You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
668 lines
28 KiB
668 lines
28 KiB
4 years ago
|
// eccrypto.h - originally written and placed in the public domain by Wei Dai
|
||
|
// deterministic signatures added by by Douglas Roark
|
||
|
|
||
|
/// \file eccrypto.h
|
||
|
/// \brief Classes and functions for Elliptic Curves over prime and binary fields
|
||
|
|
||
|
#ifndef CRYPTOPP_ECCRYPTO_H
|
||
|
#define CRYPTOPP_ECCRYPTO_H
|
||
|
|
||
|
#include "config.h"
|
||
|
#include "cryptlib.h"
|
||
|
#include "pubkey.h"
|
||
|
#include "integer.h"
|
||
|
#include "asn.h"
|
||
|
#include "hmac.h"
|
||
|
#include "sha.h"
|
||
|
#include "gfpcrypt.h"
|
||
|
#include "dh.h"
|
||
|
#include "mqv.h"
|
||
|
#include "hmqv.h"
|
||
|
#include "fhmqv.h"
|
||
|
#include "ecp.h"
|
||
|
#include "ec2n.h"
|
||
|
|
||
|
#include <iosfwd>
|
||
|
|
||
|
#if CRYPTOPP_MSC_VERSION
|
||
|
# pragma warning(push)
|
||
|
# pragma warning(disable: 4231 4275)
|
||
|
#endif
|
||
|
|
||
|
NAMESPACE_BEGIN(CryptoPP)
|
||
|
|
||
|
/// \brief Elliptic Curve Parameters
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \details This class corresponds to the ASN.1 sequence of the same name
|
||
|
/// in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
|
||
|
template <class EC>
|
||
|
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
|
||
|
{
|
||
|
typedef DL_GroupParameters_EC<EC> ThisClass;
|
||
|
|
||
|
public:
|
||
|
typedef EC EllipticCurve;
|
||
|
typedef typename EllipticCurve::Point Point;
|
||
|
typedef Point Element;
|
||
|
typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
|
||
|
|
||
|
virtual ~DL_GroupParameters_EC() {}
|
||
|
|
||
|
/// \brief Construct an EC GroupParameters
|
||
|
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
|
||
|
|
||
|
/// \brief Construct an EC GroupParameters
|
||
|
/// \param oid the OID of a curve
|
||
|
DL_GroupParameters_EC(const OID &oid)
|
||
|
: m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
|
||
|
|
||
|
/// \brief Construct an EC GroupParameters
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \param k the cofactor
|
||
|
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
|
||
|
: m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
|
||
|
|
||
|
/// \brief Construct an EC GroupParameters
|
||
|
/// \param bt BufferedTransformation with group parameters
|
||
|
DL_GroupParameters_EC(BufferedTransformation &bt)
|
||
|
: m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
|
||
|
|
||
|
/// \brief Initialize an EC GroupParameters using {EC,G,n,k}
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \param k the cofactor
|
||
|
/// \details This Initialize() function overload initializes group parameters from existing parameters.
|
||
|
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
|
||
|
{
|
||
|
this->m_groupPrecomputation.SetCurve(ec);
|
||
|
this->SetSubgroupGenerator(G);
|
||
|
m_n = n;
|
||
|
m_k = k;
|
||
|
}
|
||
|
|
||
|
/// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
|
||
|
/// \param oid the OID of a curve
|
||
|
/// \details This Initialize() function overload initializes group parameters from existing parameters.
