// algebra.h - written and placed in the public domain by Wei Dai //! \file //! \headerfile algebra.h //! \brief Classes for performing mathematics over different fields #ifndef CRYPTOPP_ALGEBRA_H #define CRYPTOPP_ALGEBRA_H #include "config.h" #include "misc.h" #include "integer.h" NAMESPACE_BEGIN(CryptoPP) class Integer; // "const Element&" returned by member functions are references // to internal data members. Since each object may have only // one such data member for holding results, the following code // will produce incorrect results: // abcd = group.Add(group.Add(a,b), group.Add(c,d)); // But this should be fine: // abcd = group.Add(a, group.Add(b, group.Add(c,d)); //! Abstract Group template class CRYPTOPP_NO_VTABLE AbstractGroup { public: typedef T Element; virtual ~AbstractGroup() {} virtual bool Equal(const Element &a, const Element &b) const =0; virtual const Element& Identity() const =0; virtual const Element& Add(const Element &a, const Element &b) const =0; virtual const Element& Inverse(const Element &a) const =0; virtual bool InversionIsFast() const {return false;} virtual const Element& Double(const Element &a) const; virtual const Element& Subtract(const Element &a, const Element &b) const; virtual Element& Accumulate(Element &a, const Element &b) const; virtual Element& Reduce(Element &a, const Element &b) const; virtual Element ScalarMultiply(const Element &a, const Integer &e) const; virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; }; //! Abstract Ring template class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup { public: typedef T Element; AbstractRing() {m_mg.m_pRing = this;} AbstractRing(const AbstractRing &source) {CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;} AbstractRing& operator=(const AbstractRing &source) {CRYPTOPP_UNUSED(source); return *this;} virtual bool IsUnit(const Element &a) const =0; virtual const Element& MultiplicativeIdentity() const =0; virtual const Element& Multiply(const Element &a, const Element &b) const =0; virtual const Element& MultiplicativeInverse(const Element &a) const =0; virtual const Element& Square(const Element &a) const; virtual const Element& Divide(const Element &a, const Element &b) const; virtual Element Exponentiate(const Element &a, const Integer &e) const; virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; virtual const AbstractGroup& MultiplicativeGroup() const {return m_mg;} private: class MultiplicativeGroupT : public AbstractGroup { public: const AbstractRing& GetRing() const {return *m_pRing;} bool Equal(const Element &a, const Element &b) const {return GetRing().Equal(a, b);} const Element& Identity() const {return GetRing().MultiplicativeIdentity();} const Element& Add(const Element &a, const Element &b) const {return GetRing().Multiply(a, b);} Element& Accumulate(Element &a, const Element &b) const {return a = GetRing().Multiply(a, b);} const Element& Inverse(const Element &a) const {return GetRing().MultiplicativeInverse(a);} const Element& Subtract(const Element &a, const Element &b) const {return GetRing().Divide(a, b);} Element& Reduce(Element &a, const Element &b) const {return a = GetRing().Divide(a, b);} const Element& Double(const Element &a) const {return GetRing().Square(a);} Element ScalarMultiply(const Element &a, const Integer &e) const {return GetRing().Exponentiate(a, e);} Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const {return GetRing().CascadeExponentiate(x, e1, y, e2);} void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);} const AbstractRing *m_pRing; }; MultiplicativeGroupT m_mg; }; // ******************************************************** //! Base and Exponent template struct BaseAndExponent { public: BaseAndExponent() {} BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {} bool operator<(const BaseAndExponent &rhs) const {return exponent < rhs.exponent;} T base; E exponent; }; // VC60 workaround: incomplete member template support template Element GeneralCascadeMultiplication(const AbstractGroup &group, Iterator begin, Iterator end); template Element GeneralCascadeExponentiation(const AbstractRing &ring, Iterator begin, Iterator end); // ******************************************************** //! Abstract Euclidean Domain template class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing { public: typedef T Element; virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0; virtual const Element& Mod(const Element &a, const Element &b) const =0; virtual const Element& Gcd(const Element &a, const Element &b) const; protected: mutable Element result; }; // ******************************************************** //! EuclideanDomainOf template class EuclideanDomainOf : public AbstractEuclideanDomain { public: typedef T Element; EuclideanDomainOf() {} bool Equal(const Element &a, const Element &b) const {return a==b;} const Element& Identity() const {return Element::Zero();} const Element& Add(const Element &a, const Element &b) const {return result = a+b;} Element& Accumulate(Element &a, const Element &b) const {return a+=b;} const Element& Inverse(const Element &a) const {return result = -a;} const Element& Subtract(const Element &a, const Element &b) const {return result = a-b;} Element& Reduce(Element &a, const Element &b) const {return a-=b;} const Element& Double(const Element &a) const {return result = a.Doubled();} const Element& MultiplicativeIdentity() const {return Element::One();} const Element& Multiply(const Element &a, const Element &b) const {return result = a*b;} const Element& Square(const Element &a) const {return result = a.Squared();} bool IsUnit(const Element &a) const {return a.IsUnit();} const Element& MultiplicativeInverse(const Element &a) const {return result = a.MultiplicativeInverse();} const Element& Divide(const Element &a, const Element &b) const {return result = a/b;} const Element& Mod(const Element &a, const Element &b) const {return result = a%b;} void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const {Element::Divide(r, q, a, d);} bool operator==(const EuclideanDomainOf &rhs) const {CRYPTOPP_UNUSED(rhs); return true;} private: mutable Element result; }; //! Quotient Ring template class QuotientRing : public AbstractRing { public: typedef T EuclideanDomain; typedef typename T::Element Element; QuotientRing(const EuclideanDomain &domain, const Element &modulus) : m_domain(domain), m_modulus(modulus) {} const EuclideanDomain & GetDomain() const {return m_domain;} const Element& GetModulus() const {return m_modulus;} bool Equal(const Element &a, const Element &b) const {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());} const Element& Identity() const {return m_domain.Identity();} const Element& Add(const Element &a, const Element &b) const {return m_domain.Add(a, b);} Element& Accumulate(Element &a, const Element &b) const {return m_domain.Accumulate(a, b);} const Element& Inverse(const Element &a) const {return m_domain.Inverse(a);} const Element& Subtract(const Element &a, const Element &b) const {return m_domain.Subtract(a, b);} Element& Reduce(Element &a, const Element &b) const {return m_domain.Reduce(a, b);} const Element& Double(const Element &a) const {return m_domain.Double(a);} bool IsUnit(const Element &a) const {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));} const Element& MultiplicativeIdentity() const {return m_domain.MultiplicativeIdentity();} const Element& Multiply(const Element &a, const Element &b) const {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);} const Element& Square(const Element &a) const {return m_domain.Mod(m_domain.Square(a), m_modulus);} const Element& MultiplicativeInverse(const Element &a) const; bool operator==(const QuotientRing &rhs) const {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;} protected: EuclideanDomain m_domain; Element m_modulus; }; NAMESPACE_END #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES #include "algebra.cpp" #endif #endif