//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ //=============================================================================// #ifndef PHYSICS_TRACE_H #define PHYSICS_TRACE_H #ifdef _WIN32 #pragma once #endif #include "physics_globals.h" class Vector; class QAngle; class CGameTrace; class CTraceRay; class IVP_Compact_Surface; typedef CGameTrace trace_t; struct Ray_t; class IVP_Compact_Surface; class IVP_Compact_Mopp; class IConvexInfo; enum { COLLIDE_POLY = 0, COLLIDE_MOPP = 1, COLLIDE_BALL = 2, COLLIDE_VIRTUAL = 3, }; class IPhysCollide { public: virtual ~IPhysCollide() {} //virtual void AddReference() = 0; //virtual void ReleaseReference() = 0; // get a surface manager virtual IVP_SurfaceManager *CreateSurfaceManager( short & ) const = 0; virtual void GetAllLedges( IVP_U_BigVector &ledges ) const = 0; virtual unsigned int GetSerializationSize() const = 0; virtual unsigned int SerializeToBuffer( char *pDest, bool bSwap = false ) const = 0; virtual int GetVCollideIndex() const = 0; virtual Vector GetMassCenter() const = 0; virtual void SetMassCenter( const Vector &massCenter ) = 0; virtual Vector GetOrthographicAreas() const = 0; virtual void SetOrthographicAreas( const Vector &areas ) = 0; virtual float GetSphereRadius() const = 0; virtual void OutputDebugInfo() const = 0; virtual PxShape *GetPxShape() = 0; }; #define LEAFMAP_HAS_CUBEMAP 0x0001 #define LEAFMAP_HAS_SINGLE_VERTEX_SPAN 0x0002 #define LEAFMAP_HAS_MULTIPLE_VERTEX_SPANS 0x0004 struct leafmap_t { void *pLeaf; unsigned short vertCount; byte flags; byte spanCount; unsigned short startVert[8]; void SetHasCubemap() { flags = LEAFMAP_HAS_CUBEMAP; } void SetSingleVertexSpan( int startVertIndex, int vertCountIn ) { flags = 0; flags |= LEAFMAP_HAS_SINGLE_VERTEX_SPAN; startVert[0] = startVertIndex; vertCount = vertCountIn; } int MaxSpans() { return sizeof(startVert) - sizeof(startVert[0]); } const byte *GetSpans() const { return reinterpret_cast(&startVert[1]); } byte *GetSpans() { return reinterpret_cast(&startVert[1]); } void SetRLESpans( int startVertIndex, int spanCountIn, byte *pSpans ) { flags = 0; if ( spanCountIn > MaxSpans() ) return; if ( spanCountIn == 1 ) { SetSingleVertexSpan( startVertIndex, pSpans[0] ); return; } // write out a run length encoded list of verts to include in this model flags |= LEAFMAP_HAS_MULTIPLE_VERTEX_SPANS; startVert[0] = startVertIndex; vertCount = 0; spanCount = spanCountIn; byte *pSpanOut = GetSpans(); for ( int i = 0; i < spanCountIn; i++ ) { pSpanOut[i] = pSpans[i]; if ( !(i & 1) ) { vertCount += pSpans[i]; } } } inline bool HasSpans() const { return (flags & (LEAFMAP_HAS_SINGLE_VERTEX_SPAN|LEAFMAP_HAS_MULTIPLE_VERTEX_SPANS)) ? true : false; } inline bool HasCubemap() const { return (flags & LEAFMAP_HAS_CUBEMAP) ? true : false; } inline bool HasSingleVertexSpan() const { return (flags & LEAFMAP_HAS_SINGLE_VERTEX_SPAN) ? true : false; } inline bool HasRLESpans() const { return (flags & LEAFMAP_HAS_MULTIPLE_VERTEX_SPANS) ? true : false; } }; struct collidemap_t { int leafCount; leafmap_t leafmap[1]; }; extern void InitLeafmap( IVP_Compact_Ledge *pLeaf, leafmap_t *pLeafmapOut ); class CPhysCollide : public IPhysCollide { public: static CPhysCollide *UnserializeFromBuffer( const char *pBuffer, unsigned int size, int index, bool swap = false ); virtual const IVP_Compact_Surface *GetCompactSurface() const { return NULL; } virtual Vector GetOrthographicAreas() const { return Vector(1,1,1); } virtual float GetSphereRadius() const { return 0; } virtual void