwards), since we use the concatenated destination array vc[], upload these consts starting from vc[58] if( numSlots > 0 ) { gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMVertexProgram][DXABSTRACT_VS_FIRST_BONE_SLOT], numSlots, &m_programParamsF[kGLMVertexProgram].m_values[(DXABSTRACT_VS_LAST_BONE_SLOT+1)][0] ); dirtySlotHighWater = DXABSTRACT_VS_FIRST_BONE_SLOT; GL_BATCH_PERF( m_nTotalVSUniformCalls++; ) GL_BATCH_PERF( m_nTotalVSUniformsSet += numSlots; ) GL_BATCH_PERF( m_FlushStats.m_nFirstVSConstant = DXABSTRACT_VS_FIRST_BONE_SLOT; ) GL_BATCH_PERF( m_FlushStats.m_nNumVSConstants += numSlots; ) } numSlots = dirtySlotHighWater - firstDirtySlot; // consts before the bones (c0-c57) if( numSlots > 0 ) { gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMVertexProgram][firstDirtySlot], dirtySlotHighWater - firstDirtySlot, &m_programParamsF[kGLMVertexProgram].m_values[firstDirtySlot][0] ); GL_BATCH_PERF( m_nTotalVSUniformCalls++; ) GL_BATCH_PERF( m_nTotalVSUniformsSet += dirtySlotHighWater - firstDirtySlot; ) GL_BATCH_PERF( m_FlushStats.m_nFirstVSConstant = firstDirtySlot; ) GL_BATCH_PERF( m_FlushStats.m_nNumVSConstants += (dirtySlotHighWater - firstDirtySlot); ) } } m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = 256; m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = 0; } if ( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone ) { const GLint vconstBoneLoc = m_pBoundPair->m_locVertexBoneParams; if ( vconstBoneLoc >= 0 ) { int shaderSlotsBone = 0; if ( ( m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_VSHighWaterBone > 0 ) && ( m_nMaxUsedVertexProgramConstantsHint > DXABSTRACT_VS_FIRST_BONE_SLOT ) ) { shaderSlotsBone = MIN( m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_VSHighWaterBone, m_nMaxUsedVertexProgramConstantsHint - DXABSTRACT_VS_FIRST_BONE_SLOT ); } int dirtySlotHighWaterBone = MIN( shaderSlotsBone, m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone ); if ( dirtySlotHighWaterBone ) { uint nNumBoneRegs = dirtySlotHighWaterBone; #if GL_BATCH_TELEMETRY_ZONES tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "VSBoneUniformUpdate %u", nNumBoneRegs ); #endif gGL->glUniform4fv( vconstBoneLoc, nNumBoneRegs, &m_programParamsF[kGLMVertexProgram].m_values[DXABSTRACT_VS_FIRST_BONE_SLOT][0] ); GL_BATCH_PERF( m_nTotalVSUniformBoneCalls++; ) GL_BATCH_PERF( m_nTotalVSUniformsBoneSet += nNumBoneRegs; ) GL_BATCH_PERF( m_FlushStats.m_nNumVSBoneConstants += nNumBoneRegs; ) } m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = 0; } } } else { if ( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone ) { const int nMaxUsedShaderSlots = m_drawingProgram[kGLMVertexProgram]->m_descs[kGLMGLSL].m_highWater; int firstDirtySlot = m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone; int dirtySlotHighWater = MIN( nMaxUsedShaderSlots, m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone ); GLint vconstLoc = m_pBoundPair->m_locVertexParams; if ( ( vconstLoc >= 0 ) && ( dirtySlotHighWater > firstDirtySlot ) ) { #if GL_BATCH_TELEMETRY_ZONES tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "VSNonBoneUniformUpdate %u %u", firstDirtySlot, dirtySlotHighWater ); #endif gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMVertexProgram][firstDirtySlot], dirtySlotHighWater - firstDirtySlot, &m_programParamsF[kGLMVertexProgram].m_values[firstDirtySlot][0] ); GL_BATCH_PERF( m_nTotalVSUniformCalls++; ) GL_BATCH_PERF( m_nTotalVSUniformsSet += dirtySlotHighWater - firstDirtySlot; ) GL_BATCH_PERF( m_FlushStats.m_nFirstVSConstant = firstDirtySlot; ) GL_BATCH_PERF( m_FlushStats.m_nNumVSConstants += (dirtySlotHighWater - firstDirtySlot); ) } m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = 256; m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = 0; } } // see if VS uses i0, b0, b1, b2, b3. // use a glUniform1i to set any one of these if active. skip all of them if no dirties reported. // my kingdom for the UBO extension! // ------- bools ---------- // if ( m_pBoundPair->m_bHasBoolOrIntUniforms ) { if ( m_programParamsB[kGLMVertexProgram].m_dirtySlotCount ) // optimize this later after the float param pushes are proven out { const uint nLimit = MIN( CGLMShaderPair::cMaxVertexShaderBoolUniforms, m_programParamsB[kGLMVertexProgram].m_dirtySlotCount ); for ( uint i = 0; i < nLimit; ++i ) { GLint constBoolLoc = m_pBoundPair->m_locVertexBool[i]; if ( constBoolLoc >= 0 ) gGL->glUniform1i( constBoolLoc, m_programParamsB[kGLMVertexProgram].m_values[i] ); } m_programParamsB[kGLMVertexProgram].m_dirtySlotCount = 0; } if ( m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount ) // optimize this later after the float param pushes are proven out { const uint nLimit = MIN( CGLMShaderPair::cMaxFragmentShaderBoolUniforms, m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount ); for ( uint i = 0; i < nLimit; ++i ) { GLint constBoolLoc = m_pBoundPair->m_locFragmentBool[i]; if ( constBoolLoc >= 0 ) gGL->glUniform1i( constBoolLoc, m_programParamsB[kGLMFragmentProgram].m_values[i] ); } m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount = 0; } if ( m_programParamsI[kGLMVertexProgram].m_dirtySlotCount ) { GLint vconstInt0Loc = m_pBoundPair->m_locVertexInteger0; //glGetUniformLocationARB( prog, "i0"); if ( vconstInt0Loc >= 0 ) { gGL->glUniform1i( vconstInt0Loc, m_programParamsI[kGLMVertexProgram].m_values[0][0] ); //FIXME magic number } m_programParamsI[kGLMVertexProgram].m_dirtySlotCount = 0; } } if( !gGL->m_bHave_GL_QCOM_alpha_test && m_pBoundPair->m_locAlphaRef ) { if( !m_AlphaTestEnable.GetData().enable ) gGL->glUniform1f( m_pBoundPair->m_locAlphaRef, 0.0 ); else gGL->glUniform1f( m_pBoundPair->m_locAlphaRef, m_AlphaTestFunc.GetData().ref ); } Assert( ( m_pDevice->m_streams[0].m_vtxBuffer && ( m_pDevice->m_streams[0].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[0] ) ) || ( ( !m_pDevice->m_streams[0].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[0] == m_pDevice->m_pDummy_vtx_buffer ) ) ); Assert( ( m_pDevice->m_streams[1].m_vtxBuffer && ( m_pDevice->m_streams[1].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[1] ) ) || ( ( !m_pDevice->m_streams[1].