Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2340 lines
79 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
// TOGL CODE LICENSE
//
// Copyright 2011-2014 Valve Corporation
// All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// glmgr.h
// singleton class, common basis for managing GL contexts
// responsible for tracking adapters and contexts
//
//===============================================================================
#ifndef GLMGR_H
#define GLMGR_H
#pragma once
#undef HAVE_GL_ARB_SYNC
#ifndef OSX
#define HAVE_GL_ARB_SYNC 1
#endif
#include "glbase.h"
#include "glentrypoints.h"
#include "glmdebug.h"
#include "glmdisplay.h"
#include "glmgrext.h"
#include "glmgrbasics.h"
#include "cglmtex.h"
#include "cglmfbo.h"
#include "cglmprogram.h"
#include "cglmbuffer.h"
#include "cglmquery.h"
#include "tier0/tslist.h"
#include "tier0/vprof_telemetry.h"
#include "materialsystem/IShader.h"
#include "dxabstract_types.h"
#include "tier0/icommandline.h"
#undef FORCEINLINE
#define FORCEINLINE inline
//===============================================================================
#define GLM_OPENGL_VENDOR_ID 1
#define GLM_OPENGL_DEFAULT_DEVICE_ID 1
#define GLM_OPENGL_LOW_PERF_DEVICE_ID 2
#define GL_ALPHA_TEST_QCOM 0x0BC0
#define GL_ALPHA_TEST_FUNC_QCOM 0x0BC1
#define GL_ALPHA_TEST_REF_QCOM 0x0BC2
extern void GLMDebugPrintf( const char *pMsg, ... );
extern uint g_nTotalDrawsOrClears, g_nTotalVBLockBytes, g_nTotalIBLockBytes;
#if GL_TELEMETRY_GPU_ZONES
struct TelemetryGPUStats_t
{
uint m_nTotalBufferLocksAndUnlocks;
uint m_nTotalTexLocksAndUnlocks;
uint m_nTotalBlit2;
uint m_nTotalResolveTex;
uint m_nTotalPresent;
inline void Clear() { memset( this, 0, sizeof( *this ) ); }
inline uint GetTotal() const { return m_nTotalBufferLocksAndUnlocks + m_nTotalTexLocksAndUnlocks + m_nTotalBlit2 + m_nTotalResolveTex + m_nTotalPresent; }
};
extern TelemetryGPUStats_t g_TelemetryGPUStats;
#endif
struct GLMRect;
typedef void *PseudoGLContextPtr;
// parrot the D3D present parameters, more or less... "adapter" translates into "active display index" per the m_activeDisplayCount below.
class GLMDisplayParams
{
public:
// presumption, these indices are in sync with the current display DB that GLMgr has handy
//int m_rendererIndex; // index of renderer (-1 if root context)
//int m_displayIndex; // index of display in renderer - for FS
//int m_modeIndex; // index of mode in display - for FS
void *m_focusWindow; // (VD3DHWND aka WindowRef) - what window does this context display into
bool m_fsEnable; // fullscreen on or not
bool m_vsyncEnable; // vsync on or not
// height and width have to match the display mode info if full screen.
uint m_backBufferWidth; // pixel width (aka screen h-resolution if full screen)
uint m_backBufferHeight; // pixel height (aka screen v-resolution if full screen)
D3DFORMAT m_backBufferFormat; // pixel format
uint m_multiSampleCount; // 0 means no MSAA, 2 means 2x MSAA, etc
// uint m_multiSampleQuality; // no MSAA quality control yet
bool m_enableAutoDepthStencil; // generally set to 'TRUE' per CShaderDeviceDx8::SetPresentParameters
D3DFORMAT m_autoDepthStencilFormat;
uint m_fsRefreshHz; // if full screen, this refresh rate (likely 0 for LCD's)
//uint m_rootRendererID; // only used if m_rendererIndex is -1.
//uint m_rootDisplayMask; // only used if m_rendererIndex is -1.
bool m_mtgl; // enable multi threaded GL driver
};
//===============================================================================
class GLMgr
{
public:
//===========================================================================
// class methods - singleton
static void NewGLMgr( void ); // instantiate singleton..
static GLMgr *aGLMgr( void ); // return singleton..
static void DelGLMgr( void ); // tear down singleton..
//===========================================================================
// plain methods
#if 0 // turned all these off while new approach is coded
void RefreshDisplayDB( void ); // blow away old display DB, make a new one
GLMDisplayDB *GetDisplayDB( void ); // get a ptr to the one GLMgr keeps. only valid til next refresh.
// eligible renderers will be ranked by desirability starting at index 0 within the db
// within each renderer, eligible displays will be ranked some kind of desirability (area? dist from menu bar?)
// within each display, eligible modes will be ranked by descending areas
// calls supplying indices are implicitly making reference to the current DB
bool CaptureDisplay( int rendIndex, int displayIndex, bool captureAll ); // capture one display or all displays
void ReleaseDisplays( void ); // release all captures
int GetDisplayMode( int rendIndex, int displayIndex ); // retrieve current display res (returns modeIndex)
void SetDisplayMode( GLMDisplayParams *params ); // set the display res (only useful for FS)
#endif
GLMContext *NewContext( IDirect3DDevice9 *pDevice, GLMDisplayParams *params ); // this will have to change
void DelContext( GLMContext *context );
// with usage of CGLMacro.h we could dispense with the "current context" thing
// and just declare a member variable of GLMContext, allowing each glXXX call to be routed directly
// to the correct context
void SetCurrentContext( GLMContext *context ); // make current in calling thread only
GLMContext *GetCurrentContext( void );
protected:
friend class GLMContext;
GLMgr();
~GLMgr();
};
//===========================================================================//
// helper function to do enable or disable in one step
FORCEINLINE void glSetEnable( GLenum which, bool enable )
{
if (enable)
gGL->glEnable(which);
else
gGL->glDisable(which);
}
// helper function for int vs enum clarity
FORCEINLINE void glGetEnumv( GLenum which, GLenum *dst )
{
gGL->glGetIntegerv( which, (int*)dst );
}
//===========================================================================//
//
// types to support the GLMContext
//
//===========================================================================//
// Each state set/get path we are providing caching for, needs its own struct and a comparison operator.
// we also provide an enum of how many such types there are, handy for building dirty masks etc.
// shorthand macros
#define EQ(fff) ( (src.fff) == (fff) )
//rasterizer
struct GLAlphaTestEnable_t { GLint enable; inline bool operator==(const GLAlphaTestEnable_t& src) const { return EQ(enable); } };
struct GLAlphaTestFunc_t { GLenum func; GLclampf ref; inline bool operator==(const GLAlphaTestFunc_t& src) const { return EQ(func) && EQ(ref); } };
struct GLAlphaTest_t { GLint enable; GLenum func; GLclampf ref; };
struct GLCullFaceEnable_t { GLint enable; inline bool operator==(const GLCullFaceEnable_t& src) const { return EQ(enable); } };
struct GLCullFrontFace_t { GLenum value; inline bool operator==(const GLCullFrontFace_t& src) const { return EQ(value); } };
struct GLPolygonMode_t { GLenum values[2]; inline bool operator==(const GLPolygonMode_t& src) const { return EQ(values[0]) && EQ(values[1]); } };
struct GLDepthBias_t { GLfloat factor; GLfloat units; inline bool operator==(const GLDepthBias_t& src) const { return EQ(factor) && EQ(units); } };
struct GLScissorEnable_t { GLint enable; inline bool operator==(const GLScissorEnable_t& src) const { return EQ(enable); } };
struct GLScissorBox_t { GLint x,y; GLsizei width, height; inline bool operator==(const GLScissorBox_t& src) const { return EQ(x) && EQ(y) && EQ(width) && EQ(height); } };
struct GLAlphaToCoverageEnable_t{ GLint enable; inline bool operator==(const GLAlphaToCoverageEnable_t& src) const { return EQ(enable); } };
struct GLViewportBox_t { GLint x,y; GLsizei width, height; uint widthheight; inline bool operator==(const GLViewportBox_t& src) const { return EQ(x) && EQ(y) && EQ(width) && EQ(height); } };
struct GLViewportDepthRange_t { GLfloat flNear,flFar; inline bool operator==(const GLViewportDepthRange_t& src) const { return EQ(flNear) && EQ(flFar); } };
struct GLClipPlaneEnable_t { GLint enable; inline bool operator==(const GLClipPlaneEnable_t& src) const { return EQ(enable); } };
struct GLClipPlaneEquation_t { GLfloat x,y,z,w; inline bool operator==(const GLClipPlaneEquation_t& src) const { return EQ(x) && EQ(y) && EQ(z) && EQ(w); } };
//blend
struct GLColorMaskSingle_t { signed char r,g,b,a; inline bool operator==(const GLColorMaskSingle_t& src) const { return EQ(r) && EQ(g) && EQ(b) && EQ(a); } };
struct GLColorMaskMultiple_t { signed char r,g,b,a; inline bool operator==(const GLColorMaskMultiple_t& src) const { return EQ(r) && EQ(g) && EQ(b) && EQ(a); } };
struct GLBlendEnable_t { GLint enable; inline bool operator==(const GLBlendEnable_t& src) const { return EQ(enable); } };
struct GLBlendFactor_t { GLenum srcfactor,dstfactor; inline bool operator==(const GLBlendFactor_t& src) const { return EQ(srcfactor) && EQ(dstfactor); } };
struct GLBlendEquation_t { GLenum equation; inline bool operator==(const GLBlendEquation_t& src) const { return EQ(equation); } };
struct GLBlendColor_t { GLfloat r,g,b,a; inline bool operator==(const GLBlendColor_t& src) const { return EQ(r) && EQ(g) && EQ(b) && EQ(a); } };
struct GLBlendEnableSRGB_t { GLint enable; inline bool operator==(const GLBlendEnableSRGB_t& src) const { return EQ(enable); } };
//depth
struct GLDepthTestEnable_t { GLint enable; inline bool operator==(const GLDepthTestEnable_t& src) const { return EQ(enable); } };
struct GLDepthFunc_t { GLenum func; inline bool operator==(const GLDepthFunc_t& src) const { return EQ(func); } };
struct GLDepthMask_t { char mask; inline bool operator==(const GLDepthMask_t& src) const { return EQ(mask); } };
//stencil
struct GLStencilTestEnable_t { GLint enable; inline bool operator==(const GLStencilTestEnable_t& src) const { return EQ(enable); } };
struct GLStencilFunc_t { GLenum frontfunc, backfunc; GLint ref; GLuint mask; inline bool operator==(const GLStencilFunc_t& src) const { return EQ(frontfunc) && EQ(backfunc) && EQ(ref) && EQ(mask); } };
struct GLStencilOp_t { GLenum sfail; GLenum dpfail; GLenum dppass; inline bool operator==(const GLStencilOp_t& src) const { return EQ(sfail) && EQ(dpfail) && EQ(dppass); } };
struct GLStencilWriteMask_t { GLint mask; inline bool operator==(const GLStencilWriteMask_t& src) const { return EQ(mask); } };
//clearing
struct GLClearColor_t { GLfloat r,g,b,a; inline bool operator==(const GLClearColor_t& src) const { return EQ(r) && EQ(g) && EQ(b) && EQ(a); } };
struct GLClearDepth_t { GLfloat d; inline bool operator==(const GLClearDepth_t& src) const { return EQ(d); } };
struct GLClearStencil_t { GLint s; inline bool operator==(const GLClearStencil_t& src) const { return EQ(s); } };
#undef EQ
enum EGLMStateBlockType
{
kGLAlphaTestEnable,
kGLAlphaTestFunc,
kGLCullFaceEnable,
kGLCullFrontFace,
kGLPolygonMode,
kGLDepthBias,
kGLScissorEnable,
kGLScissorBox,
kGLViewportBox,
kGLViewportDepthRange,
kGLClipPlaneEnable,
kGLClipPlaneEquation,
kGLColorMaskSingle,
kGLColorMaskMultiple,
kGLBlendEnable,
kGLBlendFactor,
kGLBlendEquation,
kGLBlendColor,
kGLBlendEnableSRGB,
kGLDepthTestEnable,
kGLDepthFunc,
kGLDepthMask,
kGLStencilTestEnable,
kGLStencilFunc,
kGLStencilOp,
kGLStencilWriteMask,
kGLClearColor,
kGLClearDepth,
kGLClearStencil,
kGLAlphaToCoverageEnable,
kGLMStateBlockLimit
};
//===========================================================================//
// templated functions representing GL R/W bottlenecks
// one set of set/get/getdefault is instantiated for each of the GL*** types above.
