You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
725 lines
32 KiB
725 lines
32 KiB
4 years ago
|
// strciphr.h - originally written and placed in the public domain by Wei Dai
|
||
|
|
||
|
/// \file strciphr.h
|
||
|
/// \brief Classes for implementing stream ciphers
|
||
|
/// \details This file contains helper classes for implementing stream ciphers.
|
||
|
/// All this infrastructure may look very complex compared to what's in Crypto++ 4.x,
|
||
|
/// but stream ciphers implementations now support a lot of new functionality,
|
||
|
/// including better performance (minimizing copying), resetting of keys and IVs, and
|
||
|
/// methods to query which features are supported by a cipher.
|
||
|
/// \details Here's an explanation of these classes. The word "policy" is used here to
|
||
|
/// mean a class with a set of methods that must be implemented by individual stream
|
||
|
/// cipher implementations. This is usually much simpler than the full stream cipher
|
||
|
/// API, which is implemented by either AdditiveCipherTemplate or CFB_CipherTemplate
|
||
|
/// using the policy. So for example, an implementation of SEAL only needs to implement
|
||
|
/// the AdditiveCipherAbstractPolicy interface (since it's an additive cipher, i.e., it
|
||
|
/// xors a keystream into the plaintext). See this line in seal.h:
|
||
|
/// <pre>
|
||
|
/// typedef SymmetricCipherFinal\<ConcretePolicyHolder\<SEAL_Policy\<B\>, AdditiveCipherTemplate\<\> \> \> Encryption;
|
||
|
/// </pre>
|
||
|
/// \details AdditiveCipherTemplate and CFB_CipherTemplate are designed so that they don't
|
||
|
/// need to take a policy class as a template parameter (although this is allowed), so
|
||
|
/// that their code is not duplicated for each new cipher. Instead they each get a
|
||
|
/// reference to an abstract policy interface by calling AccessPolicy() on itself, so
|
||
|
/// AccessPolicy() must be overridden to return the actual policy reference. This is done
|
||
|
/// by the ConceretePolicyHolder class. Finally, SymmetricCipherFinal implements the
|
||
|
/// constructors and other functions that must be implemented by the most derived class.
|
||
|
|
||
|
#ifndef CRYPTOPP_STRCIPHR_H
|
||
|
#define CRYPTOPP_STRCIPHR_H
|
||
|
|
||
|
#include "config.h"
|
||
|
|
||
|
#if CRYPTOPP_MSC_VERSION
|
||
|
# pragma warning(push)
|
||
|
# pragma warning(disable: 4127 4189 4231 4275)
|
||
|
#endif
|
||
|
|
||
|
#include "cryptlib.h"
|
||
|
#include "seckey.h"
|
||
|
#include "secblock.h"
|
||
|
#include "argnames.h"
|
||
|
|
||
|
NAMESPACE_BEGIN(CryptoPP)
|
||
|
|
||
|
/// \brief Access a stream cipher policy object
|
||
|
/// \tparam POLICY_INTERFACE class implementing AbstractPolicyHolder
|
||
|
/// \tparam BASE class or type to use as a base class
|
||
|
template <class POLICY_INTERFACE, class BASE = Empty>
|
||
|
class CRYPTOPP_NO_VTABLE AbstractPolicyHolder : public BASE
|
||
|
{
|
||
|
public:
|
||
|
typedef POLICY_INTERFACE PolicyInterface;
|
||
|
virtual ~AbstractPolicyHolder() {}
|
||
|
|
||
|
protected:
|
||
|
virtual const POLICY_INTERFACE & GetPolicy() const =0;
|
||
|
virtual POLICY_INTERFACE & AccessPolicy() =0;
|
||
|
};
|
||
|
|
||
|
/// \brief Stream cipher policy object
|
||
|
/// \tparam POLICY class implementing AbstractPolicyHolder
|
||
|
/// \tparam BASE class or type to use as a base class
|
||
|
template <class POLICY, class BASE, class POLICY_INTERFACE = typename BASE::PolicyInterface>
|
||
|
class ConcretePolicyHolder : public BASE, protected POLICY
|
||
|
{
|
||
|
public:
|
||
|
virtual ~ConcretePolicyHolder() {}
|
||
|
protected:
|
||
|
const POLICY_INTERFACE & GetPolicy() const {return *this;}
|
||
|
POLICY_INTERFACE & AccessPolicy() {return *this;}
|
||
|
};
|
||
|
|
||
|
/// \brief Keystream operation flags
|
||
|
/// \sa AdditiveCipherAbstractPolicy::GetBytesPerIteration(), AdditiveCipherAbstractPolicy::GetOptimalBlockSize()
|
||
|
/// and AdditiveCipherAbstractPolicy::GetAlignment()
