//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // // A growable array class that maintains a free list and keeps elements // in the same location //=============================================================================// #ifndef UTLVECTOR_H #define UTLVECTOR_H #ifdef _WIN32 #pragma once #endif #include #include #include "tier0/platform.h" #include "tier0/dbg.h" #include "tier0/threadtools.h" #include "tier1/utlmemory.h" #include "tier1/utlblockmemory.h" #include "tier1/strtools.h" #include "vstdlib/random.h" #define FOR_EACH_VEC( vecName, iteratorName ) \ for ( int iteratorName = 0; (vecName).IsUtlVector && iteratorName < (vecName).Count(); iteratorName++ ) #define FOR_EACH_VEC_BACK( vecName, iteratorName ) \ for ( int iteratorName = (vecName).Count()-1; (vecName).IsUtlVector && iteratorName >= 0; iteratorName-- ) // UtlVector derives from this so we can do the type check above struct base_vector_t { public: enum { IsUtlVector = true }; // Used to match this at compiletime }; //----------------------------------------------------------------------------- // The CUtlVector class: // A growable array class which doubles in size by default. // It will always keep all elements consecutive in memory, and may move the // elements around in memory (via a PvRealloc) when elements are inserted or // removed. Clients should therefore refer to the elements of the vector // by index (they should *never* maintain pointers to elements in the vector). //----------------------------------------------------------------------------- template< class T, class A = CUtlMemory > class CUtlVector : public base_vector_t { typedef A CAllocator; public: typedef T ElemType_t; typedef T* iterator; typedef const T* const_iterator; // Set the growth policy and initial capacity. Count will always be zero. This is different from std::vector // where the constructor sets count as well as capacity. // growSize of zero implies the default growth pattern which is exponential. explicit CUtlVector( int growSize = 0, int initialCapacity = 0 ); // Initialize with separately allocated buffer, setting the capacity and count. // The container will not be growable. CUtlVector( T* pMemory, int initialCapacity, int initialCount = 0 ); ~CUtlVector(); // Copy the array. CUtlVector& operator=( const CUtlVector &other ); // element access T& operator[]( int i ); const T& operator[]( int i ) const; T& Element( int i ); const T& Element( int i ) const; T& Head(); const T& Head() const; T& Tail(); const T& Tail() const; T& Random(); const T& Random() const; // STL compatible member functions. These allow easier use of std::sort // and they are forward compatible with the C++ 11 range-based for loops. iterator begin() { return Base(); } const_iterator begin() const { return Base(); } iterator end() { return Base() + Count(); } const_iterator end() const { return Base() + Count(); } // Gets the base address (can change when adding elements!) T* Base() { return m_Memory.Base(); } const T* Base() const { return m_Memory.Base(); } // Returns the number of elements in the vector // SIZE IS DEPRECATED! int Count() const; int Size() const; // don't use me! /// are there no elements? For compatibility with lists. inline bool IsEmpty( void ) const { return ( Count() == 0 ); } // Is element index valid? bool IsValidIndex( int i ) const; static int InvalidIndex(); // Adds an element, uses default constructor int AddToHead(); int AddToTail(); T *AddToTailGetPtr(); int InsertBefore( int elem ); int InsertAfter( int elem ); // Adds an element, uses copy constructor int AddToHead( const T& src ); int AddToTail( const T& src ); int InsertBefore( int elem, const T& src ); int InsertAfter( int elem, const T& src ); // Adds multiple elements, uses default constructor int AddMultipleToHead( int num ); int AddMultipleToTail( int num ); int AddMultipleToTail( int num, const T *pToCopy ); int InsertMultipleBefore( int elem, int num ); int InsertMultipleBefore( int elem, int num, const T *pToCopy ); int InsertMultipleAfter( int elem, int num ); // Calls RemoveAll() then AddMultipleToTail. // SetSize is a synonym for SetCount void SetSize( int size ); // SetCount deletes the previous contents of the container and sets the // container to have this many elements. // Use GetCount to retrieve the current count. void SetCount( int count ); void SetCountNonDestructively( int count ); //sets count by adding or removing elements to tail TODO: This should probably be the default behavior for SetCount // Calls SetSize and copies each element. void CopyArray( const T *pArray, int size ); // Fast swap void