source-engine/vphysics-physx/physics_virtualmesh.cpp

642 lines
21 KiB
C++
Raw Normal View History

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Virtual mesh implementation. Cached terrain collision model
//
//=============================================================================
#include "cbase.h"
#include "convert.h"
#include "ivp_surface_manager.hxx"
#include "ivp_surman_polygon.hxx"
#include "ivp_template_surbuild.hxx"
#include "ivp_compact_surface.hxx"
#include <ivp_compact_ledge.hxx>
#include <ivp_ray_solver.hxx>
#include <ivp_compact_ledge_solver.hxx>
#include "ivp_surbuild_pointsoup.hxx"
#include "ivp_surbuild_ledge_soup.hxx"
#include "physics_trace.h"
#include "collisionutils.h"
#include "datamanager.h"
#include "utlbuffer.h"
#include "ledgewriter.h"
#include "tier1/mempool.h"
#include "tier0/memdbgon.h"
class CPhysCollideVirtualMesh;
CTSPool< CUtlVector<CPhysCollideVirtualMesh *> > g_MeshFrameLocksPool;
CTHREADLOCALPTR(CUtlVector<CPhysCollideVirtualMesh *>) g_pMeshFrameLocks;
// This is the surfacemanager class for IVP that implements the required functions by layering CPhysCollideVirtualMesh
class IVP_SurfaceManager_VirtualMesh : public IVP_SurfaceManager
{
public:
void add_reference_to_ledge(const IVP_Compact_Ledge *ledge);
void remove_reference_to_ledge(const IVP_Compact_Ledge *ledge);
void insert_all_ledges_hitting_ray(IVP_Ray_Solver *ray_solver, IVP_Real_Object *object);
void get_radius_and_radius_dev_to_given_center(const IVP_U_Float_Point *center, IVP_FLOAT *radius, IVP_FLOAT *radius_deviation) const;
virtual IVP_SURMAN_TYPE get_type() { return IVP_SURMAN_POLYGON; }
// assume mesh is never a single triangle
virtual const IVP_Compact_Ledge *get_single_convex() const;
void get_mass_center(IVP_U_Float_Point *mass_center_out) const;
void get_rotation_inertia( IVP_U_Float_Point *rotation_inertia_out ) const;
void get_all_ledges_within_radius(const IVP_U_Point *observer_os, IVP_DOUBLE radius,
const IVP_Compact_Ledge *root_ledge, IVP_Real_Object *other_object, const IVP_Compact_Ledge *other_reference_ledge,
IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges);
void get_all_terminal_ledges(IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges);
IVP_SurfaceManager_VirtualMesh( CPhysCollideVirtualMesh *pMesh );
virtual ~IVP_SurfaceManager_VirtualMesh();
private:
CPhysCollideVirtualMesh *m_pMesh;
};
// These are the managed objects for the LRU of terrain collisions
// These get created/destroyed dynamically by a resourcemanager
// These contain the uncompressed collision models for each displacement patch
// The idea is to have only the necessary instances of these in memory at any given time - never all of them
class CMeshInstance
{
public:
// resourcemanager
static unsigned int EstimatedSize( const virtualmeshlist_t &list );
static CMeshInstance *CreateResource( const virtualmeshlist_t &list );
static unsigned int ComputeRootLedgeSize( const byte *pHull );
void DestroyResource() { delete this; }
unsigned int Size() { return m_memSize; }
CMeshInstance *GetData() { return this; }
const triangleledge_t *GetLedges() { return (triangleledge_t *)m_pMemory; }
inline int HullCount() { return m_hullCount; }
const IVP_Compact_Ledge *GetOuterHull() { return (m_hullCount==1) ? (const IVP_Compact_Ledge *)(m_pMemory + m_hullOffset) : NULL; }
int GetRootLedges( IVP_Compact_Ledge **pLedges, int outCount )
{
int hullOffset = m_hullOffset;
int count = min(outCount, (int)m_hullCount);
for ( int i = 0; i < count; i++ )
{
pLedges[i] = (IVP_Compact_Ledge *)(m_pMemory + hullOffset);
hullOffset += sizeof(IVP_Compact_Ledge) + (sizeof(IVP_Compact_Triangle) * pLedges[i]->get_n_triangles());
}
return count;
}
// locals
CMeshInstance() { m_pMemory = 0; }
~CMeshInstance();
private:
void Init( const virtualmeshlist_t &list );
int m_memSize;
char *m_pMemory;
unsigned short m_hullOffset;
