//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ //=============================================================================// // Author: Michael S. Booth (mike@turtlerockstudios.com), 2003 #include "cbase.h" #include "cs_bot.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #ifdef _WIN32 #pragma warning (disable:4701) // disable warning that variable *may* not be initialized #endif //-------------------------------------------------------------------------------------------------------------- /** * Finds a point from which we can approach a descending ladder. First it tries behind the ladder, * then in front of ladder, based on LOS. Once we know the direction, we snap to the aproaching nav * area. Returns true if we're approaching from behind the ladder. */ static bool FindDescendingLadderApproachPoint( const CNavLadder *ladder, const CNavArea *area, Vector *pos ) { *pos = ladder->m_top - ladder->GetNormal() * 2.0f * HalfHumanWidth; trace_t result; UTIL_TraceLine( ladder->m_top, *pos, MASK_PLAYERSOLID_BRUSHONLY, NULL, COLLISION_GROUP_NONE, &result ); if (result.fraction < 1.0f) { *pos = ladder->m_top + ladder->GetNormal() * 2.0f * HalfHumanWidth; area->GetClosestPointOnArea( *pos, pos ); } // Use a cross product to determine which side of the ladder 'pos' is on Vector posToLadder = *pos - ladder->m_top; float dot = posToLadder.Dot( ladder->GetNormal() ); return ( dot < 0.0f ); } //-------------------------------------------------------------------------------------------------------------- /** * Determine actual path positions bot will move between along the path */ bool CCSBot::ComputePathPositions( void ) { if (m_pathLength == 0) return false; // start in first area's center m_path[0].pos = m_path[0].area->GetCenter(); m_path[0].ladder = NULL; m_path[0].how = NUM_TRAVERSE_TYPES; for( int i=1; i<m_pathLength; ++i ) { const ConnectInfo *from = &m_path[ i-1 ]; ConnectInfo *to = &m_path[ i ]; if (to->how <= GO_WEST) // walk along the floor to the next area { to->ladder = NULL; // compute next point, keeping path as straight as possible from->area->ComputeClosestPointInPortal( to->area, (NavDirType)to->how, from->pos, &to->pos ); // move goal position into the goal area a bit const float stepInDist = 5.0f; // how far to "step into" an area - must be less than min area size AddDirectionVector( &to->pos, (NavDirType)to->how, stepInDist ); // we need to walk out of "from" area, so keep Z where we can reach it to->pos.z = from->area->GetZ( to->pos ); // if this is a "jump down" connection, we must insert an additional point on the path if (to->area->IsConnected( from->area, NUM_DIRECTIONS ) == false) { // this is a "jump down" link // compute direction of path just prior to "jump down" Vector2D dir; DirectionToVector2D( (NavDirType)to->how, &dir ); // shift top of "jump down" out a bit to "get over the ledge" const float pushDist = 75.0f; // 25.0f; to->pos.x += pushDist * dir.x; to->pos.y += pushDist * dir.y; // insert a duplicate node to represent the bottom of the fall if (m_pathLength < MAX_PATH_LENGTH-1) { // copy nodes down for( int j=m_pathLength; j>i; --j ) m_path[j] = m_path[j-1]; // path is one node longer ++m_pathLength; // move index ahead into the new node we just duplicated ++i; m_path[i].pos.x = to->pos.x; m_path[i].pos.y = to->pos.y; // put this one at the bottom of the fall m_path[i].pos.z = to->area->GetZ( m_path[i].pos ); } } } else if (to->how == GO_LADDER_UP) // to get to next area, must go up a ladder { // find our ladder const NavLadderConnectVector *pLadders = from->area->GetLadders( CNavLadder::LADDER_UP ); int it; for ( it = 0; it < pLadders->Count(); ++it) { CNavLadder *ladder = (*pLadders)[ it ].ladder; // can't use "behind" area when ascending... if (ladder->m_topForwardArea == to->area || ladder->m_topLeftArea == to->area || ladder->m_topRightArea == to->area) { to->ladder = ladder; to->pos = ladder->m_bottom + ladder->GetNormal() * 2.0f * HalfHumanWidth; break; } } if (it == pLadders->Count()) { PrintIfWatched( "ERROR: Can't find ladder in path\n" ); return false; } } else if (to->how == GO_LADDER_DOWN) // to get to next area, must go down a ladder { // find our ladder const NavLadderConnectVector *pLadders = from->area->GetLadders( CNavLadder::LADDER_DOWN ); int it; for ( it = 0; it < pLadders->Count(); ++it) { CNavLadder *ladder = (*pLadders)[ it ].ladder; if (ladder->m_bottomArea == to->area) { to->ladder = ladder; FindDescendingLadderApproachPoint( to->ladder, from->area, &to->pos ); break; } } if (it == pLadders->Count()) { PrintIfWatched( "ERROR: Can't find ladder in path\n" ); return false; } } } return true; } //-------------------------------------------------------------------------------------------------------------- /** * If next step of path uses a ladder, prepare to traverse it */ void CCSBot::SetupLadderMovement( void ) { if (m_pathIndex < 1 || m_pathLength == 0) return; const ConnectInfo *to = &m_path[ m_pathIndex ]; const ConnectInfo *from = &m_path[ m_pathIndex - 1 ]; if (to->ladder) { m_spotEncounter = NULL; m_areaEnteredTimestamp = gpGlobals->curtime; m_pathLadder = to->ladder; m_pathLadderTimestamp = gpGlobals->curtime; QAngle ladderAngles; VectorAngles( m_pathLadder->GetNormal(), ladderAngles ); // to get to next area, we must traverse a ladder if (to->how == GO_LADDER_UP) { m_pathLadderState = APPROACH_ASCENDING_LADDER; m_pathLadderFaceIn = true; PrintIfWatched( "APPROACH_ASCENDING_LADDER\n" ); m_goalPosition = m_pathLadder->m_bottom + m_pathLadder->GetNormal() * 2.0f * HalfHumanWidth; m_lookAheadAngle = AngleNormalizePositive( ladderAngles[ YAW ] + 180.0f ); } else { // try to mount ladder "face out" first bool behind = FindDescendingLadderApproachPoint( m_pathLadder, from->area, &m_goalPosition ); if ( behind ) { PrintIfWatched( "APPROACH_DESCENDING_LADDER (face out)\n" ); m_pathLadderState = APPROACH_DESCENDING_LADDER; m_pathLadderFaceIn = false; m_lookAheadAngle = ladderAngles[ YAW ]; } else { PrintIfWatched( "APPROACH_DESCENDING_LADDER (face in)\n" ); m_pathLadderState = APPROACH_DESCENDING_LADDER; m_pathLadderFaceIn = true; m_lookAheadAngle = AngleNormalizePositive( ladderAngles[ YAW ] + 180.0f ); } } } } //-------------------------------------------------------------------------------------------------------------- /// @todo