// use these from the non array state objects
template<typename T> void GLContextSet( T *src );
template<typename T> void GLContextGet( T *dst );
template<typename T> void GLContextGetDefault( T *dst );
// use these from the array state objects
template<typename T> void GLContextSetIndexed( T *src, int index );
template<typename T> void GLContextGetIndexed( T *dst, int index );
template<typename T> void GLContextGetDefaultIndexed( T *dst, int index );
//===============================================================================
// template specializations for each type of state
static GLAlphaTest_t g_alpha_test;
// --- GLAlphaTestEnable ---
FORCEINLINE void GLContextSet( GLAlphaTestEnable_t *src )
{
if( gGL->m_bHave_GL_QCOM_alpha_test )
glSetEnable( GL_ALPHA_TEST_QCOM, src->enable != 0 );
else
g_alpha_test.enable = src->enable;
}
FORCEINLINE void GLContextGet( GLAlphaTestEnable_t *dst )
{
if( gGL->m_bHave_GL_QCOM_alpha_test )
dst->enable = gGL->glIsEnabled( GL_ALPHA_TEST_QCOM );
else
dst->enable = g_alpha_test.enable;
}
FORCEINLINE void GLContextGetDefault( GLAlphaTestEnable_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLAlphaTestFunc ---
FORCEINLINE void GLContextSet( GLAlphaTestFunc_t *src )
{
if( gGL->m_bHave_GL_QCOM_alpha_test )
gGL->glAlphaFuncQCOM( src->func, src->ref );
g_alpha_test.func = src->func;
g_alpha_test.ref = src->ref;
}
FORCEINLINE void GLContextGet( GLAlphaTestFunc_t *dst )
{
if( gGL->m_bHave_GL_QCOM_alpha_test )
{
glGetEnumv( GL_ALPHA_TEST_FUNC_QCOM, &dst->func );
gGL->glGetFloatv( GL_ALPHA_TEST_REF_QCOM, &dst->ref );
}
else
{
dst->func = g_alpha_test.func;
dst->ref = g_alpha_test.ref;
}
}
FORCEINLINE void GLContextGetDefault( GLAlphaTestFunc_t *dst )
{
dst->func = GL_ALWAYS;
dst->ref = 0.0f;
}
// --- GLAlphaToCoverageEnable ---
FORCEINLINE void GLContextSet( GLAlphaToCoverageEnable_t *src )
{
glSetEnable( GL_SAMPLE_ALPHA_TO_COVERAGE, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLAlphaToCoverageEnable_t *dst )
{
dst->enable = gGL->glIsEnabled( GL_SAMPLE_ALPHA_TO_COVERAGE );
}
FORCEINLINE void GLContextGetDefault( GLAlphaToCoverageEnable_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLCullFaceEnable ---
FORCEINLINE void GLContextSet( GLCullFaceEnable_t *src )
{
glSetEnable( GL_CULL_FACE, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLCullFaceEnable_t *dst )
{
dst->enable = gGL->glIsEnabled( GL_CULL_FACE );
}
FORCEINLINE void GLContextGetDefault( GLCullFaceEnable_t *dst )
{
dst->enable = GL_TRUE;
}
// --- GLCullFrontFace ---
FORCEINLINE void GLContextSet( GLCullFrontFace_t *src )
{
gGL->glFrontFace( src->value ); // legal values are GL_CW or GL_CCW
}
FORCEINLINE void GLContextGet( GLCullFrontFace_t *dst )
{
glGetEnumv( GL_FRONT_FACE, &dst->value );
}
FORCEINLINE void GLContextGetDefault( GLCullFrontFace_t *dst )
{
dst->value = GL_CCW;
}
// --- GLPolygonMode ---
FORCEINLINE void GLContextSet( GLPolygonMode_t *src )
{
// gGL->glPolygonMode( GL_FRONT, src->values[0] );
// gGL->glPolygonMode( GL_BACK, src->values[1] );
}
FORCEINLINE void GLContextGet( GLPolygonMode_t *dst )
{
glGetEnumv( GL_POLYGON_MODE, &dst->values[0] );
}
FORCEINLINE void GLContextGetDefault( GLPolygonMode_t *dst )
{
dst->values[0] = dst->values[1] = GL_FILL;
}
// --- GLDepthBias ---
// note the implicit enable / disable.
// if you set non zero values, it is enabled, otherwise not.
FORCEINLINE void GLContextSet( GLDepthBias_t *src )
{
bool enable = (src->factor != 0.0f) || (src->units != 0.0f);
glSetEnable( GL_POLYGON_OFFSET_FILL, enable );
gGL->glPolygonOffset( src->factor, src->units );
}
FORCEINLINE void GLContextGet( GLDepthBias_t *dst )
{
gGL->glGetFloatv ( GL_POLYGON_OFFSET_FACTOR, &dst->factor );
gGL->glGetFloatv ( GL_POLYGON_OFFSET_UNITS, &dst->units );
}
FORCEINLINE void GLContextGetDefault( GLDepthBias_t *dst )
{
dst->factor = 0.0;
dst->units = 0.0;
}
// --- GLScissorEnable ---
FORCEINLINE void GLContextSet( GLScissorEnable_t *src )
{
glSetEnable( GL_SCISSOR_TEST, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLScissorEnable_t *dst )
{
dst->enable = gGL->glIsEnabled( GL_SCISSOR_TEST );
}
FORCEINLINE void GLContextGetDefault( GLScissorEnable_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLScissorBox ---
FORCEINLINE void GLContextSet( GLScissorBox_t *src )
{
gGL->glScissor ( src->x, src->y, src->width, src->height );
}
FORCEINLINE void GLContextGet( GLScissorBox_t *dst )
{
gGL->glGetIntegerv ( GL_SCISSOR_BOX, &dst->x );
}
FORCEINLINE void GLContextGetDefault( GLScissorBox_t *dst )
{
// hmmmm, good question? we can't really know a good answer so we pick a silly one
// and the client better come back with a better answer later.
dst->x = dst->y = 0;
dst->width = dst->height = 16;
}
// --- GLViewportBox ---
FORCEINLINE void GLContextSet( GLViewportBox_t *src )
{
Assert( src->width == (int)( src->widthheight & 0xFFFF ) );
Assert( src->height == (int)( src->widthheight >> 16 ) );
gGL->glViewport (src->x, src->y, src->width, src->height );
}
FORCEINLINE void GLContextGet( GLViewportBox_t *dst )
{
gGL->glGetIntegerv ( GL_VIEWPORT, &dst->x );
dst->widthheight = dst->width | ( dst->height << 16 );
}
FORCEINLINE void GLContextGetDefault( GLViewportBox_t *dst )
{
// as with the scissor box, we don't know yet, so pick a silly one and change it later
dst->x = dst->y = 0;
dst->width = dst->height = 16;
dst->widthheight = dst->width | ( dst->height << 16 );
}
// --- GLViewportDepthRange ---
FORCEINLINE void GLContextSet( GLViewportDepthRange_t *src )
{
gGL->glDepthRangef ( src->flNear, src->flFar );
}
FORCEINLINE void GLContextGet( GLViewportDepthRange_t *dst )
{
gGL->glGetFloatv( GL_DEPTH_RANGE, &dst->flNear );
}
FORCEINLINE void GLContextGetDefault( GLViewportDepthRange_t *dst )
{
dst->flNear = 0.0;
dst->flFar = 1.0;
}
// --- GLClipPlaneEnable ---
FORCEINLINE void GLContextSetIndexed( GLClipPlaneEnable_t *src, int index )
{
#if GLMDEBUG
if (CommandLine()->FindParm("-caps_noclipplanes"))
{
if (GLMKnob("caps-key",NULL) > 0.0)
{
// caps ON means NO clipping
src->enable = false;
}
}
#endif
glSetEnable( GL_CLIP_PLANE0 + index, src->enable != 0 );
}
FORCEINLINE void GLContextGetIndexed( GLClipPlaneEnable_t *dst, int index )
{
dst->enable = gGL->glIsEnabled( GL_CLIP_PLANE0 + index );
}
FORCEINLINE void GLContextGetDefaultIndexed( GLClipPlaneEnable_t *dst, int index )
{
dst->enable = 0;
}
// --- GLClipPlaneEquation ---
FORCEINLINE void GLContextSetIndexed( GLClipPlaneEquation_t *src, int index )
{
// shove into glGlipPlane
// GLdouble coeffs[4] = { src->x, src->y, src->z, src->w };
// gGL->glClipPlane( GL_CLIP_PLANE0 + index, coeffs );
}
FORCEINLINE void GLContextGetIndexed( GLClipPlaneEquation_t *dst, int index )
{
DebuggerBreak(); // do this later
// glClipPlane( GL_CLIP_PLANE0 + index, coeffs );
// GLdouble coeffs[4] = { src->x, src->y, src->z, src->w };
}
FORCEINLINE void GLContextGetDefaultIndexed( GLClipPlaneEquation_t *dst, int index )
{
dst->x = 1.0;
dst->y = 0.0;
dst->z = 0.0;
dst->w = 0.0;
}
// --- GLColorMaskSingle ---
FORCEINLINE void GLContextSet( GLColorMaskSingle_t *src )
{
gGL->glColorMask( src->r, src->g, src->b, src->a );
}
FORCEINLINE void GLContextGet( GLColorMaskSingle_t *dst )
{
gGL->glGetBooleanv( GL_COLOR_WRITEMASK, (GLboolean*)&dst->r);
}
FORCEINLINE void GLContextGetDefault( GLColorMaskSingle_t *dst )
{
dst->r = dst->g = dst->b = dst->a = 1;
}
// --- GLColorMaskMultiple ---
FORCEINLINE void GLContextSetIndexed( GLColorMaskMultiple_t *src, int index )
{
GLint Rfbo = 0, Dfbo = 0;
gGL->glGetIntegerv( GL_DRAW_FRAMEBUFFER_BINDING, &Dfbo );
gGL->glGetIntegerv( GL_READ_FRAMEBUFFER_BINDING, &Rfbo );
GLint target = Dfbo == Rfbo?GL_FRAMEBUFFER:GL_DRAW_FRAMEBUFFER;
gGL->glBindFramebuffer( target, index );
gGL->glColorMask ( src->r, src->g, src->b, src->a );
gGL->glBindFramebuffer( target, Dfbo );
}
FORCEINLINE void GLContextGetIndexed( GLColorMaskMultiple_t *dst, int index )
{