byte m_hullCount;
byte m_pad;
};
CMeshInstance::~CMeshInstance()
{
if ( m_pMemory )
{
ivp_free_aligned( m_pMemory );
m_pMemory = NULL;
}
}
unsigned int CMeshInstance::EstimatedSize( const virtualmeshlist_t &list )
{
int ledgeSize = sizeof(triangleledge_t) * list.triangleCount;
int pointSize = sizeof(IVP_Compact_Poly_Point) * list.vertexCount;
int hullSize = ComputeRootLedgeSize(list.pHull);
return ledgeSize + pointSize + hullSize;
}
// computes the unpacked size of the array of root ledges
unsigned int CMeshInstance::ComputeRootLedgeSize( const byte *pData )
{
if ( !pData )
return 0;
virtualmeshhull_t *pHeader = (virtualmeshhull_t *)pData;
packedhull_t *pHull = (packedhull_t *)(pHeader+1);
unsigned int size = pHeader->hullCount * sizeof(IVP_Compact_Ledge);
for ( int i = 0; i < pHeader->hullCount; i++ )
{
size += sizeof(IVP_Compact_Triangle) * pHull[i].triangleCount;
}
return size;
}
CMeshInstance *CMeshInstance::CreateResource( const virtualmeshlist_t &list )
{
CMeshInstance *pMesh = new CMeshInstance;
pMesh->Init( list );
return pMesh;
}
// flat memory footprint has triangleledges (ledge + 2 triangles for terrain), then has verts, then optional convex hull
void CMeshInstance::Init( const virtualmeshlist_t &list )
{
int ledgeSize = sizeof(triangleledge_t) * list.triangleCount;
int pointSize = sizeof(IVP_Compact_Poly_Point) * list.vertexCount;
int memSize = ledgeSize + pointSize + ComputeRootLedgeSize(list.pHull);
m_memSize = memSize;
m_hullCount = 0;
m_pMemory = (char *)ivp_malloc_aligned( memSize, 16 );
Assert( (intp(m_pMemory) & 15) == 0 ); // make sure it is aligned
IVP_Compact_Poly_Point *pPoints = (IVP_Compact_Poly_Point *)&m_pMemory[ledgeSize];
triangleledge_t *pLedges = (triangleledge_t *) m_pMemory;
memset( m_pMemory, 0, memSize );
int i;
for ( i = 0; i < list.vertexCount; i++ )
{
ConvertPositionToIVP( list.pVerts[i], pPoints[i] );
}
for ( i = 0; i < list.triangleCount; i++ )
{
Vector v0 = list.pVerts[list.indices[i*3+0]];
Vector v1 = list.pVerts[list.indices[i*3+1]];
Vector v2 = list.pVerts[list.indices[i*3+2]];
Assert( v0 != v1 && v1 != v2 && v0 != v2 );
CVPhysicsVirtualMeshWriter::InitTwoSidedTriangleLege( &pLedges[i], pPoints, list.indices[i*3+0], list.indices[i*3+1], list.indices[i*3+2], 0 );
}
Assert( list.triangleCount > 0 && list.triangleCount <= MAX_VIRTUAL_TRIANGLES );
// if there's a hull, build it out too
if ( list.pHull )
{
virtualmeshhull_t *pHeader = (virtualmeshhull_t *)list.pHull;
m_hullCount = pHeader->hullCount;
Assert( (ledgeSize + pointSize) < 65536 );
m_hullOffset = ledgeSize + pointSize;
byte *pMem = (byte *)m_pMemory + m_hullOffset;
#if _DEBUG
int hullSize = CVPhysicsVirtualMeshWriter::UnpackLedgeListFromHull( pMem, pHeader, pPoints );
Assert((m_hullOffset+hullSize)==memSize);
#else
CVPhysicsVirtualMeshWriter::UnpackLedgeListFromHull( pMem, pHeader, pPoints );
#endif
}
}
const int g_MeshSize = (2048 * 1024 * 4); // nillerusr: 2 MiB should be enough, old value causes problems in ep2
static CDataManager<CMeshInstance, virtualmeshlist_t, CMeshInstance *, CThreadFastMutex> g_MeshManager( g_MeshSize );
static int numIndices = 0, numTriangles = 0, numBaseTriangles = 0, numSplits = 0;
//-----------------------------------------------------------------------------
// Purpose: This allows for just-in-time procedural triangle soup data to be
// instanced & cached as IVP collision data (compact ledges)
//-----------------------------------------------------------------------------
// NOTE: This is the permanent in-memory representation. It holds the compressed data
// and the parameters necessary to request the proxy geometry as needed
class CPhysCollideVirtualMesh : public CPhysCollide
{
public:
// UNDONE: Unlike other CPhysCollide objects, operations the virtual mesh are
// non-const because they may instantiate the cache. This causes problems with the interface.
