//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #ifndef VECTOR4D_H #define VECTOR4D_H #ifdef _WIN32 #pragma once #endif #include #include // For rand(). We really need a library! #include #if defined(__SSE__) || defined(_M_IX86_FP) #include // For SSE #endif #include "basetypes.h" // For vec_t, put this somewhere else? #include "tier0/dbg.h" #include "mathlib/math_pfns.h" // forward declarations class Vector; class Vector2D; //========================================================= // 4D Vector4D //========================================================= class Vector4D { public: // Members vec_t x, y, z, w; // Construction/destruction Vector4D(void); Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W); Vector4D(const float *pFloat); // Initialization void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f, vec_t iw=0.0f); // Got any nasty NAN's? bool IsValid() const; // array access... vec_t operator[](int i) const; vec_t& operator[](int i); // Base address... inline vec_t* Base(); inline vec_t const* Base() const; // Cast to Vector and Vector2D... Vector& AsVector3D(); Vector const& AsVector3D() const; Vector2D& AsVector2D(); Vector2D const& AsVector2D() const; // Initialization methods void Random( vec_t minVal, vec_t maxVal ); // equality bool operator==(const Vector4D& v) const; bool operator!=(const Vector4D& v) const; // arithmetic operations Vector4D& operator+=(const Vector4D &v); Vector4D& operator-=(const Vector4D &v); Vector4D& operator*=(const Vector4D &v); Vector4D& operator*=(float s); Vector4D& operator/=(const Vector4D &v); Vector4D& operator/=(float s); // negate the Vector4D components void Negate(); // Get the Vector4D's magnitude. vec_t Length() const; // Get the Vector4D's magnitude squared. vec_t LengthSqr(void) const; // return true if this vector is (0,0,0,0) within tolerance bool IsZero( float tolerance = 0.01f ) const { return (x > -tolerance && x < tolerance && y > -tolerance && y < tolerance && z > -tolerance && z < tolerance && w > -tolerance && w < tolerance); } // Get the distance from this Vector4D to the other one. vec_t DistTo(const Vector4D &vOther) const; // Get the distance from this Vector4D to the other one squared. vec_t DistToSqr(const Vector4D &vOther) const; // Copy void CopyToArray(float* rgfl) const; // Multiply, add, and assign to this (ie: *this = a + b * scalar). This // is about 12% faster than the actual Vector4D equation (because it's done per-component // rather than per-Vector4D). void MulAdd(Vector4D const& a, Vector4D const& b, float scalar); // Dot product. vec_t Dot(Vector4D const& vOther) const; // No copy constructors allowed if we're in optimal mode #ifdef VECTOR_NO_SLOW_OPERATIONS private: #else public: #endif Vector4D(Vector4D const& vOther); // No assignment operators either... Vector4D& operator=( Vector4D const& src ); }; const Vector4D vec4_origin( 0.0f, 0.0f, 0.0f, 0.0f ); const Vector4D vec4_invalid( FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX ); //----------------------------------------------------------------------------- // SSE optimized routines //----------------------------------------------------------------------------- class ALIGN16 Vector4DAligned : public Vector4D { public: Vector4DAligned(void) {} Vector4DAligned( vec_t X, vec_t Y, vec_t Z, vec_t W ); inline void Set( vec_t X, vec_t Y, vec_t Z, vec_t W ); inline void InitZero( void ); #ifndef __arm__ inline __m128 &AsM128() { return *(__m128*)&x; } inline const __m128 &AsM128() const { return *(const __m128*)&x; } #endif private: // No copy constructors allowed if we're in optimal mode Vector4DAligned( Vector4DAligned const& vOther ); // No assignment operators either... Vector4DAligned& operator=( Vector4DAligned const& src ); } ALIGN16_POST; //----------------------------------------------------------------------------- // Vector4D related operations //----------------------------------------------------------------------------- // Vector4D clear void Vector4DClear( Vector4D& a ); // Copy void Vector4DCopy( Vector4D const& src, Vector4D& dst ); // Vector4D arithmetic void Vector4DAdd( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DSubtract( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DMultiply( Vector4D