You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1294 lines
41 KiB
1294 lines
41 KiB
5 years ago
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose:
|
||
|
//
|
||
|
// $NoKeywords: $
|
||
|
//
|
||
|
//=============================================================================//
|
||
|
|
||
|
#if !defined(_STATIC_LINKED) || defined(_SHARED_LIB)
|
||
|
|
||
|
#include "basetypes.h"
|
||
|
#include "mathlib/vmatrix.h"
|
||
|
#include "mathlib/mathlib.h"
|
||
|
#include <string.h>
|
||
|
#include "mathlib/vector4d.h"
|
||
|
#include "tier0/dbg.h"
|
||
|
|
||
|
// memdbgon must be the last include file in a .cpp file!!!
|
||
|
#include "tier0/memdbgon.h"
|
||
|
|
||
|
#pragma warning (disable : 4700) // local variable 'x' used without having been initialized
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------- //
|
||
|
// Helper functions.
|
||
|
// ------------------------------------------------------------------------------------------- //
|
||
|
|
||
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
||
|
|
||
|
VMatrix SetupMatrixIdentity()
|
||
|
{
|
||
|
return VMatrix(
|
||
|
1.0f, 0.0f, 0.0f, 0.0f,
|
||
|
0.0f, 1.0f, 0.0f, 0.0f,
|
||
|
0.0f, 0.0f, 1.0f, 0.0f,
|
||
|
0.0f, 0.0f, 0.0f, 1.0f);
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixTranslation(const Vector &vTranslation)
|
||
|
{
|
||
|
return VMatrix(
|
||
|
1.0f, 0.0f, 0.0f, vTranslation.x,
|
||
|
0.0f, 1.0f, 0.0f, vTranslation.y,
|
||
|
0.0f, 0.0f, 1.0f, vTranslation.z,
|
||
|
0.0f, 0.0f, 0.0f, 1.0f
|
||
|
);
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixScale(const Vector &vScale)
|
||
|
{
|
||
|
return VMatrix(
|
||
|
vScale.x, 0.0f, 0.0f, 0.0f,
|
||
|
0.0f, vScale.y, 0.0f, 0.0f,
|
||
|
0.0f, 0.0f, vScale.z, 0.0f,
|
||
|
0.0f, 0.0f, 0.0f, 1.0f
|
||
|
);
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixReflection(const VPlane &thePlane)
|
||
|
{
|
||
|
VMatrix mReflect, mBack, mForward;
|
||
|
Vector vOrigin, N;
|
||
|
|
||
|
N = thePlane.m_Normal;
|
||
|
|
||
|
mReflect.Init(
|
||
|
-2.0f*N.x*N.x + 1.0f, -2.0f*N.x*N.y, -2.0f*N.x*N.z, 0.0f,
|
||
|
-2.0f*N.y*N.x, -2.0f*N.y*N.y + 1.0f, -2.0f*N.y*N.z, 0.0f,
|
||
|
-2.0f*N.z*N.x, -2.0f*N.z*N.y, -2.0f*N.z*N.z + 1.0f, 0.0f,
|
||
|
0.0f, 0.0f, 0.0f, 1.0f
|
||
|
);
|
||
|
|
||
|
vOrigin = thePlane.GetPointOnPlane();
|
||
|
|
||
|
mBack.Identity();
|
||
|
mBack.SetTranslation(-vOrigin);
|
||
|
|
||
|
mForward.Identity();
|
||
|
mForward.SetTranslation(vOrigin);
|
||
|
|
||
|
// (multiplied in reverse order, so it translates to the origin point,
|
||
|
// reflects, and translates back).