// Maybe the cache stuff should be mutable, but it amounts to the same kind of
// hackery to cast away const.
// get a surface manager
virtual IVP_SurfaceManager *CreateSurfaceManager( short &collideType ) const
{
collideType = COLLIDE_VIRTUAL;
// UNDONE: Figure out how to avoid this const_cast
return new IVP_SurfaceManager_VirtualMesh(const_cast<CPhysCollideVirtualMesh *>(this));
}
virtual void GetAllLedges( IVP_U_BigVector<IVP_Compact_Ledge> &ledges ) const
{
const triangleledge_t *pLedges = const_cast<CPhysCollideVirtualMesh *>(this)->AddRef()->GetLedges();
for ( int i = 0; i < m_ledgeCount; i++ )
{
ledges.add( const_cast<IVP_Compact_Ledge *>(&pLedges[i].ledge) );
}
const_cast<CPhysCollideVirtualMesh *>(this)->Release();
}
virtual unsigned int GetSerializationSize() const
{
if ( !m_pHull )
return 0;
return m_pHull->TotalSize();
}
virtual unsigned int SerializeToBuffer( char *pDest, bool bSwap = false ) const
{
unsigned int size = GetSerializationSize();
if ( size )
{
memcpy( pDest, m_pHull, size );
}
return size;
}
virtual int GetVCollideIndex() const { return 0; }
virtual void SetMassCenter( const Vector &massCenter ) {Assert(0); }
virtual Vector GetOrthographicAreas() const { return Vector(1,1,1);}
Vector GetMassCenter() const;
virtual float GetSphereRadius() const;
float GetSphereRadiusIVP() const;
void Init( const char *pBuffer, unsigned int size )
{
}
void GetAllLedgesWithinRadius( const IVP_U_Point *observer_os, IVP_DOUBLE radius, IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges, const IVP_Compact_Ledge *pRootLedge = NULL )
{
virtualmeshtrianglelist_t list;
list.triangleCount = 0;
Vector centerHL;
ConvertPositionToHL( *observer_os, centerHL );
float radiusHL = ConvertDistanceToHL(radius);
m_params.pMeshEventHandler->GetTrianglesInSphere( m_params.userData, centerHL, radiusHL, &list );
if ( list.triangleCount )
{
CMeshInstance *pMesh = AddRef();
const triangleledge_t *pLedges = pMesh->GetLedges();
FrameRelease();
// If we have two root ledges, then each one contains half the triangles
// only return triangles indexed under the root ledge being queried
int minTriangle = 0;
int maxTriangle = m_ledgeCount;
if ( pMesh->HullCount() > 1 )
{
Assert(pMesh->HullCount()==2);
IVP_Compact_Ledge *pRootNodes[2];
pMesh->GetRootLedges( pRootNodes, 2 );
int midTriangle = m_ledgeCount/2;
if ( pRootLedge == pRootNodes[0] )
{
maxTriangle = midTriangle;
}
else
{
minTriangle = midTriangle;
}
}
IVP_DOUBLE radiusSq = radius * radius;
for ( int i = 0; i < list.triangleCount; i++ )
{
Assert( list.triangleIndices[i] < m_ledgeCount );
if ( list.triangleIndices[i] < minTriangle || list.triangleIndices[i] >= maxTriangle )
continue;
const IVP_Compact_Ledge *ledge = &pLedges[list.triangleIndices[i]].ledge;
Assert(ledge->get_n_triangles() == 2);
const IVP_Compact_Triangle *triangle = ledge->get_first_triangle();
IVP_DOUBLE qdist = IVP_CLS.calc_qlen_PF_F_space(ledge, triangle, observer_os);
if ( qdist > radiusSq )
{
continue;
}
resulting_ledges->add( const_cast<IVP_Compact_Ledge *>(ledge) );
}
}
}
virtual void OutputDebugInfo() const
{
Msg("Virtual mesh!\n");
}
CPhysCollideVirtualMesh(const virtualmeshparams_t &params) : m_params(params), m_hMemory( INVALID_MEMHANDLE ), m_ledgeCount( 0 )
{
m_pHull = NULL;
if ( params.buildOuterHull )
{
BuildBoundingLedge();
}
}
virtual ~CPhysCollideVirtualMesh();
// adds a lock on the collsion memory :: MUST CALL Release() or FrameRelease corresponding to this call!!!