Swap( CUtlVector< T, A > &vec ); // Add the specified array to the tail. int AddVectorToTail( CUtlVector const &src ); // Finds an element (element needs operator== defined) int Find( const T& src ) const; // Helper to find using std::find_if with a predicate // e.g. [] -> bool ( T &a ) { return a.IsTheThingIWant(); } // // Useful if your object doesn't define a == template < typename F > int FindPredicate( F&& predicate ) const; void FillWithValue( const T& src ); bool HasElement( const T& src ) const; // Makes sure we have enough memory allocated to store a requested # of elements // Use NumAllocated() to retrieve the current capacity. void EnsureCapacity( int num ); // Makes sure we have at least this many elements // Use GetCount to retrieve the current count. void EnsureCount( int num ); // Element removal void FastRemove( int elem ); // doesn't preserve order void Remove( int elem ); // preserves order, shifts elements bool FindAndRemove( const T& src ); // removes first occurrence of src, preserves order, shifts elements bool FindAndFastRemove( const T& src ); // removes first occurrence of src, doesn't preserve order void RemoveMultiple( int elem, int num ); // preserves order, shifts elements void RemoveMultipleFromHead(int num); // removes num elements from tail void RemoveMultipleFromTail(int num); // removes num elements from tail void RemoveAll(); // doesn't deallocate memory // Memory deallocation void Purge(); // Purges the list and calls delete on each element in it. void PurgeAndDeleteElements(); void PurgeAndDeleteElementsArray(); // Compacts the vector to the number of elements actually in use void Compact(); // Set the size by which it grows when it needs to allocate more memory. void SetGrowSize( int size ) { m_Memory.SetGrowSize( size ); } int NumAllocated() const; // Only use this if you really know what you're doing! void Sort( int (__cdecl *pfnCompare)(const T *, const T *) ); void Shuffle( IUniformRandomStream* pSteam = NULL ); // Call this to quickly sort non-contiguously allocated vectors void InPlaceQuickSort( int (__cdecl *pfnCompare)(const T *, const T *) ); // reverse the order of elements void Reverse( ); #ifdef DBGFLAG_VALIDATE void Validate( CValidator &validator, char *pchName ); // Validate our internal structures #endif // DBGFLAG_VALIDATE /// sort using std:: and expecting a "<" function to be defined for the type void Sort( void ); /// sort using std:: with a predicate. e.g. [] -> bool ( T &a, T &b ) { return a < b; } template void SortPredicate( F &&predicate ); protected: // Can't copy this unless we explicitly do it! CUtlVector( CUtlVector const& vec ) { Assert(0); } // Grows the vector void GrowVector( int num = 1 ); // Shifts elements.... void ShiftElementsRight( int elem, int num = 1 ); void ShiftElementsLeft( int elem, int num = 1 ); CAllocator m_Memory; int m_Size; #ifndef _X360 // For easier access to the elements through the debugger // it's in release builds so this can be used in libraries correctly T *m_pElements; inline void ResetDbgInfo() { m_pElements = Base(); } #else inline void ResetDbgInfo() {} #endif private: void InPlaceQuickSort_r( int (__cdecl *pfnCompare)(const T *, const T *), int nLeft, int nRight ); }; // this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice template < class T > class CUtlBlockVector : public CUtlVector< T, CUtlBlockMemory< T, int > > { public: explicit CUtlBlockVector( int growSize = 0, int initSize = 0 ) : CUtlVector< T, CUtlBlockMemory< T, int > >( growSize, initSize ) {} }; //----------------------------------------------------------------------------- // The CUtlVectorMT class: // An array class with spurious mutex protection. Nothing is actually protected // unless you call Lock and Unlock. Also, the Mutex_t is actually not a type // but a member which probably isn't used. //----------------------------------------------------------------------------- template< class BASE_UTLVECTOR, class MUTEX_TYPE = CThreadFastMutex > class CUtlVectorMT : public BASE_UTLVECTOR, public MUTEX_TYPE { typedef BASE_UTLVECTOR BaseClass; public: // MUTEX_TYPE Mutex_t; // constructor, destructor explicit CUtlVectorMT( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorMT( typename BaseClass::ElemType_t* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} }; //----------------------------------------------------------------------------- // The CUtlVectorFixed class: // A array class with a fixed allocation scheme //----------------------------------------------------------------------------- template< class T, size_t MAX_SIZE > class CUtlVectorFixed : public