What about ladders whose top AND bottom are messed up? void CCSBot::ComputeLadderEndpoint( bool isAscending ) { trace_t result; Vector from, to; if (isAscending) { // find actual top in case m_pathLadder penetrates the ceiling // trace from our chest height at m_pathLadder base from = m_pathLadder->m_bottom + m_pathLadder->GetNormal() * HalfHumanWidth; from.z = GetAbsOrigin().z + HalfHumanHeight; to = m_pathLadder->m_top; } else { // find actual bottom in case m_pathLadder penetrates the floor // trace from our chest height at m_pathLadder top from = m_pathLadder->m_top + m_pathLadder->GetNormal() * HalfHumanWidth; from.z = GetAbsOrigin().z + HalfHumanHeight; to = m_pathLadder->m_bottom; } UTIL_TraceLine( from, m_pathLadder->m_bottom, MASK_PLAYERSOLID_BRUSHONLY, NULL, COLLISION_GROUP_NONE, &result ); if (result.fraction == 1.0f) m_pathLadderEnd = to.z; else m_pathLadderEnd = from.z + result.fraction * (to.z - from.z); } //-------------------------------------------------------------------------------------------------------------- /** * Navigate our current ladder. Return true if we are doing ladder navigation. * @todo Need Push() and Pop() for run/walk context to keep ladder speed contained. */ bool CCSBot::UpdateLadderMovement( void ) { if (m_pathLadder == NULL) return false; bool giveUp = false; // check for timeout const float ladderTimeoutDuration = 10.0f; if (gpGlobals->curtime - m_pathLadderTimestamp > ladderTimeoutDuration && !cv_bot_debug.GetBool()) { PrintIfWatched( "Ladder timeout!\n" ); giveUp = true; } else if (m_pathLadderState == APPROACH_ASCENDING_LADDER || m_pathLadderState == APPROACH_DESCENDING_LADDER || m_pathLadderState == ASCEND_LADDER || m_pathLadderState == DESCEND_LADDER || m_pathLadderState == DISMOUNT_ASCENDING_LADDER || m_pathLadderState == MOVE_TO_DESTINATION) { if (m_isStuck) { PrintIfWatched( "Giving up ladder - stuck\n" ); giveUp = true; } } if (giveUp) { // jump off ladder and give up Jump( MUST_JUMP ); Wiggle(); ResetStuckMonitor(); DestroyPath(); Run(); return false; } else { ResetStuckMonitor(); } Vector myOrigin = GetCentroid( this ); // check if somehow we totally missed the ladder switch( m_pathLadderState ) { case MOUNT_ASCENDING_LADDER: case MOUNT_DESCENDING_LADDER: case ASCEND_LADDER: case DESCEND_LADDER: { const float farAway = 200.0f; const Vector &ladderPos = (m_pathLadderState == MOUNT_ASCENDING_LADDER || m_pathLadderState == ASCEND_LADDER) ? m_pathLadder->m_bottom : m_pathLadder->m_top; if ((ladderPos.AsVector2D() - myOrigin.AsVector2D()).IsLengthGreaterThan( farAway )) { PrintIfWatched( "Missed ladder\n" ); Jump( MUST_JUMP ); DestroyPath(); Run(); return false; } break; } } m_areaEnteredTimestamp = gpGlobals->curtime; const float tolerance = 10.0f; const float closeToGoal = 25.0f; switch( m_pathLadderState ) { case APPROACH_ASCENDING_LADDER: { bool approached = false; Vector2D d( myOrigin.x - m_goalPosition.x, myOrigin.y - m_goalPosition.y ); if (d.x * m_pathLadder->GetNormal().x + d.y * m_pathLadder->GetNormal().y < 0.0f) { Vector2D perp( -m_pathLadder->GetNormal().y, m_pathLadder->GetNormal().x ); if (fabs(d.x * perp.x + d.y * perp.y) < tolerance && d.Length() < closeToGoal) approached = true; } // small radius will just slow them down a little for more accuracy in hitting their spot const float walkRange = 50.0f; if (d.IsLengthLessThan( walkRange )) { Walk(); StandUp(); } if ( d.IsLengthLessThan( 100.0f ) ) { if ( !IsOnLadder() && (m_pathLadder->m_bottom.z - GetAbsOrigin().z > JumpCrouchHeight ) ) { // find yaw to directly aim at ladder QAngle idealAngle; VectorAngles( GetAbsVelocity(), idealAngle ); const float angleTolerance = 15.0f; if (AnglesAreEqual( EyeAngles().y, idealAngle.y, angleTolerance )) { Jump(); } } } /// @todo Check that we are on the ladder we think we are if (IsOnLadder()) { m_pathLadderState = ASCEND_LADDER; PrintIfWatched( "ASCEND_LADDER\n" ); // find actual top in case m_pathLadder penetrates the ceiling ComputeLadderEndpoint( true ); } else if (approached) { // face the m_pathLadder m_pathLadderState = FACE_ASCENDING_LADDER; PrintIfWatched( "FACE_ASCENDING_LADDER\n" ); } else { // move toward ladder mount point MoveTowardsPosition( m_goalPosition ); } break; } case APPROACH_DESCENDING_LADDER: { // fall check if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight) { PrintIfWatched( "Fell from ladder.\n" ); m_pathLadderState = MOVE_TO_DESTINATION; m_path[ m_pathIndex ].area->GetClosestPointOnArea( m_pathLadder->m_bottom, &m_goalPosition ); m_goalPosition += m_pathLadder->GetNormal() * HalfHumanWidth; PrintIfWatched( "MOVE_TO_DESTINATION\n" ); } else { bool approached = false; Vector2D d( myOrigin.x - m_goalPosition.x, myOrigin.y - m_goalPosition.y ); if (d.x * m_pathLadder->GetNormal().x + d.y * m_pathLadder->GetNormal().y > 0.0f) { Vector2D perp( -m_pathLadder->GetNormal().y, m_pathLadder->GetNormal().x ); if (fabs(d.x * perp.x + d.y * perp.y) < tolerance && d.Length() < closeToGoal) approached = true; } // if approaching ladder from the side or "ahead", walk if (m_pathLadder->m_topBehindArea != m_lastKnownArea) { const float walkRange = 150.0f; if (!IsCrouching() && d.IsLengthLessThan( walkRange )) Walk(); } /// @todo Check that we are on the ladder we think we are if (IsOnLadder()) { // we slipped onto the ladder - climb it m_pathLadderState = DESCEND_LADDER; Run(); PrintIfWatched( "DESCEND_LADDER\n" ); // find actual bottom in case m_pathLadder penetrates the floor ComputeLadderEndpoint( false ); } else if (approached) { // face the ladder m_pathLadderState = FACE_DESCENDING_LADDER; PrintIfWatched( "FACE_DESCENDING_LADDER\n" ); } else { // move toward ladder mount point MoveTowardsPosition( m_goalPosition ); } } break; } case FACE_ASCENDING_LADDER: { // find yaw to directly aim at ladder Vector to = m_pathLadder->GetPosAtHeight(myOrigin.z) - myOrigin; QAngle idealAngle; VectorAngles( to, idealAngle ); if (m_path[ m_pathIndex ].area == m_pathLadder->m_topForwardArea) { m_pathLadderDismountDir = FORWARD; } else if (m_path[ m_pathIndex ].area == m_pathLadder->m_topLeftArea) { m_pathLadderDismountDir = LEFT; idealAngle[ YAW ] = AngleNormalizePositive( idealAngle[ YAW ] + 90.0f ); } else if (m_path[ m_pathIndex ].area == m_pathLadder->m_topRightArea) { m_pathLadderDismountDir = RIGHT; idealAngle[ YAW ] = AngleNormalizePositive( idealAngle[ YAW ] - 90.0f ); } const float angleTolerance = 5.0f; if (AnglesAreEqual( EyeAngles().y, idealAngle.y, angleTolerance )) { // move toward ladder until we become "on" it Run(); ResetStuckMonitor(); m_pathLadderState = MOUNT_ASCENDING_LADDER; switch (m_pathLadderDismountDir) { case LEFT: PrintIfWatched( "MOUNT_ASCENDING_LADDER LEFT\n" ); break; case RIGHT: PrintIfWatched( "MOUNT_ASCENDING_LADDER RIGHT\n" ); break; default: PrintIfWatched( "MOUNT_ASCENDING_LADDER FORWARD\n" ); break; } } break; } case FACE_DESCENDING_LADDER: { // find yaw to directly aim at ladder Vector to = m_pathLadder->GetPosAtHeight(myOrigin.z) - myOrigin; QAngle idealAngle; VectorAngles( to, idealAngle ); const float angleTolerance = 5.0f; if (AnglesAreEqual( EyeAngles().y, idealAngle.y, angleTolerance )) { // move toward ladder until we become "on" it m_pathLadderState = MOUNT_DESCENDING_LADDER; ResetStuckMonitor(); PrintIfWatched( "MOUNT_DESCENDING_LADDER\n" ); } break; } case MOUNT_ASCENDING_LADDER: if (IsOnLadder()) { m_pathLadderState = ASCEND_LADDER; PrintIfWatched( "ASCEND_LADDER\n" ); // find actual top in case m_pathLadder penetrates the ceiling ComputeLadderEndpoint( true ); } // move toward ladder mount point if ( !IsOnLadder() && (m_pathLadder->m_bottom.z - GetAbsOrigin().z > JumpCrouchHeight ) ) { Jump(); } switch( m_pathLadderDismountDir ) { case RIGHT: StrafeLeft(); break; case LEFT: StrafeRight(); break; default: MoveForward(); break; } break; case MOUNT_DESCENDING_LADDER: // fall check if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight) { PrintIfWatched( "Fell from ladder.\n" ); m_pathLadderState = MOVE_TO_DESTINATION; m_path[ m_pathIndex ].area->GetClosestPointOnArea( m_pathLadder->m_bottom, &m_goalPosition ); m_goalPosition += m_pathLadder->GetNormal() * HalfHumanWidth; PrintIfWatched( "MOVE_TO_DESTINATION\n" ); } else { if (IsOnLadder()) { m_pathLadderState = DESCEND_LADDER; PrintIfWatched( "DESCEND_LADDER\n" ); // find actual bottom in case m_pathLadder penetrates the floor ComputeLadderEndpoint( false ); } // move toward ladder mount point MoveForward(); } break; case ASCEND_LADDER: // run, so we can make our dismount jump to the side, if necessary Run(); // if our destination area requires us to crouch, do it if (m_path[ m_pathIndex ].area->GetAttributes() & NAV_MESH_CROUCH) Crouch(); // did we reach the top? if (GetFeetZ() >= m_pathLadderEnd) { // we reached the top - dismount m_pathLadderState = DISMOUNT_ASCENDING_LADDER; PrintIfWatched( "DISMOUNT_ASCENDING_LADDER\n" ); if (m_path[ m_pathIndex ].area == m_pathLadder->m_topForwardArea) m_pathLadderDismountDir = FORWARD; else if (m_path[ m_pathIndex ].area == m_pathLadder->m_topLeftArea) m_pathLadderDismountDir = LEFT; else if (m_path[ m_pathIndex ].area == m_pathLadder->m_topRightArea) m_pathLadderDismountDir = RIGHT; m_pathLadderDismountTimestamp = gpGlobals->curtime; } else if (!IsOnLadder()) { // we fall off the ladder, repath DestroyPath(); return false; } // move up ladder switch( m_pathLadderDismountDir ) { case RIGHT: StrafeLeft(); break; case LEFT: StrafeRight(); break; default: MoveForward(); break; } break; case DESCEND_LADDER: { Run(); float destHeight = m_pathLadderEnd; if ( (m_path[ m_pathIndex ].area->GetAttributes() & NAV_MESH_NO_JUMP) == 0 ) { destHeight += HalfHumanHeight; } if ( !IsOnLadder() || GetFeetZ() <= destHeight ) { // we reached the bottom, or we fell off - dismount m_pathLadderState = MOVE_TO_DESTINATION; m_path[ m_pathIndex ].area->GetClosestPointOnArea( m_pathLadder->m_bottom, &m_goalPosition ); m_goalPosition += m_pathLadder->GetNormal() * HalfHumanWidth; PrintIfWatched( "MOVE_TO_DESTINATION\n" ); } // Move down ladder MoveForward(); break; } case DISMOUNT_ASCENDING_LADDER: { if (gpGlobals->curtime - m_pathLadderDismountTimestamp >= 0.4f) { m_pathLadderState = MOVE_TO_DESTINATION; m_path[ m_pathIndex ].area->GetClosestPointOnArea( myOrigin, &m_goalPosition ); PrintIfWatched( "MOVE_TO_DESTINATION\n" ); } // We should already be facing the dismount point MoveForward(); break; } case MOVE_TO_DESTINATION: if (m_path[ m_pathIndex ].area->Contains( myOrigin )) { // successfully traversed ladder and reached destination area // exit ladder state machine PrintIfWatched( "Ladder traversed.\n" ); m_pathLadder = NULL; // incrememnt path index to next step beyond this ladder SetPathIndex( m_pathIndex+1 ); ClearLookAt(); return false; } MoveTowardsPosition( m_goalPosition ); break; } if ( ( cv_bot_traceview.GetInt() == 1 && IsLocalPlayerWatchingMe() ) || cv_bot_traceview.GetInt() == 10 ) { DrawPath(); } return true; } //-------------------------------------------------------------------------------------------------------------- /** * Compute closest point on path to given point * NOTE: This does not do line-of-sight tests, so closest point may be thru the floor, etc */ bool CCSBot::FindClosestPointOnPath( const Vector &worldPos, int startIndex, int endIndex, Vector *close ) const { if (!HasPath() || close == NULL) return false; Vector along, toWorldPos; Vector pos; const Vector *from, *to; float length; float closeLength; float closeDistSq = 9999999999.9; float distSq; for( int i=startIndex; i<=endIndex; ++i ) { from = &m_path[i-1].pos; to = &m_path[i].pos; // compute ray along this path segment along = *to - *from; // make it a unit vector along the path length = along.NormalizeInPlace(); // compute vector from start of segment to our point toWorldPos = worldPos - *from; // find distance of closest point on ray closeLength = DotProduct( toWorldPos, along ); // constrain point to be on path segment if (closeLength <= 0.0f) pos = *from; else if (closeLength >= length) pos = *to; else pos = *from + closeLength * along; distSq = (pos - worldPos).LengthSqr(); // keep the closest point so far if (distSq < closeDistSq) { closeDistSq = distSq; *close = pos; } } return true; } //-------------------------------------------------------------------------------------------------------------- /** * Return the closest point to our current position on our current path * If "local" is true, only check the portion of the path surrounding m_pathIndex. */ int CCSBot::FindOurPositionOnPath( Vector *close, bool local ) const { if (!HasPath()) return -1; Vector along, toFeet; Vector feet = GetAbsOrigin(); Vector eyes = feet + Vector( 0, 0, HalfHumanHeight ); // in case we're crouching Vector pos; const Vector *from, *to; float length; float closeLength; float closeDistSq = 9999999999.9; int closeIndex = -1; float distSq; int start, end; if (local) { start = m_pathIndex - 3; if (start < 1) start = 1; end = m_pathIndex + 3; if (end > m_pathLength) end = m_pathLength; } else { start = 1; end = m_pathLength; } for( int i=start; i<end; ++i ) { from = &m_path[i-1].pos; to = &m_path[i].pos; // compute ray along this path segment along = *to - *from; // make it a unit vector along the path length = along.NormalizeInPlace(); // compute vector from start of segment to our point toFeet = feet - *from; // find distance of closest point on ray closeLength = DotProduct( toFeet, along ); // constrain point to be on path segment if (closeLength <= 0.0f) pos = *from; else if (closeLength >= length) pos = *to; else pos = *from + closeLength * along; distSq = (pos - feet).LengthSqr(); // keep the closest point so far if (distSq < closeDistSq) { // don't use points we cant see Vector probe = pos + Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( eyes, probe, WALK_THRU_DOORS | WALK_THRU_BREAKABLES )) continue; // don't use points we cant reach if (!IsStraightLinePathWalkable( pos )) continue; closeDistSq = distSq; if (close) *close = pos; closeIndex = i-1; } } return closeIndex; } //-------------------------------------------------------------------------------------------------------------- /** * Test for un-jumpable height change, or unrecoverable fall */ bool CCSBot::IsStraightLinePathWalkable( const Vector &goal ) const { // this is causing hang-up problems when crawling thru ducts/windows that drop off into rooms (they fail the "falling" check) return true; const float inc = GenerationStepSize; Vector feet = GetAbsOrigin(); Vector dir = goal - feet; float length = dir.NormalizeInPlace(); float lastGround; //if (!GetSimpleGroundHeight( &pev->origin, &lastGround )) // return false; lastGround = feet.z; float along=0.0f; Vector pos; float ground; bool done = false; while( !done ) { along += inc; if (along > length) { along = length; done = true; } // compute step along path pos = feet + along * dir; pos.z += HalfHumanHeight; if (!TheNavMesh->GetSimpleGroundHeight( pos, &ground )) return false; // check for falling if (ground - lastGround < -StepHeight) return false; // check for unreachable jump // use slightly shorter jump limit, to allow for some fudge room if (ground - lastGround > JumpHeight) return false; lastGround = ground; } return true; } //-------------------------------------------------------------------------------------------------------------- /** * Compute a point a fixed distance ahead along our path. * Returns path index just after point. */ int CCSBot::FindPathPoint( float aheadRange, Vector *point, int *prevIndex ) { Vector myOrigin = GetCentroid( this ); // find path index just past aheadRange int afterIndex; // finds the closest point on local area of path, and returns the path index just prior to it Vector close; int startIndex = FindOurPositionOnPath( &close, true ); if (prevIndex) *prevIndex = startIndex; if (startIndex <= 0) { // went off the end of the path // or next point in path is unwalkable (ie: jump-down) // keep same point return m_pathIndex; } // if we are crouching, just follow the path exactly if (IsCrouching()) { // we want to move to the immediately next point along the path from where we are now int index = startIndex+1; if (index >= m_pathLength) index = m_pathLength-1; *point = m_path[ index ].pos; // if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling // we must do a 2D check here, in case the goal point is floating in space due to jump down, etc const float closeEpsilon = 20.0f; // 10 while ((*point - close).AsVector2D().IsLengthLessThan( closeEpsilon )) { ++index; if (index >= m_pathLength) { index = m_pathLength-1; break; } *point = m_path[ index ].pos; } return index; } // make sure we use a node a minimum distance ahead of us, to avoid wiggling while (startIndex < m_pathLength-1) { Vector pos = m_path[ startIndex+1 ].pos; // we must do a 2D check here, in case the goal point is floating in space due to jump down, etc const float closeEpsilon = 20.0f; if ((pos - close).AsVector2D().IsLengthLessThan( closeEpsilon )) { ++startIndex; } else { break; } } // if we hit a ladder, stop, or jump area, must stop (dont use ladder behind us) if (startIndex > m_pathIndex && startIndex < m_pathLength && (m_path[ startIndex ].ladder || m_path[ startIndex ].area->GetAttributes() & (NAV_MESH_JUMP | NAV_MESH_STOP))) { *point = m_path[ startIndex ].pos; return startIndex; } // we need the point just *ahead* of us ++startIndex; if (startIndex >= m_pathLength) startIndex = m_pathLength-1; // if we hit a ladder, stop, or jump area, must stop if (startIndex < m_pathLength && (m_path[ startIndex ].ladder || m_path[ startIndex ].area->GetAttributes() & (NAV_MESH_JUMP | NAV_MESH_STOP))) { *point = m_path[ startIndex ].pos; return startIndex; } // note direction of path segment we are standing on Vector initDir = m_path[ startIndex ].pos - m_path[ startIndex-1 ].pos; initDir.NormalizeInPlace(); Vector feet = GetAbsOrigin(); Vector eyes = feet + Vector( 0, 0, HalfHumanHeight ); float rangeSoFar = 0; // this flag is true if our ahead point is visible bool visible = true; Vector prevDir = initDir; // step along the path until we pass aheadRange bool isCorner = false; int i; for( i=startIndex; i<m_pathLength; ++i ) { Vector pos = m_path[i].pos; Vector to = pos - m_path[i-1].pos; Vector dir = to; dir.NormalizeInPlace(); // don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc) if (DotProduct( dir, initDir ) < 0.0f) // -0.25f { --i; break; } // if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc if (DotProduct( dir, prevDir ) < 0.5f) { isCorner = true; --i; break; } prevDir = dir; // don't use points we cant see Vector probe = pos + Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( eyes, probe, WALK_THRU_BREAKABLES )) { // presumably, the previous point is visible, so we will interpolate visible = false; break; } // if we encounter a ladder or jump area, we must stop if (i < m_pathLength && (m_path[ i ].ladder || m_path[ i ].area->GetAttributes() & NAV_MESH_JUMP)) break; // Check straight-line path from our current position to this position // Test for un-jumpable height change, or unrecoverable fall if (!IsStraightLinePathWalkable( pos )) { --i; break; } Vector along = (i == startIndex) ? (pos - feet) : (pos - m_path[i-1].pos); rangeSoFar += along.Length2D(); // stop if we have gone farther than aheadRange if (rangeSoFar >= aheadRange) break; } if (i < startIndex) afterIndex = startIndex; else if (i < m_pathLength) afterIndex = i; else afterIndex = m_pathLength-1; // compute point on the path at aheadRange if (afterIndex == 0) { *point = m_path[0].pos; } else { // interpolate point along path segment const Vector *afterPoint = &m_path[ afterIndex ].pos; const Vector *beforePoint = &m_path[ afterIndex-1 ].pos; Vector to = *afterPoint - *beforePoint; float length = to.Length2D(); float t = 1.0f - ((rangeSoFar - aheadRange) / length); if (t < 0.0f) t = 0.0f; else if (t > 1.0f) t = 1.0f; *point = *beforePoint + t * to; // if afterPoint wasn't visible, slide point backwards towards beforePoint until it is if (!visible) { const float sightStepSize = 25.0f; float dt = sightStepSize / length; Vector probe = *point + Vector( 0, 0, HalfHumanHeight ); while( t > 0.0f && !IsWalkableTraceLineClear( eyes, probe, WALK_THRU_BREAKABLES ) ) { t -= dt; *point = *beforePoint + t * to; } if (t <= 0.0f) *point = *beforePoint; } } // if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle if (!isCorner) { const float epsilon = 50.0f; Vector2D toPoint; toPoint.x = point->x - myOrigin.x; toPoint.y = point->y - myOrigin.y; if (DotProduct2D( toPoint, initDir.AsVector2D() ) < 0.0f || toPoint.IsLengthLessThan( epsilon )) { int i; for( i=startIndex; i<m_pathLength; ++i ) { toPoint.x = m_path[i].pos.x - myOrigin.x; toPoint.y = m_path[i].pos.y - myOrigin.y; if (m_path[i].ladder || m_path[i].area->GetAttributes() & NAV_MESH_JUMP || toPoint.IsLengthGreaterThan( epsilon )) { *point = m_path[i].pos; startIndex = i; break; } } if (i == m_pathLength) { *point = GetPathEndpoint(); startIndex = m_pathLength-1; } } } // m_pathIndex should always be the next point on the path, even if we're not moving directly towards it return startIndex; } //-------------------------------------------------------------------------------------------------------------- /** * Set the current index along the path */ void CCSBot::SetPathIndex( int newIndex ) { m_pathIndex = MIN( newIndex, m_pathLength-1 ); m_areaEnteredTimestamp = gpGlobals->curtime; if (m_path[ m_pathIndex ].ladder) { SetupLadderMovement(); } else { // get our "encounter spots" for this leg of the path if (m_pathIndex < m_pathLength && m_pathIndex >= 2) m_spotEncounter = m_path[ m_pathIndex-1 ].area->GetSpotEncounter( m_path[ m_pathIndex-2 ].area, m_path[ m_pathIndex ].area ); else m_spotEncounter = NULL; m_pathLadder = NULL; } } //-------------------------------------------------------------------------------------------------------------- /** * Return true if nearing a jump in the path */ bool CCSBot::IsNearJump( void ) const { if (m_pathIndex == 0 || m_pathIndex >= m_pathLength) return false; for( int i=m_pathIndex-1; i<m_pathIndex; ++i ) { if (m_path[ i ].area->GetAttributes() & NAV_MESH_JUMP) { float dz = m_path[ i+1 ].pos.z - m_path[ i ].pos.z; if (dz > 0.0f) return true; } } return false; } //-------------------------------------------------------------------------------------------------------------- /** * Return approximately how much damage will will take from the given fall height */ float CCSBot::GetApproximateFallDamage( float height ) const { // empirically discovered height values const float slope = 0.2178f; const float intercept = 26.0f; float damage = slope * height - intercept; if (damage < 0.0f) return 0.0f; return damage; } //-------------------------------------------------------------------------------------------------------------- /** * Return true if a friend is between us and the given position */ bool CCSBot::IsFriendInTheWay( const Vector &goalPos ) { // do this check less often to ease CPU burden if (!m_avoidFriendTimer.IsElapsed()) { return m_isFriendInTheWay; } const float avoidFriendInterval = 0.5f; m_avoidFriendTimer.Start( avoidFriendInterval ); // compute ray along intended path Vector myOrigin = GetCentroid( this ); Vector moveDir = goalPos - myOrigin; // make it a unit vector float length = moveDir.NormalizeInPlace(); m_isFriendInTheWay = false; // check if any friends are overlapping this linear path for( int i = 1; i <= gpGlobals->maxClients; ++i ) { CCSPlayer *player = static_cast<CCSPlayer *>( UTIL_PlayerByIndex( i ) ); if (player == NULL) continue; if (!player->IsAlive()) continue; if (!player->InSameTeam( this )) continue; if (player->entindex() == entindex()) continue; // compute vector from us to our friend Vector toFriend = player->GetAbsOrigin() - GetAbsOrigin(); // check if friend is in our "personal space" const float personalSpace = 100.0f; if (toFriend.IsLengthGreaterThan( personalSpace )) continue; // find distance of friend along our movement path float friendDistAlong = DotProduct( toFriend, moveDir ); // if friend is behind us, ignore him if (friendDistAlong <= 0.0f) continue; // constrain point to be on path segment Vector pos; if (friendDistAlong >= length) pos = goalPos; else pos = myOrigin + friendDistAlong * moveDir; // check if friend overlaps our intended line of movement const float friendRadius = 30.0f; if ((pos - GetCentroid( player )).IsLengthLessThan( friendRadius )) { // friend is in our personal space and overlaps our intended line of movement m_isFriendInTheWay = true; break; } } return m_isFriendInTheWay; } //-------------------------------------------------------------------------------------------------------------- /** * Do reflex avoidance movements if our "feelers" are touched */ void CCSBot::FeelerReflexAdjustment( Vector *goalPosition ) { // if we are in a "precise" area, do not do feeler adjustments if (m_lastKnownArea && m_lastKnownArea->GetAttributes() & NAV_MESH_PRECISE) return; Vector dir( BotCOS( m_forwardAngle ), BotSIN( m_forwardAngle ), 0.0f ); Vector lat( -dir.y, dir.x, 0.0f ); const float feelerOffset = (IsCrouching()) ? 