CMeshInstance *AddRef();
void BuildBoundingLedge();
static virtualmeshhull_t *CreateMeshBoundingHull( const virtualmeshlist_t &list );
static void DestroyMeshBoundingHull(virtualmeshhull_t *pHull) { CVPhysicsVirtualMeshWriter::DestroyPackedHull(pHull); }
static IVP_Compact_Surface *CreateBoundingSurfaceFromRange( const virtualmeshlist_t &list, int firstIndex, int indexCount );
int GetRootLedges( IVP_Compact_Ledge **pLedges, int outCount )
{
int count = AddRef()->GetRootLedges(pLedges, outCount);
FrameRelease();
return count;
}
IVP_Compact_Ledge *GetBoundingLedge()
{
IVP_Compact_Ledge *pLedge = const_cast<IVP_Compact_Ledge *>(AddRef()->GetOuterHull());
FrameRelease();
return pLedge;
}
// releases a lock on the collision memory
void Release();
// Analagous to Release, but happens at the end of the frame
void FrameRelease()
{
CUtlVector<CPhysCollideVirtualMesh *> *pLocks = g_pMeshFrameLocks;
if ( !pLocks )
{
g_pMeshFrameLocks = pLocks = g_MeshFrameLocksPool.GetObject();
Assert( pLocks );
}
pLocks->AddToTail(this);
}
inline void GetBounds( Vector &mins, Vector &maxs ) const
{
m_params.pMeshEventHandler->GetWorldspaceBounds( m_params.userData, &mins, &maxs );
}
private:
CMeshInstance *BuildLedges();
virtualmeshparams_t m_params;
virtualmeshhull_t *m_pHull;
memhandle_t m_hMemory;
short m_ledgeCount;
};
static void FlushFrameLocks()
{
CUtlVector<CPhysCollideVirtualMesh *> *pLocks = g_pMeshFrameLocks;
if ( pLocks )
{
for ( int i = 0; i < pLocks->Count(); i++ )
{
Assert( (*pLocks)[i] );
(*pLocks)[i]->Release();
}
pLocks->RemoveAll();
g_MeshFrameLocksPool.PutObject( g_pMeshFrameLocks );
g_pMeshFrameLocks = NULL;
}
}
void VirtualMeshPSI()
{
FlushFrameLocks();
}
Vector CPhysCollideVirtualMesh::GetMassCenter() const
{
Vector mins, maxs;
GetBounds( mins, maxs );
return 0.5 * (mins + maxs);
}
float CPhysCollideVirtualMesh::GetSphereRadius() const
{
Vector mins, maxs;
GetBounds( mins, maxs );
Vector point = 0.5 * (mins+maxs);
return (maxs - point).Length();
}
float CPhysCollideVirtualMesh::GetSphereRadiusIVP() const
{
return ConvertDistanceToIVP( GetSphereRadius() );
}
static CThreadFastMutex s_BuildVirtualMeshMutex;
CMeshInstance *CPhysCollideVirtualMesh::AddRef()
{
CMeshInstance *pMesh = g_MeshManager.LockResource( m_hMemory );
if ( !pMesh )
{
s_BuildVirtualMeshMutex.Lock();
pMesh = g_MeshManager.LockResource( m_hMemory );
if ( !pMesh )
{
pMesh = BuildLedges();
}
s_BuildVirtualMeshMutex.Unlock();
}
Assert( pMesh );
return pMesh;
}
void CPhysCollideVirtualMesh::Release()
{
g_MeshManager.UnlockResource( m_hMemory );
}
CPhysCollideVirtualMesh::~CPhysCollideVirtualMesh()
{
CVPhysicsVirtualMeshWriter::DestroyPackedHull(m_pHull);
g_MeshManager.DestroyResource( m_hMemory );
}
CMeshInstance *CPhysCollideVirtualMesh::BuildLedges()
{
virtualmeshlist_t list;
m_params.pMeshEventHandler->GetVirtualMesh( m_params.userData, &list );
if ( !list.pHull )
{
list.pHull = (byte *)m_pHull;
}
if ( list.triangleCount )
{
m_hMemory = g_MeshManager.CreateResource( list );
m_ledgeCount = list.triangleCount;
CMeshInstance *pMesh = g_MeshManager.LockResource( m_hMemory );
Assert( g_MeshManager.AvailableSize() != 0 );
return pMesh;
}
return NULL;
}
// build the outer ledge, split into two if necessary
void CPhysCollideVirtualMesh::BuildBoundingLedge()
{
virtualmeshlist_t list;