|
||
|
enum KeystreamOperationFlags {
|
||
|
/// \brief Output buffer is aligned
|
||
|
OUTPUT_ALIGNED=1,
|
||
|
/// \brief Input buffer is aligned
|
||
|
INPUT_ALIGNED=2,
|
||
|
/// \brief Input buffer is NULL
|
||
|
INPUT_NULL = 4
|
||
|
};
|
||
|
|
||
|
/// \brief Keystream operation flags
|
||
|
/// \sa AdditiveCipherAbstractPolicy::GetBytesPerIteration(), AdditiveCipherAbstractPolicy::GetOptimalBlockSize()
|
||
|
/// and AdditiveCipherAbstractPolicy::GetAlignment()
|
||
|
enum KeystreamOperation {
|
||
|
/// \brief Wirte the keystream to the output buffer, input is NULL
|
||
|
WRITE_KEYSTREAM = INPUT_NULL,
|
||
|
/// \brief Wirte the keystream to the aligned output buffer, input is NULL
|
||
|
WRITE_KEYSTREAM_ALIGNED = INPUT_NULL | OUTPUT_ALIGNED,
|
||
|
/// \brief XOR the input buffer and keystream, write to the output buffer
|
||
|
XOR_KEYSTREAM = 0,
|
||
|
/// \brief XOR the aligned input buffer and keystream, write to the output buffer
|
||
|
XOR_KEYSTREAM_INPUT_ALIGNED = INPUT_ALIGNED,
|
||
|
/// \brief XOR the input buffer and keystream, write to the aligned output buffer
|
||
|
XOR_KEYSTREAM_OUTPUT_ALIGNED= OUTPUT_ALIGNED,
|
||
|
/// \brief XOR the aligned input buffer and keystream, write to the aligned output buffer
|
||
|
XOR_KEYSTREAM_BOTH_ALIGNED = OUTPUT_ALIGNED | INPUT_ALIGNED
|
||
|
};
|
||
|
|
||
|
/// \brief Policy object for additive stream ciphers
|
||
|
struct CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AdditiveCipherAbstractPolicy
|
||
|
{
|
||
|
virtual ~AdditiveCipherAbstractPolicy() {}
|
||
|
|
||
|
/// \brief Provides data alignment requirements
|
||
|
/// \returns data alignment requirements, in bytes
|
||
|
/// \details Internally, the default implementation returns 1. If the stream cipher is implemented
|
||
|
/// using an SSE2 ASM or intrinsics, then the value returned is usually 16.
|
||
|
virtual unsigned int GetAlignment() const {return 1;}
|
||
|
|
||
|
/// \brief Provides number of bytes operated upon during an iteration
|
||
|
/// \returns bytes operated upon during an iteration, in bytes
|
||
|
/// \sa GetOptimalBlockSize()
|
||
|
virtual unsigned int GetBytesPerIteration() const =0;
|
||
|
|
||
|
/// \brief Provides number of ideal bytes to process
|
||
|
/// \returns the ideal number of bytes to process
|
||
|
/// \details Internally, the default implementation returns GetBytesPerIteration()
|
||
|
/// \sa GetBytesPerIteration()
|
||
|
virtual unsigned int GetOptimalBlockSize() const {return GetBytesPerIteration();}
|
||
|
|
||
|
/// \brief Provides buffer size based on iterations
|
||
|
/// \returns the buffer size based on iterations, in bytes
|
||
|
virtual unsigned int GetIterationsToBuffer() const =0;
|
||
|
|
||
|
/// \brief Generate the keystream
|
||
|
/// \param keystream the key stream
|
||
|
/// \param iterationCount the number of iterations to generate the key stream
|
||
|
/// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
|
||
|
virtual void WriteKeystream(byte *keystream, size_t iterationCount)
|
||
|
{OperateKeystream(KeystreamOperation(INPUT_NULL | static_cast<KeystreamOperationFlags>(IsAlignedOn(keystream, GetAlignment()))), keystream, NULLPTR, iterationCount);}
|
||
|
|
||
|
/// \brief Flag indicating
|
||
|
/// \returns true if the stream can be generated independent of the transformation input, false otherwise
|
||
|
/// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
|
||
|
virtual bool CanOperateKeystream() const {return false;}
|
||
|
|
||
|
/// \brief Operates the keystream
|
||
|
/// \param operation the operation with additional flags
|
||
|
/// \param output the output buffer
|
||
|
/// \param input the input buffer
|
||
|
/// \param iterationCount the number of iterations to perform on the input
|
||
|
/// \details OperateKeystream() will attempt to operate upon GetOptimalBlockSize() buffer,
|
||
|
/// which will be derived from GetBytesPerIteration().