GLint Rfbo = 0, Dfbo = 0;
gGL->glGetIntegerv( GL_DRAW_FRAMEBUFFER_BINDING, &Dfbo );
gGL->glGetIntegerv( GL_READ_FRAMEBUFFER_BINDING, &Rfbo );
GLint target = Dfbo == Rfbo?GL_FRAMEBUFFER:GL_DRAW_FRAMEBUFFER;
gGL->glBindFramebuffer( target, index );
gGL->glGetBooleanv( GL_COLOR_WRITEMASK, (GLboolean*)&dst->r );
gGL->glBindFramebuffer( target, Dfbo );
}
FORCEINLINE void GLContextGetDefaultIndexed( GLColorMaskMultiple_t *dst, int index )
{
dst->r = dst->g = dst->b = dst->a = 1;
}
// --- GLBlendEnable ---
FORCEINLINE void GLContextSet( GLBlendEnable_t *src )
{
glSetEnable( GL_BLEND, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLBlendEnable_t *dst )
{
dst->enable = gGL->glIsEnabled( GL_BLEND );
}
FORCEINLINE void GLContextGetDefault( GLBlendEnable_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLBlendFactor ---
FORCEINLINE void GLContextSet( GLBlendFactor_t *src )
{
gGL->glBlendFunc ( src->srcfactor, src->dstfactor );
}
FORCEINLINE void GLContextGet( GLBlendFactor_t *dst )
{
glGetEnumv ( GL_BLEND_SRC, &dst->srcfactor );
glGetEnumv ( GL_BLEND_DST, &dst->dstfactor );
}
FORCEINLINE void GLContextGetDefault( GLBlendFactor_t *dst )
{
dst->srcfactor = GL_ONE;
dst->dstfactor = GL_ZERO;
}
// --- GLBlendEquation ---
FORCEINLINE void GLContextSet( GLBlendEquation_t *src )
{
gGL->glBlendEquation ( src->equation );
}
FORCEINLINE void GLContextGet( GLBlendEquation_t *dst )
{
glGetEnumv ( GL_BLEND_EQUATION, &dst->equation );
}
FORCEINLINE void GLContextGetDefault( GLBlendEquation_t *dst )
{
dst->equation = GL_FUNC_ADD;
}
// --- GLBlendColor ---
FORCEINLINE void GLContextSet( GLBlendColor_t *src )
{
gGL->glBlendColor ( src->r, src->g, src->b, src->a );
}
FORCEINLINE void GLContextGet( GLBlendColor_t *dst )
{
gGL->glGetFloatv ( GL_BLEND_COLOR, &dst->r );
}
FORCEINLINE void GLContextGetDefault( GLBlendColor_t *dst )
{
//solid white
dst->r = dst->g = dst->b = dst->a = 1.0;
}
// --- GLBlendEnableSRGB ---
#define GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING 0x8210
#define GL_COLOR_ATTACHMENT0 0x8CE0
FORCEINLINE void GLContextSet( GLBlendEnableSRGB_t *src )
{
#if GLMDEBUG
// just check in debug... this is too expensive to look at on MTGL
if (src->enable)
{
GLboolean srgb_capable = false;
gGL->glGetBooleanv( GL_FRAMEBUFFER_SRGB_CAPABLE_EXT, &srgb_capable);
if (src->enable && !srgb_capable)
{
GLMPRINTF(("-Z- srgb-state-set FBO conflict: attempt to enable SRGB on non SRGB capable FBO config"));
}
}
#endif
// this query is not useful unless you have the ARB_framebuffer_srgb ext.
// GLint encoding = 0;
// gGL->glGetFramebufferAttachmentParameteriv( GL_DRAW_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0, GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, &encoding );
glSetEnable( GL_FRAMEBUFFER_SRGB_EXT, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLBlendEnableSRGB_t *dst )
{
// dst->enable = gGL->glIsEnabled( GL_FRAMEBUFFER_SRGB_EXT );
dst->enable = true; // wtf ?
}
FORCEINLINE void GLContextGetDefault( GLBlendEnableSRGB_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLDepthTestEnable ---
FORCEINLINE void GLContextSet( GLDepthTestEnable_t *src )
{
glSetEnable( GL_DEPTH_TEST, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLDepthTestEnable_t *dst )
{
dst->enable = gGL->glIsEnabled( GL_DEPTH_TEST );
}
FORCEINLINE void GLContextGetDefault( GLDepthTestEnable_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLDepthFunc ---
FORCEINLINE void GLContextSet( GLDepthFunc_t *src )
{
gGL->glDepthFunc ( src->func );
}
FORCEINLINE void GLContextGet( GLDepthFunc_t *dst )
{
glGetEnumv ( GL_DEPTH_FUNC, &dst->func );
}
FORCEINLINE void GLContextGetDefault( GLDepthFunc_t *dst )
{
dst->func = GL_GEQUAL;
}
// --- GLDepthMask ---
FORCEINLINE void GLContextSet( GLDepthMask_t *src )
{
gGL->glDepthMask ( src->mask );
}
FORCEINLINE void GLContextGet( GLDepthMask_t *dst )
{
gGL->glGetBooleanv ( GL_DEPTH_WRITEMASK, (GLboolean*)&dst->mask );
}
FORCEINLINE void GLContextGetDefault( GLDepthMask_t *dst )
{
dst->mask = GL_TRUE;
}
// --- GLStencilTestEnable ---
FORCEINLINE void GLContextSet( GLStencilTestEnable_t *src )
{
glSetEnable( GL_STENCIL_TEST, src->enable != 0 );
}
FORCEINLINE void GLContextGet( GLStencilTestEnable_t *dst )
{
dst->enable = gGL->glIsEnabled( GL_STENCIL_TEST );
}
FORCEINLINE void GLContextGetDefault( GLStencilTestEnable_t *dst )
{
dst->enable = GL_FALSE;
}
// --- GLStencilFunc ---
FORCEINLINE void GLContextSet( GLStencilFunc_t *src )
{
if (src->frontfunc == src->backfunc)
gGL->glStencilFuncSeparate( GL_FRONT_AND_BACK, src->frontfunc, src->ref, src->mask);
else
{
gGL->glStencilFuncSeparate( GL_FRONT, src->frontfunc, src->ref, src->mask);
gGL->glStencilFuncSeparate( GL_BACK, src->backfunc, src->ref, src->mask);
}
}
FORCEINLINE void GLContextGet( GLStencilFunc_t *dst )
{
glGetEnumv ( GL_STENCIL_FUNC, &dst->frontfunc );
glGetEnumv ( GL_STENCIL_BACK_FUNC, &dst->backfunc );
gGL->glGetIntegerv ( GL_STENCIL_REF, &dst->ref );
gGL->glGetIntegerv ( GL_STENCIL_VALUE_MASK, (GLint*)&dst->mask );
}
FORCEINLINE void GLContextGetDefault( GLStencilFunc_t *dst )
{
dst->frontfunc = GL_ALWAYS;
dst->backfunc = GL_ALWAYS;
dst->ref = 0;
dst->mask = 0xFFFFFFFF;
}
// --- GLStencilOp --- indexed 0=front, 1=back
FORCEINLINE void GLContextSetIndexed( GLStencilOp_t *src, int index )
{
GLenum face = (index==0) ? GL_FRONT : GL_BACK;
gGL->glStencilOpSeparate( face, src->sfail, src->dpfail, src->dppass );
}
FORCEINLINE void GLContextGetIndexed( GLStencilOp_t *dst, int index )
{
glGetEnumv ( (index==0) ? GL_STENCIL_FAIL : GL_STENCIL_BACK_FAIL, &dst->sfail );
glGetEnumv ( (index==0) ? GL_STENCIL_PASS_DEPTH_FAIL : GL_STENCIL_BACK_PASS_DEPTH_FAIL, &dst->dpfail );
glGetEnumv ( (index==0) ? GL_STENCIL_PASS_DEPTH_PASS : GL_STENCIL_BACK_PASS_DEPTH_PASS, &dst->dppass );
}
FORCEINLINE void GLContextGetDefaultIndexed( GLStencilOp_t *dst, int index )
{
dst->sfail = dst->dpfail = dst->dppass = GL_KEEP;
}
// --- GLStencilWriteMask ---
FORCEINLINE void GLContextSet( GLStencilWriteMask_t *src )
{
gGL->glStencilMask( src->mask );
}
FORCEINLINE void GLContextGet( GLStencilWriteMask_t *dst )
{
gGL->glGetIntegerv ( GL_STENCIL_WRITEMASK, &dst->mask );
}
FORCEINLINE void GLContextGetDefault( GLStencilWriteMask_t *dst )
{
dst->mask = 0xFFFFFFFF;
}
// --- GLClearColor ---
FORCEINLINE void GLContextSet( GLClearColor_t *src )
{
gGL->glClearColor( src->r, src->g, src->b, src->a );
}
FORCEINLINE void GLContextGet( GLClearColor_t *dst )
{
gGL->glGetFloatv ( GL_COLOR_CLEAR_VALUE, &dst->r );
}
FORCEINLINE void GLContextGetDefault( GLClearColor_t *dst )
{
dst->r = dst->g = dst->b = 0.5;
dst->a = 1.0;
}
// --- GLClearDepth ---
FORCEINLINE void GLContextSet( GLClearDepth_t *src )
{
gGL->glClearDepthf( src->d );
}
FORCEINLINE void GLContextGet( GLClearDepth_t *dst )
{
gGL->glGetFloatv( GL_DEPTH_CLEAR_VALUE, &dst->d );
}
FORCEINLINE void GLContextGetDefault( GLClearDepth_t *dst )
{
dst->d = 1.0;
}
// --- GLClearStencil ---
FORCEINLINE void GLContextSet( GLClearStencil_t *src )
{
gGL->glClearStencil( src->s );
}
FORCEINLINE void GLContextGet( GLClearStencil_t *dst )
{
gGL->glGetIntegerv ( GL_STENCIL_CLEAR_VALUE, &dst->s );
}
FORCEINLINE void GLContextGetDefault( GLClearStencil_t *dst )
{
dst->s = 0;
}
//===========================================================================//
// caching state object template. One of these is instantiated in the context per unique struct type above
template<typename T> class GLState
{
public:
inline GLState()
{
memset( &data, 0, sizeof(data) );
Default();
}
FORCEINLINE void Flush()
{
// immediately blast out the state - it makes no sense to delta it or do anything fancy because shaderapi, dxabstract, and OpenGL itself does this for us (and OpenGL calls with multithreaded drivers are very cheap)
GLContextSet( &data );
}
// write: client src into cache
// common case is both false. dirty is calculated, context write is deferred.