15.0f : 20.0f; const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747) const float feelerLengthWalk = 30.0f; const float feelerHeight = StepHeight + 0.1f; // if obstacle is lower than StepHeight, we'll walk right over it float feelerLength = (IsRunning()) ? feelerLengthRun : feelerLengthWalk; feelerLength = (IsCrouching()) ? 20.0f : feelerLength; // // Feelers must follow floor slope // float ground; Vector normal; Vector eye = EyePosition(); if (GetSimpleGroundHeightWithFloor( eye, &ground, &normal ) == false) return; // get forward vector along floor dir = CrossProduct( lat, normal ); // correct the sideways vector lat = CrossProduct( dir, normal ); Vector feet = GetAbsOrigin(); feet.z += feelerHeight; Vector from = feet + feelerOffset * lat; Vector to = from + feelerLength * dir; bool leftClear = IsWalkableTraceLineClear( from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES ); // avoid ledges, too // use 'from' so it doesn't interfere with legitimate gap jumping (its at our feet) /// @todo Rethink this - it causes lots of wiggling when bots jump down from vents, etc /* float ground; if (GetSimpleGroundHeightWithFloor( &from, &ground )) { if (GetFeetZ() - ground > JumpHeight) leftClear = false; } */ if ( ( cv_bot_traceview.GetInt() == 1 && IsLocalPlayerWatchingMe() ) || cv_bot_traceview.GetInt() == 10 ) { if (leftClear) UTIL_DrawBeamPoints( from, to, 1, 0, 255, 0 ); else UTIL_DrawBeamPoints( from, to, 1, 255, 0, 0 ); } from = feet - feelerOffset * lat; to = from + feelerLength * dir; bool rightClear = IsWalkableTraceLineClear( from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES ); /* // avoid ledges, too if (GetSimpleGroundHeightWithFloor( &from, &ground )) { if (GetFeetZ() - ground > JumpHeight) rightClear = false; } */ if ( ( cv_bot_traceview.GetInt() == 1 && IsLocalPlayerWatchingMe() ) || cv_bot_traceview.GetInt() == 10 ) { if (rightClear) UTIL_DrawBeamPoints( from, to, 1, 0, 255, 0 ); else UTIL_DrawBeamPoints( from, to, 1, 255, 0, 0 ); } const float avoidRange = (IsCrouching()) ? 150.0f : 300.0f; // 50, 300 if (!rightClear) { if (leftClear) { // right hit, left clear - veer left *goalPosition = *goalPosition + avoidRange * lat; } } else if (!leftClear) { // right clear, left hit - veer right *goalPosition = *goalPosition - avoidRange * lat; } } //-------------------------------------------------------------------------------------------------------------- /** * Allows the current nav area to make us run/walk without messing with our state */ bool CCSBot::IsRunning( void ) const { // if we've forced running, go with it if ( !m_mustRunTimer.IsElapsed() ) { return BaseClass::IsRunning(); } if ( m_lastKnownArea && m_lastKnownArea->GetAttributes() & NAV_MESH_RUN ) { return true; } if ( m_lastKnownArea && m_lastKnownArea->GetAttributes() & NAV_MESH_WALK ) { return false; } return BaseClass::IsRunning(); } //-------------------------------------------------------------------------------------------------------------- /** * Move along the path. Return false if end of path reached. */ CCSBot::PathResult CCSBot::UpdatePathMovement( bool allowSpeedChange ) { VPROF_BUDGET( "CCSBot::UpdatePathMovement", VPROF_BUDGETGROUP_NPCS ); if (m_pathLength == 0) return PATH_FAILURE; if (cv_bot_walk.GetBool()) Walk(); // // If we are navigating a ladder, it overrides all other path movement until complete // if (UpdateLadderMovement()) return PROGRESSING; // ladder failure can destroy the path if (m_pathLength == 0) return PATH_FAILURE; // we are not supposed to be on a ladder - if we are, jump off if (IsOnLadder()) Jump( MUST_JUMP ); assert( m_pathIndex < m_pathLength ); // // Stop path attribute // if (!IsUsingLadder()) { // if the m_isStopping flag is set, clear our movement // if the m_isStopping flag is set and movement is stopped, clear m_isStopping if ( m_lastKnownArea && m_isStopping ) { ResetStuckMonitor(); ClearMovement(); if ( GetAbsVelocity().LengthSqr() < 0.1f ) { m_isStopping = false; } else { return PROGRESSING; } } } // end stop logic // // Check if reached the end of the path // bool nearEndOfPath = false; if (m_pathIndex >= m_pathLength-1) { Vector toEnd = GetPathEndpoint() - GetAbsOrigin(); Vector d = toEnd; // can't use 2D because path end may be below us (jump down) const float walkRange = 200.0f; // walk as we get close to the goal position to ensure we hit it if (d.IsLengthLessThan( walkRange )) { // don't walk if crouching - too slow if (allowSpeedChange && !IsCrouching()) Walk(); // note if we are near the end of the path const float nearEndRange = 50.0f; if (d.IsLengthLessThan( nearEndRange )) nearEndOfPath = true; const float closeEpsilon = 20.0f; if (d.IsLengthLessThan( closeEpsilon )) { // reached goal position - path complete DestroyPath(); /// @todo We should push and pop walk state here, in case we want to continue walking after reaching goal if (allowSpeedChange) Run(); return END_OF_PATH; } } } // // To keep us moving smoothly, we will move towards // a point farther ahead of us down our path. // int prevIndex = 0; // closest index on path just prior to where we are now const float aheadRange = 300.0f; int newIndex = FindPathPoint( aheadRange, &m_goalPosition, &prevIndex ); // BOTPORT: Why is prevIndex sometimes -1? if (prevIndex < 0) prevIndex = 0; // if goal position is near to us, we must be about to go around a corner - so look ahead! Vector myOrigin = GetCentroid( this ); const float nearCornerRange = 100.0f; if (m_pathIndex < m_pathLength-1 && (m_goalPosition - myOrigin).IsLengthLessThan( nearCornerRange )) { if (!IsLookingAtSpot( PRIORITY_HIGH )) { ClearLookAt(); InhibitLookAround( 0.5f ); } } // if we moved to a new node on the path, setup movement if (newIndex > m_pathIndex) { SetPathIndex( newIndex ); } // // Crouching // if (!IsUsingLadder()) { // if we are approaching a crouch area, crouch // if there are no crouch areas coming up, stand const float crouchRange = 50.0f; bool didCrouch = false; for( int i=prevIndex; i<m_pathLength; ++i ) { const CNavArea *to = m_path[i].area; // if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump // unless we are already higher than the jump area - we must've jumped already but not moved into next area if (to->GetAttributes() & NAV_MESH_JUMP && to->GetCenter().z > GetFeetZ()) break; Vector