|
||
|
/// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream(), KeystreamOperation()
|
||
|
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
|
||
|
{CRYPTOPP_UNUSED(operation); CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(input);
|
||
|
CRYPTOPP_UNUSED(iterationCount); CRYPTOPP_ASSERT(false);}
|
||
|
|
||
|
/// \brief Key the cipher
|
||
|
/// \param params set of NameValuePairs use to initialize this object
|
||
|
/// \param key a byte array used to key the cipher
|
||
|
/// \param length the size of the key array
|
||
|
virtual void CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length) =0;
|
||
|
|
||
|
/// \brief Resynchronize the cipher
|
||
|
/// \param keystreamBuffer the keystream buffer
|
||
|
/// \param iv a byte array used to resynchronize the cipher
|
||
|
/// \param length the size of the IV array
|
||
|
virtual void CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
|
||
|
{CRYPTOPP_UNUSED(keystreamBuffer); CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(length);
|
||
|
throw NotImplemented("SimpleKeyingInterface: this object doesn't support resynchronization");}
|
||
|
|
||
|
/// \brief Flag indicating random access
|
||
|
/// \returns true if the cipher is seekable, false otherwise
|
||
|
/// \sa SeekToIteration()
|
||
|
virtual bool CipherIsRandomAccess() const =0;
|
||
|
|
||
|
/// \brief Seeks to a random position in the stream
|
||
|
/// \sa CipherIsRandomAccess()
|
||
|
virtual void SeekToIteration(lword iterationCount)
|
||
|
{CRYPTOPP_UNUSED(iterationCount); CRYPTOPP_ASSERT(!CipherIsRandomAccess());
|
||
|
throw NotImplemented("StreamTransformation: this object doesn't support random access");}
|
||
|
|
||
|
/// \brief Retrieve the provider of this algorithm
|
||
|
/// \return the algorithm provider
|
||
|
/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
|
||
|
/// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
|
||
|
/// usually indicate a specialized implementation using instructions from a higher
|
||
|
/// instruction set architecture (ISA). Future labels may include external hardware
|
||
|
/// like a hardware security module (HSM).
|
||
|
/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
|
||
|
/// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
|
||
|
/// instead of ASM.
|
||
|
/// \details Algorithms which combine different instructions or ISAs provide the
|
||
|
/// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
|
||
|
/// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
|
||
|
/// \note Provider is not universally implemented yet.
|
||
|
virtual std::string AlgorithmProvider() const { return "C++"; }
|
||
|
};
|
||
|
|
||
|
/// \brief Base class for additive stream ciphers
|
||
|
/// \tparam WT word type
|
||
|
/// \tparam W count of words
|
||
|
/// \tparam X bytes per iteration count
|
||
|
/// \tparam BASE AdditiveCipherAbstractPolicy derived base class
|
||
|
template <typename WT, unsigned int W, unsigned int X = 1, class BASE = AdditiveCipherAbstractPolicy>
|
||
|
struct CRYPTOPP_NO_VTABLE AdditiveCipherConcretePolicy : public BASE
|
||
|
{
|
||
|
/// \brief Word type for the cipher
|
||
|
typedef WT WordType;
|
||
|
|
||
|
/// \brief Number of bytes for an iteration
|
||
|
/// \details BYTES_PER_ITERATION is the product <tt>sizeof(WordType) * W</tt>.
|
||
|
/// For example, ChaCha uses 16 each <tt>word32</tt>, and the value of
|
||
|
/// BYTES_PER_ITERATION is 64. Each invocation of the ChaCha block function
|
||
|
/// produces 64 bytes of keystream.
|
||
|
CRYPTOPP_CONSTANT(BYTES_PER_ITERATION = sizeof(WordType) * W);
|
||
|
|
||
|
virtual ~AdditiveCipherConcretePolicy() {}
|
||
|
|
||
|
#if !(CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64)
|
||
|
/// \brief Provides data alignment requirements
|
||
|
/// \returns data alignment requirements, in bytes
|
||
|
/// \details Internally, the default implementation returns 1. If the stream
|
||
|
/// cipher is implemented using an SSE2 ASM or intrinsics, then the value
|
||
|
/// returned is usually 16.
|
||
|
unsigned int GetAlignment() const {return GetAlignmentOf<WordType>();}
|
||
|
#endif
|
||
|
|
||
|
/// \brief Provides number of bytes operated upon during an iteration
|
||
|
/// \returns bytes operated upon during an iteration, in bytes
|
||
|
/// \sa GetOptimalBlockSize()
|
||
|
unsigned int GetBytesPerIteration() const {return BYTES_PER_ITERATION;}
|
||
|
|
||
|
/// \brief Provides buffer size based on iterations
|
||
|
/// \returns the buffer size based on iterations, in bytes
|
||
|
unsigned int GetIterationsToBuffer() const {return X;}
|
||
|
|
||
|
/// \brief Flag indicating
|
||
|
/// \returns true if the stream can be generated independent of the
|
||
|
/// transformation input, false otherwise
|
||
|
/// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
|
||
|
bool CanOperateKeystream() const {return true;}
|
||
|
|
||
|
/// \brief Operates the keystream
|
||
|
/// \param operation the operation with additional flags
|
||
|
/// \param output the output buffer
|
||
|
/// \param input the input buffer
|
||
|
/// \param iterationCount the number of iterations to perform on the input
|
||
|
/// \details OperateKeystream() will attempt to operate upon GetOptimalBlockSize() buffer,
|
||
|
/// which will be derived from GetBytesPerIteration().