CUtlVector< T, CUtlMemoryFixed > { typedef CUtlVector< T, CUtlMemoryFixed > BaseClass; public: // constructor, destructor explicit CUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} }; //----------------------------------------------------------------------------- // The CUtlVectorFixedGrowable class: // A array class with a fixed allocation scheme backed by a dynamic one //----------------------------------------------------------------------------- template< class T, size_t MAX_SIZE > class CUtlVectorFixedGrowable : public CUtlVector< T, CUtlMemoryFixedGrowable > { typedef CUtlVector< T, CUtlMemoryFixedGrowable > BaseClass; public: // constructor, destructor explicit CUtlVectorFixedGrowable( int growSize = 0 ) : BaseClass( growSize, MAX_SIZE ) {} }; //----------------------------------------------------------------------------- // The CUtlVectorConservative class: // A array class with a conservative allocation scheme //----------------------------------------------------------------------------- template< class T > class CUtlVectorConservative : public CUtlVector< T, CUtlMemoryConservative > { typedef CUtlVector< T, CUtlMemoryConservative > BaseClass; public: // constructor, destructor explicit CUtlVectorConservative( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorConservative( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} }; //----------------------------------------------------------------------------- // The CUtlVectorUltra Conservative class: // A array class with a very conservative allocation scheme, with customizable allocator // Especialy useful if you have a lot of vectors that are sparse, or if you're // carefully packing holders of vectors //----------------------------------------------------------------------------- #ifdef _WIN32 #pragma warning(push) #pragma warning(disable : 4200) // warning C4200: nonstandard extension used : zero-sized array in struct/union #pragma warning(disable : 4815 ) // warning C4815: 'staticData' : zero-sized array in stack object will have no elements #endif class CUtlVectorUltraConservativeAllocator { public: static void *Alloc( size_t nSize ) { return malloc( nSize ); } static void *Realloc( void *pMem, size_t nSize ) { return realloc( pMem, nSize ); } static void Free( void *pMem ) { free( pMem ); } static size_t GetSize( void *pMem ) { return mallocsize( pMem ); } }; template class CUtlVectorUltraConservative : private A { public: // Don't inherit from base_vector_t because multiple-inheritance increases // class size! enum { IsUtlVector = true }; // Used to match this at compiletime CUtlVectorUltraConservative() { m_pData = StaticData(); } ~CUtlVectorUltraConservative() { RemoveAll(); } int Count() const { return m_pData->m_Size; } static int InvalidIndex() { return -1; } inline bool IsValidIndex( int i ) const { return (i >= 0) && (i < Count()); } T& operator[]( int i ) { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; } const T& operator[]( int i ) const { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; } T& Element( int i ) { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; } const T& Element( int i ) const { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; } void EnsureCapacity( int num ) { int nCurCount = Count(); if ( num <= nCurCount ) { return; } if ( m_pData == StaticData() ) { m_pData = (Data_t *)A::Alloc( sizeof(Data_t) + ( num * sizeof(T) ) ); m_pData->m_Size = 0; } else { int nNeeded = sizeof(Data_t) + ( num * sizeof(T) ); int nHave = A::GetSize( m_pData ); if ( nNeeded > nHave ) { m_pData = (Data_t *)A::Realloc( m_pData, nNeeded ); } } } int AddToTail( const T& src ) { int iNew = Count(); EnsureCapacity( Count() + 1 ); m_pData->m_Elements[iNew] = src; m_pData->m_Size++; return iNew; } void RemoveAll() { if ( Count() ) { for (int i = m_pData->m_Size; --i >= 0; ) { // Global scope to resolve conflict with Scaleform 4.0 ::Destruct(&m_pData->m_Elements[i]); } } if ( m_pData != StaticData() ) { A::Free( m_pData ); m_pData = StaticData(); } } void PurgeAndDeleteElements() { if ( m_pData != StaticData() ) { for( int i=0; i < m_pData->m_Size; i++ ) { delete Element(i); } RemoveAll(); } } void PurgeAndDeleteElementsArray() { if ( m_pData != StaticData() ) { for( int i=0; i < m_pData->m_Size; i++ ) { delete[] Element(i); } RemoveAll(); } } void FastRemove( int elem ) { Assert( IsValidIndex(elem) ); // Global scope to resolve conflict with Scaleform 4.0 ::Destruct( &Element(elem) ); if (Count() > 0) { if ( elem != m_pData->m_Size -1 ) memcpy( &Element(elem), &Element(m_pData->m_Size-1), sizeof(T) ); --m_pData->m_Size; } if ( !m_pData->m_Size ) { A::Free( m_pData ); m_pData = StaticData(); } } void Remove( int elem ) { // Global scope to resolve conflict with Scaleform 4.0 ::Destruct( &Element(elem) ); ShiftElementsLeft(elem); --m_pData->m_Size; if ( !m_pData->m_Size ) { A::Free( m_pData ); m_pData = StaticData(); } } int Find( const T& src ) const { int nCount = Count(); for ( int i = 0; i < nCount; ++i ) { if (Element(i) == src) return i; } return -1; } bool FindAndRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { Remove( elem ); return true; } return false; } bool FindAndFastRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { FastRemove( elem ); return true; } return false; } bool DebugCompileError_ANonVectorIsUsedInThe_FOR_EACH_VEC_Macro( void ) const { return true; } struct Data_t { int m_Size; T m_Elements[0]; }; Data_t *m_pData; private: void ShiftElementsLeft( int elem, int num = 1 ) { int Size = Count(); Assert( IsValidIndex(elem) || ( Size == 0 ) || ( num == 0 )); int numToMove = Size - elem - num; if ((numToMove > 0) && (num > 0)) { Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) ); #ifdef _DEBUG Q_memset( &Element(Size-num), 0xDD, num * sizeof(T) ); #endif } } static Data_t *StaticData() { static Data_t staticData; Assert( staticData.m_Size == 0 ); return &staticData; } }; #ifdef _WIN32 #pragma warning(pop) #endif // Make sure nobody adds multiple inheritance and makes this class bigger. COMPILE_TIME_ASSERT( sizeof(CUtlVectorUltraConservative) == sizeof(void*) ); //----------------------------------------------------------------------------- // The CCopyableUtlVector class: // A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers) // WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens // Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap) //----------------------------------------------------------------------------- template< class T > class CCopyableUtlVector : public CUtlVector< T, CUtlMemory > { typedef CUtlVector< T, CUtlMemory > BaseClass; public: explicit CCopyableUtlVector( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CCopyableUtlVector( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} virtual ~CCopyableUtlVector() {} CCopyableUtlVector( CCopyableUtlVector const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); } }; //----------------------------------------------------------------------------- // The CCopyableUtlVector class: // A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers) // WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens // Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap) //----------------------------------------------------------------------------- template< class T, size_t MAX_SIZE > class CCopyableUtlVectorFixed : public CUtlVectorFixed< T, MAX_SIZE > { typedef CUtlVectorFixed< T, MAX_SIZE > BaseClass; public: explicit CCopyableUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CCopyableUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} virtual ~CCopyableUtlVectorFixed() {} CCopyableUtlVectorFixed( CCopyableUtlVectorFixed const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); } }; // TODO (Ilya): It seems like all the functions in CUtlVector are simple enough that they should be inlined. //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template< typename T, class A > inline CUtlVector::CUtlVector( int growSize, int initSize ) : m_Memory(growSize, initSize), m_Size(0) { ResetDbgInfo(); } template< typename T, class A > inline CUtlVector::CUtlVector( T* pMemory, int allocationCount, int numElements ) : m_Memory(pMemory, allocationCount), m_Size(numElements) { ResetDbgInfo(); } template< typename T, class A > inline CUtlVector::~CUtlVector() { Purge(); } template< typename T, class A > inline CUtlVector& CUtlVector::operator=( const CUtlVector &other ) { int nCount = other.Count(); SetSize( nCount ); for ( int i = 0; i < nCount; i++ ) { (*this)[ i ] = other[ i ]; } return *this; } #ifdef STAGING_ONLY inline void StagingUtlVectorBoundsCheck( int i, int size ) { if ( (unsigned)i >= (unsigned)size ) { Msg( "Array access error: %d / %d\n", i, size ); DebuggerBreak(); } } #else #define StagingUtlVectorBoundsCheck( _i, _size ) #endif //----------------------------------------------------------------------------- // element access //----------------------------------------------------------------------------- template< typename T, class A > inline T& CUtlVector::operator[]( int i ) { // Do an inline unsigned check for maximum debug-build performance. Assert( (unsigned)i < (unsigned)m_Size ); StagingUtlVectorBoundsCheck( i, m_Size ); return m_Memory[ i ]; } template< typename