FORCEINLINE void Write( const T *src )
{
data = *src;
Flush();
}
// default: write default value to cache, optionally write through
inline void Default( bool noDefer=false )
{
GLContextGetDefault( &data ); // read default values directly to our cache copy
Flush();
}
// read: sel = 0 for cache, 1 for context
inline void Read( T *dst, int sel )
{
if (sel==0)
*dst = data;
else
GLContextGet( dst );
}
// check: verify that context equals cache, return true if mismatched or if illegal values seen
inline bool Check ( void )
{
T temp;
bool result;
GLContextGet( &temp );
result = !(temp == data);
return result;
}
FORCEINLINE const T &GetData() const { return data; }
protected:
T data;
};
// caching state object template - with multiple values behind it that are indexed
template<typename T, int COUNT> class GLStateArray
{
public:
inline GLStateArray()
{
memset( &data, 0, sizeof(data) );
Default();
}
// write cache->context if dirty or forced.
FORCEINLINE void FlushIndex( int index )
{
// immediately blast out the state - it makes no sense to delta it or do anything fancy because shaderapi, dxabstract, and OpenGL itself does this for us (and OpenGL calls with multithreaded drivers are very cheap)
GLContextSetIndexed( &data[index], index );
};
// write: client src into cache
// common case is both false. dirty is calculated, context write is deferred.
FORCEINLINE void WriteIndex( T *src, int index )
{
data[index] = *src;
FlushIndex( index ); // dirty becomes false
};
// write all slots in the array
FORCEINLINE void Flush()
{
for( int i=0; i < COUNT; i++)
{
FlushIndex( i );
}
}
// default: write default value to cache, optionally write through
inline void DefaultIndex( int index )
{
GLContextGetDefaultIndexed( &data[index], index ); // read default values directly to our cache copy
Flush();
};
inline void Default( void )
{
for( int i=0; i<COUNT; i++)
{
DefaultIndex( i );
}
}
// read: sel = 0 for cache, 1 for context
inline void ReadIndex( T *dst, int index, int sel )
{
if (sel==0)
*dst = data[index];
else
GLContextGetIndexed( dst, index );
};
// check: verify that context equals cache, return true if mismatched or if illegal values seen
inline bool CheckIndex( int index )
{
T temp;
bool result;
GLContextGetIndexed( &temp, index );
result = !(temp == data[index]);
return result;
};
inline bool Check( void )
{
//T temp;
bool result = false;
for( int i=0; i<COUNT; i++)
{
result |= CheckIndex( i );
}
return result;
};
protected:
T data[COUNT];
};
//===========================================================================//
struct GLMTexSampler
{
CGLMTex *m_pBoundTex; // tex which is actually bound now
GLMTexSamplingParams m_samp; // current 2D sampler state
};
// GLMContext will maintain one of these structures inside the context to represent the current state.
// Client can supply a new one when it wants to change the setup.
//FIXME GLMContext can do the work to migrate from old setup to new setup as efficiently as possible (but it doesn't yet)
struct GLMVertexSetup
{
uint m_attrMask; // which attrs are enabled (1<<n) mask where n is a GLMVertexAttributeIndex.
GLMVertexAttributeDesc m_attrs[ kGLMVertexAttributeIndexMax ];
// copied in from dxabstract, not strictly needed for operation, helps debugging
unsigned char m_vtxAttribMap[16];
/* high nibble is usage per _D3DDECLUSAGE
typedef enum _D3DDECLUSAGE
{
D3DDECLUSAGE_POSITION = 0,
D3DDECLUSAGE_BLENDWEIGHT = 1,
D3DDECLUSAGE_BLENDINDICES = 2,
D3DDECLUSAGE_NORMAL = 3,
D3DDECLUSAGE_PSIZE = 4,
D3DDECLUSAGE_TEXCOORD = 5,
D3DDECLUSAGE_TANGENT = 6,
D3DDECLUSAGE_BINORMAL = 7,
D3DDECLUSAGE_TESSFACTOR = 8,
D3DDECLUSAGE_PLUGH = 9, // mystery value
D3DDECLUSAGE_COLOR = 10,
D3DDECLUSAGE_FOG = 11,
D3DDECLUSAGE_DEPTH = 12,
D3DDECLUSAGE_SAMPLE = 13,
} D3DDECLUSAGE;
low nibble is usageindex (i.e. POSITION0, POSITION1, etc)
array position is attrib number.
*/
};
//===========================================================================//
//FIXME magic numbers here
#define kGLMProgramParamFloat4Limit 256
#define kGLMProgramParamBoolLimit 16
#define kGLMProgramParamInt4Limit 16
#define kGLMVertexProgramParamFloat4Limit 256
#define kGLMFragmentProgramParamFloat4Limit 256
struct GLMProgramParamsF
{
float m_values[kGLMProgramParamFloat4Limit][4]; // float4's 256 of them
int m_firstDirtySlotNonBone;
int m_dirtySlotHighWaterNonBone; // index of slot past highest dirty non-bone register (assume 0 for base of range)
int m_dirtySlotHighWaterBone; // index of slot past highest dirty bone register (0=first bone reg, which is DXABSTRACT_VS_FIRST_BONE_SLOT)
};
struct GLMProgramParamsB
{
int m_values[kGLMProgramParamBoolLimit]; // bools, 4 of them
uint m_dirtySlotCount;
};
struct GLMProgramParamsI
{
int m_values[kGLMProgramParamInt4Limit][4]; // int4s, 16 of them
uint m_dirtySlotCount;
};
enum EGLMParamWriteMode
{
eParamWriteAllSlots, // glUniform4fv of the maximum size (not recommended if shader is down-sizing the decl)
eParamWriteShaderSlots, // glUniform4fv of the active slot count ("highwater")
eParamWriteShaderSlotsOptional, // glUniform4fv of the active slot count ("highwater") - but only if at least one has been written - it's optional
eParamWriteDirtySlotRange // glUniform4fv of the 0-N range where N is highest dirty slot
};
enum EGLMAttribWriteMode
{
eAttribWriteAll,
eAttribWriteDirty
};
//===========================================================================//
#if GLMDEBUG
enum EGLMDebugCallSite
{
eBeginFrame, // inside begin frame func - frame number has been inc'd, batch number should be -1
eClear, // inside clear func
eDrawElements, // inside repeat loop, prior to draw call - batch numberhas been inc'd
eEndFrame, // end frame
ePresent // before showing pixels
};
// caller should zero one of these out and fill in the m_caller before invoking the hook
struct GLMDebugHookInfo
{
// info from the caller to the debug hook
EGLMDebugCallSite m_caller;
// state the hook uses to keep track of progress within a single run of the caller
int m_iteration; // which call to the hook is this. if it's zero, it precedes any action in the caller.
// bools used to communicate between caller and hook
bool m_loop; // hook tells caller to loop around again (don't exit)
bool m_holding; // current mood of hook, are we holding on this batch (i.e. rerun)
// specific info for a draw call
GLenum m_drawMode;
GLuint m_drawStart;
GLuint m_drawEnd;
GLsizei m_drawCount;
GLenum m_drawType;
const GLvoid *m_drawIndices;
};
#endif
//===========================================================================//
class CFlushDrawStatesStats
{
public:
CFlushDrawStatesStats()
{
Clear();
}
void Clear()
{
memset(this, 0, sizeof(*this));
}
uint m_nTotalBatchFlushes;
uint m_nTotalProgramPairChanges;
uint m_nNumChangedSamplers;
uint m_nNumSamplingParamsChanged;
uint m_nIndexBufferChanged;
uint m_nVertexBufferChanged;
uint m_nFirstVSConstant;
uint m_nNumVSConstants;
uint m_nNumVSBoneConstants;
uint m_nFirstPSConstant;
uint m_nNumPSConstants;
uint m_nNewPS;
uint m_nNewVS;
};
//===========================================================================//
class GLMContext
{
public:
// set/check current context (perq for many other calls)
void MakeCurrent( bool bRenderThread = false );
void ReleaseCurrent( bool bRenderThread = false );
// CheckCurrent has been removed (it no longer compiled on Linux). To minimize churn I'm leaving
// the inline NOP version.
// DO NOT change this to non-inlined. It's called all over the place from very hot codepaths.
FORCEINLINE void CheckCurrent( void ) { }
void PopulateCaps( void ); // fill out later portions of renderer info record which need context queries
void DumpCaps( void ); // printf all the caps info (you can call this in release too)
const GLMRendererInfoFields& Caps( void ); // peek at the caps record
// state cache/mirror
void SetDefaultStates( void );
void ForceFlushStates();
void VerifyStates( void );
// textures
// Lock and Unlock reqs go directly to the tex object
CGLMTex *NewTex( GLMTexLayoutKey *key, uint levels=1, const char *debugLabel=NULL );
void DelTex( CGLMTex *tex );
// options for Blit (replacement for ResolveTex and BlitTex)
// pass NULL for dstTex if you want to target GL_BACK with the blit. You get y-flip with that, don't change the dstrect yourself.