|
||
|
return mForward * mReflect * mBack;
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixProjection(const Vector &vOrigin, const VPlane &thePlane)
|
||
|
{
|
||
|
vec_t dot;
|
||
|
VMatrix mRet;
|
||
|
|
||
|
|
||
|
#define PN thePlane.m_Normal
|
||
|
#define PD thePlane.m_Dist;
|
||
|
|
||
|
dot = PN[0]*vOrigin.x + PN[1]*vOrigin.y + PN[2]*vOrigin.z - PD;
|
||
|
|
||
|
mRet.m[0][0] = dot - vOrigin.x * PN[0];
|
||
|
mRet.m[0][1] = -vOrigin.x * PN[1];
|
||
|
mRet.m[0][2] = -vOrigin.x * PN[2];
|
||
|
mRet.m[0][3] = -vOrigin.x * -PD;
|
||
|
|
||
|
mRet.m[1][0] = -vOrigin.y * PN[0];
|
||
|
mRet.m[1][1] = dot - vOrigin.y * PN[1];
|
||
|
mRet.m[1][2] = -vOrigin.y * PN[2];
|
||
|
mRet.m[1][3] = -vOrigin.y * -PD;
|
||
|
|
||
|
mRet.m[2][0] = -vOrigin.z * PN[0];
|
||
|
mRet.m[2][1] = -vOrigin.z * PN[1];
|
||
|
mRet.m[2][2] = dot - vOrigin.z * PN[2];
|
||
|
mRet.m[2][3] = -vOrigin.z * -PD;
|
||
|
|
||
|
mRet.m[3][0] = -PN[0];
|
||
|
mRet.m[3][1] = -PN[1];
|
||
|
mRet.m[3][2] = -PN[2];
|
||
|
mRet.m[3][3] = dot + PD;
|
||
|
|
||
|
#undef PN
|
||
|
#undef PD
|
||
|
|
||
|
return mRet;
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixAxisRot(const Vector &vAxis, vec_t fDegrees)
|
||
|
{
|
||
|
vec_t s, c, t;
|
||
|
vec_t tx, ty, tz;
|
||
|
vec_t sx, sy, sz;
|
||
|
vec_t fRadians;
|
||
|
|
||
|
|
||
|
fRadians = fDegrees * (M_PI / 180.0f);
|
||
|
|
||
|
s = (vec_t)sin(fRadians);
|
||
|
c = (vec_t)cos(fRadians);
|
||
|
t = 1.0f - c;
|
||
|
|
||
|
tx = t * vAxis.x; ty = t * vAxis.y; tz = t * vAxis.z;
|
||
|
sx = s * vAxis.x; sy = s * vAxis.y; sz = s * vAxis.z;
|
||
|
|
||
|
return VMatrix(
|
||
|
tx*vAxis.x + c, tx*vAxis.y - sz, tx*vAxis.z + sy, 0.0f,
|
||
|
tx*vAxis.y + sz, ty*vAxis.y + c, ty*vAxis.z - sx, 0.0f,
|
||
|
tx*vAxis.z - sy, ty*vAxis.z + sx, tz*vAxis.z + c, 0.0f,
|
||
|
0.0f, 0.0f, 0.0f, 1.0f);
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixAngles(const QAngle &vAngles)
|
||
|
{
|
||
|
VMatrix mRet;
|
||
|
MatrixFromAngles( vAngles, mRet );
|
||
|
return mRet;
|
||
|
}
|
||
|
|
||
|
VMatrix SetupMatrixOrgAngles(const Vector &origin, const QAngle &vAngles)
|
||
|
{
|
||
|
VMatrix mRet;
|
||
|
mRet.SetupMatrixOrgAngles( origin, vAngles );
|
||
|
return mRet;
|
||
|
}
|
||
|
|
||
|
#endif // VECTOR_NO_SLOW_OPERATIONS
|
||
|
|
||
|
|
||
|
bool PlaneIntersection( const VPlane &vp1, const VPlane &vp2, const VPlane &vp3, Vector &vOut )
|
||
|
{
|
||
|
VMatrix mMat, mInverse;
|
||
|
|
||
|
mMat.Init(
|
||
|
vp1.m_Normal.x, vp1.m_Normal.y, vp1.m_Normal.z, -vp1.m_Dist,
|
||
|
vp2.m_Normal.x, vp2.m_Normal.y, vp2.m_Normal.z, -vp2.m_Dist,
|
||
|
vp3.m_Normal.x, vp3.m_Normal.y, vp3.m_Normal.z, -vp3.m_Dist,
|
||
|
0.0f, 0.0f, 0.0f, 1.0f
|
||
|
);
|
||
|
|
||
|
if(mMat.InverseGeneral(mInverse))
|
||
|
{
|
||
|
//vOut = mInverse * Vector(0.0f, 0.0f, 0.0f);
|
||
|
mInverse.GetTranslation( vOut );
|
||
|
return true;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------- //
|
||
|
// VMatrix functions.
