//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #include "cbase.h" #include "cmodel.h" #include "physics_trace.h" #include "ivp_surman_polygon.hxx" #include "ivp_compact_ledge.hxx" #include "ivp_compact_ledge_solver.hxx" #include "ivp_compact_surface.hxx" #include "tier0/vprof.h" #include "mathlib/ssemath.h" #include "tier0/tslist.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" // this skips the sphere tree stuff for tracing #define DEBUG_TEST_ALL_LEDGES 0 // this skips the optimization that shrinks the ray as each intersection is encountered #define DEBUG_KEEP_FULL_RAY 0 // this skips the optimization that looks up the first vert in a cubemap #define USE_COLLIDE_MAP 1 // objects with small numbers of verts build a cache of pre-transformed verts #define USE_VERT_CACHE 1 #define USE_RLE_SPANS 1 // UNDONE: This is a boost on PC, but doesn't work yet on x360 - investigate #define SIMD_MATRIX 0 // turn this on to get asserts in the low-level collision solver #define CHECK_TOI_CALCS 0 #define BRUTE_FORCE_VERT_COUNT 128 // NOTE: This is in inches (HL units) #define TEST_EPSILON (g_PhysicsUnits.collisionSweepIncrementalEpsilon) struct simplexvert_t { Vector position; unsigned short testIndex : 15; unsigned short sweepIndex : 1; unsigned short obstacleIndex; }; struct simplex_t { simplexvert_t verts[4]; int vertCount; inline bool PointSimplex( const simplexvert_t &newPoint, Vector *pOut ); inline bool EdgeSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &edge, Vector *pOut ); inline bool TriangleSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &faceNormal, Vector *pOut ); bool SolveGJKSet( const simplexvert_t &newPoint, Vector *pOut ); bool SolveVoronoiRegion2( const simplexvert_t &newPoint, Vector *pOut ); bool SolveVoronoiRegion3( const simplexvert_t &newPoint, Vector *pOut ); bool SolveVoronoiRegion4( const simplexvert_t &newPoint, Vector *pOut ); Vector ClipRayToTetrahedronBase( const Vector &dir ); Vector ClipRayToTetrahedron( const Vector &dir ); float ClipRayToTriangle( const Vector &dir, float epsilon ); }; class CTraceCone : public ITraceObject { public: CTraceCone( const truncatedcone_t &cone, const Vector &translation ) { m_cone = cone; m_cone.origin += translation; float cosTheta; SinCos( DEG2RAD(m_cone.theta), &m_sinTheta, &cosTheta ); m_radius = m_cone.h * m_sinTheta / cosTheta; m_centerBase = m_cone.origin + m_cone.h * m_cone.normal; } virtual int SupportMap( const Vector &dir, Vector *pOut ) const { Vector unitDir = dir; VectorNormalize(unitDir); float dot = DotProduct( unitDir, m_cone.normal ); // anti-cone is -normal, angle = 90 - theta // If the normal is in the anti-cone, then return the apex // not in anti-cone, support map is on the surface of the disc if ( dot > -m_sinTheta ) { unitDir -= m_cone.normal * dot; float len = VectorNormalize( unitDir ); if ( len > 1e-4f ) { *pOut = m_centerBase + (unitDir * m_radius); return 0; } *pOut = m_centerBase; return 0; } // outside the cone's angle, support map is on the surface of the cone *pOut = m_cone.origin; return 0; } // BUGBUG: Doesn't work! virtual Vector GetVertByIndex( int index ) const { return m_cone.origin; } virtual float Radius( void ) const { return m_cone.h + m_radius; } truncatedcone_t m_cone; float m_radius; float m_sinTheta; Vector m_centerBase; }; // really this is indexing a vertex, but the iteration code needs a triangle + edge index. // edge is always 0-2 so return it in the bottom 2 bits static unsigned short GetPackedIndex( const IVP_Compact_Ledge *pLedge, const IVP_U_Float_Point &dir ) { const IVP_Compact_Poly_Point *RESTRICT pPoints = pLedge->get_point_array(); const IVP_Compact_Triangle *RESTRICT pTri = pLedge->get_first_triangle(); const IVP_Compact_Edge *RESTRICT pEdge = pTri->get_edge( 0 ); int best = pEdge->get_start_point_index(); float bestDot = pPoints[best].dot_product( &dir ); int triCount = pLedge->get_n_triangles(); const IVP_Compact_Triangle *RESTRICT pBestTri = pTri; // this loop will early out, but keep it from being infinite int i; // hillclimbing search to find the best support vert for ( i = 0; i < triCount; i++ ) { // get the index to the end vert of this edge (start vert on next edge) pEdge = pEdge->get_prev(); int stopVert = pEdge->get_start_point_index(); // loop through the verts that can be reached along edges from this vert // stop if you get back to the one you're starting on. int vert = stopVert; do { float dot = pPoints[vert].dot_product( &dir ); if ( dot > bestDot ) { bestDot = dot; best = vert; pBestTri = pEdge->get_triangle(); break; } // tri opposite next edge, same starting vert as next edge pEdge = pEdge->get_opposite()->get_prev(); vert = pEdge->get_start_point_index(); } while ( vert != stopVert ); // if you exhausted the possibilities for this vert, it must be the best vert if ( vert != best ) break; } int triIndex = pBestTri - pLedge->get_first_triangle(); int edgeIndex = 0; // just do a search for the edge containing this vert instead of storing it along the way for ( i = 0; i < 3; i++ ) { if ( pBestTri->get_edge(i)->get_start_point_index() == best ) { edgeIndex = i; break; } } return (unsigned short) ( (triIndex<<2) + edgeIndex ); } void InitLeafmap( IVP_Compact_Ledge *pLedge, leafmap_t *pLeafmapOut ) { pLeafmapOut->pLeaf = pLedge; pLeafmapOut->vertCount = 0; pLeafmapOut->flags = 0; pLeafmapOut->spanCount = 0; if ( pLedge && pLedge->is_terminal() ) { // for small numbers of verts it's much faster to simply do dot products with all verts // since the best case for hillclimbing is to touch the start vert plus all neighbors (avg_valence+1 dots) // in t int triCount = pLedge->get_n_triangles(); // this is a guess that anything with more than brute_force * 4 tris will have at least brute_force verts if ( triCount <= BRUTE_FORCE_VERT_COUNT*4 ) { Assert(triCount>0); int minV = MAX_CONVEX_VERTS; int maxV = 0; for ( int i = 0; i < triCount; i++ ) { const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i; for ( int j = 0; j < 3; j++ ) { const IVP_Compact_Edge *pEdge = pTri->get_edge( j ); int v = pEdge->get_start_point_index(); if ( v < minV ) { minV = v; } if ( v > maxV ) { maxV = v; } } } int vertCount = (maxV-minV) + 1; // max possible verts is < 48, so this is just here for some real failure // or vert sharing with a large collection of convexes. In that case the // number could be high, but this approach to implementing support is invalid // because the vert range is polluted if ( vertCount < BRUTE_FORCE_VERT_COUNT ) { char hasVert[BRUTE_FORCE_VERT_COUNT]; memset(hasVert, 0, sizeof(hasVert[0])*vertCount); for ( int i = 0; i < triCount; i++ ) { const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i; for ( int j = 0; j < 3; j++ ) { // mark each vert in the list const IVP_Compact_Edge *pEdge = pTri->get_edge( j ); int v = pEdge->get_start_point_index(); hasVert[v-minV] = true; } } // now find the vertex spans and encode them byte spans[BRUTE_FORCE_VERT_COUNT]; int spanIndex = 0; char has = hasVert[0]; Assert(has); byte count = 1; for ( int i = 1; i < vertCount && spanIndex < BRUTE_FORCE_VERT_COUNT; i++ ) { // each change of state is a new span if ( has != hasVert[i] ) { spans[spanIndex] = count; has = hasVert[i]; count = 0; spanIndex++; } count++; Assert(count < 255); } // rle spans only supported with vertex caching #if USE_VERT_CACHE && USE_RLE_SPANS if ( spanIndex < BRUTE_FORCE_VERT_COUNT ) #else if ( spanIndex < 1 ) #endif { spans[spanIndex] = count; spanIndex++; pLeafmapOut->SetRLESpans( minV, spanIndex, spans ); } } } } if ( !pLeafmapOut->HasSpans() ) { // otherwise make a 8-way directional map to pick the best start vert for hillclimbing pLeafmapOut->SetHasCubemap(); for ( int i = 0; i < 8; i++ ) { IVP_U_Float_Point tmp; tmp.k[0] = ( i & 1 ) ? -1 : 1; tmp.k[1] = ( i & 2 ) ? -1 : 1; tmp.k[2] = ( i & 4 ) ? -1 : 1; pLeafmapOut->startVert[i] = GetPackedIndex( pLedge, tmp ); } } } void GetStartVert( const leafmap_t *pLeafmap, const IVP_U_Float_Point &localDirection, int &triIndex, int &edgeIndex ) { if ( !pLeafmap || !pLeafmap->HasCubemap() ) return; // map dir to index int cacheIndex = (localDirection.k[0] < 0 ? 1 : 0) + (localDirection.k[1] < 0 ? 2 : 0) + (localDirection.k[2] < 0 ? 