|
||
|
void Initialize(const OID &oid);
|
||
|
|
||
|
// NameValuePairs
|
||
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
|
||
|
void AssignFrom(const NameValuePairs &source);
|
||
|
|
||
|
// GeneratibleCryptoMaterial interface
|
||
|
/// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
|
||
|
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
|
||
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
|
||
|
|
||
|
// DL_GroupParameters
|
||
|
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
|
||
|
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
|
||
|
const Integer & GetSubgroupOrder() const {return m_n;}
|
||
|
Integer GetCofactor() const;
|
||
|
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
|
||
|
bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
|
||
|
bool FastSubgroupCheckAvailable() const {return false;}
|
||
|
void EncodeElement(bool reversible, const Element &element, byte *encoded) const
|
||
|
{
|
||
|
if (reversible)
|
||
|
GetCurve().EncodePoint(encoded, element, m_compress);
|
||
|
else
|
||
|
element.x.Encode(encoded, GetEncodedElementSize(false));
|
||
|
}
|
||
|
virtual unsigned int GetEncodedElementSize(bool reversible) const
|
||
|
{
|
||
|
if (reversible)
|
||
|
return GetCurve().EncodedPointSize(m_compress);
|
||
|
else
|
||
|
return GetCurve().GetField().MaxElementByteLength();
|
||
|
}
|
||
|
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
|
||
|
{
|
||
|
Point result;
|
||
|
if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
|
||
|
throw DL_BadElement();
|
||
|
if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
|
||
|
throw DL_BadElement();
|
||
|
return result;
|
||
|
}
|
||
|
Integer ConvertElementToInteger(const Element &element) const;
|
||
|
Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
|
||
|
bool IsIdentity(const Element &element) const {return element.identity;}
|
||
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
||
|
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
|
||
|
|
||
|
// ASN1Key
|
||
|
OID GetAlgorithmID() const;
|
||
|
|
||
|
// used by MQV
|
||
|
Element MultiplyElements(const Element &a, const Element &b) const;
|
||
|
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
|
||
|
|
||
|
// non-inherited
|
||
|
|
||
|
// enumerate OIDs for recommended parameters, use OID() to get first one
|
||
|
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
|
||
|
|
||
|
void BERDecode(BufferedTransformation &bt);
|
||
|
void DEREncode(BufferedTransformation &bt) const;
|
||
|
|
||
|
void SetPointCompression(bool compress) {m_compress = compress;}
|
||
|
bool GetPointCompression() const {return m_compress;}
|
||
|
|
||
|
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
|
||
|
bool GetEncodeAsOID() const {return m_encodeAsOID;}
|
||
|
|
||
|
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
|
||
|
|
||
|
bool operator==(const ThisClass &rhs) const
|
||
|
{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
|
||
|
|
||
|
protected:
|
||
|
unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
|
||
|
unsigned int ExponentLength() const {return m_n.ByteCount();}
|
||
|
|
||
|
OID m_oid; // set if parameters loaded from a recommended curve
|
||
|
Integer m_n; // order of base point
|
||
|
mutable Integer m_k; // cofactor
|
||
|
mutable bool m_compress, m_encodeAsOID; // presentation details
|
||
|
};
|
||
|
|
||
|
inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj);
|
||
|
|
||
|
/// \brief Elliptic Curve Discrete Log (DL) public key
|
||
|
/// \tparam EC elliptic curve field
|
||
|
template <class EC>
|
||
|
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
|
||
|
{
|
||
|
public:
|
||
|
typedef typename EC::Point Element;
|
||
|
|
||
|
virtual ~DL_PublicKey_EC() {}
|
||
|
|
||
|
/// \brief Initialize an EC Public Key using {GP,Q}
|
||
|
/// \param params group parameters
|
||
|
/// \param Q the public point
|
||
|
/// \details This Initialize() function overload initializes a public key from existing parameters.
|
||
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
|
||
|
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
|
||
|
|
||
|
/// \brief Initialize an EC Public Key using {EC,G,n,Q}
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \param Q the public point
|
||
|
/// \details This Initialize() function overload initializes a public key from existing parameters.
|
||
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
|
||
|
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
|
||
|
|
||
|
// X509PublicKey
|
||
|
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
||
|
void DEREncodePublicKey(BufferedTransformation &bt) const;
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve Discrete Log (DL) private key
|
||
|
/// \tparam EC elliptic curve field
|
||
|
template <class EC>
|
||
|
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
|
||
|
{
|
||
|
public:
|
||
|
typedef typename EC::Point Element;
|
||
|
|
||
|
virtual ~DL_PrivateKey_EC();
|
||
|
|
||
|
/// \brief Initialize an EC Private Key using {GP,x}
|
||
|
/// \param params group parameters
|
||
|
/// \param x the private exponent
|
||
|
/// \details This Initialize() function overload initializes a private key from existing parameters.
|
||
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
|
||
|
{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
|
||
|
|
||
|
/// \brief Initialize an EC Private Key using {EC,G,n,x}
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \param x the private exponent
|
||
|
/// \details This Initialize() function overload initializes a private key from existing parameters.