|
||
|
/// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream(), KeystreamOperation()
|
||
|
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount) =0;
|
||
|
};
|
||
|
|
||
|
/// \brief Helper macro to implement OperateKeystream
|
||
|
/// \param x KeystreamOperation mask
|
||
|
/// \param b Endian order
|
||
|
/// \param i index in output buffer
|
||
|
/// \param a value to output
|
||
|
#define CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, b, i, a) \
|
||
|
PutWord(bool(x & OUTPUT_ALIGNED), b, output+i*sizeof(WordType), (x & INPUT_NULL) ? (a) : (a) ^ GetWord<WordType>(bool(x & INPUT_ALIGNED), b, input+i*sizeof(WordType)));
|
||
|
|
||
|
/// \brief Helper macro to implement OperateKeystream
|
||
|
/// \param x KeystreamOperation mask
|
||
|
/// \param i index in output buffer
|
||
|
/// \param a value to output
|
||
|
#define CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, i, a) {\
|
||
|
__m128i t = (x & INPUT_NULL) ? a : _mm_xor_si128(a, (x & INPUT_ALIGNED) ? _mm_load_si128((__m128i *)input+i) : _mm_loadu_si128((__m128i *)input+i));\
|
||
|
if (x & OUTPUT_ALIGNED) _mm_store_si128((__m128i *)output+i, t);\
|
||
|
else _mm_storeu_si128((__m128i *)output+i, t);}
|
||
|
|
||
|
/// \brief Helper macro to implement OperateKeystream
|
||
|
#define CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(x, y) \
|
||
|
switch (operation) \
|
||
|
{ \
|
||
|
case WRITE_KEYSTREAM: \
|
||
|
x(WRITE_KEYSTREAM) \
|
||
|
break; \
|
||
|
case XOR_KEYSTREAM: \
|
||
|
x(XOR_KEYSTREAM) \
|
||
|
input += y; \
|
||
|
break; \
|
||
|
case XOR_KEYSTREAM_INPUT_ALIGNED: \
|
||
|
x(XOR_KEYSTREAM_INPUT_ALIGNED) \
|
||
|
input += y; \
|
||
|
break; \
|
||
|
case XOR_KEYSTREAM_OUTPUT_ALIGNED: \
|
||
|
x(XOR_KEYSTREAM_OUTPUT_ALIGNED) \
|
||
|
input += y; \
|
||
|
break; \
|
||
|
case WRITE_KEYSTREAM_ALIGNED: \
|
||
|
x(WRITE_KEYSTREAM_ALIGNED) \
|
||
|
break; \
|
||
|
case XOR_KEYSTREAM_BOTH_ALIGNED: \
|
||
|
x(XOR_KEYSTREAM_BOTH_ALIGNED) \
|
||
|
input += y; \
|
||
|
break; \
|
||
|
} \
|
||
|
output += y;
|
||
|
|
||
|
/// \brief Base class for additive stream ciphers with SymmetricCipher interface
|
||
|
/// \tparam BASE AbstractPolicyHolder base class
|
||
|
template <class BASE = AbstractPolicyHolder<AdditiveCipherAbstractPolicy, SymmetricCipher> >
|
||
|
class CRYPTOPP_NO_VTABLE AdditiveCipherTemplate : public BASE, public RandomNumberGenerator
|
||
|
{
|
||
|
public:
|
||
|
virtual ~AdditiveCipherTemplate() {}
|
||
|
AdditiveCipherTemplate() : m_leftOver(0) {}
|
||
|
|
||
|
/// \brief Generate random array of bytes
|
||
|
/// \param output the byte buffer
|
||
|
/// \param size the length of the buffer, in bytes
|
||
|
/// \details All generated values are uniformly distributed over the range specified
|
||
|
/// within the constraints of a particular generator.
|
||
|
void GenerateBlock(byte *output, size_t size);
|
||
|
|
||
|
/// \brief Apply keystream to data
|
||
|
/// \param outString a buffer to write the transformed data
|
||
|
/// \param inString a buffer to read the data
|
||
|
/// \param length the size fo the buffers, in bytes
|
||
|
/// \details This is the primary method to operate a stream cipher. For example:
|
||
|
/// <pre>
|
||
|
/// size_t size = 30;
|
||
|
/// byte plain[size] = "Do or do not; there is no try";
|
||
|
/// byte cipher[size];
|
||
|
/// ...