4 : 0 ); triIndex = pLeafmap->startVert[cacheIndex] >> 2; edgeIndex = pLeafmap->startVert[cacheIndex] & 0x3; } CTSPool g_VisitHashPool; CVisitHash *AllocVisitHash() { return g_VisitHashPool.GetObject(); } void FreeVisitHash(CVisitHash *pFree) { if ( pFree ) { g_VisitHashPool.PutObject(pFree); } } //----------------------------------------------------------------------------- // Purpose: Implementation for Trace against an IVP object //----------------------------------------------------------------------------- class CTraceIVP : public ITraceObject { public: CTraceIVP( const CPhysCollide *pCollide, const Vector &origin, const QAngle &angles ); ~CTraceIVP() { // if ( m_pVisitHash ) // FreeVisitHash(m_pVisitHash); } virtual int SupportMap( const Vector &dir, Vector *pOut ) const; virtual Vector GetVertByIndex( int index ) const; // UNDONE: Do general ITraceObject center/offset computation and move the ray to account // for this delta like we do in TraceSweepIVP() // Then we can shrink the radius of objects with mass centers NOT at the origin virtual float Radius( void ) const { return m_radius; } inline float TransformLengthToLocal( float length ) { return ConvertDistanceToIVP( length ); } // UNDONE: Optimize this by storing 3 matrices? (one for each transform that includes rot/scale for HL/IVP)? // UNDONE: Not necessary if we remove the coordinate conversion inline void TransformDirectionToLocal( const Vector &dir, IVP_U_Float_Point &local ) const { IVP_U_Float_Point tmp; ConvertDirectionToIVP( dir, tmp ); m_matrix.vimult3( &tmp, &local ); } inline void RotateRelativePositionToLocal( const Vector &delta, IVP_U_Float_Point &local ) const { IVP_U_Float_Point tmp; ConvertPositionToIVP( delta, tmp ); m_matrix.vimult3( &tmp, &local ); } inline void TransformPositionToLocal( const Vector &pos, IVP_U_Float_Point &local ) const { IVP_U_Float_Point tmp; ConvertPositionToIVP( pos, tmp ); m_matrix.vimult4( &tmp, &local ); } inline void TransformPositionFromLocal( const IVP_U_Float_Point &local, Vector &out ) const { VectorTransform( *(Vector *)&local, *((const matrix3x4_t *)&m_ivpLocalToHLWorld), out ); } #if USE_VERT_CACHE inline Vector CachedVertByIndex(int index) const { int subIndex = index & 3; return m_vertCache[index>>2].Vec(subIndex); } #endif bool IsValid( void ) { return m_pLedge != NULL; } void AllocateVisitHash() { if ( !m_pVisitHash ) m_pVisitHash = AllocVisitHash(); } void SetLedge( const IVP_Compact_Ledge *pLedge ) { m_pLedge = pLedge; m_pLeafmap = NULL; if ( !pLedge ) return; #if USE_VERT_CACHE m_cacheCount = 0; #endif if ( m_pCollideMap ) { for ( int i = 0; i < m_pCollideMap->leafCount; i++ ) { if ( m_pCollideMap->leafmap[i].pLeaf == pLedge ) { m_pLeafmap = &m_pCollideMap->leafmap[i]; if ( !BuildLeafmapCache( &m_pCollideMap->leafmap[i] ) ) { AllocateVisitHash(); } return; } } } AllocateVisitHash(); } bool SetSingleConvex( void ) { return false; const IVP_Compact_Ledgetree_Node *node = m_pSurface->get_compact_ledge_tree_root(); if ( node->is_terminal() == IVP_TRUE ) { SetLedge( node->get_compact_ledge() ); return true; } SetLedge( NULL ); return false; } bool BuildLeafmapCache(const leafmap_t * RESTRICT pLeafmap); bool BuildLeafmapCacheRLE( const leafmap_t * RESTRICT pLeafmap ); inline int SupportMapCached( const Vector &dir, Vector *pOut ) const; const collidemap_t *m_pCollideMap; const IVP_Compact_Surface *m_pSurface; private: const leafmap_t *m_pLeafmap; const IVP_Compact_Ledge *m_pLedge; CVisitHash *m_pVisitHash; #if SIMD_MATRIX FourVectors m_ivpLocalToHLWorld; #else matrix3x4_t m_ivpLocalToHLWorld; #endif IVP_U_Matrix m_matrix; // transform that includes scale from IVP to HL coords, do not VectorITransform or VectorRotate with this float m_radius; int m_nPointTest; int m_nStartPoint; bool m_bHasTranslation; #if USE_VERT_CACHE int m_cacheCount; // number of FourVectors used FourVectors m_vertCache[BRUTE_FORCE_VERT_COUNT/4]; #endif }; // GCC 4.2.1 can't handle loading a static const into a m128 register :( #ifdef WIN32 static const #endif fltx4 g_IVPToHLDir = { 1.0f, -1.0f, 1.0f, 1.0f }; //static const fltx4 g_IVPToHLPosition = { IVP2HL(1.0f), -IVP2HL(1.0f), IVP2HL(1.0f), IVP2HL(1.0f) }; #if defined(_X360) FORCEINLINE fltx4 ConvertDirectionToIVP( const fltx4 & a ) { fltx4 t = __vpermwi( a, VPERMWI_CONST( 0, 2, 1, 3 ) ); // negate Y return MulSIMD( t, g_IVPToHLDir ); } #else FORCEINLINE fltx4 ConvertDirectionToIVP( const fltx4 & a ) { // swap Z & Y fltx4 t = _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 0, 2, 1, 3 ) ); // negate Y return MulSIMD( t, g_IVPToHLDir ); } #endif CTraceIVP::CTraceIVP( const CPhysCollide *pCollide, const Vector &origin, const QAngle &angles ) { return; if( !pCollide ) return; #if USE_COLLIDE_MAP m_pCollideMap = pCollide->GetCollideMap(); #else m_pCollideMap = NULL; #endif m_pSurface = pCollide->GetCompactSurface(); m_pLedge = NULL; m_pVisitHash = NULL; m_bHasTranslation = (origin==vec3_origin) ? false : true; // UNDONE: Move this offset calculation into the tracing routines // I didn't do this now because it seems to require changes to most of the // transform routines - and this would cause bugs. float centerOffset = VectorLength( m_pSurface->mass_center.k ); #if SIMD_MATRIX VectorAligned forward, right, up; IVP_U_Float_Point ivpForward, ivpLeft, ivpUp; AngleVectors( angles, &forward, &right, &up ); Vector left = -right; Vector down = -up; ConvertDirectionToIVP( forward, ivpForward ); ConvertDirectionToIVP( left, ivpLeft ); ConvertDirectionToIVP( down, ivpUp ); m_matrix.set_col( IVP_INDEX_X, &ivpForward ); m_matrix.set_col( IVP_INDEX_Z, &ivpLeft ); m_matrix.set_col( IVP_INDEX_Y, &ivpUp ); ConvertPositionToIVP( origin, m_matrix.vv ); forward.w = HL2IVP(origin.x); // This vector is supposed to be left, so we'll negate it later, but we don't want to // negate the position, so add another minus to cancel out right.w = -HL2IVP(origin.y); up.w = HL2IVP(origin.z); fltx4 rx = ConvertDirectionToIVP(LoadAlignedSIMD(forward.Base())); fltx4 ry = ConvertDirectionToIVP(SubSIMD( Four_Zeros, LoadAlignedSIMD(right.Base())) ); fltx4 rz = ConvertDirectionToIVP(LoadAlignedSIMD(up.Base()) ); fltx4 scaleHL = ReplicateX4(IVP2HL(1.0f)); m_ivpLocalToHLWorld.x = MulSIMD( scaleHL, rx ); m_ivpLocalToHLWorld.y = MulSIMD( scaleHL, ry ); m_ivpLocalToHLWorld.z = MulSIMD( scaleHL, rz ); #else ConvertRotationToIVP( angles, m_matrix ); ConvertPositionToIVP( origin, m_matrix.vv ); float scale = IVP2HL(1.0f); float negScale = IVP2HL(-1.0f); // copy the existing IVP local->world matrix (swap Y & Z) m_ivpLocalToHLWorld.m_flMatVal[0][0] = m_matrix.get_elem(IVP_INDEX_X,0) * scale; m_ivpLocalToHLWorld.m_flMatVal[0][1] = m_matrix.get_elem(IVP_INDEX_X,1) * scale; m_ivpLocalToHLWorld.m_flMatVal[0][2] = m_matrix.get_elem(IVP_INDEX_X,2) * scale; m_ivpLocalToHLWorld.m_flMatVal[1][0] = m_matrix.get_elem(IVP_INDEX_Z,0) * scale; m_ivpLocalToHLWorld.m_flMatVal[1][1] = m_matrix.get_elem(IVP_INDEX_Z,1) * scale; m_ivpLocalToHLWorld.m_flMatVal[1][2] = m_matrix.get_elem(IVP_INDEX_Z,2) * scale; m_ivpLocalToHLWorld.m_flMatVal[2][0] = m_matrix.get_elem(IVP_INDEX_Y,0) * negScale; m_ivpLocalToHLWorld.m_flMatVal[2][1] = m_matrix.get_elem(IVP_INDEX_Y,1) * negScale; m_ivpLocalToHLWorld.m_flMatVal[2][2] = m_matrix.get_elem(IVP_INDEX_Y,2) * negScale; m_ivpLocalToHLWorld.m_flMatVal[0][3] = m_matrix.vv.k[0] * scale; m_ivpLocalToHLWorld.m_flMatVal[1][3] = m_matrix.vv.k[2] * scale; m_ivpLocalToHLWorld.m_flMatVal[2][3] = m_matrix.vv.k[1] * negScale; #endif m_radius = ConvertDistanceToHL( m_pSurface->upper_limit_radius + centerOffset ); } bool CTraceIVP::BuildLeafmapCacheRLE( const leafmap_t * RESTRICT pLeafmap ) { // iterate the rle spans of verts and output them to a buffer in post-transform space int startPoint = pLeafmap->startVert[0]; int pointCount = pLeafmap->vertCount; m_cacheCount = (pointCount + 3)>>2; const byte *RESTRICT pSpans = pLeafmap->GetSpans(); int countThisSpan = pSpans[0]; int spanIndex = 1; int baseVert = 0; const VectorAligned * RESTRICT pVerts = (const VectorAligned *)&m_pLedge->get_point_array()[startPoint]; for ( int i = 0; i < m_cacheCount-1; i++ ) { if ( countThisSpan < 4 ) { // unrolled for perf // we need a batch of four verts, but they aren't in a single span int v0, v1, v2, v3; if ( !countThisSpan ) { baseVert += pSpans[spanIndex]; countThisSpan = pSpans[spanIndex+1]; spanIndex += 2; } v0 = baseVert++; countThisSpan--; if ( !countThisSpan ) { baseVert += pSpans[spanIndex]; countThisSpan = pSpans[spanIndex+1]; spanIndex += 2; } v1 = baseVert++; countThisSpan--; if ( !countThisSpan ) { baseVert += pSpans[spanIndex]; countThisSpan = pSpans[spanIndex+1]; spanIndex += 2; } v2 = baseVert++; countThisSpan--; if ( !countThisSpan ) { baseVert += pSpans[spanIndex]; countThisSpan = pSpans[spanIndex+1]; spanIndex += 2; } v3 = baseVert++; countThisSpan--; m_vertCache[i].LoadAndSwizzleAligned( pVerts[v0].Base(), pVerts[v1].Base(), pVerts[v2].Base(), pVerts[v3].Base() ); } else { // we have four verts in this span, just grab the next four m_vertCache[i].LoadAndSwizzleAligned( pVerts[baseVert+0].Base(), pVerts[baseVert+1].Base(), pVerts[baseVert+2].Base(), pVerts[baseVert+3].Base() ); baseVert += 4; countThisSpan -= 4; } } // the last iteration needs multiple spans and clamping to the last vert int v[4]; for ( int i = 0; i < 4; i++ ) { if ( spanIndex < pLeafmap->spanCount && !countThisSpan ) { baseVert += pSpans[spanIndex]; countThisSpan = pSpans[spanIndex+1]; spanIndex += 2; } if ( spanIndex < pLeafmap->spanCount ) { v[i] = baseVert; baseVert++; countThisSpan--; } else { v[i] = baseVert; if ( countThisSpan > 1 ) { countThisSpan--; baseVert++; } } } m_vertCache[m_cacheCount-1].LoadAndSwizzleAligned( pVerts[v[0]].Base(), pVerts[v[1]].Base(), pVerts[v[2]].Base(), pVerts[v[3]].Base() ); FourVectors::RotateManyBy( &m_vertCache[0], m_cacheCount, *((const matrix3x4_t *)&m_ivpLocalToHLWorld) ); return true; } bool CTraceIVP::BuildLeafmapCache( const leafmap_t * RESTRICT pLeafmap ) { #if !USE_VERT_CACHE return false; #else if ( !pLeafmap || !pLeafmap->HasSpans() || m_bHasTranslation ) return false; if ( pLeafmap->HasRLESpans() ) { return BuildLeafmapCacheRLE(pLeafmap); } // single vertex span, just xform + copy // iterate the span of verts and output them to a buffer in post-transform space // just iterate the range if one is specified int startPoint = pLeafmap->startVert[0]; int pointCount = pLeafmap->vertCount; m_cacheCount = (pointCount + 3)>>2; Assert(m_cacheCount>=0 && m_cacheCount<= (BRUTE_FORCE_VERT_COUNT/4)); const VectorAligned * RESTRICT pVerts = (const VectorAligned *)&m_pLedge->get_point_array()[startPoint]; for ( int i = 0; i < m_cacheCount-1; i++ ) { m_vertCache[i].LoadAndSwizzleAligned( pVerts[0].Base(), pVerts[1].Base(), pVerts[2].Base(), pVerts[3].Base() ); pVerts += 4; } int remIndex = (pointCount-1) & 3; int x0 = 0; int x1 = min(1,remIndex); int x2 = min(2,remIndex); int x3 = min(3,remIndex); m_vertCache[m_cacheCount-1].LoadAndSwizzleAligned( pVerts[x0].Base(), pVerts[x1].Base(), pVerts[x2].Base(), pVerts[x3].Base() ); FourVectors::RotateManyBy( &m_vertCache[0], m_cacheCount, *((const matrix3x4_t *)&m_ivpLocalToHLWorld) ); return true; #endif } static const fltx4 g_IndexBase = {0,1,2,3}; int CTraceIVP::SupportMapCached( const Vector &dir, Vector *pOut ) const { VPROF("SupportMapCached"); #if USE_VERT_CACHE FourVectors fourDir; #if defined(_X360) fltx4 vec = LoadUnaligned3SIMD( dir.Base() ); fourDir.x = SplatXSIMD(vec); fourDir.y = SplatYSIMD(vec); fourDir.z = SplatZSIMD(vec); #else fourDir.DuplicateVector(dir); #endif fltx4 index = g_IndexBase; fltx4 maxIndex = g_IndexBase; fltx4 maxDot = fourDir * m_vertCache[0]; for ( int i = 1; i < m_cacheCount; i++ ) { index = AddSIMD(index, Four_Fours); fltx4 dot = fourDir * m_vertCache[i]; fltx4 cmpMask = CmpGtSIMD(dot,maxDot); maxIndex = MaskedAssign( cmpMask, index, maxIndex ); maxDot = MaxSIMD(dot, maxDot); } // find highest of 4 fltx4 rot = RotateLeft2(maxDot); fltx4 rotIndex = RotateLeft2(maxIndex); fltx4 cmpMask = CmpGtSIMD(rot,maxDot); maxIndex = MaskedAssign(cmpMask, rotIndex, maxIndex); maxDot = MaxSIMD(rot,maxDot); rotIndex = RotateLeft(maxIndex); rot = RotateLeft(maxDot); cmpMask = CmpGtSIMD(rot,maxDot); maxIndex = MaskedAssign(cmpMask, rotIndex, maxIndex); // not needed unless we need the actual max dot at the end // maxDot = MaxSIMD(rot,maxDot); int bestIndex = SubFloatConvertToInt(maxIndex,0); *pOut = CachedVertByIndex(bestIndex); return bestIndex; #else Assert(0); #endif } int CTraceIVP::SupportMap( const Vector &dir, Vector *pOut ) const { #if USE_VERT_CACHE if ( m_cacheCount ) return SupportMapCached( dir, pOut ); #endif if ( m_pLeafmap && m_pLeafmap->HasSingleVertexSpan() ) { VPROF("SupportMap_Leaf"); const IVP_U_Float_Point *pPoints = m_pLedge->get_point_array(); IVP_U_Float_Point mapdir; TransformDirectionToLocal( dir, mapdir ); // just iterate the range if one is specified int startPoint = m_pLeafmap->startVert[0]; int pointCount = m_pLeafmap->vertCount; float bestDot = pPoints[startPoint].dot_product(&mapdir); int best = startPoint; for ( int i = 1; i < pointCount; i++ ) { float dot = pPoints[startPoint+i].dot_product(&mapdir); if ( dot > bestDot ) { bestDot = dot; best = startPoint+i; } } TransformPositionFromLocal( pPoints[best], *pOut ); // transform point position to world space return best; } else { VPROF("SupportMap_Walk"); const IVP_U_Float_Point *pPoints = m_pLedge->get_point_array(); IVP_U_Float_Point mapdir; TransformDirectionToLocal( dir, mapdir ); int triCount = m_pLedge->get_n_triangles(); Assert( m_pVisitHash ); m_pVisitHash->NewVisit(); float dot; int triIndex = 0, edgeIndex = 0; GetStartVert( m_pLeafmap, mapdir, triIndex, edgeIndex ); const IVP_Compact_Triangle *RESTRICT pTri = m_pLedge->get_first_triangle() + triIndex; const IVP_Compact_Edge *RESTRICT pEdge = pTri->get_edge( edgeIndex ); int best = pEdge->get_start_point_index(); float bestDot = pPoints[best].dot_product( &mapdir ); m_pVisitHash->VisitVert(best); // This should never happen. MAX_CONVEX_VERTS is very large (millions), none of our // models have anywhere near this many verts in a convex piece Assert(triCount*3get_prev(); int stopVert = pEdge->get_start_point_index(); // loop through the verts that can be reached along edges from this vert // stop if you get back to the one you're starting on. int vert = stopVert; do { if ( !m_pVisitHash->WasVisited(vert) ) { // this lets us skip doing dot products on this vert m_pVisitHash->VisitVert(vert); dot = pPoints[vert].dot_product( &mapdir ); if ( dot > bestDot ) { bestDot = dot; best = vert; break; } } // tri opposite next edge, same starting vert as next edge pEdge = pEdge->get_opposite()->get_prev(); vert = pEdge->get_start_point_index(); } while ( vert != stopVert ); // if you exhausted the possibilities for this vert, it must be the best vert if ( vert != best ) break; } // code to do the brute force method with no hill-climbing #if 0 for ( i = 0; i < triCount; i++ ) { pTri = m_pLedge->get_first_triangle() + i; for ( int j = 0; j < 3; j++ ) { pEdge = pTri->get_edge( j ); int test = pEdge->get_start_point_index(); dot = pPoints[test].dot_product( &mapdir ); if ( dot > bestDot ) { Assert(0); // shouldn't hit this unless the hill-climb is broken bestDot = dot; best = test; } } } #endif TransformPositionFromLocal( pPoints[best], *pOut ); // transform point position to world space return best; } } Vector CTraceIVP::GetVertByIndex( int index ) const { #if USE_VERT_CACHE if ( m_cacheCount ) { return CachedVertByIndex(index); } #endif const IVP_Compact_Poly_Point *pPoints = m_pLedge->get_point_array(); Vector out; TransformPositionFromLocal( pPoints[index], out ); return out; } //----------------------------------------------------------------------------- // Purpose: Implementation for Trace against an AABB //----------------------------------------------------------------------------- class CTraceAABB : public ITraceObject { public: CTraceAABB( const Vector &hlmins, const Vector &hlmaxs, bool isPoint ); virtual int SupportMap( const Vector &dir, Vector *pOut ) const; virtual Vector GetVertByIndex( int index ) const; virtual float Radius( void ) const { return m_radius; } private: float m_x[2]; float m_y[2]; float m_z[2]; float m_radius; bool m_empty; }; CTraceAABB::CTraceAABB( const Vector &hlmins, const Vector &hlmaxs, bool isPoint ) { if ( isPoint ) { m_x[0] = m_x[1] = 0; m_y[0] = m_y[1] = 0; m_z[0] = m_z[1] = 0; m_radius = 0; m_empty = true; } else { m_x[0] = hlmaxs[0]; m_x[1] = hlmins[0]; m_y[0] = hlmaxs[1]; m_y[1] = hlmins[1]; m_z[0] = hlmaxs[2]; m_z[1] = hlmins[2]; m_radius = hlmaxs.Length(); m_empty = false; } } int CTraceAABB::SupportMap( const Vector &dir, Vector *pOut ) const { Vector out; if ( m_empty ) { pOut->Init(); return 0; } // index is formed by the 3-bit bitfield SzSySx (negative is 1, positive is 0) int x = ((*((unsigned int *)&dir.x)) & 0x80000000UL) >> 