|
||
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
|
||
|
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
|
||
|
|
||
|
/// \brief Create an EC private key
|
||
|
/// \param rng a RandomNumberGenerator derived class
|
||
|
/// \param params the EC group parameters
|
||
|
/// \details This function overload of Initialize() creates a new private key because it
|
||
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
||
|
/// then use one of the other Initialize() overloads.
|
||
|
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
|
||
|
{this->GenerateRandom(rng, params);}
|
||
|
|
||
|
/// \brief Create an EC private key
|
||
|
/// \param rng a RandomNumberGenerator derived class
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \details This function overload of Initialize() creates a new private key because it
|
||
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
||
|
/// then use one of the other Initialize() overloads.
|
||
|
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
|
||
|
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
|
||
|
|
||
|
// PKCS8PrivateKey
|
||
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
||
|
void DEREncodePrivateKey(BufferedTransformation &bt) const;
|
||
|
};
|
||
|
|
||
|
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
|
||
|
template<class EC>
|
||
|
DL_PrivateKey_EC<EC>::~DL_PrivateKey_EC() {}
|
||
|
|
||
|
/// \brief Elliptic Curve Diffie-Hellman
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam COFACTOR_OPTION cofactor multiplication option
|
||
|
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
|
||
|
/// \since Crypto++ 3.0
|
||
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
|
||
|
struct ECDH
|
||
|
{
|
||
|
typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve Menezes-Qu-Vanstone
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam COFACTOR_OPTION cofactor multiplication option
|
||
|
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
|
||
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
|
||
|
struct ECMQV
|
||
|
{
|
||
|
typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
|
||
|
};
|
||
|
|
||
|
/// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam COFACTOR_OPTION cofactor multiplication option
|
||
|
/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
|
||
|
/// Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
|
||
|
/// \sa CofactorMultiplicationOption
|
||
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
|
||
|
struct ECHMQV
|
||
|
{
|
||
|
typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
|
||
|
};
|
||
|
|
||
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160;
|
||
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
|
||
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
|
||
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;
|
||
|
|
||
|
/// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam COFACTOR_OPTION cofactor multiplication option
|
||
|
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
|
||
|
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
|
||
|
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
|
||
|
/// \sa CofactorMultiplicationOption
|
||
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
|
||
|
struct ECFHMQV
|
||
|
{
|
||
|
typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
|
||
|
};
|
||
|
|
||
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160;
|
||
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
|
||
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
|
||
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;
|
||
|
|
||
|
/// \brief Elliptic Curve Discrete Log (DL) keys
|
||
|
/// \tparam EC elliptic curve field
|
||
|
template <class EC>
|
||
|
struct DL_Keys_EC
|
||
|
{
|
||
|
typedef DL_PublicKey_EC<EC> PublicKey;
|
||
|
typedef DL_PrivateKey_EC<EC> PrivateKey;
|
||
|
};
|
||
|
|
||
|
// Forward declaration; documented below
|
||
|
template <class EC, class H>
|
||
|
struct ECDSA;
|
||
|
|
||
|
/// \brief Elliptic Curve DSA keys
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \since Crypto++ 3.2
|
||
|
template <class EC>
|
||
|
struct DL_Keys_ECDSA
|
||
|
{
|
||
|
typedef DL_PublicKey_EC<EC> PublicKey;
|
||
|
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve DSA (ECDSA) signature algorithm
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \since Crypto++ 3.2
|
||
|
template <class EC>
|
||
|
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
|
||
|
{
|
||
|
public:
|
||
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
|
||
|
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC, class H>
|
||
|
class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
|
||
|
{
|
||
|
public:
|
||
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve NR (ECNR) signature algorithm
|
||
|
/// \tparam EC elliptic curve field
|
||
|
template <class EC>
|
||
|
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
|
||
|
{
|
||
|
public:
|
||
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve DSA (ECDSA) signature scheme
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam H HashTransformation derived class
|
||
|
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
|
||
|
/// \since Crypto++ 3.2
|
||
|
template <class EC, class H>
|
||
|
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
|
||
|
{
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam H HashTransformation derived class
|
||
|
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
|
||
|
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC, class H>
|
||
|
struct ECDSA_RFC6979 : public DL_SS<
|
||
|
DL_Keys_ECDSA<EC>,
|
||
|
DL_Algorithm_ECDSA_RFC6979<EC, H>,
|
||
|
DL_SignatureMessageEncodingMethod_DSA,
|
||
|
H,
|
||
|
ECDSA_RFC6979<EC,H> >
|
||
|
{
|
||
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve NR (ECNR) signature scheme
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam H HashTransformation derived class
|
||
|
template <class EC, class H = SHA1>
|
||
|
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
|
||
|
{
|
||
|
};
|
||
|
|
||
|
// ******************************************
|
||
|
|
||
|
template <class EC>
|
||
|
class DL_PublicKey_ECGDSA;
|
||
|
template <class EC>
|
||
|
class DL_PrivateKey_ECGDSA;
|
||
|
|
||
|
/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \sa ECGDSA
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC>
|
||
|
class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
|
||
|
{
|
||
|
public:
|
||
|
typedef typename EC::Point Element;
|
||
|
|
||
|
virtual ~DL_PrivateKey_ECGDSA() {}
|
||
|
|
||
|
/// \brief Initialize an EC Private Key using {GP,x}
|
||
|
/// \param params group parameters
|
||
|
/// \param x the private exponent
|
||
|
/// \details This Initialize() function overload initializes a private key from existing parameters.