|
||
|
/// ChaCha20 chacha(key, keySize);
|
||
|
/// chacha.ProcessData(cipher, plain, size);
|
||
|
/// </pre>
|
||
|
void ProcessData(byte *outString, const byte *inString, size_t length);
|
||
|
|
||
|
/// \brief Resynchronize the cipher
|
||
|
/// \param iv a byte array used to resynchronize the cipher
|
||
|
/// \param length the size of the IV array
|
||
|
void Resynchronize(const byte *iv, int length=-1);
|
||
|
|
||
|
/// \brief Provides number of ideal bytes to process
|
||
|
/// \returns the ideal number of bytes to process
|
||
|
/// \details Internally, the default implementation returns GetBytesPerIteration()
|
||
|
/// \sa GetBytesPerIteration() and GetOptimalNextBlockSize()
|
||
|
unsigned int OptimalBlockSize() const {return this->GetPolicy().GetOptimalBlockSize();}
|
||
|
|
||
|
/// \brief Provides number of ideal bytes to process
|
||
|
/// \returns the ideal number of bytes to process
|
||
|
/// \details Internally, the default implementation returns remaining unprocessed bytes
|
||
|
/// \sa GetBytesPerIteration() and OptimalBlockSize()
|
||
|
unsigned int GetOptimalNextBlockSize() const {return (unsigned int)this->m_leftOver;}
|
||
|
|
||
|
/// \brief Provides number of ideal data alignment
|
||
|
/// \returns the ideal data alignment, in bytes
|
||
|
/// \sa GetAlignment() and OptimalBlockSize()
|
||
|
unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
|
||
|
|
||
|
/// \brief Determines if the cipher is self inverting
|
||
|
/// \returns true if the stream cipher is self inverting, false otherwise
|
||
|
bool IsSelfInverting() const {return true;}
|
||
|
|
||
|
/// \brief Determines if the cipher is a forward transformation
|
||
|
/// \returns true if the stream cipher is a forward transformation, false otherwise
|
||
|
bool IsForwardTransformation() const {return true;}
|
||
|
|
||
|
/// \brief Flag indicating random access
|
||
|
/// \returns true if the cipher is seekable, false otherwise
|
||
|
/// \sa Seek()
|
||
|
bool IsRandomAccess() const {return this->GetPolicy().CipherIsRandomAccess();}
|
||
|
|
||
|
/// \brief Seeks to a random position in the stream
|
||
|
/// \param position the absolute position in the stream
|
||
|
/// \sa IsRandomAccess()
|
||
|
void Seek(lword position);
|
||
|
|
||
|
/// \brief Retrieve the provider of this algorithm
|
||
|
/// \return the algorithm provider
|
||
|
/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
|
||
|
/// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
|
||
|
/// usually indicate a specialized implementation using instructions from a higher
|
||
|
/// instruction set architecture (ISA). Future labels may include external hardware
|
||
|
/// like a hardware security module (HSM).
|
||
|
/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
|
||
|
/// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
|
||
|
/// instead of ASM.
|
||
|
/// \details Algorithms which combine different instructions or ISAs provide the
|
||
|
/// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
|
||
|
/// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
|
||
|
/// \note Provider is not universally implemented yet.
|
||
|
std::string AlgorithmProvider() const { return this->GetPolicy().AlgorithmProvider(); }
|
||
|
|
||
|
typedef typename BASE::PolicyInterface PolicyInterface;
|
||
|
|
||
|
protected:
|
||
|
void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms);
|
||
|
|
||
|
unsigned int GetBufferByteSize(const PolicyInterface &policy) const {return policy.GetBytesPerIteration() * policy.GetIterationsToBuffer();}
|
||
|
|
||
|
inline byte * KeystreamBufferBegin() {return this->m_buffer.data();}
|
||
|
inline byte * KeystreamBufferEnd() {return (PtrAdd(this->m_buffer.data(), this->m_buffer.size()));}
|
||
|
|
||
|
AlignedSecByteBlock m_buffer;
|
||
|
size_t m_leftOver;
|
||
|
};
|
||
|
|
||
|
/// \brief Policy object for feeback based stream ciphers
|
||
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CFB_CipherAbstractPolicy
|
||
|
{
|
||
|
public:
|
||
|
virtual ~CFB_CipherAbstractPolicy() {}
|
||
|
|
||
|
/// \brief Provides data alignment requirements
|
||
|
/// \returns data alignment requirements, in bytes
|
||
|
/// \details Internally, the default implementation returns 1. If the stream cipher is implemented
|
||
|
/// using an SSE2 ASM or intrinsics, then the value returned is usually 16.