T, class A > inline const T& CUtlVector::operator[]( int i ) const { // Do an inline unsigned check for maximum debug-build performance. Assert( (unsigned)i < (unsigned)m_Size ); StagingUtlVectorBoundsCheck( i, m_Size ); return m_Memory[ i ]; } template< typename T, class A > inline T& CUtlVector::Element( int i ) { // Do an inline unsigned check for maximum debug-build performance. Assert( (unsigned)i < (unsigned)m_Size ); StagingUtlVectorBoundsCheck( i, m_Size ); return m_Memory[ i ]; } template< typename T, class A > inline const T& CUtlVector::Element( int i ) const { // Do an inline unsigned check for maximum debug-build performance. Assert( (unsigned)i < (unsigned)m_Size ); StagingUtlVectorBoundsCheck( i, m_Size ); return m_Memory[ i ]; } template< typename T, class A > inline T& CUtlVector::Head() { Assert( m_Size > 0 ); StagingUtlVectorBoundsCheck( 0, m_Size ); return m_Memory[ 0 ]; } template< typename T, class A > inline const T& CUtlVector::Head() const { Assert( m_Size > 0 ); StagingUtlVectorBoundsCheck( 0, m_Size ); return m_Memory[ 0 ]; } template< typename T, class A > inline T& CUtlVector::Tail() { Assert( m_Size > 0 ); StagingUtlVectorBoundsCheck( 0, m_Size ); return m_Memory[ m_Size - 1 ]; } template< typename T, class A > inline const T& CUtlVector::Tail() const { Assert( m_Size > 0 ); StagingUtlVectorBoundsCheck( 0, m_Size ); return m_Memory[ m_Size - 1 ]; } //----------------------------------------------------------------------------- // Count //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::Size() const { return m_Size; } template< typename T, class A > inline T& CUtlVector::Random() { Assert( m_Size > 0 ); return m_Memory[ RandomInt( 0, m_Size - 1 ) ]; } template< typename T, class A > inline const T& CUtlVector::Random() const { Assert( m_Size > 0 ); return m_Memory[ RandomInt( 0, m_Size - 1 ) ]; } //----------------------------------------------------------------------------- // Shuffle - Knuth/Fisher-Yates //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::Shuffle( IUniformRandomStream* pSteam ) { for ( int i = 0; i < m_Size; i++ ) { int j = pSteam ? pSteam->RandomInt( i, m_Size - 1 ) : RandomInt( i, m_Size - 1 ); if ( i != j ) { V_swap( m_Memory[ i ], m_Memory[ j ] ); } } } template< typename T, class A > inline int CUtlVector::Count() const { return m_Size; } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // Reverse - reverse the order of elements, akin to std::vector<>::reverse() //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::Reverse( ) { for ( int i = 0; i < m_Size / 2; i++ ) { V_swap( m_Memory[ i ], m_Memory[ m_Size - 1 - i ] ); #if defined( UTLVECTOR_TRACK_STACKS ) if ( bTrackingEnabled ) { V_swap( m_pElementStackStatsIndices[ i ], m_pElementStackStatsIndices[ m_Size - 1 - i ] ); } #endif } } //----------------------------------------------------------------------------- // Is element index valid? //----------------------------------------------------------------------------- template< typename T, class A > inline bool CUtlVector::IsValidIndex( int i ) const { return (i >= 0) && (i < m_Size); } //----------------------------------------------------------------------------- // Returns in invalid index //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::InvalidIndex() { return -1; } //----------------------------------------------------------------------------- // Grows the vector //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::GrowVector( int num ) { if (m_Size + num > m_Memory.NumAllocated()) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.Grow( m_Size + num - m_Memory.NumAllocated() ); } m_Size += num; ResetDbgInfo(); } //----------------------------------------------------------------------------- // Sorts the vector //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::Sort( int (__cdecl *pfnCompare)(const T *, const T *) ) { typedef int (__cdecl *QSortCompareFunc_t)(const void *, const void *); if ( Count() <= 1 ) return; if ( Base() ) { qsort( Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare) ); } else { Assert( 0 ); // this path is untested // if you want to sort vectors that use a non-sequential memory allocator, // you'll probably want to patch in a quicksort algorithm here // I just threw in this bubble sort to have something just in case... for ( int i = m_Size - 1; i >= 0; --i ) { for ( int j = 1; j <= i; ++j ) { if ( pfnCompare( &Element( j - 1 ), &Element( j ) ) < 0 ) { V_swap( Element( j - 1 ), Element( j ) ); } } } } } //---------------------------------------------------------------------------------------------- // Private