//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// // nav_pathfind.h // Path-finding mechanisms using the Navigation Mesh // Author: Michael S. Booth (mike@turtlerockstudios.com), January 2003 #ifndef _NAV_PATHFIND_H_ #define _NAV_PATHFIND_H_ #include "tier0/vprof.h" #include "mathlib/ssemath.h" #include "nav_area.h" extern int g_DebugPathfindCounter; //------------------------------------------------------------------------------------------------------------------- /** * Used when building a path to determine the kind of path to build */ enum RouteType { DEFAULT_ROUTE, FASTEST_ROUTE, SAFEST_ROUTE, RETREAT_ROUTE, }; //-------------------------------------------------------------------------------------------------------------- /** * Functor used with NavAreaBuildPath() */ class ShortestPathCost { public: float operator() ( CNavArea *area, CNavArea *fromArea, const CNavLadder *ladder, const CFuncElevator *elevator, float length ) { if ( fromArea == NULL ) { // first area in path, no cost return 0.0f; } else { // compute distance traveled along path so far float dist; if ( ladder ) { dist = ladder->m_length; } else if ( length > 0.0 ) { dist = length; } else { dist = ( area->GetCenter() - fromArea->GetCenter() ).Length(); } float cost = dist + fromArea->GetCostSoFar(); // if this is a "crouch" area, add penalty if ( area->GetAttributes() & NAV_MESH_CROUCH ) { const float crouchPenalty = 20.0f; // 10 cost += crouchPenalty * dist; } // if this is a "jump" area, add penalty if ( area->GetAttributes() & NAV_MESH_JUMP ) { const float jumpPenalty = 5.0f; cost += jumpPenalty * dist; } return cost; } } }; //-------------------------------------------------------------------------------------------------------------- /** * Find path from startArea to goalArea via an A* search, using supplied cost heuristic. * If cost functor returns -1 for an area, that area is considered a dead end. * This doesn't actually build a path, but the path is defined by following parent * pointers back from goalArea to startArea. * If 'closestArea' is non-NULL, the closest area to the goal is returned (useful if the path fails). * If 'goalArea' is NULL, will compute a path as close as possible to 'goalPos'. * If 'goalPos' is NULL, will use the center of 'goalArea' as the goal position. * If 'maxPathLength' is nonzero, path building will stop when this length is reached. * Returns true if a path exists. */ #define IGNORE_NAV_BLOCKERS true template< typename CostFunctor > bool NavAreaBuildPath( CNavArea *startArea, CNavArea *goalArea, const Vector *goalPos, CostFunctor &costFunc, CNavArea **closestArea = NULL, float maxPathLength = 0.0f, int teamID = TEAM_ANY, bool ignoreNavBlockers = false ) { VPROF_BUDGET( "NavAreaBuildPath", "NextBotSpiky" ); if ( closestArea ) { *closestArea = startArea; } bool isDebug = ( g_DebugPathfindCounter-- > 0 ); if (startArea == NULL) return false; startArea->SetParent( NULL ); if (goalArea != NULL && goalArea->IsBlocked( teamID, ignoreNavBlockers )) goalArea = NULL; if (goalArea == NULL && goalPos == NULL) return false; // if we are already in the goal area, build trivial path if (startArea == goalArea) { return true; } // determine actual goal position Vector actualGoalPos = (goalPos) ? *goalPos : goalArea->GetCenter(); // start search CNavArea::ClearSearchLists(); // compute estimate of path length /// @todo Cost might work as "manhattan distance" startArea->SetTotalCost( (startArea->GetCenter() - actualGoalPos).Length() ); float initCost = costFunc( startArea, NULL, NULL, NULL, -1.0f ); if (initCost < 0.0f) return false; startArea->SetCostSoFar( initCost ); startArea->SetPathLengthSoFar( 0.0 ); startArea->AddToOpenList(); // keep track of the area we visit that is closest to the goal float