31; int y = ((*((unsigned int *)&dir.y)) & 0x80000000UL) >> 31; int z = ((*((unsigned int *)&dir.z)) & 0x80000000UL) >> 31; pOut->x = m_x[x]; pOut->y = m_y[y]; pOut->z = m_z[z]; return (z<<2) | (y<<1) | x; } Vector CTraceAABB::GetVertByIndex( int index ) const { Vector out; out.x = m_x[(index&1)]; out.y = m_y[(index&2)>>1]; out.z = m_z[(index&4)>>2]; return out; } //----------------------------------------------------------------------------- // Purpose: Implementation for Trace against an IVP object //----------------------------------------------------------------------------- class CTraceRay { public: CTraceRay( const Vector &hlstart, const Vector &hlend ); CTraceRay( const Ray_t &ray ); CTraceRay( const Ray_t &ray, const Vector &offset ); void Init( const Vector &hlstart, const Vector &delta ); int SupportMap( const Vector &dir, Vector *pOut ) const; Vector GetVertByIndex( int index ) const { return ( index ) ? m_end : m_start; } float Radius( void ) const { return m_length * 0.5f; } void Reset( float fraction ); Vector m_start; Vector m_end; Vector m_delta; Vector m_dir; float m_length; float m_baseLength; float m_ooBaseLength; float m_bestDist; }; CTraceRay::CTraceRay( const Vector &hlstart, const Vector &hlend ) { Init(hlstart, hlend-hlstart); } void CTraceRay::Init( const Vector &hlstart, const Vector &delta ) { m_start = hlstart; m_end = hlstart + delta; m_delta = delta; m_dir = delta; float len = DotProduct(delta, delta); // don't use fast/sse sqrt here we need the precision m_length = sqrt(len); m_ooBaseLength = 0.0f; if ( m_length > 0 ) { m_ooBaseLength = 1.0f / m_length; m_dir *= m_ooBaseLength; } m_baseLength = m_length; m_bestDist = 0.f; } CTraceRay::CTraceRay( const Ray_t &ray ) { Init( ray.m_Start, ray.m_Delta ); } CTraceRay::CTraceRay( const Ray_t &ray, const Vector &offset ) { Vector start; VectorAdd( ray.m_Start, offset, start ); Init( start, ray.m_Delta ); } void CTraceRay::Reset( float fraction ) { // recompute from base values for max precision m_length = m_baseLength * fraction; m_end = m_start + fraction * m_delta; m_bestDist = 0.f; } int CTraceRay::SupportMap( const Vector &dir, Vector *pOut ) const { if ( DotProduct( dir, m_delta ) > 0 ) { *pOut = m_end; return 1; } *pOut = m_start; return 0; } static char *map_nullname = "**empty**"; static csurface_t nullsurface = { map_nullname, 0 }; static void CM_ClearTrace( trace_t *trace ) { memset( trace, 0, sizeof(*trace)); trace->fraction = 1.f; trace->fractionleftsolid = 0; trace->surface = nullsurface; } class CDefConvexInfo : public IConvexInfo { public: IConvexInfo *GetPtr() { return this; } virtual unsigned int GetContents( int convexGameData ) { return CONTENTS_SOLID; } }; class CTraceSolver { public: CTraceSolver( trace_t *ptr, ITraceObject *sweepobject, CTraceRay *ray, ITraceObject *obstacle, const Vector &axis ) { m_pTotalTrace = ptr; m_sweepObject = sweepobject; m_sweepObjectRadius = m_sweepObject->Radius(); m_obstacle = obstacle; m_ray = ray; m_traceLength = 0; m_totalTraceLength = max( ray->m_baseLength, 1e-8f ); m_pointClosestToIntersection = axis; m_epsilon = g_PhysicsUnits.collisionSweepEpsilon; } bool SweepSingleConvex( void ); float SolveMeshIntersection( simplex_t &simplex ); float SolveMeshIntersection2D( simplex_t &simplex ); virtual void DoSweep( void ) { SweepSingleConvex(); *m_pTotalTrace = m_trace; } void SetEpsilon( float epsilon ) { m_epsilon = epsilon; } protected: trace_t m_trace; Vector m_pointClosestToIntersection; ITraceObject *m_sweepObject; ITraceObject *m_obstacle; CTraceRay *m_ray; trace_t *m_pTotalTrace; float m_traceLength; float m_totalTraceLength; float m_sweepObjectRadius; float m_epsilon; private: CTraceSolver( const CTraceSolver & ); }; class CTraceSolverSweptObject : public CTraceSolver { public: CTraceSolverSweptObject( trace_t *ptr, ITraceObject *sweepobject, CTraceRay *ray, CTraceIVP *obstacle, const Vector &axis, unsigned int contentsMask, IConvexInfo *pConvexInfo ); void InitOSRay( void ); void SweepLedgeTree_r( const IVP_Compact_Ledgetree_Node *node ); inline bool SweepHitsSphereOS( const IVP_U_Float_Point *sphereCenter, float radius ); virtual void DoSweep( void ); inline void SweepAgainstNode( const IVP_Compact_Ledgetree_Node *node ); CTraceIVP *m_obstacleIVP; IConvexInfo *m_pConvexInfo; unsigned int m_contentsMask; CDefConvexInfo m_fakeConvexInfo; IVP_U_Float_Point m_rayCenterOS; IVP_U_Float_Point m_rayStartOS; IVP_U_Float_Point m_rayDirOS; IVP_U_Float_Point m_rayDeltaOS; float m_rayLengthOS; private: CTraceSolverSweptObject( const CTraceSolverSweptObject & ); // no implementation, quells compiler warning }; CTraceSolverSweptObject::CTraceSolverSweptObject( trace_t *ptr, ITraceObject *sweepobject, CTraceRay *ray, CTraceIVP *obstacle, const Vector &axis, unsigned int contentsMask, IConvexInfo *pConvexInfo ) : CTraceSolver( ptr, sweepobject, ray, obstacle, axis ) { m_obstacleIVP = obstacle; m_contentsMask = contentsMask; m_pConvexInfo = (pConvexInfo != NULL) ? pConvexInfo : m_fakeConvexInfo.GetPtr(); } bool CTraceSolverSweptObject::SweepHitsSphereOS( const IVP_U_Float_Point *sphereCenter, float radius ) { // disable this to help find bugs #if DEBUG_TEST_ALL_LEDGES return true; #endif // the ray is actually a line-swept-sphere with sweep object's radius IVP_U_Float_Point delta_vec; // quick check for ends of ray delta_vec.subtract( sphereCenter, &m_rayCenterOS ); radius += m_sweepObjectRadius; // Is the sphere close enough to the ray at the center? float qsphere_rad = radius * radius; // If this is a 0 length ray, then the conservative test is 100% accurate if ( m_rayLengthOS > 0 ) { // Calculate the perpendicular distance to the sphere // The perpendicular forms a right triangle with the vector between the ray/sphere centers // and the ray direction vector. Calculate the projection of the hypoteneuse along the perpendicular IVP_U_Float_Point h; h.inline_calc_cross_product(&m_rayDirOS, &delta_vec); if( h.quad_length() < qsphere_rad ) return true; } else { float quad_center_dist = delta_vec.quad_length(); if ( quad_center_dist < qsphere_rad ) { return true; } // Could a ray in any direction away from the ray center intersect this sphere? float qrad_sum = m_rayLengthOS * 0.5f + radius; qrad_sum *= qrad_sum; if ( quad_center_dist >= qrad_sum ) { return false; } } return false; } inline void CTraceSolverSweptObject::SweepAgainstNode(const IVP_Compact_Ledgetree_Node *node) { const IVP_Compact_Ledge *ledge = node->get_compact_ledge(); unsigned int ledgeContents = m_pConvexInfo->GetContents( ledge->get_client_data() ); if (m_contentsMask & ledgeContents) { m_obstacleIVP->SetLedge( ledge ); if ( SweepSingleConvex() ) { if ( m_traceLength < m_totalTraceLength ) { m_pTotalTrace->plane.normal = m_trace.plane.normal; m_pTotalTrace->startsolid = m_trace.startsolid; m_pTotalTrace->allsolid = m_trace.allsolid; m_totalTraceLength = m_traceLength; m_pTotalTrace->fraction = m_traceLength * m_ray->m_ooBaseLength; Assert(m_pTotalTrace->fraction >= 0 && m_pTotalTrace->fraction <= 1.0f); #if !DEBUG_KEEP_FULL_RAY // shrink the ray to the shortened length, but leave a buffer of collisionSweepEpsilon units // at the end to make sure that precision doesn't make you miss something slightly closer float testFraction = (m_traceLength + m_epsilon*2) * m_ray->m_ooBaseLength; if ( testFraction < 1.0f ) { m_ray->Reset( testFraction ); // Update OS ray to limit tests m_rayLengthOS = m_obstacleIVP->TransformLengthToLocal( m_ray->m_length ); m_rayCenterOS.add_multiple( &m_rayStartOS, &m_rayDeltaOS, 0.5f * testFraction ); } #endif m_pTotalTrace->contents = ledgeContents; } } } } void CTraceSolverSweptObject::SweepLedgeTree_r( const IVP_Compact_Ledgetree_Node *node ) { IVP_U_Float_Point center; center.set(node->center.k); if ( !SweepHitsSphereOS( ¢er, node->radius ) ) return; // fast path for single leaf collision models if ( node->is_terminal() == IVP_TRUE ) { SweepAgainstNode(node); return; } // use an array to implement a simple stack CUtlVectorFixedGrowable list; // pull the last item in the array (top of stack) // this is nearly a priority queue, but not actually, but it's cheaper (and faster in the benchmarks) // this code is trying to visit the nodes closest to the ray start first - which helps performance // since we're only interested in the first intersection of the swept object with the physcollide. while ( 1 ) { // don't use the temp storage unless you have to. loop_without_store: if ( node->is_terminal() == IVP_TRUE ) { // leaf, do the test SweepAgainstNode(node); } else { // check node's children const IVP_Compact_Ledgetree_Node *node0 = node->left_son(); center.set(node0->center.k); // if we don't insert, this is larger than any quad distance float lastDist = 1e16f; if ( SweepHitsSphereOS( ¢er, node0->radius ) ) { lastDist = m_rayStartOS.quad_distance_to(¢er); } else { node0 = NULL; } const IVP_Compact_Ledgetree_Node *node1 = node->right_son(); center.set(node1->center.k); if ( SweepHitsSphereOS( ¢er, node1->radius ) ) { if ( node0 ) { // can hit, push on stack int index = list.AddToTail(); float dist1 = m_rayStartOS.quad_distance_to(¢er); if ( lastDist < dist1 ) { node = node0; list[index] = node1; } else { node = node1; list[index] = node0; } } else { node = node1; } goto loop_without_store; } if ( node0 ) { node = node0; goto loop_without_store; } } int last = list.Count()-1; if ( last < 0 ) break; node = list[last]; list.FastRemove(last); } } void CTraceSolverSweptObject::InitOSRay( void ) { // transform ray into object space m_rayLengthOS = m_obstacleIVP->TransformLengthToLocal( m_ray->m_length ); m_obstacleIVP->TransformPositionToLocal( m_ray->m_start, m_rayStartOS ); // no translation on matrix mult because this is a vector m_obstacleIVP->RotateRelativePositionToLocal( m_ray->m_delta, m_rayDeltaOS ); m_rayDirOS.set(&m_rayDeltaOS); m_rayDirOS.normize(); // add_multiple with 3 params assumes no initial value (should be set_add_multiple) m_rayCenterOS.add_multiple( &m_rayStartOS, &m_rayDeltaOS, 0.5f ); } void CTraceSolverSweptObject::DoSweep( void ) { VPROF("TraceSolver::DoSweep"); InitOSRay(); } void CPhysicsTrace::SweepBoxIVP( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pCollide, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr ) { Ray_t ray; ray.Init( start, end, mins, maxs ); SweepBoxIVP( ray, MASK_ALL, NULL, pCollide, surfaceOrigin, surfaceAngles, ptr ); } void CPhysicsTrace::SweepBoxIVP( const Ray_t &raySrc, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pCollide, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr ) { CM_ClearTrace( ptr ); CTraceAABB box( -raySrc.m_Extents, raySrc.m_Extents, raySrc.m_IsRay ); CTraceIVP ivp( pCollide, vec3_origin, surfaceAngles ); // offset the space of this sweep so that the surface is at the origin of the solution space CTraceRay ray( raySrc, -surfaceOrigin ); CTraceSolverSweptObject solver( ptr, &box, &ray, &ivp, ray.m_start, contentsMask, pConvexInfo ); solver.DoSweep(); VectorAdd( raySrc.m_Start, raySrc.m_StartOffset, ptr->startpos ); VectorMA( ptr->startpos, ptr->fraction, raySrc.m_Delta, ptr->endpos ); // The plane was shifted because we shifted everything over by surfaceOrigin, shift it back if ( ptr->DidHit() ) { ptr->plane.dist = DotProduct( ptr->endpos, ptr->plane.normal ); } } void CPhysicsTrace::SweepIVP( const Vector &start, const Vector &end, const CPhysCollide *pSweptSurface, const QAngle &sweptAngles, const CPhysCollide *pSurface, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr ) { CM_ClearTrace( ptr ); CTraceIVP sweptObject( pSweptSurface, vec3_origin, sweptAngles ); // offset the space of this sweep so that the surface is at the origin of the solution space CTraceIVP ivp( pSurface, vec3_origin, surfaceAngles ); CTraceRay ray( start - surfaceOrigin, end - surfaceOrigin ); IVP_U_BigVector objectLedges(32); IVP_Compact_Ledge_Solver::get_all_ledges( pSweptSurface->GetCompactSurface(), &objectLedges ); for ( int i = objectLedges.len() - 1; i >= 0; --i ) { trace_t tr; CM_ClearTrace( &tr ); sweptObject.SetLedge( objectLedges.element_at(i) ); CTraceSolverSweptObject solver( &tr, &sweptObject, &ray, &ivp, start - surfaceOrigin, MASK_ALL, NULL ); // UNDONE: Need just more than 0.25" tolerance here because the output position will be used by vphysics // UNDONE: Really this should be the collision radius from the environment. solver.SetEpsilon( g_PhysicsUnits.globalCollisionTolerance ); solver.DoSweep(); if ( tr.fraction < ptr->fraction ) { *ptr = tr; } } ptr->endpos = start*(1.f-ptr->fraction) + end * ptr->fraction; if ( ptr->DidHit() ) { ptr->plane.dist = DotProduct( ptr->endpos, ptr->plane.normal ); } } static void CalculateSeparatingPlane( trace_t *ptr, ITraceObject *sweepObject, CTraceRay *ray, ITraceObject *obstacle, simplex_t &simplex ); //----------------------------------------------------------------------------- // What is this doing? It's going to be hard to understand without reading a // reference on the GJK algorithm. But here's a quick overview: // Basically (remember this is glossing over a ton of details!) the // algorithm is building up a simplex that is trying to contain the origin. // A simplex is a point, line segment, triangle, or tetrahedron - depending on // how many verts you have. // Anyway it slowly builds one of these one vert at a time with a directed search. // So you start out with a point, then it guesses the next point that would be // most likely to form a line through the origin. If the line doesn't go quite // through the origin it tries to find a third point to capture the origin // within a triangle. If that doesn't work it tries to make a // tent (tetrahedron) out of the triangle to capture the origin. // // But at each step if the origin is not contained within, it tries to // find which sub-feature is most likely to be in the solution. In // the point case it's always just the point. In the line/edge case it // can reduce back to a point (origin is closest to one of the points) // or be the line (origin is closest to some point between them). // Same with the triangle (origin is closest to one vert - vert, origin is // closest to one edge - reduce to that edge, origin is closes to some point // in the triangle's surface - keep the whole triangle). With a tetrahedron // keeping the whole isn't possible unless the origin is inside and you're // done (the origin has been captured). // // "You're done" means that there is an intersection between the two // volumes. Assuming you're testing a sweep, it still has to test whether that // sweep can be shrunk back until there is no intersection. So it checks that. // If it's a swept test so it does the search with SolveMeshIntersection // Otherwise, there's nothing to shrink, so you set startsolid and allsolid // because it's a point/box in solid test, not a swept box/ray hits solid test. // // Why is it trying to capture the origin? Basically GJK sets up a space // and a convex hull (the minkowski sum) in that space. The convex hull // represents a field of the distances between different features of the pair // of objects (e.g. for two circles, this minkowski sum is just a circle). // So the origin is the point in the field where the distance between the // objects is zero. This means they intersect. //----------------------------------------------------------------------------- #if defined(_X360) inline void VectorNormalize_FastLowPrecision( Vector &a ) { float quad = (a.x*a.x) + (a.y*a.y) + (a.z*a.z); float ilen = __frsqrte(quad); a.x *= ilen; a.y *= ilen; a.z *= ilen; } #else #define VectorNormalize_FastLowPrecision VectorNormalize #endif bool CTraceSolver::SweepSingleConvex( void ) { VPROF("TraceSolver::SweepSingleConvex"); simplex_t simplex; simplexvert_t vert; Vector tmp; simplex.vertCount = 0; if ( m_pointClosestToIntersection == vec3_origin ) { m_pointClosestToIntersection.Init(1,0,0); } float testLen = 1; Vector dir = -m_pointClosestToIntersection; VectorNormalize_FastLowPrecision(dir); // safe loop, max 100 iterations for ( int i = 0; i < 100; i++ ) { // map the direction into the minkowski sum, get a new surface point vert.testIndex = m_sweepObject->SupportMap( dir, &vert.position ); vert.sweepIndex = m_ray->SupportMap( dir, &tmp ); VectorAdd( vert.position, tmp, vert.position ); vert.obstacleIndex = m_obstacle->SupportMap( -dir, &tmp ); VectorSubtract( vert.position, tmp, vert.position ); testLen = DotProduct( dir, vert.position ); // found a separating axis, no intersection if ( testLen < 0 ) { VPROF("SolveSeparation"); // make sure we're separated by at least m_epsilon testLen = fabs(testLen); if ( testLen < m_epsilon && m_ray->m_length > 0 ) { // not separated by enough Vector normal = dir; if ( testLen > 0 ) { // try to find