|
||
|
// ------------------------------------------------------------------------------------------- //
|
||
|
|
||
|
VMatrix& VMatrix::operator=(const VMatrix &mOther)
|
||
|
{
|
||
|
m[0][0] = mOther.m[0][0];
|
||
|
m[0][1] = mOther.m[0][1];
|
||
|
m[0][2] = mOther.m[0][2];
|
||
|
m[0][3] = mOther.m[0][3];
|
||
|
|
||
|
m[1][0] = mOther.m[1][0];
|
||
|
m[1][1] = mOther.m[1][1];
|
||
|
m[1][2] = mOther.m[1][2];
|
||
|
m[1][3] = mOther.m[1][3];
|
||
|
|
||
|
m[2][0] = mOther.m[2][0];
|
||
|
m[2][1] = mOther.m[2][1];
|
||
|
m[2][2] = mOther.m[2][2];
|
||
|
m[2][3] = mOther.m[2][3];
|
||
|
|
||
|
m[3][0] = mOther.m[3][0];
|
||
|
m[3][1] = mOther.m[3][1];
|
||
|
m[3][2] = mOther.m[3][2];
|
||
|
m[3][3] = mOther.m[3][3];
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
bool VMatrix::operator==( const VMatrix& src ) const
|
||
|
{
|
||
|
return !memcmp( src.m, m, sizeof(m) );
|
||
|
}
|
||
|
|
||
|
void VMatrix::MatrixMul( const VMatrix &vm, VMatrix &out ) const
|
||
|
{
|
||
|
out.Init(
|
||
|
m[0][0]*vm.m[0][0] + m[0][1]*vm.m[1][0] + m[0][2]*vm.m[2][0] + m[0][3]*vm.m[3][0],
|
||
|
m[0][0]*vm.m[0][1] + m[0][1]*vm.m[1][1] + m[0][2]*vm.m[2][1] + m[0][3]*vm.m[3][1],
|
||
|
m[0][0]*vm.m[0][2] + m[0][1]*vm.m[1][2] + m[0][2]*vm.m[2][2] + m[0][3]*vm.m[3][2],
|
||
|
m[0][0]*vm.m[0][3] + m[0][1]*vm.m[1][3] + m[0][2]*vm.m[2][3] + m[0][3]*vm.m[3][3],
|
||
|
|
||
|
m[1][0]*vm.m[0][0] + m[1][1]*vm.m[1][0] + m[1][2]*vm.m[2][0] + m[1][3]*vm.m[3][0],
|
||
|
m[1][0]*vm.m[0][1] + m[1][1]*vm.m[1][1] + m[1][2]*vm.m[2][1] + m[1][3]*vm.m[3][1],
|
||
|
m[1][0]*vm.m[0][2] + m[1][1]*vm.m[1][2] + m[1][2]*vm.m[2][2] + m[1][3]*vm.m[3][2],
|
||
|
m[1][0]*vm.m[0][3] + m[1][1]*vm.m[1][3] + m[1][2]*vm.m[2][3] + m[1][3]*vm.m[3][3],
|
||
|
|
||
|
m[2][0]*vm.m[0][0] + m[2][1]*vm.m[1][0] + m[2][2]*vm.m[2][0] + m[2][3]*vm.m[3][0],
|
||
|
m[2][0]*vm.m[0][1] + m[2][1]*vm.m[1][1] + m[2][2]*vm.m[2][1] + m[2][3]*vm.m[3][1],
|
||
|
m[2][0]*vm.m[0][2] + m[2][1]*vm.m[1][2] + m[2][2]*vm.m[2][2] + m[2][3]*vm.m[3][2],
|
||
|
m[2][0]*vm.m[0][3] + m[2][1]*vm.m[1][3] + m[2][2]*vm.m[2][3] + m[2][3]*vm.m[3][3],
|
||
|
|
||
|
m[3][0]*vm.m[0][0] + m[3][1]*vm.m[1][0] + m[3][2]*vm.m[2][0] + m[3][3]*vm.m[3][0],
|
||
|
m[3][0]*vm.m[0][1] + m[3][1]*vm.m[1][1] + m[3][2]*vm.m[2][1] + m[3][3]*vm.m[3][1],
|
||
|
m[3][0]*vm.m[0][2] + m[3][1]*vm.m[1][2] + m[3][2]*vm.m[2][2] + m[3][3]*vm.m[3][2],
|
||
|
m[3][0]*vm.m[0][3] + m[3][1]*vm.m[1][3] + m[3][2]*vm.m[2][3] + m[3][3]*vm.m[3][3]
|
||
|
);
|
||
|
}
|
||
|
|
||
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
||
|
|
||
|