const& a, vec_t b, Vector4D& result ); void Vector4DMultiply( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DDivide( Vector4D const& a, vec_t b, Vector4D& result ); void Vector4DDivide( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DMA( Vector4D const& start, float s, Vector4D const& dir, Vector4D& result ); // Vector4DAligned arithmetic void Vector4DMultiplyAligned( Vector4DAligned const& a, vec_t b, Vector4DAligned& result ); #define Vector4DExpand( v ) (v).x, (v).y, (v).z, (v).w // Normalization vec_t Vector4DNormalize( Vector4D& v ); // Length vec_t Vector4DLength( Vector4D const& v ); // Dot Product vec_t DotProduct4D(Vector4D const& a, Vector4D const& b); // Linearly interpolate between two vectors void Vector4DLerp(Vector4D const& src1, Vector4D const& src2, vec_t t, Vector4D& dest ); //----------------------------------------------------------------------------- // // Inlined Vector4D methods // //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // constructors //----------------------------------------------------------------------------- inline Vector4D::Vector4D(void) { #ifdef _DEBUG // Initialize to NAN to catch errors x = y = z = w = VEC_T_NAN; #endif } inline Vector4D::Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W ) { x = X; y = Y; z = Z; w = W; Assert( IsValid() ); } inline Vector4D::Vector4D(const float *pFloat) { Assert( pFloat ); x = pFloat[0]; y = pFloat[1]; z = pFloat[2]; w = pFloat[3]; Assert( IsValid() ); } //----------------------------------------------------------------------------- // copy constructor //----------------------------------------------------------------------------- inline Vector4D::Vector4D(const Vector4D &vOther) { Assert( vOther.IsValid() ); x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w; } //----------------------------------------------------------------------------- // initialization //----------------------------------------------------------------------------- inline void Vector4D::Init( vec_t ix, vec_t iy, vec_t iz, vec_t iw ) { x = ix; y = iy; z = iz; w = iw; Assert( IsValid() ); } inline void Vector4D::Random( vec_t minVal, vec_t maxVal ) { x = minVal + ((vec_t)rand() / VALVE_RAND_MAX) * (maxVal - minVal); y = minVal + ((vec_t)rand() / VALVE_RAND_MAX) * (maxVal - minVal); z = minVal + ((vec_t)rand() / VALVE_RAND_MAX) * (maxVal - minVal); w = minVal + ((vec_t)rand() / VALVE_RAND_MAX) * (maxVal - minVal); } inline void Vector4DClear( Vector4D& a ) { a.x = a.y = a.z = a.w = 0.0f; } //----------------------------------------------------------------------------- // assignment //----------------------------------------------------------------------------- inline Vector4D& Vector4D::operator=(const Vector4D &vOther) { Assert( vOther.IsValid() ); x=vOther.x; y=vOther.y; z=vOther.z; w=vOther.w; return *this; } //----------------------------------------------------------------------------- // Array access //----------------------------------------------------------------------------- inline vec_t& Vector4D::operator[](int i) { Assert( (i >= 0) && (i < 4) ); return ((vec_t*)this)[i]; } inline vec_t Vector4D::operator[](int i) const { Assert( (i >= 0) && (i < 4) ); return ((vec_t*)this)[i]; } //----------------------------------------------------------------------------- // Cast to Vector and Vector2D... //----------------------------------------------------------------------------- inline Vector& Vector4D::AsVector3D() { return *(Vector*)this; } inline Vector const& Vector4D::AsVector3D() const { return *(Vector const*)this; } inline Vector2D& Vector4D::AsVector2D() { return *(Vector2D*)this; } inline Vector2D const& Vector4D::AsVector2D() const { return *(Vector2D const*)this; } //----------------------------------------------------------------------------- // Base address... //----------------------------------------------------------------------------- inline vec_t* Vector4D::Base() { return (vec_t*)this; } inline vec_t const* Vector4D::Base() const { return (vec_t const*)this; } //----------------------------------------------------------------------------- // IsValid? //----------------------------------------------------------------------------- inline bool Vector4D::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w); } //----------------------------------------------------------------------------- // comparison //----------------------------------------------------------------------------- inline bool Vector4D::operator==( Vector4D const& src ) const { Assert( src.IsValid() && IsValid() ); return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w); } inline bool Vector4D::operator!