a better separating plane or clip the ray to the current one for ( int j = 0; j < 20; j++ ) { Vector lastVert = vert.position; simplex.SolveGJKSet( vert, &m_pointClosestToIntersection ); dir = -m_pointClosestToIntersection; VectorNormalize_FastLowPrecision( dir ); // map the direction into the minkowski sum, get a new surface point vert.testIndex = m_sweepObject->SupportMap( dir, &vert.position ); vert.sweepIndex = m_ray->SupportMap( dir, &tmp ); VectorAdd( vert.position, tmp, vert.position ); vert.obstacleIndex = m_obstacle->SupportMap( -dir, &tmp ); VectorSubtract( vert.position, tmp, vert.position ); // found a separating axis, no intersection float est = -DotProduct( dir, vert.position ); if ( est > m_epsilon ) // big enough separation, no hit return false; // take plane with the most separation if ( est > testLen ) { testLen = est; normal = dir; } float last = -DotProduct( dir, lastVert ); // search is not converging, exit. if ( (est - last) > -1e-4f ) break; } } // This trace is going to miss, but not by enough. // Hit the separating plane instead float dot = -DotProduct( m_ray->m_delta, normal ); if ( dot < -(m_epsilon*0.1) || (dot < -1e-4f && testLen < (m_epsilon*0.9)) ) { CM_ClearTrace( &m_trace ); float backupDistance = m_epsilon - testLen; backupDistance = -(backupDistance * m_ray->m_baseLength) / dot; m_traceLength = m_ray->m_length - backupDistance; if ( m_traceLength < 0 ) { m_traceLength = 0; // try sliding along the surface of the minkowski sum backupDistance = SolveMeshIntersection2D( simplex ); if ( m_ray->m_length > backupDistance ) { m_traceLength = m_ray->m_length - backupDistance; } } m_trace.plane.normal = -normal; // this is fixed up by the outer code //m_trace.endpos = m_ray->m_start*(1.f-m_trace.fraction) + m_ray->m_end*m_trace.fraction; m_trace.contents = CONTENTS_SOLID; return true; } } return false; } // contains the origin if ( simplex.SolveGJKSet( vert, &m_pointClosestToIntersection ) ) { VPROF("TraceSolver::SolveMeshIntersection"); CM_ClearTrace( &m_trace ); // now solve for t along the sweep if ( m_ray->m_length != 0 ) { float dist = SolveMeshIntersection( simplex ); if ( dist < m_ray->m_length && dist > 0.f ) { m_traceLength = (m_ray->m_length - dist); CalculateSeparatingPlane( &m_trace, m_sweepObject, m_ray, m_obstacle, simplex ); float dot = DotProduct( m_ray->m_dir, m_trace.plane.normal ); if ( dot < 0 ) { m_traceLength += (m_epsilon / dot); } if ( m_traceLength < 0 ) { m_traceLength = 0; } //m_trace.fraction = m_traceLength * m_ray->m_ooBaseLength; //m_trace.endpos = m_ray->m_start*(1.f-m_trace.fraction) + m_ray->m_end*m_trace.fraction; m_trace.contents = CONTENTS_SOLID; } else { // UNDONE: This case happens when you start solid as well as when a false // intersection is detected at the very end of the trace m_trace.startsolid = true; m_trace.allsolid = true; m_traceLength = 0; } } else { m_trace.startsolid = true; m_trace.allsolid = true; m_traceLength = 0; } return true; } dir = -m_pointClosestToIntersection; VectorNormalize_FastLowPrecision( dir ); } // BUGBUG: The solution never converged - something is probably wrong! AssertMsg( false, "Solution never converged."); return false; } // NEW SWEPT GJK SOLVER 2/16/2006 // convenience routines - just makes the code a little simpler. FORCEINLINE bool simplex_t::TriangleSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &faceNormal, Vector *pOut ) { vertCount = 3; verts[outIndex] = newPoint; *pOut = -faceNormal; return false; } FORCEINLINE bool simplex_t::EdgeSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &edge, Vector *pOut ) { vertCount = 2; verts[outIndex] = newPoint; Vector cross; CrossProduct( edge, newPoint.position, cross ); CrossProduct( cross, edge, *pOut ); return false; } FORCEINLINE bool simplex_t::PointSimplex( const simplexvert_t &newPoint, Vector *pOut ) { vertCount = 1; verts[0] = newPoint; *pOut = newPoint.position; return false; } // In general the voronoi region routines have comments referring to the verts // All of the code assumes that vert A is the new vert being added to the set // verts B, C, D are the previous set. If BCD is a triangle it is assumed to be // counter-clockwise winding order. This must be maintained by the code! // parametric value for closes point on a line segment (p0->p1) to the origin. bool simplex_t::SolveVoronoiRegion2( const simplexvert_t &newPoint, Vector *pOut ) { // solve the line segment AB (where A is the new point) Vector AB = verts[0].position - newPoint.position; float d = DotProduct(AB, newPoint.position); if ( d < 0 ) { return EdgeSimplex(newPoint, 1, AB, pOut); } else { return PointSimplex(newPoint, pOut); } } // UNDONE: Collapse these routines into a single general routine? bool simplex_t::SolveVoronoiRegion3( const simplexvert_t &newPoint, Vector *pOut ) { // solve the triangle ABC (where A is the new point) Vector AB = verts[0].position - newPoint.position; Vector AC = verts[1].position - newPoint.position; Vector ABC; CrossProduct(AB, AC, ABC); Vector ABCxAC; CrossProduct(ABC, AC, ABCxAC); float d = DotProduct(ABCxAC, newPoint.position); // edge AC or edgeAB / A? if ( d < 0 ) { d = DotProduct(AC, newPoint.position); if ( d < 0 ) { // edge AC return EdgeSimplex(newPoint, 0, AC, pOut); } } else { // face or A / edge AB? Vector ABxABC; CrossProduct(AB, ABC, ABxABC); d = DotProduct(ABxABC, newPoint.position); if ( d > 0 ) { // closest to face vertCount = 3; d = DotProduct(ABC, newPoint.position); // in front of face, return opposite direction if ( d < 0 ) { verts[2] = newPoint; *pOut = -ABC; return false; } verts[2] = verts[1]; // swap to keep CCW verts[1] = newPoint; *pOut = ABC; return false; } } // edge AB or A d = DotProduct(AB, newPoint.position); if ( d < 0 ) { return EdgeSimplex(newPoint, 1, AB, pOut); } return PointSimplex(newPoint, pOut); } bool simplex_t::SolveVoronoiRegion4( const simplexvert_t &newPoint, Vector *pOut ) { // solve the tetrahedron ABCD (where A is the new point) // compute edge vectors Vector AB = verts[0].position - newPoint.position; Vector AC = verts[1].position - newPoint.position; Vector AD = verts[2].position - newPoint.position; // compute face normals Vector ABC, ACD, ADB; CrossProduct( AB, AC, ABC ); CrossProduct( AC, AD, ACD ); CrossProduct( AD, AB, ADB ); // edge plane normals Vector ABCxAC, ABxABC; CrossProduct( ABC, AC, ABCxAC ); CrossProduct( AB, ABC, ABxABC ); Vector ACDxAD, ACxACD; CrossProduct( ACD, AD, ACDxAD ); CrossProduct( AC, ACD, ACxACD ); Vector ADBxAB, ADxADB; CrossProduct( ADB, AB, ADBxAB ); CrossProduct( AD, ADB, ADxADB ); int faceFlags = 0; float d; d = DotProduct(ABC,newPoint.position); if ( d < 0 ) { faceFlags |= 0x1; } d = DotProduct(ACD,newPoint.position); if ( d < 0 ) { faceFlags |= 0x2; } d = DotProduct(ADB,newPoint.position); if ( d < 0 ) { faceFlags |= 0x4; } switch( faceFlags ) { case 0: // inside all 3 faces, we're done verts[3] = newPoint; vertCount = 4; return true; case 1: // ABC only, solve as a triangle return SolveVoronoiRegion3(newPoint, pOut); case 2: // ACD only, solve as a triangle verts[0] = verts[2]; // collapse BCD to DC return SolveVoronoiRegion3(newPoint, pOut); case 4: // ADB only, solve as a triangle verts[1] = verts[2]; // collapse BCD to BD return SolveVoronoiRegion3(newPoint, pOut); case 3: { // in front of ABC & ACD d = DotProduct(ABCxAC, newPoint.position); if ( d < 0 ) { d = DotProduct(ACxACD, newPoint.position); if ( d < 0 ) { d = DotProduct(AC,newPoint.position); if ( d < 0 ) { // edge AC return EdgeSimplex( newPoint, 0, AC, pOut); } // point A return PointSimplex(newPoint, pOut); } else { d = DotProduct(ACDxAD, newPoint.position); if ( d < 0 ) { // edge AD verts[0] = verts[2]; // collapse BCD to D return EdgeSimplex(newPoint, 1, AD, pOut); } // face ACD return TriangleSimplex(newPoint,0,ACD, pOut); } } else { d = DotProduct(ABxABC, newPoint.position); if ( d < 0 ) { d = DotProduct(AB, newPoint.position); if ( d < 0 ) { // edge AB return EdgeSimplex(newPoint, 1, AB, pOut); } return PointSimplex(newPoint, pOut); } return TriangleSimplex(newPoint,2,ABC,pOut); } } break; case 5: { // in front of ADB & ABC d = DotProduct(ADBxAB, newPoint.position); if ( d < 0 ) { d = DotProduct(ABxABC, newPoint.position); if ( d < 0 ) { d = DotProduct(AB,newPoint.position); if ( d < 0 ) { // edge AB return EdgeSimplex( newPoint, 1, AB , pOut); } // point A return