|
||
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
|
||
|
{
|
||
|
this->AccessGroupParameters() = params;
|
||
|
this->SetPrivateExponent(x);
|
||
|
CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
|
||
|
}
|
||
|
|
||
|
/// \brief Initialize an EC Private Key using {EC,G,n,x}
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \param x the private exponent
|
||
|
/// \details This Initialize() function overload initializes a private key from existing parameters.
|
||
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
|
||
|
{
|
||
|
this->AccessGroupParameters().Initialize(ec, G, n);
|
||
|
this->SetPrivateExponent(x);
|
||
|
CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
|
||
|
}
|
||
|
|
||
|
/// \brief Create an EC private key
|
||
|
/// \param rng a RandomNumberGenerator derived class
|
||
|
/// \param params the EC group parameters
|
||
|
/// \details This function overload of Initialize() creates a new private key because it
|
||
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
||
|
/// then use one of the other Initialize() overloads.
|
||
|
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
|
||
|
{this->GenerateRandom(rng, params);}
|
||
|
|
||
|
/// \brief Create an EC private key
|
||
|
/// \param rng a RandomNumberGenerator derived class
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \details This function overload of Initialize() creates a new private key because it
|
||
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
||
|
/// then use one of the other Initialize() overloads.
|
||
|
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
|
||
|
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
|
||
|
|
||
|
virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const
|
||
|
{
|
||
|
const DL_GroupParameters<Element>& params = this->GetAbstractGroupParameters();
|
||
|
pub.AccessAbstractGroupParameters().AssignFrom(params);
|
||
|
const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
|
||
|
pub.SetPublicElement(params.ExponentiateBase(xInv));
|
||
|
CRYPTOPP_ASSERT(xInv.NotZero());
|
||
|
}
|
||
|
|
||
|
virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
||
|
{
|
||
|
return GetValueHelper<DL_PrivateKey_ECGDSA<EC>,
|
||
|
DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable();
|
||
|
}
|
||
|
|
||
|
virtual void AssignFrom(const NameValuePairs &source)
|
||
|
{
|
||
|
AssignFromHelper<DL_PrivateKey_ECGDSA<EC>,
|
||
|
DL_PrivateKey_ECGDSA<EC> >(this, source);
|
||
|
}
|
||
|
|
||
|
// PKCS8PrivateKey
|
||
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
||
|
void DEREncodePrivateKey(BufferedTransformation &bt) const;
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \sa ECGDSA
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC>
|
||
|
class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
|
||
|
{
|
||
|
typedef DL_PublicKey_ECGDSA<EC> ThisClass;
|
||
|
|
||
|
public:
|
||
|
typedef typename EC::Point Element;
|
||
|
|
||
|
virtual ~DL_PublicKey_ECGDSA() {}
|
||
|
|
||
|
/// \brief Initialize an EC Public Key using {GP,Q}
|
||
|
/// \param params group parameters
|
||
|
/// \param Q the public point
|
||
|
/// \details This Initialize() function overload initializes a public key from existing parameters.
|
||
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
|
||
|
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
|
||
|
|
||
|
/// \brief Initialize an EC Public Key using {EC,G,n,Q}
|
||
|
/// \param ec the elliptic curve
|
||
|
/// \param G the base point
|
||
|
/// \param n the order of the base point
|
||
|
/// \param Q the public point
|
||
|
/// \details This Initialize() function overload initializes a public key from existing parameters.