=( Vector4D const& src ) const { Assert( src.IsValid() && IsValid() ); return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w); } //----------------------------------------------------------------------------- // Copy //----------------------------------------------------------------------------- inline void Vector4DCopy( Vector4D const& src, Vector4D& dst ) { Assert( src.IsValid() ); dst.x = src.x; dst.y = src.y; dst.z = src.z; dst.w = src.w; } inline void Vector4D::CopyToArray(float* rgfl) const { Assert( IsValid() ); Assert( rgfl ); rgfl[0] = x; rgfl[1] = y; rgfl[2] = z; rgfl[3] = w; } //----------------------------------------------------------------------------- // standard math operations //----------------------------------------------------------------------------- inline void Vector4D::Negate() { Assert( IsValid() ); x = -x; y = -y; z = -z; w = -w; } inline Vector4D& Vector4D::operator+=(const Vector4D& v) { Assert( IsValid() && v.IsValid() ); x+=v.x; y+=v.y; z += v.z; w += v.w; return *this; } inline Vector4D& Vector4D::operator-=(const Vector4D& v) { Assert( IsValid() && v.IsValid() ); x-=v.x; y-=v.y; z -= v.z; w -= v.w; return *this; } inline Vector4D& Vector4D::operator*=(float fl) { x *= fl; y *= fl; z *= fl; w *= fl; Assert( IsValid() ); return *this; } inline Vector4D& Vector4D::operator*=(Vector4D const& v) { x *= v.x; y *= v.y; z *= v.z; w *= v.w; Assert( IsValid() ); return *this; } inline Vector4D& Vector4D::operator/=(float fl) { Assert( fl != 0.0f ); float oofl = 1.0f / fl; x *= oofl; y *= oofl; z *= oofl; w *= oofl; Assert( IsValid() ); return *this; } inline Vector4D& Vector4D::operator/=(Vector4D const& v) { Assert( v.x != 0.0f && v.y != 0.0f && v.z != 0.0f && v.w != 0.0f ); x /= v.x; y /= v.y; z /= v.z; w /= v.w; Assert( IsValid() ); return *this; } inline void Vector4DAdd( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() && b.IsValid() ); c.x = a.x + b.x; c.y = a.y + b.y; c.z = a.z + b.z; c.w = a.w + b.w; } inline void Vector4DSubtract( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() && b.IsValid() ); c.x = a.x - b.x; c.y = a.y - b.y; c.z = a.z - b.z; c.w = a.w - b.w; } inline void Vector4DMultiply( Vector4D const& a, vec_t b, Vector4D& c ) { Assert( a.IsValid() && IsFinite(b) ); c.x = a.x * b; c.y = a.y * b; c.z = a.z * b; c.w = a.w * b; } inline void Vector4DMultiply( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() && b.IsValid() ); c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z; c.w = a.w * b.w; } inline void Vector4DDivide( Vector4D const& a, vec_t b, Vector4D& c ) { Assert( a.IsValid() ); Assert( b != 0.0f ); vec_t oob = 1.0f / b; c.x = a.x * oob; c.y = a.y * oob; c.z = a.z * oob; c.w = a.w * oob; } inline void Vector4DDivide( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() ); Assert( (b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f) && (b.w != 0.0f) ); c.x = a.x / b.x; c.y = a.y / b.y; c.z = a.z / b.z; c.w = a.w / b.w; } inline void Vector4DMA( Vector4D const& start, float s, Vector4D const& dir, Vector4D& result ) { Assert( start.IsValid() && IsFinite(s) && dir.IsValid() ); result.x = start.x + s*dir.x; result.y = start.y + s*dir.y; result.z = start.z + s*dir.z; result.w = start.w + s*dir.w; } // FIXME: Remove // For backwards compatability inline void Vector4D::MulAdd(Vector4D const& a, Vector4D const& b, float scalar) { x = a.x + b.x * scalar; y = a.y + b.y * scalar; z = a.z + b.z * scalar; w = a.w + b.w * scalar; } inline void Vector4DLerp(const Vector4D& src1, const Vector4D& src2, vec_t t, Vector4D& dest ) { dest[0] = src1[0] + (src2[0] - src1[0]) * t; dest[1] = src1[1] + (src2[1] - src1[1]) * t; dest[2] = src1[2] + (src2[2] - src1[2]) * t; dest[3] = src1[3] + (src2[3] - src1[3]) * t; } //----------------------------------------------------------------------------- // dot, cross //----------------------------------------------------------------------------- inline vec_t DotProduct4D(const Vector4D& a, const Vector4D& b) { Assert( a.IsValid() && b.IsValid() ); return( a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w ); } // for backwards compatability inline vec_t Vector4D::Dot( Vector4D const& vOther ) const { return DotProduct4D( *this, vOther ); } //----------------------------------------------------------------------------- // length //----------------------------------------------------------------------------- inline vec_t Vector4DLength( Vector4D const& v ) { Assert( v.IsValid() ); return (vec_t)FastSqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); } inline vec_t Vector4D::LengthSqr(void) const { Assert( IsValid() ); return (x*x + y*y + z*z + w*w); } inline vec_t Vector4D::Length(void) const { return Vector4DLength( *this ); } //----------------------------------------------------------------------------- // Normalization //----------------------------------------------------------------------------- // FIXME: Can't use until we're un-macroed in mathlib.h inline vec_t Vector4DNormalize( Vector4D& v ) { Assert( v.IsValid() ); vec_t l = v.Length(); if (l != 0.0f) { v /= l; } else { v.x = v.y = v.z = v.w = 0.0f; } return l; } //----------------------------------------------------------------------------- // Get the distance from this Vector4D to the other one //----------------------------------------------------------------------------- inline vec_t Vector4D::DistTo(const Vector4D &vOther) const { Vector4D delta; Vector4DSubtract( *this, vOther, delta ); return delta.Length(); } inline vec_t Vector4D::DistToSqr(const Vector4D &vOther) const { Vector4D delta; Vector4DSubtract( *this, vOther, delta ); return delta.LengthSqr(); } //----------------------------------------------------------------------------- // Vector4DAligned routines //----------------------------------------------------------------------------- inline Vector4DAligned::Vector4DAligned( vec_t X, vec_t Y, vec_t Z, vec_t W ) { x = X; y = Y; z = Z; w = W; Assert( IsValid() ); } inline void Vector4DAligned::Set( vec_t X, vec_t Y, vec_t Z, vec_t W ) { x = X; y = Y; z = Z; w = W; Assert( IsValid() ); } inline void Vector4DAligned::InitZero( void ) { #if defined (__arm__) x = y = z = w = 0; #elif !defined( _X360 ) this->AsM128() = _mm_set1_ps( 0.0f ); #else this->AsM128() = __vspltisw( 0 ); #endif Assert( IsValid() ); } inline void Vector4DMultiplyAligned( Vector4DAligned const& a, Vector4DAligned const& b, Vector4DAligned& c ) { Assert( a.IsValid() && b.IsValid() ); #if !defined( _X360 ) || defined (__arm__) c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z; c.w = a.w * b.w; #else c.AsM128() = __vmulfp( a.AsM128(), b.AsM128() ); #endif } inline void Vector4DWeightMAD( vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB ) { Assert( vInA.IsValid() && vInB.IsValid() && IsFinite(w) ); #if !defined( _X360 ) || defined (__arm__) vOutA.x += vInA.x * w; vOutA.y += vInA.y * w; vOutA.z += vInA.z * w; vOutA.w += vInA.w * w; vOutB.x += vInB.x * w; vOutB.y += vInB.y * w; vOutB.z += vInB.z * w; vOutB.w += vInB.w * w; #else __vector4 temp; temp = __lvlx( &w, 0 ); temp = __vspltw( temp, 0 ); vOutA.AsM128() = __vmaddfp( vInA.AsM128(), temp, vOutA.AsM128() ); vOutB.AsM128() = __vmaddfp( vInB.AsM128(), temp, vOutB.AsM128() ); #endif } #ifndef __arm__ inline void Vector4DWeightMADSSE( vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB ) { Assert( vInA.IsValid() && vInB.IsValid() && IsFinite(w) ); #if !defined( _X360 ) // Replicate scalar float out to 4 components __m128 packed = _mm_set1_ps( w ); // 4D SSE Vector MAD vOutA.AsM128() = _mm_add_ps( vOutA.AsM128(), _mm_mul_ps( vInA.AsM128(), packed ) ); vOutB.AsM128() = _mm_add_ps( vOutB.AsM128(), _mm_mul_ps( vInB.AsM128(), packed ) ); #else __vector4 temp; temp = __lvlx( &w, 0 ); temp = __vspltw( temp, 0 ); vOutA.AsM128() = __vmaddfp( vInA.AsM128(), temp, vOutA.AsM128() ); vOutB.AsM128() = __vmaddfp( vInB.AsM128(), temp, vOutB.AsM128() ); #endif } #endif #endif // VECTOR4D_H