void Blit2( CGLMTex *srcTex, GLMRect *srcRect, int srcFace, int srcMip, CGLMTex *dstTex, GLMRect *dstRect, int dstFace, int dstMip, uint filter );
// tex blit (via FBO blit)
void BlitTex( CGLMTex *srcTex, GLMRect *srcRect, int srcFace, int srcMip, CGLMTex *dstTex, GLMRect *dstRect, int dstFace, int dstMip, uint filter, bool useBlitFB = true );
// MSAA resolve - we do this in GLMContext because it has to do a bunch of FBO/blit gymnastics
void ResolveTex( CGLMTex *tex, bool forceDirty=false );
// texture pre-load (residency forcing) - normally done one-time but you can force it
void PreloadTex( CGLMTex *tex, bool force=false );
// samplers
FORCEINLINE void SetSamplerTex( int sampler, CGLMTex *tex );
FORCEINLINE void SetSamplerDirty( int sampler );
FORCEINLINE void SetSamplerMinFilter( int sampler, GLenum Value );
FORCEINLINE void SetSamplerMagFilter( int sampler, GLenum Value );
FORCEINLINE void SetSamplerMipFilter( int sampler, GLenum Value );
FORCEINLINE void SetSamplerAddressU( int sampler, GLenum Value );
FORCEINLINE void SetSamplerAddressV( int sampler, GLenum Value );
FORCEINLINE void SetSamplerAddressW( int sampler, GLenum Value );
FORCEINLINE void SetSamplerStates( int sampler, GLenum AddressU, GLenum AddressV, GLenum AddressW, GLenum minFilter, GLenum magFilter, GLenum mipFilter, int minLod, float lodBias );
FORCEINLINE void SetSamplerBorderColor( int sampler, DWORD Value );
FORCEINLINE void SetSamplerMipMapLODBias( int sampler, DWORD Value );
FORCEINLINE void SetSamplerMaxMipLevel( int sampler, DWORD Value );
FORCEINLINE void SetSamplerMaxAnisotropy( int sampler, DWORD Value );
FORCEINLINE void SetSamplerSRGBTexture( int sampler, DWORD Value );
FORCEINLINE void SetShadowFilter( int sampler, DWORD Value );
// render targets (FBO's)
CGLMFBO *NewFBO( void );
void DelFBO( CGLMFBO *fbo );
// programs
CGLMProgram *NewProgram( EGLMProgramType type, char *progString, const char *pShaderName );
void DelProgram( CGLMProgram *pProg );
void NullProgram( void ); // de-ac all shader state
FORCEINLINE void SetVertexProgram( CGLMProgram *pProg );
FORCEINLINE void SetFragmentProgram( CGLMProgram *pProg );
FORCEINLINE void SetProgram( EGLMProgramType nProgType, CGLMProgram *pProg ) { m_drawingProgram[nProgType] = pProg; m_bDirtyPrograms = true; }
void SetDrawingLang( EGLMProgramLang lang, bool immediate=false ); // choose ARB or GLSL. immediate=false defers lang change to top of frame
void LinkShaderPair( CGLMProgram *vp, CGLMProgram *fp ); // ensure this combo has been linked and is in the GLSL pair cache
void ValidateShaderPair( CGLMProgram *vp, CGLMProgram *fp );
void ClearShaderPairCache( void ); // call this to shoot down all the linked pairs
void QueryShaderPair( int index, GLMShaderPairInfo *infoOut ); // this lets you query the shader pair cache for saving its state
// buffers
// Lock and Unlock reqs go directly to the buffer object
CGLMBuffer *NewBuffer( EGLMBufferType type, uint size, uint options );
void DelBuffer( CGLMBuffer *buff );
FORCEINLINE void SetIndexBuffer( CGLMBuffer *buff ) { BindIndexBufferToCtx( buff ); }
// FIXME: Remove this, it's no longer used
FORCEINLINE void SetVertexAttributes( GLMVertexSetup *setup )
{
// we now just latch the vert setup and then execute on it at flushdrawstatestime if shaders are enabled.
if ( setup )
{
m_drawVertexSetup = *setup;
}
else
{
memset( &m_drawVertexSetup, 0, sizeof( m_drawVertexSetup ) );
}
}
// note, no API is exposed for setting a single attribute source.
// come prepared with a complete block of attributes to use.
// Queries
CGLMQuery *NewQuery( GLMQueryParams *params );
void DelQuery( CGLMQuery *query );
// "slot" means a vec4-sized thing
// these write into .env parameter space
FORCEINLINE void SetProgramParametersF( EGLMProgramType type, uint baseSlot, float *slotData, uint slotCount );
FORCEINLINE void SetProgramParametersB( EGLMProgramType type, uint baseSlot, int *slotData, uint boolCount ); // take "BOOL" aka int
FORCEINLINE void SetProgramParametersI( EGLMProgramType type, uint baseSlot, int *slotData, uint slotCount ); // take int4s
// state sync
// If lazyUnbinding is true, unbound samplers will not actually be unbound to the GL device.
FORCEINLINE void FlushDrawStates( uint nStartIndex, uint nEndIndex, uint nBaseVertex ); // pushes all drawing state - samplers, tex, programs, etc.
void FlushDrawStatesNoShaders();
// drawing
#ifndef OSX
FORCEINLINE void DrawRangeElements( GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, uint baseVertex, CGLMBuffer *pIndexBuf );
void DrawRangeElementsNonInline( GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, uint baseVertex, CGLMBuffer *pIndexBuf );
#else
void DrawRangeElements( GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, CGLMBuffer *pIndexBuf );
#endif
void CheckNative( void );
// clearing
void Clear( bool color, unsigned long colorValue, bool depth, float depthValue, bool stencil, unsigned int stencilValue, GLScissorBox_t *rect = NULL );
// display
//void SetVSyncEnable( bool vsyncOn );
//void SetFullScreen( bool fsOn, int screenIndex ); // will be latched for next BeginFrame
//void ActivateFullScreen( bool fsOn, int screenIndex ); // will be called by BeginFrame
bool SetDisplayParams( GLMDisplayParams *params ); // either the first time setup, or a change to new setup
void Present( CGLMTex *tex ); // somewhat hardwired for the time being
// Called when IDirect3DDevice9::Reset() is called.
void Reset();
// writers for the state block inputs
FORCEINLINE void WriteAlphaTestEnable( GLAlphaTestEnable_t *src ) { m_AlphaTestEnable.Write( src ); }
FORCEINLINE void WriteAlphaTestFunc( GLAlphaTestFunc_t *src ) { m_AlphaTestFunc.Write( src ); }
FORCEINLINE void WriteAlphaToCoverageEnable( GLAlphaToCoverageEnable_t *src ) { m_AlphaToCoverageEnable.Write( src ); }
FORCEINLINE void WriteCullFaceEnable( GLCullFaceEnable_t *src ) { m_CullFaceEnable.Write( src ); }
FORCEINLINE void WriteCullFrontFace( GLCullFrontFace_t *src ) { m_CullFrontFace.Write( src ); }
FORCEINLINE void WritePolygonMode( GLPolygonMode_t *src ) { m_PolygonMode.Write( src ); }
FORCEINLINE void WriteDepthBias( GLDepthBias_t *src ) { m_DepthBias.Write( src ); }
FORCEINLINE void WriteClipPlaneEnable( GLClipPlaneEnable_t *src, int which ) { m_ClipPlaneEnable.WriteIndex( src, which ); }
FORCEINLINE void WriteClipPlaneEquation( GLClipPlaneEquation_t *src, int which ) { m_ClipPlaneEquation.WriteIndex( src, which ); }
FORCEINLINE void WriteScissorEnable( GLScissorEnable_t *src ) { m_ScissorEnable.Write( src ); }
FORCEINLINE void WriteScissorBox( GLScissorBox_t *src ) { m_ScissorBox.Write( src ); }
FORCEINLINE void WriteViewportBox( GLViewportBox_t *src ) { m_ViewportBox.Write( src ); }
FORCEINLINE void WriteViewportDepthRange( GLViewportDepthRange_t *src ) { m_ViewportDepthRange.Write( src ); }
FORCEINLINE void WriteColorMaskSingle( GLColorMaskSingle_t *src ) { m_ColorMaskSingle.Write( src ); }
FORCEINLINE void WriteColorMaskMultiple( GLColorMaskMultiple_t *src, int which ) { m_ColorMaskMultiple.WriteIndex( src, which ); }
FORCEINLINE void WriteBlendEnable( GLBlendEnable_t *src ) { m_BlendEnable.Write( src ); }
FORCEINLINE void WriteBlendFactor( GLBlendFactor_t *src ) { m_BlendFactor.Write( src ); }
FORCEINLINE void WriteBlendEquation( GLBlendEquation_t *src ) { m_BlendEquation.Write( src ); }
FORCEINLINE void WriteBlendColor( GLBlendColor_t *src ) { m_BlendColor.Write( src ); }
FORCEINLINE void WriteBlendEnableSRGB( GLBlendEnableSRGB_t *src )
{
if (m_caps.m_hasGammaWrites) // only if caps allow do we actually push it through to the extension
{
m_BlendEnableSRGB.Write( src );
}
else
{
m_FakeBlendEnableSRGB = src->enable != 0;
}
// note however that we're still tracking what this mode should be, so FlushDrawStates can look at it and adjust the pixel shader
// if fake SRGB mode is in place (m_caps.m_hasGammaWrites is false)
}
FORCEINLINE void WriteDepthTestEnable( GLDepthTestEnable_t *src ) { m_DepthTestEnable.Write( src ); }
FORCEINLINE void WriteDepthFunc( GLDepthFunc_t *src ) { m_DepthFunc.Write( src ); }
FORCEINLINE void WriteDepthMask( GLDepthMask_t *src ) { m_DepthMask.Write( src ); }
FORCEINLINE void WriteStencilTestEnable( GLStencilTestEnable_t *src ) { m_StencilTestEnable.Write( src ); }
FORCEINLINE void WriteStencilFunc( GLStencilFunc_t *src ) { m_StencilFunc.Write( src ); }
FORCEINLINE void WriteStencilOp( GLStencilOp_t *src, int which ) { m_StencilOp.WriteIndex( src, which ); }
FORCEINLINE void WriteStencilWriteMask( GLStencilWriteMask_t *src ) { m_StencilWriteMask.Write( src ); }
FORCEINLINE void WriteClearColor( GLClearColor_t *src ) { m_ClearColor.Write( src ); }
FORCEINLINE void WriteClearDepth( GLClearDepth_t *src ) { m_ClearDepth.Write( src ); }
FORCEINLINE void WriteClearStencil( GLClearStencil_t *src ) { m_ClearStencil.Write( src ); }
// debug stuff
void BeginFrame( void );
void EndFrame( void );
// new interactive debug stuff
#if GLMDEBUG
void DebugDump( GLMDebugHookInfo *info, uint options, uint vertDumpMode );
void DebugHook( GLMDebugHookInfo *info );
void DebugPresent( void );
void DebugClear( void );
#endif
FORCEINLINE void SetMaxUsedVertexShaderConstantsHint( uint nMaxConstants );
FORCEINLINE DWORD GetCurrentOwnerThreadId() const { return m_nCurOwnerThreadId; }
protected:
friend class GLMgr; // only GLMgr can make GLMContext objects
friend class GLMRendererInfo; // only GLMgr can make GLMContext objects
friend class CGLMTex; // tex needs to be able to do binds
friend class CGLMFBO; // fbo needs to be able to do binds
friend class CGLMProgram;
friend class CGLMShaderPair;
friend class CGLMShaderPairCache;
friend class CGLMBuffer;
friend class CGLMBufferSpanManager;
friend class GLMTester; // tester class needs access back into GLMContext
friend struct IDirect3D9;
friend struct IDirect3DDevice9;
friend struct IDirect3DQuery9;
// methods------------------------------------------
// old GLMContext( GLint displayMask, GLint rendererID, PseudoNSGLContextPtr nsglShareCtx );
GLMContext( IDirect3DDevice9 *pDevice, GLMDisplayParams *params );
~GLMContext();
#ifndef OSX
FORCEINLINE GLuint FindSamplerObject( const GLMTexSamplingParams &desiredParams );
#endif
FORCEINLINE void SetBufAndVertexAttribPointer( uint nIndex, GLuint nGLName, GLuint stride, GLuint datatype, GLboolean normalized, GLuint nCompCount, const void *pBuf, uint nRevision )
{
VertexAttribs_t &curAttribs = m_boundVertexAttribs[nIndex];
if ( nGLName != m_nBoundGLBuffer[kGLMVertexBuffer] )
{
m_nBoundGLBuffer[kGLMVertexBuffer] = nGLName;
gGL->glBindBuffer( GL_ARRAY_BUFFER, nGLName );
}
else if ( ( curAttribs.m_pPtr == pBuf ) &&
( curAttribs.m_revision == nRevision ) &&
( curAttribs.m_stride == stride ) &&
( curAttribs.m_datatype == datatype ) &&
( curAttribs.m_normalized == normalized ) &&
( curAttribs.m_nCompCount == nCompCount ) )
{
return;
}
curAttribs.m_nCompCount = nCompCount;
curAttribs.m_datatype = datatype;
curAttribs.m_normalized = normalized;
curAttribs.m_stride = stride;
curAttribs.m_pPtr = pBuf;
curAttribs.m_revision = nRevision;
gGL->glVertexAttribPointer( nIndex, nCompCount, datatype, normalized, stride, pBuf );
}
struct CurAttribs_t
{
uint m_nTotalBufferRevision;
IDirect3DVertexDeclaration9 *m_pVertDecl;
D3DStreamDesc m_streams[ D3D_MAX_STREAMS ];
uint64 m_vtxAttribMap[2];
};
CurAttribs_t m_CurAttribs;
FORCEINLINE void ClearCurAttribs()
{
m_CurAttribs.m_nTotalBufferRevision = 0;
m_CurAttribs.m_pVertDecl = NULL;
memset( m_CurAttribs.m_streams, 0, sizeof( m_CurAttribs.m_streams ) );
m_CurAttribs.m_vtxAttribMap[0] = 0xBBBBBBBBBBBBBBBBULL;
m_CurAttribs.m_vtxAttribMap[1] = 0xBBBBBBBBBBBBBBBBULL;
}
FORCEINLINE void ReleasedShader() { NullProgram(); }
// textures
FORCEINLINE void SelectTMU( int tmu )
{
if ( tmu != m_activeTexture )
{
gGL->glActiveTexture( GL_TEXTURE0 + tmu );
m_activeTexture = tmu;
}
}
void BindTexToTMU( CGLMTex *tex, int tmu );
// render targets / FBO's
void BindFBOToCtx( CGLMFBO *fbo, GLenum bindPoint = GL_FRAMEBUFFER ); // you can also choose GL_READ_FRAMEBUFFER_EXT / GL_DRAW_FRAMEBUFFER_EXT
// buffers
FORCEINLINE void BindGLBufferToCtx( GLenum nGLBufType, GLuint nGLName, bool bForce = false )
{
Assert( ( nGLBufType == GL_ARRAY_BUFFER ) || ( nGLBufType == GL_ELEMENT_ARRAY_BUFFER ) );
const uint nIndex = ( nGLBufType == GL_ARRAY_BUFFER ) ? kGLMVertexBuffer : kGLMIndexBuffer;
if ( ( bForce ) || ( m_nBoundGLBuffer[nIndex] != nGLName ) )
{
m_nBoundGLBuffer[nIndex] = nGLName;
gGL->glBindBuffer( nGLBufType, nGLName );
}
}
void BindBufferToCtx( EGLMBufferType type, CGLMBuffer *buff, bool force = false ); // does not twiddle any enables.
