// NextBotLocomotionInterface.h // NextBot interface for movement through the environment // Author: Michael Booth, April 2005 //========= Copyright Valve Corporation, All rights reserved. ============// #ifndef _NEXT_BOT_LOCOMOTION_INTERFACE_H_ #define _NEXT_BOT_LOCOMOTION_INTERFACE_H_ #include "NextBotComponentInterface.h" class Path; class INextBot; class CNavLadder; //---------------------------------------------------------------------------------------------------------------- /** * The interface encapsulating *how* a bot moves through the world (walking? flying? etc) */ class ILocomotion : public INextBotComponent { public: ILocomotion( INextBot *bot ); virtual ~ILocomotion(); virtual void Reset( void ); // (EXTEND) reset to initial state virtual void Update( void ); // (EXTEND) update internal state // // The primary locomotive method // Depending on the physics of the bot's motion, it may not actually // reach the given position precisely. // The 'weight' can be used to combine multiple Approach() calls within // a single frame into a single goal (ie: weighted average) // virtual void Approach( const Vector &goalPos, float goalWeight = 1.0f ); // (EXTEND) move directly towards the given position // // Move the bot to the precise given position immediately, // updating internal state as needed // Collision resolution is done to prevent interpenetration, which may prevent // the bot from reaching the given position. If no collisions occur, the // bot will be at the given position when this method returns. // virtual void DriveTo( const Vector &pos ); // (EXTEND) Move the bot to the precise given position immediately, // // Locomotion modifiers // virtual bool ClimbUpToLedge( const Vector &landingGoal, const Vector &landingForward, const CBaseEntity *obstacle ) { return true; } // initiate a jump to an adjacent high ledge, return false if climb can't start virtual void JumpAcrossGap( const Vector &landingGoal, const Vector &landingForward ) { } // initiate a jump across an empty volume of space to far side virtual void Jump( void ) { } // initiate a simple undirected jump in the air virtual bool IsClimbingOrJumping( void ) const; // is jumping in any form virtual bool IsClimbingUpToLedge( void ) const; // is climbing up to a high ledge virtual bool IsJumpingAcrossGap( void ) const; // is jumping across a gap to the far side virtual bool IsScrambling( void ) const; // is in the middle of a complex action (climbing a ladder, climbing a ledge, jumping, etc) that shouldn't be interrupted virtual void Run( void ) { } // set desired movement speed to running virtual void Walk( void ) { } // set desired movement speed to walking virtual void Stop( void ) { } // set desired movement speed to stopped virtual bool IsRunning( void ) const; virtual void SetDesiredSpeed( float speed ) { } // set desired speed for locomotor movement virtual float GetDesiredSpeed( void ) const; // returns the current desired speed virtual void SetSpeedLimit( float speed ) { } // set maximum speed bot can reach, regardless of desired speed virtual float GetSpeedLimit( void ) const { return 1000.0f; } // get maximum speed bot can reach, regardless of desired speed virtual bool IsOnGround( void ) const; // return true if standing on something virtual void OnLeaveGround( CBaseEntity *ground ) { } // invoked when bot leaves ground for any reason virtual void OnLandOnGround( CBaseEntity *ground ) { } // invoked when bot lands on the ground after being in the air virtual CBaseEntity *GetGround( void ) const; // return the current ground entity or NULL if not on the ground virtual const Vector &GetGroundNormal( void ) const; // surface normal of the ground we are in contact with virtual float GetGroundSpeed( void ) const; // return current world space speed in XY plane virtual const Vector &GetGroundMotionVector( void ) const; // return unit vector in XY plane describing our direction of motion - even if we are currently not moving virtual void ClimbLadder( const CNavLadder *ladder, const CNavArea *dismountGoal ) { } // climb the given ladder to the top and dismount virtual void DescendLadder( const CNavLadder *ladder, const CNavArea *dismountGoal ) { } // descend the given ladder to the bottom and dismount virtual bool IsUsingLadder( void ) const; // we are moving to get on, ascending/descending, and/or dismounting a ladder virtual bool IsAscendingOrDescendingLadder( void ) const; // we are actually on the ladder right now, either climbing up or down virtual bool IsAbleToAutoCenterOnLadder( void ) const { return false; } virtual void FaceTowards( const Vector &target ) { } // rotate body to face towards "target" virtual void SetDesiredLean( const QAngle &lean ) { } virtual const QAngle &GetDesiredLean( void ) const; // // Locomotion information // virtual bool IsAbleToJumpAcrossGaps( void ) const; // return true if this bot can jump across gaps in its path virtual bool IsAbleToClimb( void ) const; // return true if this bot can climb arbitrary geometry it encounters virtual const Vector &GetFeet( void ) const; // return position of "feet" - the driving point where the bot contacts the ground virtual float GetStepHeight( void ) const; // if delta Z is greater than this, we have to jump to get up virtual float GetMaxJumpHeight( void ) const; // return maximum height of a jump virtual float GetDeathDropHeight( void ) const; // distance at which we will die if we fall virtual float GetRunSpeed( void ) const; // get maximum running speed virtual float GetWalkSpeed( void ) const; // get maximum walking speed virtual float GetMaxAcceleration( void ) const; // return maximum acceleration of locomotor virtual float GetMaxDeceleration( void ) const; // return maximum deceleration of locomotor virtual const Vector &GetVelocity( void ) const; // return current world space velocity virtual float GetSpeed( void ) const; // return current world space speed (magnitude of velocity) virtual const Vector &GetMotionVector( void ) const; // return unit vector describing our direction of motion - even if we are currently not moving virtual bool IsAreaTraversable( const CNavArea *baseArea ) const; // return true if given area can be used for navigation virtual float GetTraversableSlopeLimit( void ) const; // return Z component of unit normal of steepest traversable slope // return true if the given entity can be ignored during locomotion enum TraverseWhenType { IMMEDIATELY, // the entity will not block our motion - we'll carry right through EVENTUALLY // the entity will block us until we spend effort to open/destroy it }; /** * Return true if this locomotor could potentially move along the line given. * If false is returned, fraction of walkable ray is returned in 'fraction' */ virtual bool IsPotentiallyTraversable( const Vector &from, const Vector &to, TraverseWhenType when = EVENTUALLY, float *fraction = NULL ) const; /** * Return true if there is a possible "gap" that will need to be jumped over * If true is returned, fraction of ray before gap is returned in 'fraction' */ virtual bool HasPotentialGap( const Vector &from, const Vector &to, float *fraction = NULL ) const; // return true if there is a "gap" here when moving in the given direction virtual bool IsGap( const Vector &pos, const Vector &forward ) const; virtual bool IsEntityTraversable( CBaseEntity *obstacle, TraverseWhenType when = EVENTUALLY ) const; // // Stuck state. If the locomotor cannot make progress, it becomes "stuck" and can only leave // this stuck state by successfully moving and becoming un-stuck. // virtual bool IsStuck( void ) const; // return true if bot is stuck virtual float GetStuckDuration( void ) const; // return how long we've been stuck virtual void ClearStuckStatus( const char *reason = "" ); // reset stuck status to un-stuck virtual bool IsAttemptingToMove( void ) const; // return true if we have tried to Approach() or DriveTo() very recently void TraceHull( const Vector& start, const Vector& end, const Vector &mins, const Vector &maxs, unsigned int fMask, ITraceFilter *pFilter, trace_t *pTrace ) const; /** * Should we collide with this entity? */ virtual bool ShouldCollideWith( const CBaseEntity *object ) const { return true; } protected: virtual void AdjustPosture( const Vector &moveGoal ); virtual void StuckMonitor( void ); private: Vector m_motionVector; Vector m_groundMotionVector; float m_speed; float m_groundSpeed; // stuck monitoring bool m_isStuck; // if true, we are stuck IntervalTimer m_stuckTimer; // how long we've been stuck CountdownTimer m_stillStuckTimer; // for resending stuck events Vector m_stuckPos; // where we got stuck IntervalTimer m_moveRequestTimer; }; inline bool ILocomotion::IsAbleToJumpAcrossGaps( void ) const { return true; } inline bool ILocomotion::IsAbleToClimb( void ) const { return true; } inline bool ILocomotion::IsAttemptingToMove( void ) const { return m_moveRequestTimer.HasStarted() && m_moveRequestTimer.GetElapsedTime() < 0.25f; } inline bool ILocomotion::IsScrambling( void ) const { return !IsOnGround() || IsClimbingOrJumping() || IsAscendingOrDescendingLadder(); } inline bool ILocomotion::IsClimbingOrJumping( void ) const { return false; } inline bool ILocomotion::IsClimbingUpToLedge( void ) const { return false; } inline bool ILocomotion::IsJumpingAcrossGap( void ) const { return false; } inline bool ILocomotion::IsRunning( void ) const { return false; } inline float ILocomotion::GetDesiredSpeed( void ) const { return 0.0f; } inline bool ILocomotion::IsOnGround( void ) const { return false; } inline CBaseEntity *ILocomotion::GetGround( void ) const { return NULL; } inline const Vector &ILocomotion::GetGroundNormal( void ) const { return vec3_origin; } inline float ILocomotion::GetGroundSpeed( void ) const { return m_groundSpeed; } inline const Vector & ILocomotion::GetGroundMotionVector( void ) const { return m_groundMotionVector; } inline bool ILocomotion::IsUsingLadder( void ) const { return false; } inline bool ILocomotion::IsAscendingOrDescendingLadder( void ) const { return false; } inline const QAngle &ILocomotion::GetDesiredLean( void ) const { return vec3_angle; } inline float ILocomotion::GetStepHeight( void ) const { return 0.0f; } inline float ILocomotion::GetMaxJumpHeight( void ) const { return 0.0f; } inline float ILocomotion::GetDeathDropHeight( void ) const { return 0.0f; } inline float ILocomotion::GetRunSpeed( void ) const { return 0.0f; } inline float ILocomotion::GetWalkSpeed( void ) const { return 0.0f; } inline float ILocomotion::GetMaxAcceleration( void ) const { return 0.0f; } inline float ILocomotion::GetMaxDeceleration( void ) const { return 0.0f; } inline const Vector &ILocomotion::GetVelocity( void ) const { return vec3_origin; } inline float ILocomotion::GetSpeed( void ) const { return m_speed; } inline const Vector & ILocomotion::GetMotionVector( void ) const { return m_motionVector; } inline float ILocomotion::GetTraversableSlopeLimit( void ) const { return 0.6; } inline bool ILocomotion::IsStuck( void ) const { return m_isStuck; } inline float ILocomotion::GetStuckDuration( void ) const { return ( IsStuck() ) ? m_stuckTimer.GetElapsedTime() : 0.0f; } inline void ILocomotion::TraceHull( const Vector& start, const Vector& end, const Vector &mins, const Vector &maxs, unsigned int fMask, ITraceFilter *pFilter, trace_t *pTrace ) const { // VPROF_BUDGET( "ILocomotion::TraceHull", "TraceHull" ); Ray_t ray; ray.Init( start, end, mins, maxs ); enginetrace->TraceRay( ray, fMask, pFilter, pTrace ); } #endif // _NEXT_BOT_LOCOMOTION_INTERFACE_H_