PointSimplex(newPoint, pOut); } else { d = DotProduct(ABCxAC, newPoint.position); if ( d < 0 ) { // edge AC return EdgeSimplex(newPoint, 0, AC, pOut); } // face ABC return TriangleSimplex(newPoint,2,ABC,pOut); } } else { d = DotProduct(ADxADB, newPoint.position); if ( d < 0 ) { d = DotProduct(AD, newPoint.position); if ( d < 0 ) { // edge AD verts[0] = verts[2]; // collapse BCD to D return EdgeSimplex(newPoint, 1, AD, pOut); } return PointSimplex(newPoint, pOut); } return TriangleSimplex(newPoint,1,ADB,pOut); } } break; case 6: { // in front of ACD & ADB d = DotProduct(ACDxAD, newPoint.position); if ( d < 0 ) { d = DotProduct(ADxADB, newPoint.position); if ( d < 0 ) { d = DotProduct(AD,newPoint.position); if ( d < 0 ) { // edge AD verts[0] = verts[2]; // collapse BCD to D return EdgeSimplex(newPoint, 1, AD, pOut); } // point A return PointSimplex(newPoint, pOut); } else { d = DotProduct(ADBxAB, newPoint.position); if ( d < 0 ) { // edge AB return EdgeSimplex(newPoint, 1, AB, pOut); } // face ADB return TriangleSimplex(newPoint,1,ADB, pOut); } } else { d = DotProduct(ACxACD, newPoint.position); if ( d < 0 ) { d = DotProduct(AC, newPoint.position); if ( d < 0 ) { // edge AC return EdgeSimplex(newPoint, 0, AC, pOut); } return PointSimplex(newPoint, pOut); } return TriangleSimplex(newPoint,0,ACD, pOut); } } break; case 7: { d = DotProduct(AB, newPoint.position); if ( d < 0 ) { return EdgeSimplex(newPoint, 1, AB, pOut); } else { d = DotProduct(AC, newPoint.position); if ( d < 0 ) { return EdgeSimplex(newPoint, 0, AC, pOut); } else { d = DotProduct(AD, newPoint.position); if ( d < 0 ) { verts[0] = verts[2]; // collapse BCD to D return EdgeSimplex(newPoint, 1, AD, pOut); } return PointSimplex(newPoint, pOut); } } } } verts[3] = newPoint; vertCount = 4; return true; } bool simplex_t::SolveGJKSet( const simplexvert_t &w, Vector *pOut ) { VPROF("TraceSolver::simplex::SolveGJKSet"); #if 0 for ( int v = 0; v < vertCount; v++ ) { for ( int v2 = v+1; v2 < vertCount; v2++ ) { if ( (verts[v].obstacleIndex == verts[v2].obstacleIndex) && (verts[v].sweepIndex == verts[v2].sweepIndex) && (verts[v].testIndex == verts[v2].testIndex) ) { // same vert in the list twice! degenerate Assert(0); } } } #endif switch( vertCount ) { case 0: vertCount = 1; verts[0] = w; *pOut = w.position; return false; case 1: return SolveVoronoiRegion2( w, pOut ); case 2: return SolveVoronoiRegion3( w, pOut ); case 3: return SolveVoronoiRegion4( w, pOut ); } return true; } void CalculateSeparatingPlane( trace_t *ptr, ITraceObject *sweepObject, CTraceRay *ray, ITraceObject *obstacle, simplex_t &simplex ) { int testCount = 1, obstacleCount = 1; unsigned int testIndex[4], obstacleIndex[4]; testIndex[0] = simplex.verts[0].testIndex; obstacleIndex[0] = simplex.verts[0].obstacleIndex; Assert( simplex.vertCount <= 4 ); int i, j; for ( i = 1; i < simplex.vertCount; i++ ) { for ( j = 0; j < obstacleCount; j++ ) { if ( obstacleIndex[j] == simplex.verts[i].obstacleIndex ) break; } if ( j == obstacleCount ) { obstacleIndex[obstacleCount++] = simplex.verts[i].obstacleIndex; } for ( j = 0; j < testCount; j++ ) { if ( testIndex[j] == simplex.verts[i].testIndex ) break; } if ( j == testCount ) { testIndex[testCount++] = simplex.verts[i].testIndex; } } if ( simplex.vertCount < 3 ) { if ( simplex.vertCount == 2 && testCount == 2 ) { // edge / point Vector t0 = sweepObject->GetVertByIndex( testIndex[0] ); Vector t1 = sweepObject->GetVertByIndex( testIndex[1] ); Vector edge = t1-t0; Vector tangent = CrossProduct( edge, ray->m_delta ); ptr->plane.normal = CrossProduct( edge, tangent ); VectorNormalize( ptr->plane.normal ); ptr->plane.dist = DotProduct( t0 + ptr->endpos, ptr->plane.normal ); return; } } if ( testCount == 3 ) { // face / xxx Vector t0 = sweepObject->GetVertByIndex( testIndex[0] ); Vector t1 = sweepObject->GetVertByIndex( testIndex[1] ); Vector t2 = sweepObject->GetVertByIndex( testIndex[2] ); ptr->plane.normal = CrossProduct( t1-t0, t2-t0 ); VectorNormalize( ptr->plane.normal ); if ( DotProduct( ptr->plane.normal, ray->m_delta ) > 0 ) { ptr->plane.normal = -ptr->plane.normal; } ptr->plane.dist = DotProduct( t0 + ptr->endpos, ptr->plane.normal ); } else if ( testCount == 2 && obstacleCount == 2 ) { // edge / edge Vector t0 = sweepObject->GetVertByIndex( testIndex[0] ); Vector t1 = sweepObject->GetVertByIndex( testIndex[1] ); Vector t2 = obstacle->GetVertByIndex( obstacleIndex[0] ); Vector t3 = obstacle->GetVertByIndex( obstacleIndex[1] ); ptr->plane.normal = CrossProduct( t1-t0, t3-t2 ); VectorNormalize( ptr->plane.normal ); if ( DotProduct( ptr->plane.normal, ray->m_delta ) > 0 ) { ptr->plane.normal = -ptr->plane.normal; } ptr->plane.dist = DotProduct( t0 + ptr->endpos, ptr->plane.normal ); } else if ( obstacleCount == 3 ) { // xxx / face Vector t0 = obstacle->GetVertByIndex( obstacleIndex[0] ); Vector t1 = obstacle->GetVertByIndex( obstacleIndex[1] ); Vector t2 = obstacle->GetVertByIndex( obstacleIndex[2] ); ptr->plane.normal = CrossProduct( t1-t0, t2-t0 ); VectorNormalize( ptr->plane.normal ); if ( DotProduct( ptr->plane.normal, ray->m_delta ) > 0 ) { ptr->plane.normal = -ptr->plane.normal; } ptr->plane.dist = DotProduct( t0, ptr->plane.normal ); } else { ptr->plane.normal = -ray->m_dir; if ( simplex.vertCount ) { ptr->plane.dist = DotProduct( ptr->plane.normal, obstacle->GetVertByIndex( simplex.verts[0].obstacleIndex ) ); } else ptr->plane.dist = 0.f; } } // clip a direction vector to a plane (ray begins at the origin) inline float Clip( const Vector &dir, const Vector &pos, const Vector &normal ) { float dist = DotProduct(pos, normal); float cosTheta = DotProduct(dir,normal); if ( cosTheta > 0 ) return dist / cosTheta; // parallel or not facing the plane return 1e16f; } // This is the first iteration of solving time of intersection. // It needs to test all 4 faces of the tetrahedron to find the one the ray leaves through // this is done by finding the closest plane by clipping the ray to each plane Vector simplex_t::ClipRayToTetrahedronBase( const Vector &dir ) { Vector AB = verts[0].position - verts[3].position; Vector AC = verts[1].position - verts[3].position; Vector AD = verts[2].position - verts[3].position; Vector BC = verts[1].position - verts[0].position; Vector BD = verts[2].position - verts[0].position; // compute face normals Vector ABC, ACD, ADB, BCD; CrossProduct( AB, AC, ABC ); CrossProduct( AC, AD, ACD ); CrossProduct( AD, AB, ADB ); CrossProduct( BD, BC, BCD ); // flipped to point out of the tetrahedron // NOTE: These cancel out in the clipping equation //VectorNormalize(ABC); //VectorNormalize(ACD); //VectorNormalize(ADB); //VectorNormalize(BCD); // Assert valid tetrahedron/winding order #if CHECK_TOI_CALCS Assert(DotProduct(verts[2].position, ABC) < DotProduct(verts[3].position, ABC )); Assert(DotProduct(verts[0].position, ACD) < DotProduct(verts[3].position, ACD )); Assert(DotProduct(verts[1].position, ADB) < DotProduct(verts[3].position, ADB )); Assert(DotProduct(verts[3].position, BCD) < DotProduct(verts[0].position, BCD )); #endif float dists[4]; dists[0] = Clip( dir, verts[3].position, ABC ); dists[1] = Clip( dir, verts[3].position, ACD ); dists[2] = Clip( dir, verts[3].position, ADB ); dists[3] = Clip( dir, verts[0].position, BCD ); float dmin = dists[3]; int best = 3; for ( int i = 0; i < 3; i++ ) { if ( dists[i] < dmin ) { best = i; dmin = dists[i]; } } vertCount = 3; // push back down to a triangle // Note that we need to preserve winding so that the vector order assumptions above are still valid! switch( best ) { case 0: verts[2] = verts[3]; return ABC; case 1: verts[0] = verts[3]; return ACD; case 2: verts[1] = verts[3]; return ADB; case 3: // swap 1 & 2 verts[3] = verts[1]; verts[1] = verts[2]; verts[2] = verts[3]; return BCD; } Assert(0); // failed! return vec3_origin; } // for subsequent iterations you don't need to test one of the faces (face you previously left through) // so only test the three faces involving the new point A Vector simplex_t::ClipRayToTetrahedron( const Vector &dir ) { Vector AB = verts[0].position - verts[3].position; Vector AC = verts[1].position - verts[3].position; Vector AD = verts[2].position - verts[3].position; // compute face normals Vector ABC, ACD, ADB; CrossProduct( AB, AC, ABC ); CrossProduct( AC, AD, ACD ); CrossProduct( AD, AB, ADB ); // NOTE: These cancel out in the clipping equation //VectorNormalize(ABC); //VectorNormalize(ACD); //VectorNormalize(ADB); // Assert valid tetrahedron/winding order #if CHECK_TOI_CALCS Assert(DotProduct(verts[2].position, ABC) < DotProduct(verts[3].position, ABC )); Assert(DotProduct(verts[0].position, ACD) < DotProduct(verts[3].position, ACD )); Assert(DotProduct(verts[1].position, ADB) < DotProduct(verts[3].position, ADB )); #endif float dists[3]; dists[0] = Clip( dir, verts[3].position, ABC ); dists[1] = Clip( dir, verts[3].position, ACD ); dists[2] = Clip( dir, verts[3].position, ADB ); float dmin = dists[2]; int best = 2; for ( int i = 0; i < 2; i++ ) { if ( dists[i] < dmin ) { best = i; dmin = dists[i]; } } vertCount = 3; // push back down to a triangle // Note that we need to preserve winding so that the vector order assumptions above are still valid! switch( best ) { case 0: verts[2] = verts[3]; return ABC; case 1: verts[0] = verts[3]; return ACD; case 2: verts[1] = verts[3]; return ADB; } return vec3_origin; } float simplex_t::ClipRayToTriangle( const Vector &dir, float epsilon ) { Vector AB = verts[0].position - verts[2].position; Vector AC = verts[1].position - verts[2].position; Vector BC = verts[1].position - verts[0].position; // compute face normal Vector ABC; CrossProduct( AB, AC, ABC ); // this points toward the origin VectorNormalize(ABC); Vector edgeAB, edgeAC, edgeBC; // these should point out of the triangle CrossProduct( AB, ABC, edgeAB ); CrossProduct( ABC, AC, edgeAC ); CrossProduct( BC, ABC, edgeBC ); // NOTE: These cancel out in the clipping equation VectorNormalize(edgeAB); VectorNormalize(edgeAC); VectorNormalize(edgeBC); #if CHECK_TOI_CALCS Assert(DotProduct(verts[2].position, ABC) < 0); // points toward // Assert valid triangle/winding order (all normals point away from the origin) Assert(DotProduct(verts[2].position, edgeAB) > 0); Assert(DotProduct(verts[2].position, edgeAC) > 0); Assert(DotProduct(verts[0].position, edgeBC) > 0); #endif float dists[3]; dists[0] = Clip( dir, verts[0].position, edgeAB ); dists[1] = Clip( dir, verts[1].position, edgeAC ); dists[2] = Clip( dir, verts[1].position, edgeBC ); Vector *normals[3] = {&edgeAB, &edgeAC, &edgeBC}; float dmin = dists[0]; int best = 0; if ( dists[1] < dmin ) { dmin = dists[1]; best = 1; } if ( dists[2] < dmin ) { best = 2; dmin = dists[2]; } float dot = DotProduct( dir, *normals[best] ); if ( dot <= 0 ) return 1e16f; dmin += epsilon/dot; return dmin; } // Solve for time of intersection along the sweep // Do this by iteratively clipping the ray to the tetrahedron containing the origin // when a triangle is found intersecting the ray, reduce the simplex to that triangle // and then re-expand it to a tetrahedron using the support point normal to the triangle (away from the origin) // iterate until no new points can be found. That's the surface of the sum. float CTraceSolver::SolveMeshIntersection( simplex_t &simplex ) { Vector tmp; Assert( simplex.vertCount == 4 ); if ( simplex.vertCount < 4 ) return 0.0f; Vector v = simplex.ClipRayToTetrahedronBase( m_ray->m_dir ); simplexvert_t vert; // safe loop, max 100 iterations for ( int i = 0; i < 100; i++ ) { VectorNormalize(v); vert.testIndex = m_sweepObject->SupportMap( v, &vert.position ); vert.sweepIndex = m_ray->SupportMap( v, &tmp ); VectorAdd( vert.position, tmp, vert.position ); vert.obstacleIndex = m_obstacle->SupportMap( -v, &tmp ); VectorSubtract( vert.position, tmp, vert.position ); // map the new separating axis (NOTE: This test is inverted from the GJK - we are trying to get out, not in) // found a separating axis, we've moved the sweep back enough float dist = DotProduct( v, simplex.verts[0].position ) + TEST_EPSILON; if ( DotProduct( v, vert.position ) <= dist ) { Vector BC = simplex.verts[1].position - simplex.verts[0].position; Vector BD = simplex.verts[2].position - simplex.verts[0].position; // compute face normals Vector BCD; CrossProduct( BC, BD, BCD ); // NOTE: This cancels out inside Clip() //VectorNormalize( BCD ); // clip ray to triangle return Clip( m_ray->m_dir, simplex.verts[0].position, BCD ); } // add the new vert simplex.verts[simplex.vertCount] = vert; simplex.vertCount++; v = simplex.ClipRayToTetrahedron( m_ray->m_dir ); } Assert(0); return 0.0f; } // similar to SolveMeshIntersection, but solves projected into the 2D triangle simplex remaining // this is used for the near miss case float CTraceSolver::SolveMeshIntersection2D( simplex_t &simplex ) { AssertMsg( simplex.vertCount == 3, "simplex.vertCount != 3: %d", simplex.vertCount ); if ( simplex.vertCount != 3 ) return 0.0f; // note: This should really do this iteratively in case the triangle is coplanar with another triangle that // is between this one and the edge of the sum in this plane float dist = simplex.ClipRayToTriangle( m_ray->m_dir, m_epsilon ); return dist; } static const Vector g_xpos(1,0,0), g_xneg(-1,0,0); static const Vector g_ypos(0,1,0), g_yneg(0,-1,0); static const Vector g_zpos(0,0,1), g_zneg(0,0,-1); void TraceGetAABB_r( Vector *pMins, Vector *pMaxs, const IVP_Compact_Ledgetree_Node *node, CTraceIVP &ivp ) { if ( node->is_terminal() == IVP_TRUE ) { Vector tmp; ivp.SetLedge( node->get_compact_ledge() ); ivp.SupportMap( g_xneg, &tmp ); AddPointToBounds( tmp, *pMins, *pMaxs ); ivp.SupportMap( g_yneg, &tmp ); AddPointToBounds( tmp, *pMins, *pMaxs ); ivp.SupportMap( g_zneg, &tmp ); AddPointToBounds( tmp, *pMins, *pMaxs ); ivp.SupportMap( g_xpos, &tmp ); AddPointToBounds( tmp, *pMins, *pMaxs ); ivp.SupportMap( g_ypos, &tmp ); AddPointToBounds( tmp, *pMins, *pMaxs ); ivp.SupportMap( g_zpos, &tmp ); AddPointToBounds( tmp, *pMins, *pMaxs ); return; } TraceGetAABB_r( pMins, pMaxs, node->left_son(), ivp ); TraceGetAABB_r( pMins, pMaxs, node->right_son(), ivp ); } void CPhysicsTrace::GetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles ) { return; CTraceIVP ivp( pCollide, collideOrigin, collideAngles ); if ( ivp.SetSingleConvex() ) { Vector tmp; ivp.SupportMap( g_xneg, &tmp ); pMins->x = tmp.x; ivp.SupportMap( g_yneg, &tmp ); pMins->y = tmp.y; ivp.SupportMap( g_zneg, &tmp ); pMins->z = tmp.z; ivp.SupportMap( g_xpos, &tmp ); pMaxs->x = tmp.x; ivp.SupportMap( g_ypos, &tmp ); pMaxs->y = tmp.y; ivp.SupportMap( g_zpos, &tmp ); pMaxs->z = tmp.z; } else { const IVP_Compact_Ledgetree_Node *lt_node_root; lt_node_root = pCollide->GetCompactSurface()->get_compact_ledge_tree_root(); ClearBounds( *pMins, *pMaxs ); TraceGetAABB_r( pMins, pMaxs, lt_node_root, ivp ); } // JAY: Disable this here, do it in the engine instead. That way the tools get // accurate bboxes #if 0 const float radius = g_PhysicsUnits.collisionSweepEpsilon; mins -= Vector(radius,radius,radius); maxs += Vector(radius,radius,radius); #endif } void TraceGetExtent_r( const IVP_Compact_Ledgetree_Node *node, CTraceIVP &ivp, const Vector &dir, float &dot, Vector &point ) { if ( node->is_terminal() == IVP_TRUE ) { ivp.SetLedge( node->get_compact_ledge() ); Vector tmp; ivp.SupportMap( dir, &tmp ); float newDot = DotProduct( tmp, dir ); if ( newDot > dot ) { dot = newDot; point = tmp; } return; } TraceGetExtent_r( node->left_son(), ivp, dir, dot, point ); TraceGetExtent_r( node->right_son(), ivp, dir, dot, point ); } Vector CPhysicsTrace::GetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction ) { CTraceIVP ivp( pCollide, collideOrigin, collideAngles ); if ( ivp.SetSingleConvex() ) { Vector tmp; ivp.SupportMap( direction, &tmp ); return tmp; } else { const IVP_Compact_Ledgetree_Node *lt_node_root; lt_node_root = pCollide->GetCompactSurface()->get_compact_ledge_tree_root(); Vector out = vec3_origin; float tmp = -1e6f; TraceGetExtent_r( lt_node_root, ivp, direction, tmp, out ); return out; } } bool CPhysicsTrace::IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone ) { trace_t tr; CM_ClearTrace( &tr ); bool bPoint = (boxAbsMins == boxAbsMaxs) ? true : false; CTraceAABB box( boxAbsMins - cone.origin, boxAbsMaxs - cone.origin, bPoint ); CTraceCone traceCone( cone, -cone.origin ); // offset the space of this sweep so that the surface is at the origin of the solution space CTraceRay ray( vec3_origin, vec3_origin ); CTraceSolver solver( &tr, &box, &ray, &traceCone, boxAbsMaxs ); solver.DoSweep(); return tr.startsolid; } CPhysicsTrace::CPhysicsTrace() { } CPhysicsTrace::~CPhysicsTrace() { } CVisitHash::CVisitHash() { m_vertVisitID = 1; memset( m_vertVisit, 0, sizeof(m_vertVisit) ); }