//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: // // $NoKeywords: $ //===========================================================================// #include "cbase.h" #include "c_baseanimatingoverlay.h" #include "animation.h" #include "bone_setup.h" #include "tier0/vprof.h" #include "engine/IVDebugOverlay.h" #include "datacache/imdlcache.h" #include "eventlist.h" #include "toolframework_client.h" #include "dt_utlvector_recv.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" extern ConVar r_sequence_debug; template class CInterpolatedVar; mstudioevent_for_client_server_t *GetEventIndexForSequence( mstudioseqdesc_t &seqdesc ); void C_AnimationLayer::SetOwner( C_BaseAnimatingOverlay *pOverlay ) { m_pOwner = pOverlay; } C_BaseAnimatingOverlay *C_AnimationLayer::GetOwner() const { return m_pOwner; } void C_AnimationLayer::Reset() { if ( m_pOwner ) { int nFlags = 0; if ( m_nSequence != 0 || m_flWeight != 0.0f ) { nFlags |= BOUNDS_CHANGED; } if ( m_flCycle != 0.0f ) { nFlags |= ANIMATION_CHANGED; } if ( nFlags ) { m_pOwner->InvalidatePhysicsRecursive( nFlags ); } } m_nSequence = 0; m_flPrevCycle = 0; m_flWeight = 0; m_flPlaybackRate = 0; m_flCycle = 0; m_flLayerAnimtime = 0; m_flLayerFadeOuttime = 0; } void C_AnimationLayer::SetSequence( int nSequence ) { if ( m_pOwner && m_nSequence != nSequence ) { m_pOwner->InvalidatePhysicsRecursive( BOUNDS_CHANGED ); } m_nSequence = nSequence; } void C_AnimationLayer::SetCycle( float flCycle ) { if ( m_pOwner && m_flCycle != flCycle ) { m_pOwner->InvalidatePhysicsRecursive( ANIMATION_CHANGED ); } m_flCycle = flCycle; } void C_AnimationLayer::SetOrder( int order ) { if ( m_pOwner && ( m_nOrder != order ) ) { if ( m_nOrder == C_BaseAnimatingOverlay::MAX_OVERLAYS || order == C_BaseAnimatingOverlay::MAX_OVERLAYS ) { m_pOwner->InvalidatePhysicsRecursive( BOUNDS_CHANGED ); } } m_nOrder = order; } void C_AnimationLayer::SetWeight( float flWeight ) { if ( m_pOwner && m_flWeight != flWeight ) { if ( m_flWeight == 0.0f || flWeight == 0.0f ) { m_pOwner->InvalidatePhysicsRecursive( BOUNDS_CHANGED ); } } m_flWeight = flWeight; } C_BaseAnimatingOverlay::C_BaseAnimatingOverlay() { // NOTE: We zero the memory in the max capacity m_Layer vector in dt_ultvector_common.h // FIXME: where does this initialization go now? // AddVar( m_Layer, &m_iv_AnimOverlay, LATCH_ANIMATION_VAR ); } #undef CBaseAnimatingOverlay void RecvProxy_SequenceChanged( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CAnimationLayer *pLayer = (CAnimationLayer *)pStruct; pLayer->SetSequence( pData->m_Value.m_Int ); } void RecvProxy_WeightChanged( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CAnimationLayer *pLayer = (CAnimationLayer *)pStruct; pLayer->SetWeight( pData->m_Value.m_Float ); } void RecvProxy_CycleChanged( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CAnimationLayer *pLayer = (CAnimationLayer *)pStruct; pLayer->SetCycle( pData->m_Value.m_Float ); } void RecvProxy_OrderChanged( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CAnimationLayer *pLayer = (CAnimationLayer *)pStruct; pLayer->SetOrder( pData->m_Value.m_Int ); } BEGIN_RECV_TABLE_NOBASE(CAnimationLayer, DT_Animationlayer) RecvPropInt( RECVINFO_NAME(m_nSequence, m_nSequence), 0, RecvProxy_SequenceChanged ), RecvPropFloat( RECVINFO_NAME(m_flCycle, m_flCycle), 0, RecvProxy_CycleChanged ), RecvPropFloat( RECVINFO_NAME(m_flPrevCycle, m_flPrevCycle)), RecvPropFloat( RECVINFO_NAME(m_flWeight, m_flWeight), 0, RecvProxy_WeightChanged ), RecvPropInt( RECVINFO_NAME(m_nOrder, m_nOrder), 0, RecvProxy_OrderChanged ) END_RECV_TABLE() const char *s_m_iv_AnimOverlayNames[C_BaseAnimatingOverlay::MAX_OVERLAYS] = { "C_BaseAnimatingOverlay::m_iv_AnimOverlay00", "C_BaseAnimatingOverlay::m_iv_AnimOverlay01", "C_BaseAnimatingOverlay::m_iv_AnimOverlay02", "C_BaseAnimatingOverlay::m_iv_AnimOverlay03", "C_BaseAnimatingOverlay::m_iv_AnimOverlay04", "C_BaseAnimatingOverlay::m_iv_AnimOverlay05", "C_BaseAnimatingOverlay::m_iv_AnimOverlay06", "C_BaseAnimatingOverlay::m_iv_AnimOverlay07", "C_BaseAnimatingOverlay::m_iv_AnimOverlay08", "C_BaseAnimatingOverlay::m_iv_AnimOverlay09", "C_BaseAnimatingOverlay::m_iv_AnimOverlay10", "C_BaseAnimatingOverlay::m_iv_AnimOverlay11", "C_BaseAnimatingOverlay::m_iv_AnimOverlay12", "C_BaseAnimatingOverlay::m_iv_AnimOverlay13", "C_BaseAnimatingOverlay::m_iv_AnimOverlay14" }; void ResizeAnimationLayerCallback( void *pStruct, int offsetToUtlVector, int len ) { C_BaseAnimatingOverlay *pEnt = (C_BaseAnimatingOverlay*)pStruct; CUtlVector < CAnimationLayer > *pVec = &pEnt->m_AnimOverlay; CUtlVector< CInterpolatedVar< CAnimationLayer > > *pVecIV = &pEnt->m_iv_AnimOverlay; Assert( (char*)pVec - (char*)pEnt == offsetToUtlVector ); Assert( pVec->Count() == pVecIV->Count() ); Assert( pVec->Count() <= C_BaseAnimatingOverlay::MAX_OVERLAYS ); int diff = len - pVec->Count(); if ( diff != 0 ) { // remove all entries for ( int i=0; i < pVec->Count(); i++ ) { pEnt->RemoveVar( &pVec->Element( i ) ); } pEnt->InvalidatePhysicsRecursive( BOUNDS_CHANGED ); // adjust vector sizes if ( diff > 0 ) { for ( int i = 0; i < diff; ++i ) { int j = pVec->AddToTail( ); (*pVec)[j].SetOwner( pEnt ); } pVecIV->AddMultipleToTail( diff ); } else { pVec->RemoveMultiple( len, -diff ); pVecIV->RemoveMultiple( len, -diff ); } // Rebind all the variables in the ent's list. for ( int i=0; i < len; i++ ) { IInterpolatedVar *pWatcher = &pVecIV->Element( i ); pWatcher->SetDebugName( s_m_iv_AnimOverlayNames[i] ); pEnt->AddVar( &pVec->Element( i ), pWatcher, LATCH_ANIMATION_VAR, true ); } } // FIXME: need to set historical values of nOrder in pVecIV to MAX_OVERLAY // Ensure capacity pVec->EnsureCapacity( len ); int nNumAllocated = pVec->NumAllocated(); // This is important to do because EnsureCapacity doesn't actually call the constructors // on the elements, but we need them to be initialized, otherwise it'll have out-of-range // values which will piss off the datatable encoder. UtlVector_InitializeAllocatedElements( pVec->Base() + pVec->Count(), nNumAllocated - pVec->Count() ); } BEGIN_RECV_TABLE_NOBASE( C_BaseAnimatingOverlay, DT_OverlayVars ) RecvPropUtlVector( RECVINFO_UTLVECTOR_SIZEFN( m_AnimOverlay, ResizeAnimationLayerCallback ), C_BaseAnimatingOverlay::MAX_OVERLAYS, RecvPropDataTable(NULL, 0, 0, &REFERENCE_RECV_TABLE( DT_Animationlayer ) ) ) END_RECV_TABLE() IMPLEMENT_CLIENTCLASS_DT( C_BaseAnimatingOverlay, DT_BaseAnimatingOverlay, CBaseAnimatingOverlay ) RecvPropDataTable( "overlay_vars", 0, 0, &REFERENCE_RECV_TABLE( DT_OverlayVars ) ) END_RECV_TABLE() BEGIN_PREDICTION_DATA( C_BaseAnimatingOverlay ) /* DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[0][2].m_nSequence, FIELD_INTEGER ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[0][2].m_flCycle, FIELD_FLOAT ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[0][2].m_flPlaybackRate, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[0][2].m_flWeight, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[1][2].m_nSequence, FIELD_INTEGER ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[1][2].m_flCycle, FIELD_FLOAT ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[1][2].m_flPlaybackRate, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[1][2].m_flWeight, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[2][2].m_nSequence, FIELD_INTEGER ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[2][2].m_flCycle, FIELD_FLOAT ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[2][2].m_flPlaybackRate, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[2][2].m_flWeight, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[3][2].m_nSequence, FIELD_INTEGER ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[3][2].m_flCycle, FIELD_FLOAT ), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[3][2].m_flPlaybackRate, FIELD_FLOAT), DEFINE_FIELD( C_BaseAnimatingOverlay, m_Layer[3][2].m_flWeight, FIELD_FLOAT), */ END_PREDICTION_DATA() CAnimationLayer* C_BaseAnimatingOverlay::GetAnimOverlay( int i ) { Assert( i >= 0 && i < MAX_OVERLAYS ); return &m_AnimOverlay[i]; } void C_BaseAnimatingOverlay::SetNumAnimOverlays( int num ) { if ( m_AnimOverlay.Count() < num ) { int nCountToAdd = num - m_AnimOverlay.Count(); for ( int i = 0; i < nCountToAdd; ++i ) { int j = m_AnimOverlay.AddToTail( ); m_AnimOverlay[j].SetOwner( this ); } } else if ( m_AnimOverlay.Count() > num ) { m_AnimOverlay.RemoveMultiple( num, m_AnimOverlay.Count() - num ); InvalidatePhysicsRecursive( BOUNDS_CHANGED ); } // Ensure capacity m_AnimOverlay.EnsureCapacity( C_BaseAnimatingOverlay::MAX_OVERLAYS ); int nNumAllocated = m_AnimOverlay.NumAllocated(); // This is important to do because EnsureCapacity doesn't actually call the constructors // on the elements, but we need them to be initialized, otherwise it'll have out-of-range // values which will piss off the datatable encoder. UtlVector_InitializeAllocatedElements( m_AnimOverlay.Base() + m_AnimOverlay.Count(), nNumAllocated - m_AnimOverlay.Count() ); } int C_BaseAnimatingOverlay::GetNumAnimOverlays() const { return m_AnimOverlay.Count(); } void C_BaseAnimatingOverlay::GetRenderBounds( Vector& theMins, Vector& theMaxs ) { BaseClass::GetRenderBounds( theMins, theMaxs ); if ( IsRagdoll() ) return; CStudioHdr *pStudioHdr = GetModelPtr(); if ( !pStudioHdr || !pStudioHdr->SequencesAvailable() ) return; int nSequences = pStudioHdr->GetNumSeq(); int i; for (i = 0; i < m_AnimOverlay.Count(); i++) { if ( m_AnimOverlay[i].m_flWeight > 0.0 && m_AnimOverlay[i].m_nOrder != MAX_OVERLAYS ) { if ( m_AnimOverlay[i].m_nSequence >= nSequences ) continue; mstudioseqdesc_t &seqdesc = pStudioHdr->pSeqdesc( m_AnimOverlay[i].m_nSequence ); VectorMin( seqdesc.bbmin, theMins, theMins ); VectorMax( seqdesc.bbmax, theMaxs, theMaxs ); } } } bool C_BaseAnimatingOverlay::Interpolate( float flCurrentTime ) { bool bOk = BaseClass::Interpolate( flCurrentTime ); CheckForLayerPhysicsInvalidate(); return bOk; } void C_BaseAnimatingOverlay::CheckForLayerChanges( CStudioHdr *hdr, float currentTime ) { CDisableRangeChecks disableRangeChecks; // FIXME: damn, there has to be a better way than this. int i; for (i = 0; i < m_iv_AnimOverlay.Count(); i++) { CDisableRangeChecks disableRangeChecks; int iHead, iPrev1, iPrev2; m_iv_AnimOverlay[i].GetInterpolationInfo( currentTime, &iHead, &iPrev1, &iPrev2 ); // fake up previous cycle values. float t0; CAnimationLayer *pHead = m_iv_AnimOverlay[i].GetHistoryValue( iHead, t0 ); // reset previous float t1; CAnimationLayer *pPrev1 = m_iv_AnimOverlay[i].GetHistoryValue( iPrev1, t1 ); // reset previous previous float t2; CAnimationLayer *pPrev2 = m_iv_AnimOverlay[i].GetHistoryValue( iPrev2, t2 ); if ( !pHead || !pPrev1 || pHead->m_nSequence == pPrev1->m_nSequence ) continue; #if 1 // _DEBUG if (r_sequence_debug.GetInt() == entindex()) { DevMsgRT( "(%7.4f : %30s : %5.3f : %4.2f : %1d)\n", t0, hdr->pSeqdesc( pHead->m_nSequence ).pszLabel(), (float)pHead->m_flCycle, (float)pHead->m_flWeight, i ); DevMsgRT( "(%7.4f : %30s : %5.3f : %4.2f : %1d)\n", t1, hdr->pSeqdesc( pPrev1->m_nSequence ).pszLabel(), (float)pPrev1->m_flCycle, (float)pPrev1->m_flWeight, i ); if (pPrev2) DevMsgRT( "(%7.4f : %30s : %5.3f : %4.2f : %1d)\n", t2, hdr->pSeqdesc( pPrev2->m_nSequence ).pszLabel(), (float)pPrev2->m_flCycle, (float)pPrev2->m_flWeight, i ); } #endif pPrev1->m_nSequence = pHead->m_nSequence; pPrev1->m_flCycle = pHead->m_flPrevCycle; pPrev1->m_flWeight = pHead->m_flWeight; if (pPrev2) { float num = 0; if ( fabs( t0 - t1 ) > 0.001f ) num = (t2 - t1) / (t0 - t1); pPrev2->m_nSequence = pHead->m_nSequence; float flTemp; if (IsSequenceLooping( hdr, pHead->m_nSequence )) { flTemp = LoopingLerp( num, (float)pHead->m_flPrevCycle, (float)pHead->m_flCycle ); } else { flTemp = Lerp( num, (float)pHead->m_flPrevCycle, (float)pHead->m_flCycle ); } pPrev2->m_flCycle = flTemp; pPrev2->m_flWeight = pHead->m_flWeight; } /* if (stricmp( r_seq_overlay_debug.GetString(), hdr->name ) == 0) { DevMsgRT( "(%30s %6.2f : %6.2f : %6.2f)\n", hdr->pSeqdesc( pHead->nSequence ).pszLabel(), (float)pPrev2->m_flCycle, (float)pPrev1->m_flCycle, (float)pHead->m_flCycle ); } */ m_iv_AnimOverlay[i].SetLooping( IsSequenceLooping( hdr, pHead->m_nSequence ) ); m_iv_AnimOverlay[i].Interpolate( currentTime ); // reset event indexes m_flOverlayPrevEventCycle[i] = pHead->m_flPrevCycle - 0.01; } } //#define DEBUG_TF2_OVERLAYS void C_BaseAnimatingOverlay::AccumulateLayers( IBoneSetup &boneSetup, Vector pos[], Quaternion q[], float currentTime ) { BaseClass::AccumulateLayers( boneSetup, pos, q, currentTime ); int i; // resort the layers int layer[MAX_OVERLAYS]; for (i = 0; i < MAX_OVERLAYS; i++) { layer[i] = MAX_OVERLAYS; } for (i = 0; i < m_AnimOverlay.Count(); i++) { if (m_AnimOverlay[i].m_nOrder < MAX_OVERLAYS) { /* Assert( layer[m_AnimOverlay[i].m_nOrder] == MAX_OVERLAYS ); layer[m_AnimOverlay[i].m_nOrder] = i; */ // hacky code until initialization of new layers is finished if ( layer[m_AnimOverlay[i].m_nOrder] != MAX_OVERLAYS ) { m_AnimOverlay[i].SetOrder( MAX_OVERLAYS ); } else { layer[m_AnimOverlay[i].m_nOrder] = i; } } } CheckForLayerChanges( boneSetup.GetStudioHdr(), currentTime ); int nSequences = boneSetup.GetStudioHdr()->GetNumSeq(); // add in the overlay layers int j; for (j = 0; j < MAX_OVERLAYS; j++) { i = layer[ j ]; if ( i >= m_AnimOverlay.Count() ) { #if defined( DEBUG_TF2_OVERLAYS ) engine->Con_NPrintf( 10 + j, "%30s %6.2f : %6.2f : %1d", " ", 0.f, 0.f, i ); #endif continue; } if ( m_AnimOverlay[i].m_nSequence >= nSequences ) continue; /* DevMsgRT( 1 , "%.3f %.3f %.3f\n", currentTime, fWeight, dadt ); debugoverlay->AddTextOverlay( GetAbsOrigin() + Vector( 0, 0, 64 ), -j - 1, 0, "%2d(%s) : %6.2f : %6.2f", m_AnimOverlay[i].m_nSequence, boneSetup.GetStudioHdr()->pSeqdesc( m_AnimOverlay[i].m_nSequence )->pszLabel(), m_AnimOverlay[i].m_flCycle, m_AnimOverlay[i].m_flWeight ); */ float fWeight = m_AnimOverlay[i].m_flWeight; if ( fWeight <= 0.0f ) { #if defined( DEBUG_TF2_OVERLAYS ) engine->Con_NPrintf( 10 + j, "%30s %6.2f : %6.2f : %1d", " ", 0.f, 0.f, i ); #endif continue; } // check to see if the sequence changed // FIXME: move this to somewhere more reasonable // do a nice spline interpolation of the values // if ( m_AnimOverlay[i].m_nSequence != m_iv_AnimOverlay.GetPrev( i )->nSequence ) float fCycle = m_AnimOverlay[ i ].m_flCycle; fCycle = ClampCycle( fCycle, IsSequenceLooping( m_AnimOverlay[i].m_nSequence ) ); if (fWeight > 1.0f) { fWeight = 1.0f; } boneSetup.AccumulatePose( pos, q, m_AnimOverlay[i].m_nSequence, fCycle, fWeight, currentTime, m_pIk ); #if defined( DEBUG_TF2_OVERLAYS ) engine->Con_NPrintf( 10 + j, "%30s %6.2f : %6.2f : %1d", boneSetup.GetStudioHdr()->pSeqdesc( m_AnimOverlay[i].m_nSequence ).pszLabel(), fCycle, fWeight, i ); #endif #if 1 // _DEBUG if (r_sequence_debug.GetInt() == entindex()) { if (1) { DevMsgRT( "%8.4f : %30s : %5.3f : %4.2f : %1d\n", currentTime, boneSetup.GetStudioHdr()->pSeqdesc( m_AnimOverlay[i].m_nSequence ).pszLabel(), fCycle, fWeight, i ); } else { int