closestAreaDist = startArea->GetTotalCost(); // do A* search while( !CNavArea::IsOpenListEmpty() ) { // get next area to check CNavArea *area = CNavArea::PopOpenList(); if ( isDebug ) { area->DrawFilled( 0, 255, 0, 128, 30.0f ); } // don't consider blocked areas if ( area->IsBlocked( teamID, ignoreNavBlockers ) ) continue; // check if we have found the goal area or position if (area == goalArea || (goalArea == NULL && goalPos && area->Contains( *goalPos ))) { if (closestArea) { *closestArea = area; } return true; } // search adjacent areas enum SearchType { SEARCH_FLOOR, SEARCH_LADDERS, SEARCH_ELEVATORS }; SearchType searchWhere = SEARCH_FLOOR; int searchIndex = 0; int dir = NORTH; const NavConnectVector *floorList = area->GetAdjacentAreas( NORTH ); bool ladderUp = true; const NavLadderConnectVector *ladderList = NULL; enum { AHEAD = 0, LEFT, RIGHT, BEHIND, NUM_TOP_DIRECTIONS }; int ladderTopDir = AHEAD; bool bHaveMaxPathLength = ( maxPathLength > 0.0f ); float length = -1; while( true ) { CNavArea *newArea = NULL; NavTraverseType how; const CNavLadder *ladder = NULL; const CFuncElevator *elevator = NULL; // // Get next adjacent area - either on floor or via ladder // if ( searchWhere == SEARCH_FLOOR ) { // if exhausted adjacent connections in current direction, begin checking next direction if ( searchIndex >= floorList->Count() ) { ++dir; if ( dir == NUM_DIRECTIONS ) { // checked all directions on floor - check ladders next searchWhere = SEARCH_LADDERS; ladderList = area->GetLadders( CNavLadder::LADDER_UP ); searchIndex = 0; ladderTopDir = AHEAD; } else { // start next direction floorList = area->GetAdjacentAreas( (NavDirType)dir ); searchIndex = 0; } continue; } const NavConnect &floorConnect = floorList->Element( searchIndex ); newArea = floorConnect.area; length = floorConnect.length; how = (NavTraverseType)dir; ++searchIndex; if ( IsX360() && searchIndex < floorList->Count() ) { PREFETCH360( floorList->Element( searchIndex ).area, 0 ); } } else if ( searchWhere == SEARCH_LADDERS ) { if ( searchIndex >= ladderList->Count() ) { if ( !ladderUp ) { // checked both ladder directions - check elevators next searchWhere = SEARCH_ELEVATORS; searchIndex = 0; ladder = NULL; } else { // check down ladders ladderUp = false; ladderList = area->GetLadders( CNavLadder::LADDER_DOWN ); searchIndex = 0; } continue; } if ( ladderUp ) { ladder = ladderList->Element( searchIndex ).ladder; // do not use BEHIND connection, as its very hard to get to when going up a ladder if ( ladderTopDir == AHEAD ) { newArea = ladder->m_topForwardArea; } else if ( ladderTopDir == LEFT ) { newArea = ladder->m_topLeftArea; } else if ( ladderTopDir == RIGHT ) { newArea = ladder->m_topRightArea; } else { ++searchIndex; ladderTopDir = AHEAD; continue; } how = GO_LADDER_UP; ++ladderTopDir; } else { newArea = ladderList->Element( searchIndex ).ladder->m_bottomArea; how = GO_LADDER_DOWN; ladder = ladderList->Element(searchIndex).ladder; ++searchIndex; } if ( newArea == NULL ) continue; length = -1.0f; } else // if ( searchWhere == SEARCH_ELEVATORS ) { const NavConnectVector &elevatorAreas = area->GetElevatorAreas(); elevator = area->GetElevator(); if ( elevator == NULL || searchIndex >= elevatorAreas.Count() ) { // done searching connected areas elevator = NULL; break; } newArea = elevatorAreas[ searchIndex++ ].area; if ( newArea->GetCenter().z > area->GetCenter().z ) { how = GO_ELEVATOR_UP; } else { how = GO_ELEVATOR_DOWN; } length = -1.0f; } // don't backtrack Assert( newArea ); if ( newArea == area->GetParent() ) continue; if ( newArea == area ) // self neighbor? continue; // don't consider blocked areas if ( newArea->IsBlocked( teamID, ignoreNavBlockers ) ) continue; float newCostSoFar = costFunc( newArea, area, ladder, elevator, length ); // check if cost functor says this area is a dead-end if ( newCostSoFar < 0.0f ) continue; // Safety check against a bogus functor. The cost of the path // A...B, C should always be at least as big as the path A...B. Assert( newCostSoFar >= area->GetCostSoFar() ); // And now that we've asserted, let's be a bit more defensive. // Make sure that any jump to a new area incurs some pathfinsing // cost, to avoid us spinning our wheels over insignificant cost // benefit, floating point precision bug, or busted cost functor. float minNewCostSoFar = area->GetCostSoFar() * 1.00001 + 0.00001; newCostSoFar = Max( newCostSoFar, minNewCostSoFar ); // stop if path length limit reached if ( bHaveMaxPathLength ) { // keep track of path length so far float deltaLength = ( newArea->GetCenter() - area->GetCenter() ).Length(); float newLengthSoFar = area->GetPathLengthSoFar() + deltaLength; if ( newLengthSoFar > maxPathLength ) continue; newArea->SetPathLengthSoFar( newLengthSoFar ); } if ( ( newArea->IsOpen() || newArea->IsClosed() ) && newArea->GetCostSoFar() <= newCostSoFar ) { // this is a worse path - skip it continue; } else { // compute estimate of distance left to go float distSq = ( newArea->GetCenter() - actualGoalPos ).LengthSqr(); float newCostRemaining = ( distSq > 0.0 ) ? FastSqrt( distSq ) : 0.0 ; // track closest area to goal in case path fails if ( closestArea && newCostRemaining < closestAreaDist ) { *closestArea = newArea; closestAreaDist = newCostRemaining; } newArea->SetCostSoFar( newCostSoFar ); newArea->SetTotalCost( newCostSoFar + newCostRemaining ); if ( newArea->IsClosed() ) { newArea->RemoveFromClosedList(); } if ( newArea->IsOpen() ) { // area already on open list, update the list order to keep costs sorted newArea->UpdateOnOpenList(); } else { newArea->AddToOpenList(); } newArea->SetParent( area, how ); } } // we have searched this area area->AddToClosedList(); } return false; } //-------------------------------------------------------------------------------------------------------------- /** * Compute distance between two areas. Return -1 if can't reach 'endArea' from 'startArea'. */ template< typename CostFunctor > float NavAreaTravelDistance( CNavArea *startArea, CNavArea *endArea, CostFunctor &costFunc, float maxPathLength = 0.0f ) { if (startArea == NULL) return -1.0f; if (endArea == NULL) return -1.0f; if (startArea == endArea) return 0.0f; // compute path between areas using given cost heuristic if (NavAreaBuildPath( startArea, endArea, NULL, costFunc, NULL, maxPathLength ) == false) return -1.0f; // compute distance along path float distance = 0.0f; for( CNavArea *area = endArea; area->GetParent(); area = area->GetParent() ) { distance += (area->GetCenter() - area->GetParent()->GetCenter()).Length(); } return distance; } //-------------------------------------------------------------------------------------------------------------- /** * Do a breadth-first search, invoking functor on each area. * If functor returns 'true', continue searching from this area. * If functor returns 'false', the area's adjacent areas are not explored (dead end). * If 'maxRange' is 0 or less, no range check is done (all areas will be examined). * * NOTE: Returns all areas that overlap range, even partially * * @todo Use ladder connections */ // helper function inline void AddAreaToOpenList( CNavArea *area, CNavArea *parent, const Vector &startPos, float maxRange ) { if (area == NULL) return; if (!area->IsMarked()) { area->Mark(); area->SetTotalCost( 0.0f ); area->SetParent( parent ); if (maxRange > 0.0f) { // make sure this area overlaps range Vector closePos; area->GetClosestPointOnArea( startPos, &closePos ); if ((closePos - startPos).AsVector2D().IsLengthLessThan( maxRange )) { // compute approximate