VMatrix VMatrix::operator*(const VMatrix &vm) const
|
||
|
{
|
||
|
VMatrix ret;
|
||
|
MatrixMul( vm, ret );
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
bool VMatrix::InverseGeneral(VMatrix &vInverse) const
|
||
|
{
|
||
|
return MatrixInverseGeneral( *this, vInverse );
|
||
|
}
|
||
|
|
||
|
|
||
|
bool MatrixInverseGeneral(const VMatrix& src, VMatrix& dst)
|
||
|
{
|
||
|
int iRow, i, j, iTemp, iTest;
|
||
|
vec_t mul, fTest, fLargest;
|
||
|
vec_t mat[4][8];
|
||
|
int rowMap[4], iLargest;
|
||
|
vec_t *pOut, *pRow, *pScaleRow;
|
||
|
|
||
|
|
||
|
// How it's done.
|
||
|
// AX = I
|
||
|
// A = this
|
||
|
// X = the matrix we're looking for
|
||
|
// I = identity
|
||
|
|
||
|
// Setup AI
|
||
|
for(i=0; i < 4; i++)
|
||
|
{
|
||
|
const vec_t *pIn = src[i];
|
||
|
pOut = mat[i];
|
||
|
|
||
|
for(j=0; j < 4; j++)
|
||
|
{
|
||
|
pOut[j] = pIn[j];
|
||
|
}
|
||
|
|
||
|
pOut[4] = 0.0f;
|
||
|
pOut[5] = 0.0f;
|
||
|
pOut[6] = 0.0f;
|
||
|
pOut[7] = 0.0f;
|
||
|
pOut[i+4] = 1.0f;
|
||
|
|
||
|
rowMap[i] = i;
|
||
|
}
|
||
|
|
||
|
// Use row operations to get to reduced row-echelon form using these rules:
|
||
|
// 1. Multiply or divide a row by a nonzero number.
|
||
|
// 2. Add a multiple of one row to another.
|
||
|
// 3. Interchange two rows.
|
||
|
|
||
|
for(iRow=0; iRow < 4; iRow++)
|
||
|
{
|
||
|
// Find the row with the largest element in this column.
|
||
|
fLargest = 0.00001f;
|
||
|
iLargest = -1;
|
||
|
for(iTest=iRow; iTest < 4; iTest++)
|
||
|
{
|
||
|
fTest = (vec_t)FloatMakePositive(mat[rowMap[iTest]][iRow]);
|
||
|
if(fTest > fLargest)
|
||
|
{
|
||
|
iLargest = iTest;
|
||
|
fLargest = fTest;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// They're all too small.. sorry.
|
||
|
if(iLargest == -1)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Swap the rows.
|
||
|
iTemp = rowMap[iLargest];
|
||
|
rowMap[iLargest] = rowMap[iRow];
|
||
|
rowMap[iRow] = iTemp;
|
||
|
|
||
|
pRow = mat[rowMap[iRow]];
|
||
|
|
||
|
// Divide this row by the element.
|
||
|
mul = 1.0f / pRow[iRow];
|
||
|
for(j=0; j < 8; j++)
|
||
|
pRow[j] *= mul;
|
||
|
|
||
|
pRow[iRow] = 1.0f; // Preserve accuracy...
|
||
|
|
||
|
// Eliminate this element from the other rows using operation 2.
|
||
|
for(i=0; i < 4; i++)
|
||
|
{
|
||
|
if(i == iRow)
|
||
|
continue;
|
||
|
|
||
|
pScaleRow = mat[rowMap[i]];
|
||
|
|
||
|
// Multiply this row by -(iRow*the element).
|
||
|
mul = -pScaleRow[iRow];
|
||
|
for(j=0; j < 8; j++)
|
||
|
{
|
||
|
pScaleRow[j] += pRow[j] * mul;
|
||
|
}
|
||
|
|
||
|
pScaleRow[iRow] = 0.0f; // Preserve accuracy...