m_params.pMeshEventHandler->GetVirtualMesh( m_params.userData, &list );
m_pHull = CreateMeshBoundingHull(list);
}
virtualmeshhull_t *CPhysCollideVirtualMesh::CreateMeshBoundingHull( const virtualmeshlist_t &list )
{
virtualmeshhull_t *pHull = NULL;
if ( list.triangleCount )
{
IVP_Compact_Surface *pSurface = CreateBoundingSurfaceFromRange( list, 0, list.indexCount );
if ( pSurface )
{
const IVP_Compact_Ledge *pLedge = pSurface->get_compact_ledge_tree_root()->get_compact_hull();
if ( CVPhysicsVirtualMeshWriter::LedgeCanBePacked(pLedge, list) )
{
pHull = CVPhysicsVirtualMeshWriter::CreatePackedHullFromLedges( list, &pLedge, 1 );
}
else
{
// too big to pack to 8-bits, split in two
IVP_Compact_Surface *pSurface0 = CreateBoundingSurfaceFromRange( list, 0, list.indexCount/2 );
IVP_Compact_Surface *pSurface1 = CreateBoundingSurfaceFromRange( list, list.indexCount/2, list.indexCount/2 );
const IVP_Compact_Ledge *pLedges[2] = {pSurface0->get_compact_ledge_tree_root()->get_compact_hull(), pSurface1->get_compact_ledge_tree_root()->get_compact_hull()};
pHull = CVPhysicsVirtualMeshWriter::CreatePackedHullFromLedges( list, pLedges, 2 );
ivp_free_aligned(pSurface0);
ivp_free_aligned(pSurface1);
}
ivp_free_aligned(pSurface);
}
}
return pHull;
}
IVP_Compact_Surface *CPhysCollideVirtualMesh::CreateBoundingSurfaceFromRange( const virtualmeshlist_t &list, int firstIndex, int indexCount )
{
Assert( list.triangleCount );
IVP_U_Point triVerts[3];
IVP_U_Vector<IVP_U_Point> triList;
IVP_SurfaceBuilder_Ledge_Soup builder;
triList.add( &triVerts[0] );
triList.add( &triVerts[1] );
triList.add( &triVerts[2] );
int lastIndex = firstIndex + indexCount;
int firstTriangle = firstIndex/3;
int lastTriangle = lastIndex/3;
for ( int i = firstTriangle; i < lastTriangle; i++ )
{
ConvertPositionToIVP( list.pVerts[list.indices[i*3+0]], triVerts[0] );
ConvertPositionToIVP( list.pVerts[list.indices[i*3+1]], triVerts[1] );
ConvertPositionToIVP( list.pVerts[list.indices[i*3+2]], triVerts[2] );
IVP_Compact_Ledge *pLedge = IVP_SurfaceBuilder_Pointsoup::convert_pointsoup_to_compact_ledge( &triList );
builder.insert_ledge( pLedge );
}
// build a convex hull of those verts
IVP_Template_Surbuild_LedgeSoup params;
params.build_root_convex_hull = IVP_TRUE;
IVP_Compact_Surface *pSurface = builder.compile( &params );
#if _DEBUG
const IVP_Compact_Ledgetree_Node *node = pSurface->get_compact_ledge_tree_root();
IVP_Compact_Ledge *pLedge = const_cast<IVP_Compact_Ledge *>(node->get_compact_hull()); // we're going to write into client data on each vert before we throw this away
Assert(pLedge && !pLedge->is_terminal());
#endif
return pSurface;
}
CPhysCollide *CreateVirtualMesh( const virtualmeshparams_t &params )
{
return new CPhysCollideVirtualMesh(params);
}
void DestroyVirtualMesh( CPhysCollide *pMesh )
{
delete pMesh;
}
//-----------------------------------------------------------------------------
// IVP_SurfaceManager_VirtualMesh
// This hooks the underlying collision model to IVP's surfacemanager interface
//-----------------------------------------------------------------------------
IVP_SurfaceManager_VirtualMesh::IVP_SurfaceManager_VirtualMesh( CPhysCollideVirtualMesh *pMesh ) : m_pMesh(pMesh)
{
}
IVP_SurfaceManager_VirtualMesh::~IVP_SurfaceManager_VirtualMesh()
{
FlushFrameLocks();