ComputeOrthographicAreas( float epsilon ) {} virtual void SetOrthographicAreas( const Vector &areas ) {} virtual const collidemap_t *GetCollideMap() const { return NULL; } virtual PxShape *GetPxShape() { return NULL; } }; class ITraceObject { public: virtual int SupportMap( const Vector &dir, Vector *pOut ) const = 0; virtual Vector GetVertByIndex( int index ) const = 0; virtual float Radius( void ) const = 0; }; // This is the size of the vertex hash #define CONVEX_HASH_SIZE 512 // The little hashing trick below allows 64K verts per hash entry #define MAX_CONVEX_VERTS ((CONVEX_HASH_SIZE * (1<<16))-1) class CPhysicsTrace { public: CPhysicsTrace(); ~CPhysicsTrace(); // Calculate the intersection of a swept box (mins/maxs) against an IVP object. All coords are in HL space. void SweepBoxIVP( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pSurface, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr ); void SweepBoxIVP( const Ray_t &raySrc, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pSurface, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr ); // Calculate the intersection of a swept compact surface against another compact surface. All coords are in HL space. // NOTE: BUGBUG: swept surface must be single convex!!! void SweepIVP( const Vector &start, const Vector &end, const CPhysCollide *pSweptSurface, const QAngle &sweptAngles, const CPhysCollide *pSurface, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr ); // get an AABB for an oriented collide void GetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles ); // get the support map/extent for a collide along the axis given by "direction" Vector GetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction ); bool IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone ); }; class CVisitHash { public: CVisitHash(); inline unsigned short VertIndexToID( int vertIndex ); inline void VisitVert( int vertIndex ); inline bool WasVisited( int vertIndex ); inline void NewVisit( void ); private: // Store the current increment and the vertex ID (rotating hash) to guarantee no collisions struct vertmarker_t { unsigned short visitID; unsigned short vertID; }; vertmarker_t m_vertVisit[CONVEX_HASH_SIZE]; unsigned short m_vertVisitID; unsigned short m_isInUse; }; // Calculate the intersection of a swept box (mins/maxs) against an IVP object. All coords are in HL space. inline unsigned short CVisitHash::VertIndexToID( int vertIndex ) { // A little hashing trick here: // rotate the hash key each time you wrap around at 64K // That way, the index will not collide until you've hit 64K # hash entries times int high = vertIndex >> 16; return (unsigned short) ((vertIndex + high) & 0xFFFF); } inline void CVisitHash::VisitVert( int vertIndex ) { int index = vertIndex & (CONVEX_HASH_SIZE-1); m_vertVisit[index].visitID = m_vertVisitID; m_vertVisit[index].vertID = VertIndexToID(vertIndex); } inline bool CVisitHash::WasVisited( int vertIndex ) { unsigned short hashIndex = vertIndex & (CONVEX_HASH_SIZE-1); unsigned short id = VertIndexToID(vertIndex); if ( m_vertVisit[hashIndex].visitID == m_vertVisitID && m_vertVisit[hashIndex].vertID == id ) return true; return false; } inline void CVisitHash::NewVisit( void ) { m_vertVisitID++; if ( m_vertVisitID == 0 ) { memset( m_vertVisit, 0, sizeof(m_vertVisit) ); } } extern IVP_SurfaceManager *CreateSurfaceManager( const CPhysCollide *pCollisionModel, short &collideType ); extern void OutputCollideDebugInfo( const CPhysCollide *pCollisionModel ); #endif // PHYSICS_TRACE_H