|
||
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
|
||
|
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
|
||
|
|
||
|
virtual void AssignFrom(const NameValuePairs &source)
|
||
|
{
|
||
|
DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR;
|
||
|
if (source.GetThisPointer(pPrivateKey))
|
||
|
pPrivateKey->MakePublicKey(*this);
|
||
|
else
|
||
|
{
|
||
|
this->AccessAbstractGroupParameters().AssignFrom(source);
|
||
|
AssignFromHelper(this, source)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// DL_PublicKey<T>
|
||
|
virtual void SetPublicElement(const Element &y)
|
||
|
{this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
|
||
|
|
||
|
// X509PublicKey
|
||
|
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
||
|
void DEREncodePublicKey(BufferedTransformation &bt) const;
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve German DSA keys for ISO/IEC 15946
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \sa ECGDSA
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC>
|
||
|
struct DL_Keys_ECGDSA
|
||
|
{
|
||
|
typedef DL_PublicKey_ECGDSA<EC> PublicKey;
|
||
|
typedef DL_PrivateKey_ECGDSA<EC> PrivateKey;
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve German DSA signature algorithm
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \sa ECGDSA
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC>
|
||
|
class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
|
||
|
{
|
||
|
public:
|
||
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
|
||
|
};
|
||
|
|
||
|
/// \brief Elliptic Curve German Digital Signature Algorithm signature scheme
|
||
|
/// \tparam EC elliptic curve field
|
||
|
/// \tparam H HashTransformation derived class
|
||
|
/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A
|
||
|
/// HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme
|
||
|
/// ECGDSA (October 24, 2006)</A>
|
||
|
/// \since Crypto++ 6.0
|
||
|
template <class EC, class H>
|
||
|
struct ECGDSA : public DL_SS<
|
||
|
DL_Keys_ECGDSA<EC>,
|
||
|
DL_Algorithm_ECGDSA<EC>,
|
||
|
DL_SignatureMessageEncodingMethod_DSA,
|
||
|
H>
|
||
|
{
|
||
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
|
||
|
};
|
||
|
|
||
|
// ******************************************
|
||
|
|
||
|
/// \brief Elliptic Curve Integrated Encryption Scheme
|
||
|
/// \tparam COFACTOR_OPTION cofactor multiplication option
|
||
|
/// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
|
||
|
/// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
|
||
|
/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
|
||
|
/// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
|
||
|
/// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
|
||
|
/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
|
||
|
/// You should prefer an Integrated Encryption Scheme over homegrown schemes.
|
||
|
/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
|
||
|
/// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
|
||
|
/// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
|
||
|
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES template class with
|
||
|
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
|
||
|
/// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
|
||
|
/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
|
||
|
/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
|
||
|
/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
|
||
|
/// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
|
||
|
/// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
|
||
|
/// \details Below is an example of constructing a Crypto++ 4.2 compatible ECIES encryptor and decryptor.
|
||
|
/// <pre>
|
||
|
/// AutoSeededRandomPool prng;
|
||
|
/// DL_PrivateKey_EC<ECP> key;
|
||
|
/// key.Initialize(prng, ASN1::secp160r1());
|
||
|
///
|
||
|
/// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
|
||
|
/// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
|
||
|
/// </pre>
|
||
|
/// \sa DLIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
|
||
|
/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
|
||
|
/// Curve Integrated Encryption Schemes</A>
|
||
|
/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
|
||
|
template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
|
||
|
struct ECIES
|
||
|
: public DL_ES<
|
||
|
DL_Keys_EC<EC>,
|
||
|
DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
|
||
|
DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
|
||
|
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
|
||
|
ECIES<EC> >
|
||
|
{
|
||
|
// TODO: fix this after name is standardized
|
||
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
|
||
|
};
|
||
|
|
||
|
NAMESPACE_END
|
||
|
|
||
|
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
|
||
|
#include "eccrypto.cpp"
|
||
|
#endif
|
||
|
|
||
|
NAMESPACE_BEGIN(CryptoPP)
|
||
|
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<ECP>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<EC2N>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<ECP>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<EC2N>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
|
||
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
|
||
|
|
||
|
NAMESPACE_END
|
||
|
|
||
|
#if CRYPTOPP_MSC_VERSION
|
||
|
# pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
#endif
|