FORCEINLINE void BindIndexBufferToCtx( CGLMBuffer *buff );
FORCEINLINE void BindVertexBufferToCtx( CGLMBuffer *buff );
GLuint CreateTex( GLenum texBind, GLenum internalFormat );
void CleanupTex( GLenum texBind, GLMTexLayout* pLayout, GLuint tex );
void DestroyTex( GLenum texBind, GLMTexLayout* pLayout, GLuint tex );
GLuint FillTexCache( bool holdOne, int newTextures );
void PurgeTexCache( );
// debug font
void GenDebugFontTex( void );
void DrawDebugText( float x, float y, float z, float drawCharWidth, float drawCharHeight, char *string );
CPersistentBuffer* GetCurPersistentBuffer( EGLMBufferType type ) { return &( m_persistentBuffer[m_nCurPersistentBuffer][type] ); }
// members------------------------------------------
// context
DWORD m_nCurOwnerThreadId;
uint m_nThreadOwnershipReleaseCounter;
bool m_bUseSamplerObjects;
bool m_bTexClientStorage;
IDirect3DDevice9 *m_pDevice;
GLMRendererInfoFields m_caps;
bool m_displayParamsValid; // is there a param block copied in yet
GLMDisplayParams m_displayParams; // last known display config, either via constructor, or by SetDisplayParams...
#if defined( USE_SDL )
int m_pixelFormatAttribs[100]; // more than enough
PseudoNSGLContextPtr m_nsctx;
void * m_ctx;
#endif
bool m_bUseBoneUniformBuffers; // if true, we use two uniform buffers for vertex shader constants vs. one
// texture form table
CGLMTexLayoutTable *m_texLayoutTable;
// context state mirrors
GLState<GLAlphaTestEnable_t> m_AlphaTestEnable;
GLState<GLAlphaTestFunc_t> m_AlphaTestFunc;
GLState<GLCullFaceEnable_t> m_CullFaceEnable;
GLState<GLCullFrontFace_t> m_CullFrontFace;
GLState<GLPolygonMode_t> m_PolygonMode;
GLState<GLDepthBias_t> m_DepthBias;
GLStateArray<GLClipPlaneEnable_t,kGLMUserClipPlanes> m_ClipPlaneEnable;
GLStateArray<GLClipPlaneEquation_t,kGLMUserClipPlanes> m_ClipPlaneEquation; // dxabstract puts them directly into param slot 253(0) and 254(1)
GLState<GLScissorEnable_t> m_ScissorEnable;
GLState<GLScissorBox_t> m_ScissorBox;
GLState<GLAlphaToCoverageEnable_t> m_AlphaToCoverageEnable;
GLState<GLViewportBox_t> m_ViewportBox;
GLState<GLViewportDepthRange_t> m_ViewportDepthRange;
GLState<GLColorMaskSingle_t> m_ColorMaskSingle;
GLStateArray<GLColorMaskMultiple_t,8> m_ColorMaskMultiple; // need an official constant for the color buffers limit
GLState<GLBlendEnable_t> m_BlendEnable;
GLState<GLBlendFactor_t> m_BlendFactor;
GLState<GLBlendEquation_t> m_BlendEquation;
GLState<GLBlendColor_t> m_BlendColor;
GLState<GLBlendEnableSRGB_t> m_BlendEnableSRGB; // write to this one to transmit intent to write SRGB encoded pixels to drawing FB
bool m_FakeBlendEnableSRGB; // writes to above will be shunted here if fake SRGB is in effect.
GLState<GLDepthTestEnable_t> m_DepthTestEnable;
GLState<GLDepthFunc_t> m_DepthFunc;
GLState<GLDepthMask_t> m_DepthMask;
GLState<GLStencilTestEnable_t> m_StencilTestEnable; // global stencil test enable
GLState<GLStencilFunc_t> m_StencilFunc; // holds front and back stencil funcs
GLStateArray<GLStencilOp_t,2> m_StencilOp; // indexed: 0=front 1=back
GLState<GLStencilWriteMask_t> m_StencilWriteMask;
GLState<GLClearColor_t> m_ClearColor;
GLState<GLClearDepth_t> m_ClearDepth;
GLState<GLClearStencil_t> m_ClearStencil;
// texture bindings and sampler setup
int m_activeTexture; // mirror for glActiveTexture
GLMTexSampler m_samplers[GLM_SAMPLER_COUNT];
uint8 m_nDirtySamplerFlags[GLM_SAMPLER_COUNT]; // 0 if the sampler is dirty, 1 if not
uint32 m_nNumDirtySamplers; // # of unique dirty sampler indices in m_nDirtySamplers
uint8 m_nDirtySamplers[GLM_SAMPLER_COUNT + 1]; // dirty sampler indices
void MarkAllSamplersDirty();
struct SamplerHashEntry
{
GLuint m_samplerObject;
GLMTexSamplingParams m_params;
};
enum
{
cSamplerObjectHashBits = 9, cSamplerObjectHashSize = 1 << cSamplerObjectHashBits
};
SamplerHashEntry m_samplerObjectHash[cSamplerObjectHashSize];
uint m_nSamplerObjectHashNumEntries;
// texture lock tracking - CGLMTex objects share usage of this
CUtlVector< GLMTexLockDesc > m_texLocks;
// render target binding - check before draw
// similar to tex sampler mechanism, we track "bound" from "chosen for drawing" separately,
// so binding for creation/setup need not disrupt any notion of what will be used at draw time
CGLMFBO *m_boundDrawFBO; // FBO on GL_DRAW_FRAMEBUFFER bind point
CGLMFBO *m_boundReadFBO; // FBO on GL_READ_FRAMEBUFFER bind point
// ^ both are set if you bind to GL_FRAMEBUFFER_EXT
CGLMFBO *m_drawingFBO; // what FBO should be bound at draw time (to both read/draw bp's).