iHead, iPrev1, iPrev2; m_iv_AnimOverlay[i].GetInterpolationInfo( currentTime, &iHead, &iPrev1, &iPrev2 ); // fake up previous cycle values. float t0; CAnimationLayer *pHead = m_iv_AnimOverlay[i].GetHistoryValue( iHead, t0 ); // reset previous float t1; CAnimationLayer *pPrev1 = m_iv_AnimOverlay[i].GetHistoryValue( iPrev1, t1 ); // reset previous previous float t2; CAnimationLayer *pPrev2 = m_iv_AnimOverlay[i].GetHistoryValue( iPrev2, t2 ); if ( pHead && pPrev1 && pPrev2 ) { DevMsgRT( "%6.2f : %30s %6.2f (%6.2f:%6.2f:%6.2f) : %6.2f (%6.2f:%6.2f:%6.2f) : %1d\n", currentTime, boneSetup.GetStudioHdr()->pSeqdesc( m_AnimOverlay[i].m_nSequence ).pszLabel(), fCycle, (float)pPrev2->m_flCycle, (float)pPrev1->m_flCycle, (float)pHead->m_flCycle, fWeight, (float)pPrev2->m_flWeight, (float)pPrev1->m_flWeight, (float)pHead->m_flWeight, i ); } else { DevMsgRT( "%6.2f : %30s %6.2f : %6.2f : %1d\n", currentTime, boneSetup.GetStudioHdr()->pSeqdesc( m_AnimOverlay[i].m_nSequence ).pszLabel(), fCycle, fWeight, i ); } } } #endif } } void C_BaseAnimatingOverlay::DoAnimationEvents( CStudioHdr *pStudioHdr ) { MDLCACHE_CRITICAL_SECTION(); if ( !pStudioHdr || !pStudioHdr->SequencesAvailable() ) return; int nSequences = pStudioHdr->GetNumSeq(); BaseClass::DoAnimationEvents( pStudioHdr ); bool watch = false; // Q_strstr( hdr->name, "rifle" ) ? true : false; CheckForLayerChanges( pStudioHdr, gpGlobals->curtime ); // !!! int j; for (j = 0; j < m_AnimOverlay.Count(); j++) { if ( m_AnimOverlay[j].m_nSequence >= nSequences ) { continue; } // Don't bother with 0-weight layers if ( m_AnimOverlay[j].m_flWeight == 0.0f || m_AnimOverlay[j].m_nOrder == MAX_OVERLAYS ) { continue; } mstudioseqdesc_t &seqdesc = pStudioHdr->pSeqdesc( m_AnimOverlay[j].m_nSequence ); if ( seqdesc.numevents == 0 ) continue; // stalled? if (m_AnimOverlay[j].m_flCycle == m_flOverlayPrevEventCycle[j]) continue; bool bLoopingSequence = IsSequenceLooping( m_AnimOverlay[j].m_nSequence ); bool bLooped = false; //in client code, m_flOverlayPrevEventCycle is set to -1 when we first start an overlay, looping or not if ( bLoopingSequence && m_flOverlayPrevEventCycle[j] > 0.0f && m_AnimOverlay[j].m_flCycle <= m_flOverlayPrevEventCycle[j] ) { if (m_flOverlayPrevEventCycle[j] - m_AnimOverlay[j].m_flCycle > 0.5) { bLooped = true; } else { // things have backed up, which is bad since it'll probably result in a hitch in the animation playback // but, don't play events again for the same time slice return; } } mstudioevent_t *pevent = GetEventIndexForSequence( seqdesc ); // This makes sure events that occur at the end of a sequence occur are // sent before events that occur at the beginning of a sequence. if (bLooped) { for (int i = 0; i < (int)seqdesc.numevents; i++) { // ignore all non-client-side events if ( pevent[i].type & AE_TYPE_NEWEVENTSYSTEM ) { if ( !