|
||
|
virtual unsigned int GetAlignment() const =0;
|
||
|
|
||
|
/// \brief Provides number of bytes operated upon during an iteration
|
||
|
/// \returns bytes operated upon during an iteration, in bytes
|
||
|
/// \sa GetOptimalBlockSize()
|
||
|
virtual unsigned int GetBytesPerIteration() const =0;
|
||
|
|
||
|
/// \brief Access the feedback register
|
||
|
/// \returns pointer to the first byte of the feedback register
|
||
|
virtual byte * GetRegisterBegin() =0;
|
||
|
|
||
|
/// \brief TODO
|
||
|
virtual void TransformRegister() =0;
|
||
|
|
||
|
/// \brief Flag indicating iteration support
|
||
|
/// \returns true if the cipher supports iteration, false otherwise
|
||
|
virtual bool CanIterate() const {return false;}
|
||
|
|
||
|
/// \brief Iterate the cipher
|
||
|
/// \param output the output buffer
|
||
|
/// \param input the input buffer
|
||
|
/// \param dir the direction of the cipher
|
||
|
/// \param iterationCount the number of iterations to perform on the input
|
||
|
/// \sa IsSelfInverting() and IsForwardTransformation()
|
||
|
virtual void Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
|
||
|
{CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(dir);
|
||
|
CRYPTOPP_UNUSED(iterationCount); CRYPTOPP_ASSERT(false);
|
||
|
throw Exception(Exception::OTHER_ERROR, "SimpleKeyingInterface: unexpected error");}
|
||
|
|
||
|
/// \brief Key the cipher
|
||
|
/// \param params set of NameValuePairs use to initialize this object
|
||
|
/// \param key a byte array used to key the cipher
|
||
|
/// \param length the size of the key array
|
||
|
virtual void CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length) =0;
|
||
|
|
||
|
/// \brief Resynchronize the cipher
|
||
|
/// \param iv a byte array used to resynchronize the cipher
|
||
|
/// \param length the size of the IV array
|
||
|
virtual void CipherResynchronize(const byte *iv, size_t length)
|
||
|
{CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(length);
|
||
|
throw NotImplemented("SimpleKeyingInterface: this object doesn't support resynchronization");}
|
||
|
|
||
|
/// \brief Retrieve the provider of this algorithm
|
||
|
/// \return the algorithm provider
|
||
|
/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
|
||
|
/// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
|
||
|
/// usually indicate a specialized implementation using instructions from a higher
|
||
|
/// instruction set architecture (ISA). Future labels may include external hardware
|
||
|
/// like a hardware security module (HSM).
|
||
|
/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
|
||
|
/// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
|
||
|
/// instead of ASM.
|
||
|
/// \details Algorithms which combine different instructions or ISAs provide the
|
||
|
/// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
|
||
|
/// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
|
||
|
/// \note Provider is not universally implemented yet.
|
||
|
virtual std::string AlgorithmProvider() const { return "C++"; }
|
||
|
};
|
||
|
|
||
|
/// \brief Base class for feedback based stream ciphers
|
||
|
/// \tparam WT word type
|
||
|
/// \tparam W count of words
|
||
|
/// \tparam BASE CFB_CipherAbstractPolicy derived base class
|
||
|
template <typename WT, unsigned int W, class BASE = CFB_CipherAbstractPolicy>
|
||
|
struct CRYPTOPP_NO_VTABLE CFB_CipherConcretePolicy : public BASE
|
||
|
{
|
||
|
typedef WT WordType;
|
||
|
|
||
|
virtual ~CFB_CipherConcretePolicy() {}
|
||
|
|
||
|
/// \brief Provides data alignment requirements
|
||
|
/// \returns data alignment requirements, in bytes
|
||
|
/// \details Internally, the default implementation returns 1. If the stream cipher is implemented
|
||
|
/// using an SSE2 ASM or intrinsics, then the value returned is usually 16.
|
||
|
unsigned int GetAlignment() const {return sizeof(WordType);}
|
||
|
|
||
|
/// \brief Provides number of bytes operated upon during an iteration
|
||
|
/// \returns bytes operated upon during an iteration, in bytes
|
||
|
/// \sa GetOptimalBlockSize()
|
||
|
unsigned int GetBytesPerIteration() const {return sizeof(WordType) * W;}
|
||
|
|
||
|
/// \brief Flag indicating iteration support
|
||
|
/// \returns true if the cipher supports iteration, false otherwise
|
||
|
bool CanIterate() const {return true;}
|
||
|
|
||
|
/// \brief Perform one iteration in the forward direction
|
||
|
void TransformRegister() {this->Iterate(NULLPTR, NULLPTR, ENCRYPTION, 1);}
|
||
|
|
||
|
/// \brief Provides alternate access to a feedback register
|
||
|
/// \tparam B enumeration indicating endianness
|
||
|
/// \details RegisterOutput() provides alternate access to the feedback register. The
|
||
|
/// enumeration B is BigEndian or LittleEndian. Repeatedly applying operator()
|
||
|
/// results in advancing in the register.