CGLMFBO *m_blitReadFBO;
CGLMFBO *m_blitDrawFBO; // scratch FBO's for framebuffer blit
CGLMFBO *m_scratchFBO[ kGLMScratchFBOCount ]; // general purpose FBO's for internal use
CUtlVector< CGLMFBO* > m_fboTable; // each live FBO goes in the table
uint m_fragDataMask;
// program bindings
EGLMProgramLang m_drawingLangAtFrameStart; // selector for start of frame (spills into m_drawingLang)
EGLMProgramLang m_drawingLang; // selector for which language we desire to draw with on the next batch
CGLMProgram *m_drawingProgram[ kGLMNumProgramTypes ];
bool m_bDirtyPrograms;
GLMProgramParamsF m_programParamsF[ kGLMNumProgramTypes ];
GLMProgramParamsB m_programParamsB[ kGLMNumProgramTypes ];
GLMProgramParamsI m_programParamsI[ kGLMNumProgramTypes ]; // two banks, but only the vertex one is used
EGLMParamWriteMode m_paramWriteMode;
CGLMProgram *m_pNullFragmentProgram; // write opaque black. Activate when caller asks for null FP
CGLMProgram *m_preloadTexVertexProgram; // programs to help preload textures (dummies)
CGLMProgram *m_preload2DTexFragmentProgram;
CGLMProgram *m_preload3DTexFragmentProgram;
CGLMProgram *m_preloadCubeTexFragmentProgram;
#if defined( OSX ) && defined( GLMDEBUG )
CGLMProgram *m_boundProgram[ kGLMNumProgramTypes ];
#endif
CGLMShaderPairCache *m_pairCache; // GLSL only
CGLMShaderPair *m_pBoundPair; // GLSL only
FORCEINLINE void NewLinkedProgram() { ClearCurAttribs(); }
//uint m_boundPairRevision; // GLSL only
//GLhandleARB m_boundPairProgram; // GLSL only
// buffer bindings
GLuint m_nBoundGLBuffer[kGLMNumBufferTypes];
struct VertexAttribs_t
{
GLuint m_nCompCount;
GLenum m_datatype;
GLboolean m_normalized;
GLuint m_stride;
const void *m_pPtr;
uint m_revision;
};
VertexAttribs_t m_boundVertexAttribs[ kGLMVertexAttributeIndexMax ]; // tracked per attrib for dupe-set-absorb
uint m_lastKnownVertexAttribMask; // tracked for dupe-enable-absorb
int m_nNumSetVertexAttributes;
// FIXME: Remove this, it's no longer used
GLMVertexSetup m_drawVertexSetup;
EGLMAttribWriteMode m_attribWriteMode;
bool m_slowCheckEnable; // turn this on or no native checking is done ("-glmassertslow" or "-glmsspewslow")
bool m_slowAssertEnable; // turn this on to assert on a non-native batch "-glmassertslow"
bool m_slowSpewEnable; // turn this on to log non-native batches to stdout "-glmspewslow"
bool m_checkglErrorsAfterEveryBatch; // turn this on to check for GL errors after each batch (slow) ("-glcheckerrors")
// debug font texture
CGLMTex *m_debugFontTex; // might be NULL unless you call GenDebugFontTex
CGLMBuffer *m_debugFontIndices; // up to 1024 indices (256 chars times 4)
CGLMBuffer *m_debugFontVertices; // up to 1024 verts
// batch/frame debugging support
int m_debugFrameIndex; // init to -1. Increment at BeginFrame
int m_nMaxUsedVertexProgramConstantsHint;
uint32 m_dwRenderThreadId;
volatile bool m_bIsThreading;
uint m_nCurFrame;
uint m_nBatchCounter;
struct TextureEntry_t
{
GLenum m_nTexBind;
GLenum m_nInternalFormat;
GLuint m_nTexName;
};
GLuint m_destroyPBO;
CUtlVector< TextureEntry_t > m_availableTextures;
enum { cNumPersistentBuffers = 3 };
CPersistentBuffer m_persistentBuffer[cNumPersistentBuffers][kGLMNumBufferTypes];
uint m_nCurPersistentBuffer;
void SaveColorMaskAndSetToDefault();
void RestoreSavedColorMask();
GLColorMaskSingle_t m_SavedColorMask;
#if GLMDEBUG
// interactive (DebugHook) debug support
// using these you can implement frame advance, batch single step, and batch rewind (let it run til next frame and hold on prev batch #)
int m_holdFrameBegin; // -1 if no hold req'd, otherwise # of frame to hold at (at beginframe time)
int m_holdFrameEnd; // -1 if no hold req'd, otherwise # of frame to hold at (at endframe time)
int m_holdBatch,m_holdBatchFrame; // -1 if no hold, else # of batch&frame to hold at (both must be set)
// these can be expired/cleared to -1 if the frame passes without a hit
// may be desirable to re-pause in that event, as user was expecting a hold to occur
bool m_debugDelayEnable; // allow sleep delay
uint m_debugDelay; // sleep time per hook call in microseconds (for usleep())
// pre-draw global toggles / options
bool m_autoClearColor,m_autoClearDepth,m_autoClearStencil;
float m_autoClearColorValues[4];
// debug knobs
int m_selKnobIndex;
float m_selKnobMinValue,m_selKnobMaxValue,m_selKnobIncrement;
#endif
#if GL_BATCH_PERF_ANALYSIS
uint m_nTotalVSUniformCalls;
uint m_nTotalVSUniformBoneCalls;
uint m_nTotalVSUniformsSet;
uint m_nTotalVSUniformsBoneSet;
uint m_nTotalPSUniformCalls;
uint m_nTotalPSUniformsSet;
CFlushDrawStatesStats m_FlushStats;
#endif
void ProcessTextureDeletes();
CTSQueue<CGLMTex*> m_DeleteTextureQueue;
};
#ifndef OSX
FORCEINLINE void GLMContext::DrawRangeElements( GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, uint baseVertex, CGLMBuffer *pIndexBuf )
{
#if GL_ENABLE_INDEX_VERIFICATION
DrawRangeElementsNonInline( mode, start, end, count, type, indices, baseVertex, pIndexBuf );
#else
#if GLMDEBUG
GLM_FUNC;
#else
//tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s %d-%d count:%d mode:%d type:%d", __FUNCTION__, start, end, count, mode, type );
#endif
++m_nBatchCounter;
SetIndexBuffer( pIndexBuf );
void *indicesActual = (void*)indices;
if ( pIndexBuf->m_bPseudo )
{
// you have to pass actual address, not offset
indicesActual = (void*)( (int)indicesActual + (int)pIndexBuf->m_pPseudoBuf );
}
if (pIndexBuf->m_bUsingPersistentBuffer)
{
indicesActual = (void*)( (int)indicesActual + (int)pIndexBuf->m_nPersistentBufferStartOffset );
}
//#if GLMDEBUG
#if 0
bool hasVP = m_drawingProgram[ kGLMVertexProgram ] != NULL;
bool hasFP = m_drawingProgram[ kGLMFragmentProgram ] != NULL;
// init debug hook information
GLMDebugHookInfo info;
memset( &info, 0, sizeof(info) );
info.m_caller = eDrawElements;
// relay parameters we're operating under
info.m_drawMode = mode;
info.m_drawStart = start;
info.m_drawEnd = end;
info.m_drawCount = count;
info.m_drawType = type;
info.m_drawIndices = indices;
do
{
// obey global options re pre-draw clear
if ( m_autoClearColor || m_autoClearDepth || m_autoClearStencil )
{
GLMPRINTF(("-- DrawRangeElements auto clear" ));
this->DebugClear();
}
// always sync with editable shader text prior to draw
#if GLMDEBUG
//FIXME disengage this path if context is in GLSL mode..
// it will need fixes to get the shader pair re-linked etc if edits happen anyway.
if (m_drawingProgram[ kGLMVertexProgram ])
{
m_drawingProgram[ kGLMVertexProgram ]->SyncWithEditable();
}
else
{
AssertOnce(!"drawing with no vertex program bound");
}
if (m_drawingProgram[ kGLMFragmentProgram ])
{
m_drawingProgram[ kGLMFragmentProgram ]->SyncWithEditable();
}
else
{
AssertOnce(!"drawing with no fragment program bound");
}
#endif
// do the drawing
if (hasVP && hasFP)
{
gGL->glDrawRangeElementsBaseVertex( mode, start, end, count, type, indicesActual, baseVertex );
if ( m_slowCheckEnable )
{
CheckNative();
}
}
this->DebugHook( &info );
} while ( info.m_loop );
#else
Assert( m_drawingLang == kGLMGLSL );
if ( m_pBoundPair )
{
gGL->glDrawRangeElementsBaseVertex( mode, start, end, count, type, indicesActual, baseVertex );
#if GLMDEBUG
if ( m_slowCheckEnable )
{
CheckNative();
}
#endif
}
#endif
#endif // GL_ENABLE_INDEX_VERIFICATION
}
#endif // #ifndef OSX
FORCEINLINE void GLMContext::SetVertexProgram( CGLMProgram *pProg )
{
m_drawingProgram[kGLMVertexProgram] = pProg;
m_bDirtyPrograms = true;
}
FORCEINLINE void GLMContext::SetFragmentProgram( CGLMProgram *pProg )
{
m_drawingProgram[kGLMFragmentProgram] = pProg ? pProg : m_pNullFragmentProgram;
m_bDirtyPrograms = true;
}
// "slot" means a vec4-sized thing
// these write into .env parameter space
FORCEINLINE void GLMContext::SetProgramParametersF( EGLMProgramType type, uint baseSlot, float *slotData, uint slotCount )
{
#if GLMDEBUG
GLM_FUNC;
#endif
Assert( baseSlot < kGLMProgramParamFloat4Limit );
Assert( baseSlot+slotCount <= kGLMProgramParamFloat4Limit );
#if GLMDEBUG
GLMPRINTF(("-S-GLMContext::SetProgramParametersF %s slots %d - %d: ", (type==kGLMVertexProgram) ? "VS" : "FS", baseSlot, baseSlot + slotCount - 1 ));
for( uint i=0; i<slotCount; i++ )
{
GLMPRINTF(( "-S- %03d: [ %7.4f %7.4f %7.4f %7.4f ]",
baseSlot+i,
slotData[i*4], slotData[i*4+1], slotData[i*4+2], slotData[i*4+3]
));
}
#endif
memcpy( &m_programParamsF[type].m_values[baseSlot][0], slotData, (4 * sizeof(float)) * slotCount );
if ( ( type == kGLMVertexProgram ) && ( m_bUseBoneUniformBuffers ) )
{
// changes here to handle vertex shaders which use constants before and after the bone array i.e. before c58 and after c216
// a better change may be to modify the shaders and place the bone consts at either start or end - would simplify this and the flush code
// the current supporting code (shader translator(dx9asmtogl2), param setting(here) and flushing(glmgr_flush.inl) should work unchanged, even if the const mapping is changed.
int firstDirty = (int)baseSlot;
int highWater = (int)(baseSlot + slotCount);
if ( highWater <= DXABSTRACT_VS_FIRST_BONE_SLOT )
{
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = MIN( m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone, firstDirty );
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone, highWater );
}
else if ( highWater <= (DXABSTRACT_VS_LAST_BONE_SLOT+1) )
{
if ( firstDirty < DXABSTRACT_VS_FIRST_BONE_SLOT )
{
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = MIN( m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone, firstDirty );
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone, MIN( DXABSTRACT_VS_FIRST_BONE_SLOT, highWater ) );
firstDirty = DXABSTRACT_VS_FIRST_BONE_SLOT;
}
int nNumActualBones = ( firstDirty + slotCount ) - DXABSTRACT_VS_FIRST_BONE_SLOT;
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone, nNumActualBones );
}
else
{
const int maxBoneSlots = ( DXABSTRACT_VS_LAST_BONE_SLOT + 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT;
if ( firstDirty > DXABSTRACT_VS_LAST_BONE_SLOT )
{
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = MIN( m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone, firstDirty - maxBoneSlots );
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone, highWater - maxBoneSlots );
}
else if ( firstDirty >= DXABSTRACT_VS_FIRST_BONE_SLOT )
{
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = DXABSTRACT_VS_LAST_BONE_SLOT + 1;
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = MIN( m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone, DXABSTRACT_VS_FIRST_BONE_SLOT );
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone, highWater - maxBoneSlots );
}
else
{
int nNumActualBones = ( DXABSTRACT_VS_LAST_BONE_SLOT + 1 ) - DXABSTRACT_VS_FIRST_BONE_SLOT;
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterBone, nNumActualBones );
m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone = MIN( m_programParamsF[kGLMVertexProgram].m_firstDirtySlotNonBone, firstDirty );
m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone = MAX( m_programParamsF[kGLMVertexProgram].m_dirtySlotHighWaterNonBone, highWater - maxBoneSlots );
}
}
}
else
{
m_programParamsF[type].m_dirtySlotHighWaterNonBone = MAX( m_programParamsF[type].m_dirtySlotHighWaterNonBone, (int)(baseSlot + slotCount) );
m_programParamsF[type].m_firstDirtySlotNonBone = MIN( m_programParamsF[type].m_firstDirtySlotNonBone, (int)baseSlot );
}
}
FORCEINLINE void GLMContext::SetProgramParametersB( EGLMProgramType type, uint baseSlot, int *slotData, uint boolCount )
{
#if GLMDEBUG
GLM_FUNC;
#endif
Assert( m_drawingLang == kGLMGLSL );
Assert( type==kGLMVertexProgram || type==kGLMFragmentProgram );
Assert( baseSlot < kGLMProgramParamBoolLimit );
Assert( baseSlot+boolCount <= kGLMProgramParamBoolLimit );
#if GLMDEBUG
GLMPRINTF(("-S-GLMContext::SetProgramParametersB %s bools %d - %d: ", (type==kGLMVertexProgram) ? "VS" : "FS", baseSlot, baseSlot + boolCount - 1 ));
for( uint i=0; i<boolCount; i++ )
{
GLMPRINTF(( "-S- %03d: %d (bool)",
baseSlot+i,
slotData[i]
));
}
#endif
memcpy( &m_programParamsB[type].m_values[baseSlot], slotData, sizeof(int) * boolCount );
if ( (baseSlot+boolCount) > m_programParamsB[type].m_dirtySlotCount)
m_programParamsB[type].m_dirtySlotCount = baseSlot+boolCount;
}
FORCEINLINE void GLMContext::SetProgramParametersI( EGLMProgramType type, uint baseSlot, int *slotData, uint slotCount ) // groups of 4 ints...