function that does the in-place quicksort for non-contiguously allocated vectors. //---------------------------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::InPlaceQuickSort_r( int (__cdecl *pfnCompare)(const T *, const T *), int nLeft, int nRight ) { int nPivot; int nLeftIdx = nLeft; int nRightIdx = nRight; if ( nRight - nLeft > 0 ) { nPivot = ( nLeft + nRight ) / 2; while ( ( nLeftIdx <= nPivot ) && ( nRightIdx >= nPivot ) ) { while ( ( pfnCompare( &Element( nLeftIdx ), &Element( nPivot ) ) < 0 ) && ( nLeftIdx <= nPivot ) ) { nLeftIdx++; } while ( ( pfnCompare( &Element( nRightIdx ), &Element( nPivot ) ) > 0 ) && ( nRightIdx >= nPivot ) ) { nRightIdx--; } V_swap( Element( nLeftIdx ), Element( nRightIdx ) ); nLeftIdx++; nRightIdx--; if ( ( nLeftIdx - 1 ) == nPivot ) { nPivot = nRightIdx = nRightIdx + 1; } else if ( nRightIdx + 1 == nPivot ) { nPivot = nLeftIdx = nLeftIdx - 1; } } InPlaceQuickSort_r( pfnCompare, nLeft, nPivot - 1 ); InPlaceQuickSort_r( pfnCompare, nPivot + 1, nRight ); } } //---------------------------------------------------------------------------------------------- // Call this to quickly sort non-contiguously allocated vectors. Sort uses a slower bubble sort. //---------------------------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::InPlaceQuickSort( int (__cdecl *pfnCompare)(const T *, const T *) ) { InPlaceQuickSort_r( pfnCompare, 0, Count() - 1 ); } template< typename T, class A > void CUtlVector::Sort( void ) { //STACK STATS TODO: Do we care about allocation tracking precision enough to match element origins across a sort? std::sort( Base(), Base() + Count() ); } template< typename T, class A > template void CUtlVector::SortPredicate( F &&predicate ) { std::sort( Base(), Base() + Count(), predicate ); } //----------------------------------------------------------------------------- // Makes sure we have enough memory allocated to store a requested # of elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::EnsureCapacity( int num ) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.EnsureCapacity(num); ResetDbgInfo(); } //----------------------------------------------------------------------------- // Makes sure we have at least this many elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::EnsureCount( int num ) { if (Count() < num) { AddMultipleToTail( num - Count() ); } } //----------------------------------------------------------------------------- // Shifts elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::ShiftElementsRight( int elem, int num ) { Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) Q_memmove( &Element(elem+num), &Element(elem), numToMove * sizeof(T) ); } template< typename T, class A > void CUtlVector::ShiftElementsLeft( int elem, int num ) { Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) { Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) ); #ifdef _DEBUG Q_memset( &Element(m_Size-num), 0xDD, num * sizeof(T) ); #endif } } //----------------------------------------------------------------------------- // Adds an element, uses default constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::AddToHead() { return InsertBefore(0); } template< typename T, class A > inline int CUtlVector::AddToTail() { return InsertBefore( m_Size ); } template< typename T, class A > inline T *CUtlVector::AddToTailGetPtr() { return &Element( AddToTail() ); } template< typename T, class A > inline int CUtlVector::InsertAfter( int elem ) { return InsertBefore( elem + 1 ); } template< typename T, class A > int CUtlVector::InsertBefore( int elem ) { // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(); ShiftElementsRight(elem); Construct( &Element(elem) ); return elem; } //----------------------------------------------------------------------------- // Adds an element, uses copy constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::AddToHead( const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( 0, src ); } template< typename T, class A > inline int CUtlVector::AddToTail( const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( m_Size, src ); } template< typename T, class A > inline int CUtlVector::InsertAfter( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( elem + 1, src ); } template< typename T, class A > int CUtlVector::InsertBefore( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(); ShiftElementsRight(elem); CopyConstruct( &Element(elem), src ); return elem; } //----------------------------------------------------------------------------- // Adds multiple elements, uses default constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::AddMultipleToHead( int