|
||
|
template <class B>
|
||
|
struct RegisterOutput
|
||
|
{
|
||
|
RegisterOutput(byte *output, const byte *input, CipherDir dir)
|
||
|
: m_output(output), m_input(input), m_dir(dir) {}
|
||
|
|
||
|
/// \brief XOR feedback register with data
|
||
|
/// \param registerWord data represented as a word type
|
||
|
/// \returns reference to the next feedback register word
|
||
|
inline RegisterOutput& operator()(WordType ®isterWord)
|
||
|
{
|
||
|
//CRYPTOPP_ASSERT(IsAligned<WordType>(m_output));
|
||
|
//CRYPTOPP_ASSERT(IsAligned<WordType>(m_input));
|
||
|
|
||
|
if (!NativeByteOrderIs(B::ToEnum()))
|
||
|
registerWord = ByteReverse(registerWord);
|
||
|
|
||
|
if (m_dir == ENCRYPTION)
|
||
|
{
|
||
|
if (m_input == NULLPTR)
|
||
|
{
|
||
|
CRYPTOPP_ASSERT(m_output == NULLPTR);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// WordType ct = *(const WordType *)m_input ^ registerWord;
|
||
|
WordType ct = GetWord<WordType>(false, NativeByteOrder::ToEnum(), m_input) ^ registerWord;
|
||
|
registerWord = ct;
|
||
|
|
||
|
// *(WordType*)m_output = ct;
|
||
|
PutWord<WordType>(false, NativeByteOrder::ToEnum(), m_output, ct);
|
||
|
|
||
|
m_input += sizeof(WordType);
|
||
|
m_output += sizeof(WordType);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// WordType ct = *(const WordType *)m_input;
|
||
|
WordType ct = GetWord<WordType>(false, NativeByteOrder::ToEnum(), m_input);
|
||
|
|
||
|
// *(WordType*)m_output = registerWord ^ ct;
|
||
|
PutWord<WordType>(false, NativeByteOrder::ToEnum(), m_output, registerWord ^ ct);
|
||
|
registerWord = ct;
|
||
|
|
||
|
m_input += sizeof(WordType);
|
||
|
m_output += sizeof(WordType);
|
||
|
}
|
||
|
|
||
|
// registerWord is left unreversed so it can be xor-ed with further input
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
byte *m_output;
|
||
|
const byte *m_input;
|
||
|
CipherDir m_dir;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/// \brief Base class for feedback based stream ciphers with SymmetricCipher interface
|
||
|
/// \tparam BASE AbstractPolicyHolder base class
|
||
|
template <class BASE>
|
||
|
class CRYPTOPP_NO_VTABLE CFB_CipherTemplate : public BASE
|
||
|
{
|
||
|
public:
|
||
|
virtual ~CFB_CipherTemplate() {}
|
||
|
CFB_CipherTemplate() : m_leftOver(0) {}
|
||
|
|
||
|
/// \brief Apply keystream to data
|
||
|
/// \param outString a buffer to write the transformed data
|
||
|
/// \param inString a buffer to read the data
|
||
|
/// \param length the size fo the buffers, in bytes
|
||
|
/// \details This is the primary method to operate a stream cipher. For example:
|
||
|
/// <pre>
|
||
|
/// size_t size = 30;
|
||
|
/// byte plain[size] = "Do or do not; there is no try";
|
||
|
/// byte cipher[size];
|
||
|
/// ...
|
||
|
/// ChaCha20 chacha(key, keySize);
|
||
|
/// chacha.ProcessData(cipher, plain, size);
|
||
|
/// </pre>
|
||
|
void ProcessData(byte *outString, const byte *inString, size_t length);
|
||
|
|
||
|
/// \brief Resynchronize the cipher
|
||
|
/// \param iv a byte array used to resynchronize the cipher
|
||
|
/// \param length the size of the IV array
|
||
|
void Resynchronize(const byte *iv, int length=-1);
|
||
|
|
||
|
/// \brief Provides number of ideal bytes to process
|
||
|
/// \returns the ideal number of bytes to process
|
||
|
/// \details Internally, the default implementation returns GetBytesPerIteration()
|
||
|
/// \sa GetBytesPerIteration() and GetOptimalNextBlockSize()
|
||
|
unsigned int OptimalBlockSize() const {return this->GetPolicy().GetBytesPerIteration();}
|
||
|
|
||
|
/// \brief Provides number of ideal bytes to process
|
||
|
/// \returns the ideal number of bytes to process
|
||
|
/// \details Internally, the default implementation returns remaining unprocessed bytes
|
||
|
/// \sa GetBytesPerIteration() and OptimalBlockSize()
|
||
|
unsigned int GetOptimalNextBlockSize() const {return (unsigned int)m_leftOver;}
|
||
|
|
||
|
/// \brief Provides number of ideal data alignment
|
||
|
/// \returns the ideal data alignment, in bytes
|
||
|
/// \sa GetAlignment() and OptimalBlockSize()
|
||
|
unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
|
||
|
|
||
|
/// \brief Flag indicating random access
|
||
|
/// \returns true if the cipher is seekable, false otherwise
|
||
|
/// \sa Seek()
|
||
|
bool IsRandomAccess() const {return false;}
|
||
|
|
||
|
/// \brief Determines if the cipher is self inverting
|
||
|
/// \returns true if the stream cipher is self inverting, false otherwise
|
||
|
bool IsSelfInverting() const {return false;}
|
||
|
|
||
|
/// \brief Retrieve the provider of this algorithm
|
||
|
/// \return the algorithm provider
|
||
|
/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
|
||
|
/// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
|
||
|
/// usually indicate a specialized implementation using instructions from a higher
|
||
|
/// instruction set architecture (ISA). Future labels may include external hardware
|
||
|
/// like a hardware security module (HSM).
|
||
|
/// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
|
||
|
/// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
|
||
|
/// instead of ASM.