close; to->GetClosestPointOnArea( myOrigin, &close ); if ((close - myOrigin).AsVector2D().IsLengthGreaterThan( crouchRange )) break; if (to->GetAttributes() & NAV_MESH_CROUCH) { Crouch(); didCrouch = true; ResetStuckMonitor(); break; } } if (!didCrouch && !IsJumping()) { // no crouch areas coming up StandUp(); } } // end crouching logic // compute our forward facing angle m_forwardAngle = UTIL_VecToYaw( m_goalPosition - myOrigin ); // // Look farther down the path to "lead" our view around corners // Vector toGoal; bool isWaitingForLadder = false; // if we are crouching, look towards where we are moving to negotiate tight corners if (IsCrouching()) { m_lookAheadAngle = m_forwardAngle; } else { if (m_pathIndex == 0) { toGoal = m_path[1].pos; } else if (m_pathIndex < m_pathLength) { toGoal = m_path[ m_pathIndex ].pos - myOrigin; // actually aim our view farther down the path const float lookAheadRange = 500.0f; if (!m_path[ m_pathIndex ].ladder && !IsNearJump() && toGoal.AsVector2D().IsLengthLessThan( lookAheadRange )) { float along = toGoal.Length2D(); int i; for( i=m_pathIndex+1; i<m_pathLength; ++i ) { Vector delta = m_path[i].pos - m_path[i-1].pos; float segmentLength = delta.Length2D(); if (along + segmentLength >= lookAheadRange) { // interpolate between points to keep look ahead point at fixed distance float t = (lookAheadRange - along) / (segmentLength + along); Vector target; if (t <= 0.0f) target = m_path[i-1].pos; else if (t >= 1.0f) target = m_path[i].pos; else target = m_path[i-1].pos + t * delta; toGoal = target - myOrigin; break; } // if we are coming up to a ladder or a jump, look at it if (m_path[i].ladder || (m_path[i].area->GetAttributes() & NAV_MESH_JUMP) || (m_path[i].area->GetAttributes() & NAV_MESH_PRECISE) || (m_path[i].area->GetAttributes() & NAV_MESH_STOP)) { toGoal = m_path[i].pos - myOrigin; // if anyone is on the ladder, wait if (m_path[i].ladder && m_path[i].ladder->IsInUse( this )) { isWaitingForLadder = true; ResetStuckMonitor(); // if we are too close to the ladder, back off a bit const float tooCloseRange = 100.0f; Vector2D delta( m_path[i].ladder->m_top.x - myOrigin.x, m_path[i].ladder->m_top.y - myOrigin.y ); if (delta.IsLengthLessThan( tooCloseRange )) { MoveAwayFromPosition( m_path[i].ladder->m_top ); } } break; } along += segmentLength; } if (i == m_pathLength) toGoal = GetPathEndpoint() - myOrigin; } } else { toGoal = GetPathEndpoint() - myOrigin; } m_lookAheadAngle = UTIL_VecToYaw( toGoal ); } // initialize "adjusted" goal to current goal Vector adjustedGoal = m_goalPosition; // // Use short "feelers" to veer away from close-range obstacles // Feelers come from our ankles, just above StepHeight, so we avoid short walls, too // Don't use feelers if very near the end of the path, or about to jump // /// @todo Consider having feelers at several heights to deal with overhangs, etc. if (!nearEndOfPath && !IsNearJump() && !IsJumping()) { FeelerReflexAdjustment( &adjustedGoal ); } // draw debug visualization if ( ( cv_bot_traceview.GetInt() == 1 && IsLocalPlayerWatchingMe() ) || cv_bot_traceview.GetInt() == 10 ) { DrawPath(); const Vector *pos = &m_path[ m_pathIndex ].pos; UTIL_DrawBeamPoints( *pos, *pos + Vector( 0, 0, 50 ), 1, 255, 255, 0 ); UTIL_DrawBeamPoints( adjustedGoal, adjustedGoal + Vector( 0, 0, 50 ), 1, 255, 0, 255 ); UTIL_DrawBeamPoints( myOrigin, adjustedGoal + Vector( 0, 0, 50 ), 1, 255, 0, 255 ); } // dont use adjustedGoal, as it can vary wildly from the feeler adjustment if (!IsAttacking() && IsFriendInTheWay( m_goalPosition )) { if (!m_isWaitingBehindFriend) { m_isWaitingBehindFriend = true; const float politeDuration = 5.0f - 3.0f * GetProfile()->GetAggression(); m_politeTimer.Start( politeDuration ); } else if (m_politeTimer.IsElapsed()) { // we have run out of patience m_isWaitingBehindFriend = false; ResetStuckMonitor(); // repath to avoid clump of friends in the way DestroyPath(); } } else if (m_isWaitingBehindFriend) { // we're done waiting for our friend to move m_isWaitingBehindFriend = false; ResetStuckMonitor(); } // // Move along our path if there are no friends blocking our way, // or we have run out of patience // if (!isWaitingForLadder && (!m_isWaitingBehindFriend || m_politeTimer.IsElapsed())) { // // Move along path // MoveTowardsPosition( adjustedGoal ); // // Stuck check // if (m_isStuck && !IsJumping()) { Wiggle(); } } // if our goal is high above us, we must have fallen bool didFall = false; if (m_goalPosition.z - GetFeetZ() > JumpCrouchHeight) { const float closeRange = 75.0f; Vector2D to( myOrigin.x - m_goalPosition.x, myOrigin.y - m_goalPosition.y ); if (to.IsLengthLessThan( closeRange )) { // we can't reach the goal position // check if we can reach the next node, in case this was a "jump down" situation if (m_pathIndex < m_pathLength-1) { if (m_path[ m_pathIndex+1 ].pos.z - GetFeetZ() > JumpCrouchHeight) { // the next node is too high, too - we really did fall of the path didFall = true; for ( int i=m_pathIndex; i<=m_pathIndex+1; ++i ) { if ( m_path[i].how == GO_LADDER_UP ) { // if we're going up a ladder, and we're within reach of the ladder bottom, we haven't fallen if ( m_path[i].pos.z - GetFeetZ() <= JumpCrouchHeight ) { didFall = false; break; } } } } } else { // fell trying to get to the last node in the path didFall = true; } } } // // This timeout check is needed if the bot somehow slips way off // of its path and cannot progress, but also moves around // enough that it never becomes "stuck" // const float giveUpDuration = 4.0f; if (didFall || gpGlobals->curtime - m_areaEnteredTimestamp > giveUpDuration) { if (didFall) { PrintIfWatched( "I fell off!