num ) { return InsertMultipleBefore( 0, num ); } template< typename T, class A > inline int CUtlVector::AddMultipleToTail( int num ) { return InsertMultipleBefore( m_Size, num ); } template< typename T, class A > inline int CUtlVector::AddMultipleToTail( int num, const T *pToCopy ) { // Can't insert something that's in the list... reallocation may hose us Assert( (Base() == NULL) || !pToCopy || (pToCopy + num <= Base()) || (pToCopy >= (Base() + Count()) ) ); return InsertMultipleBefore( m_Size, num, pToCopy ); } template< typename T, class A > int CUtlVector::InsertMultipleAfter( int elem, int num ) { return InsertMultipleBefore( elem + 1, num ); } template< typename T, class A > void CUtlVector::SetCount( int count ) { RemoveAll(); AddMultipleToTail( count ); } template< typename T, class A > inline void CUtlVector::SetSize( int size ) { SetCount( size ); } template< typename T, class A > void CUtlVector::SetCountNonDestructively( int count ) { int delta = count - m_Size; if(delta > 0) AddMultipleToTail( delta ); else if(delta < 0) RemoveMultipleFromTail( -delta ); } template< typename T, class A > void CUtlVector::CopyArray( const T *pArray, int size ) { // Can't insert something that's in the list... reallocation may hose us Assert( (Base() == NULL) || !pArray || (Base() >= (pArray + size)) || (pArray >= (Base() + Count()) ) ); SetSize( size ); for( int i=0; i < size; i++ ) { (*this)[i] = pArray[i]; } } template< typename T, class A > void CUtlVector::Swap( CUtlVector< T, A > &vec ) { m_Memory.Swap( vec.m_Memory ); V_swap( m_Size, vec.m_Size ); #ifndef _X360 V_swap( m_pElements, vec.m_pElements ); #endif } template< typename T, class A > int CUtlVector::AddVectorToTail( CUtlVector const &src ) { Assert( &src != this ); int base = Count(); // Make space. int nSrcCount = src.Count(); EnsureCapacity( base + nSrcCount ); // Copy the elements. m_Size += nSrcCount; for ( int i=0; i < nSrcCount; i++ ) { CopyConstruct( &Element(base+i), src[i] ); } return base; } template< typename T, class A > inline int CUtlVector::InsertMultipleBefore( int elem, int num ) { if( num == 0 ) return elem; // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(num); ShiftElementsRight( elem, num ); // Invoke default constructors for (int i = 0; i < num; ++i ) { Construct( &Element( elem+i ) ); } return elem; } template< typename T, class A > inline int CUtlVector::InsertMultipleBefore( int elem, int num, const T *pToInsert ) { if( num == 0 ) return elem; // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(num); ShiftElementsRight( elem, num ); // Invoke default constructors if ( !pToInsert ) { for (int i = 0; i < num; ++i ) { Construct( &Element( elem+i ) ); } } else { for ( int i=0; i < num; i++ ) { CopyConstruct( &Element( elem+i ), pToInsert[i] ); } } return elem; } //----------------------------------------------------------------------------- // Finds an element (element needs operator== defined) //----------------------------------------------------------------------------- template< typename T, class A > int CUtlVector::Find( const T& src ) const { for ( int i = 0; i < Count(); ++i ) { if (Element(i) == src) return i; } return -1; } //----------------------------------------------------------------------------- // Finds an element using a predicate, using std::find_if //----------------------------------------------------------------------------- template< typename T, class A > template< class F > int CUtlVector::FindPredicate( F &&predicate ) const { const T * begin = Base(); const T * end = begin + Count(); const T * const &elem = std::find_if( begin, end, predicate ); if ( elem != end ) { int idx = (int)std::distance( begin, elem ); StagingUtlVectorBoundsCheck( idx, m_Size ); return idx; } return InvalidIndex(); } template< typename T, class A > void CUtlVector::FillWithValue( const T& src ) { for ( int i = 0; i < Count(); i++ ) { Element(i) = src; } } template< typename T, class A > bool CUtlVector::HasElement( const T& src ) const { return ( Find(src) >= 0 ); } //----------------------------------------------------------------------------- // Element removal //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::FastRemove( int elem ) { Assert( IsValidIndex(elem) ); // Global scope to resolve conflict with Scaleform 4.0 ::Destruct( &Element(elem) ); if (m_Size > 0) { if ( elem != m_Size -1 ) memcpy( &Element(elem), &Element(m_Size-1), sizeof(T) ); --m_Size; } } template< typename T, class A > void CUtlVector::Remove( int elem ) { // Global scope to resolve conflict with Scaleform 4.0 ::Destruct( &Element(elem) ); ShiftElementsLeft(elem); --m_Size; } template< typename T, class A > bool CUtlVector::FindAndRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { Remove( elem ); return true; } return false; } template< typename T, class A > bool CUtlVector::FindAndFastRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { FastRemove( elem ); return true; } return false; } template< typename T, class A > void CUtlVector::RemoveMultiple( int elem, int num ) { Assert( elem >= 0 ); Assert( elem + num <= Count() ); // Global scope to resolve conflict with Scaleform 4.0 for (int i = elem + num; --i >= elem; ) ::Destruct(&Element(i)); ShiftElementsLeft(elem, num); m_Size -= num; } template< typename T, class A > void CUtlVector::RemoveMultipleFromHead( int num ) { Assert( num <= Count() ); // Global scope to resolve conflict with Scaleform 4.0 for (int i = num; --i >= 0; ) ::Destruct(&Element(i)); ShiftElementsLeft(0, num); m_Size -= num; } template< typename T, class A > void CUtlVector::RemoveMultipleFromTail( int num ) { Assert( num <= Count() ); // Global scope to resolve conflict with Scaleform 4.0 for (int i = m_Size-num; i < m_Size; i++) ::Destruct(&Element(i)); m_Size -= num; } template< typename T, class A > void CUtlVector::RemoveAll() { for (int i = m_Size; --i >= 0; ) { // Global scope to resolve conflict with Scaleform 4.0 ::Destruct(&Element(i)); } m_Size = 0; } //----------------------------------------------------------------------------- // Memory deallocation //----------------------------------------------------------------------------- template< typename T, class A > inline void CUtlVector::Purge() { RemoveAll(); m_Memory.Purge(); ResetDbgInfo(); } template< typename T, class A > inline void CUtlVector::PurgeAndDeleteElements() { for( int i=0; i < m_Size; i++ ) { delete Element(i); } Purge(); } template< typename T, class A > inline void CUtlVector::PurgeAndDeleteElementsArray() { for( int i=0; i < m_Size; i++ ) { delete[] Element(i); } RemoveAll(); } template< typename T, class A > inline void CUtlVector::Compact() { m_Memory.Purge(m_Size); } template< typename T, class A > inline int CUtlVector::NumAllocated() const { return m_Memory.NumAllocated(); } //----------------------------------------------------------------------------- // Data and memory validation //----------------------------------------------------------------------------- #ifdef DBGFLAG_VALIDATE template< typename T, class A > void CUtlVector::Validate( CValidator &validator, char *pchName ) { validator.Push( typeid(*this).name(), this, pchName ); m_Memory.Validate( validator, "m_Memory" ); validator.Pop(); } #endif // DBGFLAG_VALIDATE // easy string list class with dynamically allocated strings. For use with V_SplitString, etc. // Frees the dynamic strings in destructor. class CUtlStringList : public CUtlVector< char*, CUtlMemory< char*, int > > { public: ~CUtlStringList( void ) { PurgeAndDeleteElementsArray(); } void CopyAndAddToTail( char const *pString ) // clone the string and add to the end { char *pNewStr = new char[1 + strlen( pString )]; V_strcpy( pNewStr, pString ); AddToTail( pNewStr ); } static int __cdecl SortFunc( char * const * sz1, char * const * sz2 ) { return strcmp( *sz1, *sz2 ); } CUtlStringList(){} CUtlStringList( char const *pString, char const *pSeparator ) { SplitString( pString, pSeparator ); } CUtlStringList( char const *pString, const char **pSeparators, int nSeparators ) { SplitString2( pString, pSeparators, nSeparators ); } void SplitString( char const *pString, char const *pSeparator ) { V_SplitString( pString, pSeparator, *this ); } void SplitString2( char const *pString, const char **pSeparators, int nSeparators ) { V_SplitString2( pString, pSeparators, nSeparators, *this ); } private: CUtlStringList( const CUtlStringList &other ); // copying directly will cause double-release of the same strings; maybe we need to do a deep copy, but unless and until such need arises, this will guard against double-release }; // placing it here a few days before Cert to minimize disruption to the rest of codebase class CSplitString: public CUtlVector > { public: CSplitString(const char *pString, const char *pSeparator); CSplitString(const char *pString, const char **pSeparators, int nSeparators); ~CSplitString(); // // NOTE: If you want to make Construct() public and implement Purge() here, you'll have to free m_szBuffer there // private: void Construct(const char *pString, const char **pSeparators, int nSeparators); void PurgeAndDeleteElements(); private: char *m_szBuffer; // a copy of original string, with '\0' instead of separators }; #endif // CCVECTOR_H