|
||
|
/// \details Algorithms which combine different instructions or ISAs provide the
|
||
|
/// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
|
||
|
/// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
|
||
|
/// \note Provider is not universally implemented yet.
|
||
|
std::string AlgorithmProvider() const { return this->GetPolicy().AlgorithmProvider(); }
|
||
|
|
||
|
typedef typename BASE::PolicyInterface PolicyInterface;
|
||
|
|
||
|
protected:
|
||
|
virtual void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length) =0;
|
||
|
|
||
|
void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms);
|
||
|
|
||
|
size_t m_leftOver;
|
||
|
};
|
||
|
|
||
|
/// \brief Base class for feedback based stream ciphers in the forward direction with SymmetricCipher interface
|
||
|
/// \tparam BASE AbstractPolicyHolder base class
|
||
|
template <class BASE = AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >
|
||
|
class CRYPTOPP_NO_VTABLE CFB_EncryptionTemplate : public CFB_CipherTemplate<BASE>
|
||
|
{
|
||
|
bool IsForwardTransformation() const {return true;}
|
||
|
void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length);
|
||
|
};
|
||
|
|
||
|
/// \brief Base class for feedback based stream ciphers in the reverse direction with SymmetricCipher interface
|
||
|
/// \tparam BASE AbstractPolicyHolder base class
|
||
|
template <class BASE = AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >
|
||
|
class CRYPTOPP_NO_VTABLE CFB_DecryptionTemplate : public CFB_CipherTemplate<BASE>
|
||
|
{
|
||
|
bool IsForwardTransformation() const {return false;}
|
||
|
void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length);
|
||
|
};
|
||
|
|
||
|
/// \brief Base class for feedback based stream ciphers with a mandatory block size
|
||
|
/// \tparam BASE CFB_EncryptionTemplate or CFB_DecryptionTemplate base class
|
||
|
template <class BASE>
|
||
|
class CFB_RequireFullDataBlocks : public BASE
|
||
|
{
|
||
|
public:
|
||
|
unsigned int MandatoryBlockSize() const {return this->OptimalBlockSize();}
|
||
|
};
|
||
|
|
||
|
/// \brief SymmetricCipher implementation
|
||
|
/// \tparam BASE AbstractPolicyHolder derived base class
|
||
|
/// \tparam INFO AbstractPolicyHolder derived information class
|
||
|
/// \sa Weak::ARC4, ChaCha8, ChaCha12, ChaCha20, Salsa20, SEAL, Sosemanuk, WAKE
|
||
|
template <class BASE, class INFO = BASE>
|
||
|
class SymmetricCipherFinal : public AlgorithmImpl<SimpleKeyingInterfaceImpl<BASE, INFO>, INFO>
|
||
|
{
|
||
|
public:
|
||
|
virtual ~SymmetricCipherFinal() {}
|
||
|
|
||
|
/// \brief Construct a stream cipher
|
||
|
SymmetricCipherFinal() {}
|
||
|
|
||
|
/// \brief Construct a stream cipher
|
||
|
/// \param key a byte array used to key the cipher
|
||
|
/// \details This overload uses DEFAULT_KEYLENGTH
|
||
|
SymmetricCipherFinal(const byte *key)
|
||
|
{this->SetKey(key, this->DEFAULT_KEYLENGTH);}
|
||
|
|
||
|
/// \brief Construct a stream cipher
|
||
|
/// \param key a byte array used to key the cipher
|
||
|
/// \param length the size of the key array
|
||
|
SymmetricCipherFinal(const byte *key, size_t length)
|
||
|
{this->SetKey(key, length);}
|
||
|
|
||
|
/// \brief Construct a stream cipher
|
||
|
/// \param key a byte array used to key the cipher
|
||
|
/// \param length the size of the key array
|
||
|
/// \param iv a byte array used as an initialization vector
|
||
|
SymmetricCipherFinal(const byte *key, size_t length, const byte *iv)
|
||
|
{this->SetKeyWithIV(key, length, iv);}
|
||
|
|
||
|
/// \brief Clone a SymmetricCipher
|
||
|
/// \returns a new SymmetricCipher based on this object
|
||
|
Clonable * Clone() const {return static_cast<SymmetricCipher *>(new SymmetricCipherFinal<BASE, INFO>(*this));}
|
||
|
};
|
||
|
|
||
|
NAMESPACE_END
|
||
|
|
||
|
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
|
||
|
#include "strciphr.cpp"
|
||
|
#endif
|
||
|
|
||
|
NAMESPACE_BEGIN(CryptoPP)
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractPolicyHolder<AdditiveCipherAbstractPolicy, SymmetricCipher>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS AdditiveCipherTemplate<AbstractPolicyHolder<AdditiveCipherAbstractPolicy, SymmetricCipher> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS CFB_CipherTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS CFB_EncryptionTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS CFB_DecryptionTemplate<AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >;
|
||
|
|
||
|
NAMESPACE_END
|
||
|
|
||
|
#if CRYPTOPP_MSC_VERSION
|
||
|
# pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
#endif
|