distance along path to limit travel range, too float distAlong = parent->GetCostSoFar(); distAlong += (area->GetCenter() - parent->GetCenter()).Length(); area->SetCostSoFar( distAlong ); // allow for some fudge due to large size areas if (distAlong <= 1.5f * maxRange) area->AddToOpenList(); } } else { // infinite range area->AddToOpenList(); } } } /**************************************************************** * DEPRECATED: Use filter-based SearchSurroundingAreas below ****************************************************************/ #define INCLUDE_INCOMING_CONNECTIONS 0x1 #define INCLUDE_BLOCKED_AREAS 0x2 #define EXCLUDE_OUTGOING_CONNECTIONS 0x4 #define EXCLUDE_ELEVATORS 0x8 template < typename Functor > void SearchSurroundingAreas( CNavArea *startArea, const Vector &startPos, Functor &func, float maxRange = -1.0f, unsigned int options = 0, int teamID = TEAM_ANY ) { if (startArea == NULL) return; CNavArea::MakeNewMarker(); CNavArea::ClearSearchLists(); startArea->AddToOpenList(); startArea->SetTotalCost( 0.0f ); startArea->SetCostSoFar( 0.0f ); startArea->SetParent( NULL ); startArea->Mark(); while( !CNavArea::IsOpenListEmpty() ) { // get next area to check CNavArea *area = CNavArea::PopOpenList(); // don't use blocked areas if ( area->IsBlocked( teamID ) && !(options & INCLUDE_BLOCKED_AREAS) ) continue; // invoke functor on area if (func( area )) { // explore adjacent floor areas for( int dir=0; dirGetAdjacentCount( (NavDirType)dir ); for( int i=0; iGetAdjacentArea( (NavDirType)dir, i ); if ( options & EXCLUDE_OUTGOING_CONNECTIONS ) { if ( !adjArea->IsConnected( area, NUM_DIRECTIONS ) ) { continue; // skip this outgoing connection } } AddAreaToOpenList( adjArea, area, startPos, maxRange ); } } // potentially include areas that connect TO this area via a one-way link if (options & INCLUDE_INCOMING_CONNECTIONS) { for( int dir=0; dirGetIncomingConnections( (NavDirType)dir ); FOR_EACH_VEC( (*list), it ) { NavConnect connect = (*list)[ it ]; AddAreaToOpenList( connect.area, area, startPos, maxRange ); } } } // explore adjacent areas connected by ladders // check up ladders const NavLadderConnectVector *ladderList = area->GetLadders( CNavLadder::LADDER_UP ); if (ladderList) { FOR_EACH_VEC( (*ladderList), it ) { const CNavLadder *ladder = (*ladderList)[ it ].ladder; // do not use BEHIND connection, as its very hard to get to when going up a ladder AddAreaToOpenList( ladder->m_topForwardArea, area, startPos, maxRange ); AddAreaToOpenList( ladder->m_topLeftArea, area, startPos, maxRange ); AddAreaToOpenList( ladder->m_topRightArea, area, startPos, maxRange ); } } // check down ladders ladderList = area->GetLadders( CNavLadder::LADDER_DOWN ); if (ladderList) { FOR_EACH_VEC( (*ladderList), it ) { const CNavLadder *ladder = (*ladderList)[ it ].ladder; AddAreaToOpenList( ladder->m_bottomArea, area, startPos, maxRange ); } } if ( (options & EXCLUDE_ELEVATORS) == 0 ) { const NavConnectVector &elevatorList = area->GetElevatorAreas(); FOR_EACH_VEC( elevatorList, it ) { CNavArea *elevatorArea = elevatorList[ it ].area; AddAreaToOpenList( elevatorArea, area, startPos, maxRange ); } } } } } //-------------------------------------------------------------------------------------------------------------- /** * Derive your own custom search functor from this interface method for use with SearchSurroundingAreas below. */ class ISearchSurroundingAreasFunctor { public: virtual ~ISearchSurroundingAreasFunctor() { } /** * Perform user-defined action on area. * Return 'false' to end the search (ie: you found what you were looking for) */ virtual bool operator() ( CNavArea *area, CNavArea *priorArea, float travelDistanceSoFar ) = 0; // return true if 'adjArea' should be included in the ongoing search virtual bool