(pevent[i].type & AE_TYPE_CLIENT) ) continue; } else if ( pevent[i].Event_OldSystem() < EVENT_CLIENT ) //Adrian - Support the old event system continue; if ( pevent[i].cycle <= m_flOverlayPrevEventCycle[j] ) continue; if ( watch ) { Msg( "%i FE %i Looped cycle %f, prev %f ev %f (time %.3f)\n", gpGlobals->tickcount, pevent[i].Event(), pevent[i].cycle, (float)m_flOverlayPrevEventCycle[j], (float)m_AnimOverlay[j].m_flCycle, gpGlobals->curtime ); } FireEvent( GetAbsOrigin(), GetAbsAngles(), pevent[ i ].Event(), pevent[ i ].pszOptions() ); } // Necessary to get the next loop working m_flOverlayPrevEventCycle[j] = -0.01; } for (int i = 0; i < (int)seqdesc.numevents; i++) { if ( pevent[i].type & AE_TYPE_NEWEVENTSYSTEM ) { if ( !(pevent[i].type & AE_TYPE_CLIENT) ) continue; } else if ( pevent[i].Event_OldSystem() < EVENT_CLIENT ) //Adrian - Support the old event system continue; bool bStartedSequence = ( m_flOverlayPrevEventCycle[j] > m_AnimOverlay[j].m_flCycle || m_flOverlayPrevEventCycle[j] == 0 ); if ( ( ( pevent[i].cycle > m_flOverlayPrevEventCycle[j] || bStartedSequence && pevent[i].cycle == 0 ) && pevent[i].cycle <= m_AnimOverlay[j].m_flCycle) ) { if ( watch ) { Msg( "%i (seq: %d) FE %i Normal cycle %f, prev %f ev %f (time %.3f)\n", gpGlobals->tickcount, (int)m_AnimOverlay[j].m_nSequence, (int)pevent[i].Event(), (float)pevent[i].cycle, (float)m_flOverlayPrevEventCycle[j], (float)m_AnimOverlay[j].m_flCycle, gpGlobals->curtime ); } FireEvent( GetAbsOrigin(), GetAbsAngles(), pevent[ i ].Event(), pevent[ i ].pszOptions() ); } } m_flOverlayPrevEventCycle[j] = m_AnimOverlay[j].m_flCycle; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- CStudioHdr *C_BaseAnimatingOverlay::OnNewModel() { CStudioHdr *hdr = BaseClass::OnNewModel(); // Clear out animation layers for ( int i=0; i < m_AnimOverlay.Count(); i++ ) { m_AnimOverlay[i].Reset(); m_AnimOverlay[i].m_nOrder = MAX_OVERLAYS; } return hdr; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseAnimatingOverlay::CheckInterpChanges( void ) { CDisableRangeChecks disableRangeChecks; for (int i = 0; i < m_AnimOverlay.Count(); i++) { int iHead, iPrev1, iPrev2; m_iv_AnimOverlay[i].GetInterpolationInfo( gpGlobals->curtime, &iHead, &iPrev1, &iPrev2 ); float t0; CAnimationLayer *pHead = m_iv_AnimOverlay[i].GetHistoryValue( iHead, t0 ); float t1; CAnimationLayer *pPrev = m_iv_AnimOverlay[i].GetHistoryValue( iPrev1, t1 ); if ( !pHead || !pPrev ) continue; m_AnimOverlay[ i ].m_nInvalidatePhysicsBits = CheckForSequenceBoxChanges( *pHead, *pPrev ); } CheckForLayerPhysicsInvalidate(); } void C_BaseAnimatingOverlay::CheckForLayerPhysicsInvalidate( void ) { // When the layers interpolate they may change the animation or bbox so we // have them accumulate the changes and call InvalidatePhysicsRecursive if any // changes are needed. int nInvalidatePhysicsChangeBits = 0; int nLayerCount = m_AnimOverlay.Count(); for ( int i = 0; i < nLayerCount; ++i ) { int nChangeBits = m_AnimOverlay[ i ].m_nInvalidatePhysicsBits; if ( nChangeBits ) { nInvalidatePhysicsChangeBits |= nChangeBits; continue; } } if ( nInvalidatePhysicsChangeBits ) { InvalidatePhysicsRecursive( nInvalidatePhysicsChangeBits ); } }