{
#if GLMDEBUG
GLM_FUNC;
#endif
Assert( m_drawingLang == kGLMGLSL );
Assert( type==kGLMVertexProgram );
Assert( baseSlot < kGLMProgramParamInt4Limit );
Assert( baseSlot+slotCount <= kGLMProgramParamInt4Limit );
#if GLMDEBUG
GLMPRINTF(("-S-GLMContext::SetProgramParametersI %s slots %d - %d: ", (type==kGLMVertexProgram) ? "VS" : "FS", baseSlot, baseSlot + slotCount - 1 ));
for( uint i=0; i<slotCount; i++ )
{
GLMPRINTF(( "-S- %03d: %d %d %d %d (int4)",
baseSlot+i,
slotData[i*4],slotData[i*4+1],slotData[i*4+2],slotData[i*4+3]
));
}
#endif
memcpy( &m_programParamsI[type].m_values[baseSlot][0], slotData, (4*sizeof(int)) * slotCount );
if ( (baseSlot + slotCount) > m_programParamsI[type].m_dirtySlotCount)
{
m_programParamsI[type].m_dirtySlotCount = baseSlot + slotCount;
}
}
FORCEINLINE void GLMContext::SetSamplerDirty( int sampler )
{
Assert( sampler < GLM_SAMPLER_COUNT );
m_nDirtySamplers[m_nNumDirtySamplers] = sampler;
m_nNumDirtySamplers += m_nDirtySamplerFlags[sampler];
m_nDirtySamplerFlags[sampler] = 0;
}
FORCEINLINE void GLMContext::SetSamplerTex( int sampler, CGLMTex *tex )
{
Assert( sampler < GLM_SAMPLER_COUNT );
m_samplers[sampler].m_pBoundTex = tex;
if ( tex )
{
if ( !gGL->m_bHave_GL_EXT_direct_state_access )
{
if ( sampler != m_activeTexture )
{
gGL->glActiveTexture( GL_TEXTURE0 + sampler );
m_activeTexture = sampler;
}
gGL->glBindTexture( tex->m_texGLTarget, tex->m_texName );
}
else
{
gGL->glBindMultiTextureEXT( GL_TEXTURE0 + sampler, tex->m_texGLTarget, tex->m_texName );
}
}
if ( !m_bUseSamplerObjects )
{
SetSamplerDirty( sampler );
}
}
FORCEINLINE void GLMContext::SetSamplerMinFilter( int sampler, GLenum Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MIN_FILTER_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_minFilter = Value;
}
FORCEINLINE void GLMContext::SetSamplerMagFilter( int sampler, GLenum Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MAG_FILTER_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_magFilter = Value;
}
FORCEINLINE void GLMContext::SetSamplerMipFilter( int sampler, GLenum Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MIP_FILTER_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_mipFilter = Value;
}
FORCEINLINE void GLMContext::SetSamplerAddressU( int sampler, GLenum Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_ADDRESS_BITS) );
m_samplers[sampler].m_samp.m_packed.m_addressU = Value;
}
FORCEINLINE void GLMContext::SetSamplerAddressV( int sampler, GLenum Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_ADDRESS_BITS) );
m_samplers[sampler].m_samp.m_packed.m_addressV = Value;
}
FORCEINLINE void GLMContext::SetSamplerAddressW( int sampler, GLenum Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_ADDRESS_BITS) );
m_samplers[sampler].m_samp.m_packed.m_addressW = Value;
}
FORCEINLINE void GLMContext::SetSamplerStates( int sampler, GLenum AddressU, GLenum AddressV, GLenum AddressW, GLenum minFilter, GLenum magFilter, GLenum mipFilter, int minLod, float lodBias )
{
Assert( AddressU < ( 1 << GLM_PACKED_SAMPLER_PARAMS_ADDRESS_BITS) );
Assert( AddressV < ( 1 << GLM_PACKED_SAMPLER_PARAMS_ADDRESS_BITS) );
Assert( AddressW < ( 1 << GLM_PACKED_SAMPLER_PARAMS_ADDRESS_BITS) );
Assert( minFilter < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MIN_FILTER_BITS ) );
Assert( magFilter < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MAG_FILTER_BITS ) );
Assert( mipFilter < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MIP_FILTER_BITS ) );
Assert( minLod < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MIN_LOD_BITS ) );
GLMTexSamplingParams &params = m_samplers[sampler].m_samp;
params.m_packed.m_addressU = AddressU;
params.m_packed.m_addressV = AddressV;
params.m_packed.m_addressW = AddressW;
params.m_packed.m_minFilter = minFilter;
params.m_packed.m_magFilter = magFilter;
params.m_packed.m_mipFilter = mipFilter;
params.m_packed.m_minLOD = minLod;
params.m_lodBias = lodBias;
}
FORCEINLINE void GLMContext::SetSamplerBorderColor( int sampler, DWORD Value )
{
m_samplers[sampler].m_samp.m_borderColor = Value;
}
FORCEINLINE void GLMContext::SetSamplerMipMapLODBias( int sampler, DWORD Value )
{
typedef union {
DWORD asDword;
float asFloat;
} Convert_t;
Convert_t c;
c.asDword = Value;
m_samplers[sampler].m_samp.m_lodBias = c.asFloat;
}
FORCEINLINE void GLMContext::SetSamplerMaxMipLevel( int sampler, DWORD Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MIN_LOD_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_minLOD = Value;
}
FORCEINLINE void GLMContext::SetSamplerMaxAnisotropy( int sampler, DWORD Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_MAX_ANISO_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_maxAniso = Value;
}
FORCEINLINE void GLMContext::SetSamplerSRGBTexture( int sampler, DWORD Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_SRGB_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_srgb = Value;
}
FORCEINLINE void GLMContext::SetShadowFilter( int sampler, DWORD Value )
{
Assert( Value < ( 1 << GLM_PACKED_SAMPLER_PARAMS_COMPARE_MODE_BITS ) );
m_samplers[sampler].m_samp.m_packed.m_compareMode = Value;
}
FORCEINLINE void GLMContext::BindIndexBufferToCtx( CGLMBuffer *buff )
{
GLMPRINTF(( "--- GLMContext::BindIndexBufferToCtx buff %p, GL name %d", buff, (buff) ? buff->m_nHandle : -1 ));
Assert( !buff || ( buff->m_buffGLTarget == GL_ELEMENT_ARRAY_BUFFER ) );
GLuint nGLName = buff ? buff->GetHandle() : 0;
if ( m_nBoundGLBuffer[ kGLMIndexBuffer] == nGLName )
return;
m_nBoundGLBuffer[ kGLMIndexBuffer] = nGLName;
gGL->glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, nGLName );
}
FORCEINLINE void GLMContext::BindVertexBufferToCtx( CGLMBuffer *buff )
{
GLMPRINTF(( "--- GLMContext::BindVertexBufferToCtx buff %p, GL name %d", buff, (buff) ? buff->m_nHandle : -1 ));
Assert( !buff || ( buff->m_buffGLTarget == GL_ARRAY_BUFFER ) );
GLuint nGLName = buff ? buff->GetHandle() : 0;
if ( m_nBoundGLBuffer[ kGLMVertexBuffer] == nGLName )
return;
m_nBoundGLBuffer[ kGLMVertexBuffer] = nGLName;
gGL->glBindBuffer( GL_ARRAY_BUFFER, nGLName );
}
FORCEINLINE void GLMContext::SetMaxUsedVertexShaderConstantsHint( uint nMaxConstants )
{
static bool bUseMaxVertexShadeConstantHints = !CommandLine()->CheckParm("-disablemaxvertexshaderconstanthints");
if ( bUseMaxVertexShadeConstantHints )
{
m_nMaxUsedVertexProgramConstantsHint = nMaxConstants;
}
}
struct GLMTestParams
{
GLMContext *m_ctx;
int *m_testList; // -1 termed
bool m_glErrToDebugger;
bool m_glErrToConsole;
bool m_intlErrToDebugger;
bool m_intlErrToConsole;
int m_frameCount; // how many frames to test.
};
class GLMTester
{
public:
GLMTester(GLMTestParams *params);
~GLMTester();
// optionally callable by test routines to get basic drawables wired up
void StdSetup( void );
void StdCleanup( void );
// callable by test routines to clear the frame or present it
void Clear( void );
void Present( int seed );
// error reporting
void CheckGLError( const char *comment ); // obey m_params setting for console / debugger response
void InternalError( int errcode, char *comment ); // if errcode!=0, obey m_params setting for console / debugger response
void RunTests();
void RunOneTest( int testindex );
// test routines themselves
void Test0();
void Test1();
void Test2();
void Test3();
GLMTestParams m_params; // copy of caller's params, do not mutate...
// std-setup stuff
int m_drawWidth, m_drawHeight;
CGLMFBO *m_drawFBO;
CGLMTex *m_drawColorTex;
CGLMTex *m_drawDepthTex;
};
class CShowPixelsParams
{
public:
GLuint m_srcTexName;
int m_width,m_height;
bool m_vsyncEnable;
bool m_fsEnable; // want receiving view to be full screen. for now, just target the main screen. extend later.
bool m_useBlit; // use FBO blit - sending context says it is available.
bool m_noBlit; // the back buffer has already been populated by the caller (perhaps via direct MSAA resolve from multisampled RT tex)
bool m_onlySyncView; // react to full/windowed state change only, do not present bits
};
#define kMaxCrawlFrames 100
#define kMaxCrawlText (kMaxCrawlFrames * 256)
class CStackCrawlParams
{
public:
uint m_frameLimit; // input: max frames to retrieve
uint m_frameCount; // output: frames found
void *m_crawl[kMaxCrawlFrames]; // call site addresses
char *m_crawlNames[kMaxCrawlFrames]; // pointers into text following, one per decoded name
char m_crawlText[kMaxCrawlText];
};
#endif // GLMGR_H