ShouldSearch( CNavArea *adjArea, CNavArea *currentArea, float travelDistanceSoFar ) { return !adjArea->IsBlocked( TEAM_ANY ); } /** * Collect adjacent areas to continue the search by calling 'IncludeInSearch' on each */ virtual void IterateAdjacentAreas( CNavArea *area, CNavArea *priorArea, float travelDistanceSoFar ) { // search adjacent outgoing connections for( int dir=0; dirGetAdjacentCount( (NavDirType)dir ); for( int i=0; iGetAdjacentArea( (NavDirType)dir, i ); if ( ShouldSearch( adjArea, area, travelDistanceSoFar ) ) { IncludeInSearch( adjArea, area ); } } } } // Invoked after the search has completed virtual void PostSearch( void ) { } // consider 'area' in upcoming search steps void IncludeInSearch( CNavArea *area, CNavArea *priorArea ) { if ( area == NULL ) return; if ( !area->IsMarked() ) { area->Mark(); area->SetTotalCost( 0.0f ); area->SetParent( priorArea ); // compute approximate travel distance from start area of search if ( priorArea ) { float distAlong = priorArea->GetCostSoFar(); distAlong += ( area->GetCenter() - priorArea->GetCenter() ).Length(); area->SetCostSoFar( distAlong ); } else { area->SetCostSoFar( 0.0f ); } // adding an area to the open list also marks it area->AddToOpenList(); } } }; /** * Do a breadth-first search starting from 'startArea' and continuing outward based on * adjacent areas that pass the given filter */ inline void SearchSurroundingAreas( CNavArea *startArea, ISearchSurroundingAreasFunctor &func, float travelDistanceLimit = -1.0f ) { if ( startArea ) { CNavArea::MakeNewMarker(); CNavArea::ClearSearchLists(); startArea->AddToOpenList(); startArea->SetTotalCost( 0.0f ); startArea->SetCostSoFar( 0.0f ); startArea->SetParent( NULL ); startArea->Mark(); CUtlVector< CNavArea * > adjVector; while( !CNavArea::IsOpenListEmpty() ) { // get next area to check CNavArea *area = CNavArea::PopOpenList(); if ( travelDistanceLimit > 0.0f && area->GetCostSoFar() > travelDistanceLimit ) continue; if ( func( area, area->GetParent(), area->GetCostSoFar() ) ) { func.IterateAdjacentAreas( area, area->GetParent(), area->GetCostSoFar() ); } else { // search aborted break; } } } func.PostSearch(); } //-------------------------------------------------------------------------------------------------------------- /** * Starting from 'startArea', collect adjacent areas via a breadth-first search continuing outward until * 'travelDistanceLimit' is reached. * Areas in the collection will be "marked", returning true for IsMarked(). * Each area in the collection's GetCostSoFar() will be approximate travel distance from 'startArea'. */ inline void CollectSurroundingAreas( CUtlVector< CNavArea * > *nearbyAreaVector, CNavArea *startArea, float travelDistanceLimit = 1500.0f, float maxStepUpLimit = StepHeight, float maxDropDownLimit = 100.0f ) { nearbyAreaVector->RemoveAll(); if ( startArea ) { CNavArea::MakeNewMarker(); CNavArea::ClearSearchLists(); startArea->AddToOpenList(); startArea->SetTotalCost( 0.0f ); startArea->SetCostSoFar( 0.0f ); startArea->SetParent( NULL ); startArea->Mark(); CUtlVector< CNavArea * > adjVector; while( !CNavArea::IsOpenListEmpty() ) { // get next area to check CNavArea *area = CNavArea::PopOpenList(); if ( travelDistanceLimit > 0.0f && area->GetCostSoFar() > travelDistanceLimit ) continue; if ( area->GetParent() ) { float deltaZ = area->GetParent()->ComputeAdjacentConnectionHeightChange( area ); if ( deltaZ > maxStepUpLimit ) continue; if ( deltaZ < -maxDropDownLimit ) continue; } nearbyAreaVector->AddToTail( area ); // mark here to ensure all marked areas are also valid areas that are in the collection area->Mark(); // search adjacent outgoing connections for( int dir=0; dirGetAdjacentCount( (NavDirType)dir ); for( int i=0; iGetAdjacentArea( (NavDirType)dir, i ); if ( adjArea->IsBlocked( TEAM_ANY ) ) { continue; } if ( !adjArea->IsMarked() ) { adjArea->SetTotalCost( 0.0f ); adjArea->SetParent( area ); // compute approximate travel distance from start area of search float distAlong = area->GetCostSoFar(); distAlong += ( adjArea->GetCenter() - area->GetCenter() ).Length(); adjArea->SetCostSoFar( distAlong ); adjArea->AddToOpenList(); } } } } } } //-------------------------------------------------------------------------------------------------------------- /** * Functor that returns lowest cost for farthest away areas * For use with FindMinimumCostArea() */ class FarAwayFunctor { public: float operator() ( CNavArea *area, CNavArea *fromArea, const CNavLadder *ladder ) { if (area == fromArea) return 9999999.9f; return 1.0f/(fromArea->GetCenter() - area->GetCenter()).Length(); } }; /** * Functor that returns lowest cost for areas farthest from given position * For use with FindMinimumCostArea() */ class FarAwayFromPositionFunctor { public: FarAwayFromPositionFunctor( const Vector &pos ) : m_pos( pos ) { } float operator() ( CNavArea *area, CNavArea *fromArea, const CNavLadder *ladder ) { return 1.0f/(m_pos - area->GetCenter()).Length(); } private: const Vector &m_pos; }; /** * Pick a low-cost area of "decent" size */ template< typename CostFunctor > CNavArea *FindMinimumCostArea( CNavArea *startArea, CostFunctor &costFunc ) { const float minSize = 150.0f; // collect N low-cost areas of a decent size enum { NUM_CHEAP_AREAS = 32 }; struct { CNavArea *area; float cost; } cheapAreaSet[ NUM_CHEAP_AREAS ] = {}; int cheapAreaSetCount = 0; FOR_EACH_VEC( TheNavAreas, iter ) { CNavArea *area = TheNavAreas[iter]; // skip the small areas if ( area->GetSizeX() < minSize || area->GetSizeY() < minSize) continue; // compute cost of this area // HPE_FIX[pfreese]: changed this to only pass three parameters, in accord with the two functors above float cost = costFunc( area, startArea, NULL ); if (cheapAreaSetCount < NUM_CHEAP_AREAS) { cheapAreaSet[ cheapAreaSetCount ].area = area; cheapAreaSet[ cheapAreaSetCount++ ].cost = cost; } else { // replace most expensive cost if this is cheaper int expensive = 0; for( int i=1; i cheapAreaSet[expensive].cost) expensive = i; if (cheapAreaSet[expensive].cost > cost) { cheapAreaSet[expensive].area = area; cheapAreaSet[expensive].cost = cost; } } } if (cheapAreaSetCount) { // pick one of the areas at random return cheapAreaSet[ RandomInt( 0, cheapAreaSetCount-1 ) ].area; } else { // degenerate case - no decent sized areas - pick a random area int numAreas = TheNavAreas.Count(); int which = RandomInt( 0, numAreas-1 ); FOR_EACH_VEC( TheNavAreas, iter ) { if (which-- == 0) return TheNavAreas[iter]; } } return cheapAreaSet[ RandomInt( 0, cheapAreaSetCount-1 ) ].area; } //-------------------------------------------------------------------------------------------------------- // // Given a vector of CNavAreas (or derived types), 'inVector', populate 'outVector' with a randomly shuffled set // of 'maxCount' areas that are at least 'minSeparation' travel distance apart from each other. // template< typename T > void SelectSeparatedShuffleSet( int maxCount, float minSeparation, const CUtlVector< T * > &inVector, CUtlVector< T * > *outVector ) { if ( !outVector ) return; outVector->RemoveAll(); CUtlVector< T * > shuffledVector; int i, j; for( i=0; i 1 ) { int k = RandomInt( 0, n-1 ); n--; T *tmp = shuffledVector[n]; shuffledVector[n] = shuffledVector[k]; shuffledVector[k] = tmp; } // enforce minSeparation between shuffled areas for( i=0; i nearVector; CollectSurroundingAreas( &nearVector, area, minSeparation, 2.0f * StepHeight, 2.0f * StepHeight ); for( j=0; jAddToTail( area ); if ( outVector->Count() >= maxCount ) return; } } } #endif // _NAV_PATHFIND_H_