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[1] == m_pDevice->m_pDummy_vtx_buffer ) ) ); Assert( ( m_pDevice->m_streams[2].m_vtxBuffer && ( m_pDevice->m_streams[2].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[2] ) ) || ( ( !m_pDevice->m_streams[2].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[2] == m_pDevice->m_pDummy_vtx_buffer ) ) ); Assert( ( m_pDevice->m_streams[3].m_vtxBuffer && ( m_pDevice->m_streams[3].m_vtxBuffer->m_vtxBuffer == m_pDevice->m_vtx_buffers[3] ) ) || ( ( !m_pDevice->m_streams[3].m_vtxBuffer ) && ( m_pDevice->m_vtx_buffers[3] == m_pDevice->m_pDummy_vtx_buffer ) ) ); uint nCurTotalBufferRevision; nCurTotalBufferRevision = m_pDevice->m_vtx_buffers[0]->m_nRevision + m_pDevice->m_vtx_buffers[1]->m_nRevision + m_pDevice->m_vtx_buffers[2]->m_nRevision + m_pDevice->m_vtx_buffers[3]->m_nRevision; // If any of these inputs have changed, we need to enumerate through all of the expected GL vertex attribs and modify anything in the GL layer that have changed. // This is not always a win, but it is a net win on NVidia (by 1-4.8% depending on whether driver threading is enabled). if ( ( nCurTotalBufferRevision != m_CurAttribs.m_nTotalBufferRevision ) || ( m_CurAttribs.m_pVertDecl != m_pDevice->m_pVertDecl ) || ( m_CurAttribs.m_vtxAttribMap[0] != reinterpret_cast(m_pDevice->m_vertexShader->m_vtxAttribMap)[0] ) || ( m_CurAttribs.m_vtxAttribMap[1] != reinterpret_cast(m_pDevice->m_vertexShader->m_vtxAttribMap)[1] ) || ( memcmp( m_CurAttribs.m_streams, m_pDevice->m_streams, sizeof( m_pDevice->m_streams ) ) != 0 ) ) { // This branch is taken 52.2% of the time in the L4D2 test1 (long) timedemo. #if GL_BATCH_TELEMETRY_ZONES tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "SetVertexAttribs" ); #endif m_CurAttribs.m_nTotalBufferRevision = nCurTotalBufferRevision; m_CurAttribs.m_pVertDecl = m_pDevice->m_pVertDecl; m_CurAttribs.m_vtxAttribMap[0] = reinterpret_cast(m_pDevice->m_vertexShader->m_vtxAttribMap)[0]; m_CurAttribs.m_vtxAttribMap[1] = reinterpret_cast(m_pDevice->m_vertexShader->m_vtxAttribMap)[1]; memcpy( m_CurAttribs.m_streams, m_pDevice->m_streams, sizeof( m_pDevice->m_streams ) ); unsigned char *pVertexShaderAttribMap = m_pDevice->m_vertexShader->m_vtxAttribMap; const int nMaxVertexAttributesToCheck = m_drawingProgram[ kGLMVertexProgram ]->m_maxVertexAttrs; IDirect3DVertexDeclaration9 *pVertDecl = m_pDevice->m_pVertDecl; const uint8 *pVertexAttribDescToStreamIndex = pVertDecl->m_VertexAttribDescToStreamIndex; for( int nMask = 1, nIndex = 0; nIndex < nMaxVertexAttributesToCheck; ++nIndex, nMask <<= 1 ) { uint8 vertexShaderAttrib = pVertexShaderAttribMap[ nIndex ]; uint nDeclIndex = pVertexAttribDescToStreamIndex[vertexShaderAttrib]; if ( nDeclIndex == 0xFF ) { // Not good - the vertex shader has an attribute which can't be located in the decl! // The D3D9 debug runtime is also going to complain. Assert( 0 ); if ( m_lastKnownVertexAttribMask & nMask ) { m_lastKnownVertexAttribMask &= ~nMask; gGL->glDisableVertexAttribArray( nIndex ); } continue; } D3DVERTEXELEMENT9_GL *pDeclElem = &pVertDecl->m_elements[nDeclIndex]; Assert( ( ( vertexShaderAttrib >> 4 ) == pDeclElem->m_dxdecl.Usage ) && ( ( vertexShaderAttrib & 0x0F ) == pDeclElem->m_dxdecl.UsageIndex) ); const uint nStreamIndex = pDeclElem->m_dxdecl.Stream; const D3DStreamDesc *pStream = &m_pDevice->m_streams[ nStreamIndex ]; CGLMBuffer *pBuf = m_pDevice->m_vtx_buffers[ nStreamIndex ]; if ( pBuf == m_pDevice->m_pDummy_vtx_buffer ) { Assert( pStream->m_vtxBuffer == NULL ); // this shader doesn't use that pair. if ( m_lastKnownVertexAttribMask & nMask ) { m_lastKnownVertexAttribMask &= ~nMask; gGL->glDisableVertexAttribArray( nIndex ); } continue; } Assert( pStream->m_vtxBuffer->m_vtxBuffer == pBuf ); int nBufOffset = pDeclElem->m_gldecl.m_offset + pStream->m_offset; Assert( nBufOffset >= 0 ); Assert( nBufOffset < (int)pBuf->m_nSize ); if ( pBuf->m_bUsingPersistentBuffer ) { nBufOffset += pBuf->m_nPersistentBufferStartOffset; } SetBufAndVertexAttribPointer( nIndex, pBuf->GetHandle(), pStream->m_stride, pDeclElem->m_gldecl.m_datatype, pDeclElem->m_gldecl.m_normalized, pDeclElem->m_gldecl.m_nCompCount, reinterpret_cast< const GLvoid * >( reinterpret_cast< intp >( pBuf->m_pPseudoBuf ) + nBufOffset ), pBuf->m_nRevision ); if ( !( m_lastKnownVertexAttribMask & nMask ) ) { m_lastKnownVertexAttribMask |= nMask; gGL->glEnableVertexAttribArray( nIndex ); } } for( int nIndex = nMaxVertexAttributesToCheck; nIndex < m_nNumSetVertexAttributes; nIndex++ ) { gGL->glDisableVertexAttribArray( nIndex ); m_lastKnownVertexAttribMask &= ~(1 << nIndex); } m_nNumSetVertexAttributes = nMaxVertexAttributesToCheck; } // fragment stage -------------------------------------------------------------------- if ( m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone ) { GLint fconstLoc; fconstLoc = m_pBoundPair->m_locFragmentParams; if ( fconstLoc >= 0 ) { const int nMaxUsedShaderSlots = m_drawingProgram[kGLMFragmentProgram]->m_descs[kGLMGLSL].m_highWater; int firstDirtySlot = m_programParamsF[kGLMFragmentProgram].m_firstDirtySlotNonBone; int dirtySlotHighWater = MIN( nMaxUsedShaderSlots, m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone ); if ( dirtySlotHighWater > firstDirtySlot ) { #if GL_BATCH_TELEMETRY_ZONES tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "PSUniformUpdate %u %u", firstDirtySlot, dirtySlotHighWater ); #endif gGL->glUniform4fv( m_pBoundPair->m_UniformBufferParams[kGLMFragmentProgram][firstDirtySlot], dirtySlotHighWater - firstDirtySlot, &m_programParamsF[kGLMFragmentProgram].m_values[firstDirtySlot][0] ); GL_BATCH_PERF( m_nTotalPSUniformCalls++; ) GL_BATCH_PERF( m_nTotalPSUniformsSet += dirtySlotHighWater - firstDirtySlot; ) GL_BATCH_PERF( m_FlushStats.m_nFirstPSConstant = firstDirtySlot; ) GL_BATCH_PERF( m_FlushStats.m_nNumPSConstants += (dirtySlotHighWater - firstDirtySlot); ) } m_programParamsF[kGLMFragmentProgram].m_firstDirtySlotNonBone = 256; m_programParamsF[kGLMFragmentProgram].m_dirtySlotHighWaterNonBone = 0; } } return; flush_error_exit: m_pBoundPair = NULL; m_bDirtyPrograms = true; return; }