\n" ); if (IsLocalPlayerWatchingMe() && cv_bot_debug.GetBool() && UTIL_GetListenServerHost()) { CBasePlayer *localPlayer = UTIL_GetListenServerHost(); CSingleUserRecipientFilter filter( localPlayer ); EmitSound( filter, localPlayer->entindex(), "Bot.FellOff" ); } } // if we havent made any progress in a long time, give up if (m_pathIndex < m_pathLength-1) { PrintIfWatched( "Giving up trying to get to area #%d\n", m_path[ m_pathIndex ].area->GetID() ); } else { PrintIfWatched( "Giving up trying to get to end of path\n" ); } Run(); StandUp(); DestroyPath(); ClearLookAt(); // See if we should be on a different nav area CNavArea *area = TheNavMesh->GetNearestNavArea( GetAbsOrigin(), false, 500.0f, true ); if (area && area != m_lastNavArea) { if (m_lastNavArea) { m_lastNavArea->DecrementPlayerCount( GetTeamNumber(), entindex() ); } area->IncrementPlayerCount( GetTeamNumber(), entindex() ); m_lastNavArea = area; if ( area->GetPlace() != UNDEFINED_PLACE ) { const char *placeName = TheNavMesh->PlaceToName( area->GetPlace() ); if ( placeName && *placeName ) { Q_strncpy( m_szLastPlaceName.GetForModify(), placeName, MAX_PLACE_NAME_LENGTH ); } } // generate event //KeyValues *event = new KeyValues( "player_entered_area" ); //event->SetInt( "userid", GetUserID() ); //event->SetInt( "areaid", area->GetID() ); //gameeventmanager->FireEvent( event ); } return PATH_FAILURE; } return PROGRESSING; } //-------------------------------------------------------------------------------------------------------------- /** * Build trivial path to goal, assuming we are already in the same area */ void CCSBot::BuildTrivialPath( const Vector &goal ) { Vector myOrigin = GetCentroid( this ); m_pathIndex = 1; m_pathLength = 2; m_path[0].area = m_lastKnownArea; m_path[0].pos = myOrigin; m_path[0].pos.z = m_lastKnownArea->GetZ( myOrigin ); m_path[0].ladder = NULL; m_path[0].how = NUM_TRAVERSE_TYPES; m_path[1].area = m_lastKnownArea; m_path[1].pos = goal; m_path[1].pos.z = m_lastKnownArea->GetZ( goal ); m_path[1].ladder = NULL; m_path[1].how = NUM_TRAVERSE_TYPES; m_areaEnteredTimestamp = gpGlobals->curtime; m_spotEncounter = NULL; m_pathLadder = NULL; m_goalPosition = goal; } //-------------------------------------------------------------------------------------------------------------- /** * Compute shortest path to goal position via A* algorithm * If 'goalArea' is NULL, path will get as close as it can. */ bool CCSBot::ComputePath( const Vector &goal, RouteType route ) { VPROF_BUDGET( "CCSBot::ComputePath", VPROF_BUDGETGROUP_NPCS ); // // Throttle re-pathing // if (!m_repathTimer.IsElapsed()) return false; // randomize to distribute CPU load m_repathTimer.Start( RandomFloat( 0.4f, 0.6f ) ); DestroyPath(); m_pathLadder = NULL; CNavArea *goalArea = TheNavMesh->GetNearestNavArea( goal ); CNavArea *startArea = m_lastKnownArea; if (startArea == NULL) return false; // if we fell off a ledge onto an area off the mesh, we will path from the // ledge above our heads, resulting in a path we can't follow. Vector close; startArea->GetClosestPointOnArea( EyePosition(), &close ); if (close.z - GetAbsOrigin().z > JumpCrouchHeight) { // we can't reach our last known area - find nearest area to us PrintIfWatched( "Last known area is above my head - resetting to nearest area.\n" ); m_lastKnownArea = (CCSNavArea*)TheNavMesh->GetNearestNavArea( GetAbsOrigin(), false, 500.0f, true ); if (m_lastKnownArea == NULL) { return false; } startArea = m_lastKnownArea; } // note final specific position Vector pathEndPosition = goal; // make sure path end position is on the ground if (goalArea) pathEndPosition.z = goalArea->GetZ( pathEndPosition ); else TheNavMesh->GetGroundHeight( pathEndPosition, &pathEndPosition.z ); // if we are already in the goal area, build trivial path if (startArea == goalArea) { BuildTrivialPath( pathEndPosition ); return true; } // // Compute shortest path to goal // CNavArea *closestArea = NULL; PathCost cost( this, route ); bool pathToGoalExists = NavAreaBuildPath( startArea, goalArea, &goal, cost, &closestArea ); CNavArea *effectiveGoalArea = (pathToGoalExists) ? goalArea : closestArea; // // Build path by following parent links // // get count int count = 0; CNavArea *area; for( area = effectiveGoalArea; area; area = area->GetParent() ) ++count; // save room for endpoint if (count > MAX_PATH_LENGTH-1) count = MAX_PATH_LENGTH-1; if (count == 0) return false; if (count == 1) { BuildTrivialPath( pathEndPosition ); return true; } // build path m_pathLength = count; for( area = effectiveGoalArea; count && area; area = area->GetParent() ) { --count; m_path[ count ].area = area; m_path[ count ].how = area->GetParentHow(); } // compute path positions if (ComputePathPositions() == false) { PrintIfWatched( "Error building path\n" ); DestroyPath(); return false; } // append path end position m_path[ m_pathLength ].area = effectiveGoalArea; m_path[ m_pathLength ].pos = pathEndPosition; m_path[ m_pathLength ].ladder = NULL; m_path[ m_pathLength ].how = NUM_TRAVERSE_TYPES; ++m_pathLength; // do movement setup m_pathIndex = 1; m_areaEnteredTimestamp = gpGlobals->curtime; m_spotEncounter = NULL; m_goalPosition = m_path[1].pos; if (m_path[1].ladder) SetupLadderMovement(); else m_pathLadder = NULL; // find initial encounter area along this path, if we are in the early part of the round if (IsSafe()) { int myTeam = GetTeamNumber(); int enemyTeam = OtherTeam( myTeam ); int i; for( i=0; i<m_pathLength; ++i ) { if (m_path[i].area->GetEarliestOccupyTime( myTeam ) > m_path[i].area->GetEarliestOccupyTime( enemyTeam )) { break; } } if (i < m_pathLength) { SetInitialEncounterArea( m_path[i].area ); } else { SetInitialEncounterArea( NULL ); } } return true; } //-------------------------------------------------------------------------------------------------------------- /** * Return estimated distance left to travel along path */ float CCSBot::GetPathDistanceRemaining( void ) const { if (!HasPath()) return -1.0f; int idx = (m_pathIndex < m_pathLength) ? m_pathIndex : m_pathLength-1; float dist = 0.0f; Vector prevCenter = m_path[m_pathIndex].area->GetCenter(); for( int i=idx+1; i<m_pathLength; ++i ) { dist += (m_path[i].area->GetCenter() - prevCenter).Length(); prevCenter = m_path[i].area->GetCenter(); } return dist; } //-------------------------------------------------------------------------------------------------------------- /** * Draw a portion of our current path for debugging. */ void CCSBot::DrawPath( void ) { if (!HasPath()) return; for( int i=1; i<m_pathLength; ++i ) { UTIL_DrawBeamPoints( m_path[i-1].pos, m_path[i].pos, 2, 255, 75, 0 ); } Vector close; if (FindOurPositionOnPath( &close, true ) >= 0) { UTIL_DrawBeamPoints( close + Vector( 0, 0, 25 ), close, 1, 0, 255, 0 ); UTIL_DrawBeamPoints( close + Vector( 25, 0, 0 ), close + Vector( -25, 0, 0 ), 1, 0, 255, 0 ); UTIL_DrawBeamPoints( close + Vector( 0, 25, 0 ), close + Vector( 0, -25, 0 ), 1, 0, 255, 0 ); } }