}
void IVP_SurfaceManager_VirtualMesh::add_reference_to_ledge(const IVP_Compact_Ledge *ledge)
{
m_pMesh->AddRef();
}
void IVP_SurfaceManager_VirtualMesh::remove_reference_to_ledge(const IVP_Compact_Ledge *ledge)
{
m_pMesh->Release();
}
// Implement the IVP raycast. This is done by testing each triangle (front & back) - so it's slow
void IVP_SurfaceManager_VirtualMesh::insert_all_ledges_hitting_ray(IVP_Ray_Solver *ray_solver, IVP_Real_Object *object)
{
IVP_Vector_of_Ledges_256 ledges;
IVP_Ray_Solver_Os ray_solver_os( ray_solver, object);
IVP_U_Point center(&ray_solver_os.ray_center_point);
m_pMesh->GetAllLedgesWithinRadius( &center, ray_solver_os.ray_length * 0.5f, &ledges );
for (int i=ledges.len()-1;i>=0;i--)
{
const IVP_Compact_Ledge *l = ledges.element_at(i);
ray_solver_os.check_ray_against_compact_ledge_os(l);
}
}
// Used to predict collision detection needs
void IVP_SurfaceManager_VirtualMesh::get_radius_and_radius_dev_to_given_center(const IVP_U_Float_Point *center, IVP_FLOAT *radius, IVP_FLOAT *radius_deviation) const
{
// UNDONE: Check radius_deviation to see if there is a useful optimization to be made here
*radius = m_pMesh->GetSphereRadiusIVP();
*radius_deviation = *radius;
}
// get a single convex if appropriate
const IVP_Compact_Ledge *IVP_SurfaceManager_VirtualMesh::get_single_convex() const
{
return m_pMesh->GetBoundingLedge();
}
// get a mass center for objects using this collision rep
void IVP_SurfaceManager_VirtualMesh::get_mass_center(IVP_U_Float_Point *mass_center_out) const
{
Vector center = m_pMesh->GetMassCenter();
ConvertPositionToIVP( center, *mass_center_out );
}
//-----------------------------------------------------------------------------
// Purpose: Compute a diagonalized inertia tensor.
//-----------------------------------------------------------------------------
void IVP_SurfaceManager_VirtualMesh::get_rotation_inertia( IVP_U_Float_Point *rotation_inertia_out ) const
{
// HACKHACK: No need for this because we only support static objects for now
rotation_inertia_out->set(1,1,1);
}
//-----------------------------------------------------------------------------
// Purpose: Query ledges (triangles in this case) in sphere
//-----------------------------------------------------------------------------
void IVP_SurfaceManager_VirtualMesh::get_all_ledges_within_radius(const IVP_U_Point *observer_os, IVP_DOUBLE radius,
const IVP_Compact_Ledge *root_ledge, IVP_Real_Object *other_object, const IVP_Compact_Ledge *other_reference_ledge,
IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges)
{
if ( !root_ledge )
{
IVP_Compact_Ledge *pLedges[2];
int count = m_pMesh->GetRootLedges( pLedges, ARRAYSIZE(pLedges) );
if ( count )
{
for ( int i = 0; i < count; i++ )
{
resulting_ledges->add( pLedges[i] ); // return the recursive/virtual outer hull
}
return;
}
}
m_pMesh->GetAllLedgesWithinRadius( observer_os, radius, resulting_ledges, root_ledge );
}
//-----------------------------------------------------------------------------
// Purpose: Query all of the ledges (triangles)
//-----------------------------------------------------------------------------
void IVP_SurfaceManager_VirtualMesh::get_all_terminal_ledges(IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges)
{
m_pMesh->GetAllLedges( *resulting_ledges );
}