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The inverse is on the right side of AX now (the identity is on the left).
|
||
|
for(i=0; i < 4; i++)
|
||
|
{
|
||
|
const vec_t *pIn = mat[rowMap[i]] + 4;
|
||
|
pOut = dst.m[i];
|
||
|
|
||
|
for(j=0; j < 4; j++)
|
||
|
{
|
||
|
pOut[j] = pIn[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Does a fast inverse, assuming the matrix only contains translation and rotation.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixInverseTR( const VMatrix& src, VMatrix &dst )
|
||
|
{
|
||
|
Vector vTrans, vNewTrans;
|
||
|
|
||
|
// Transpose the upper 3x3.
|
||
|
dst.m[0][0] = src.m[0][0]; dst.m[0][1] = src.m[1][0]; dst.m[0][2] = src.m[2][0];
|
||
|
dst.m[1][0] = src.m[0][1]; dst.m[1][1] = src.m[1][1]; dst.m[1][2] = src.m[2][1];
|
||
|
dst.m[2][0] = src.m[0][2]; dst.m[2][1] = src.m[1][2]; dst.m[2][2] = src.m[2][2];
|
||
|
|
||
|
// Transform the translation.
|
||
|
vTrans.Init( -src.m[0][3], -src.m[1][3], -src.m[2][3] );
|
||
|
Vector3DMultiply( dst, vTrans, vNewTrans );
|
||
|
MatrixSetColumn( dst, 3, vNewTrans );
|
||
|
|
||
|
// Fill in the bottom row.
|
||
|
dst.m[3][0] = dst.m[3][1] = dst.m[3][2] = 0.0f;
|
||
|
dst.m[3][3] = 1.0f;
|
||
|
}
|
||
|
|
||
|
|
||
|
void VMatrix::InverseTR( VMatrix &ret ) const
|
||
|
{
|
||
|
MatrixInverseTR( *this, ret );
|
||
|
}
|
||
|
|
||
|
void MatrixInverseTranspose( const VMatrix& src, VMatrix& dst )
|
||
|
{
|
||
|
src.InverseGeneral( dst );
|
||
|
MatrixTranspose( dst, dst );
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Computes the inverse transpose
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixInverseTranspose( const matrix3x4_t& src, matrix3x4_t& dst )
|
||
|
{
|
||
|
VMatrix tmp, out;
|
||
|
tmp.CopyFrom3x4( src );
|
||
|
::MatrixInverseTranspose( tmp, out );
|
||
|
out.Set3x4( dst );
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
||
|
|
||
|
VMatrix VMatrix::InverseTR() const
|
||
|
{
|
||
|
VMatrix ret;
|
||
|
MatrixInverseTR( *this, ret );
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Vector VMatrix::GetScale() const
|
||
|
{
|
||
|
Vector vecs[3];
|
||
|
|
||
|
GetBasisVectors(vecs[0], vecs[1], vecs[2]);
|
||
|
|
||
|
return Vector(
|
||
|
vecs[0].Length(),
|
||
|
vecs[1].Length(),
|
||
|
vecs[2].Length()
|
||
|
);
|
||
|
}
|
||
|
|
||
|
VMatrix VMatrix::Scale(const Vector &vScale)
|
||
|
{
|
||
|
return VMatrix(
|
||
|
m[0][0]*vScale.x, m[0][1]*vScale.y, m[0][2]*vScale.z, m[0][3],
|
||
|
m[1][0]*vScale.x, m[1][1]*vScale.y, m[1][2]*vScale.z, m[1][3],
|
||
|
m[2][0]*vScale.x, m[2][1]*vScale.y, m[2][2]*vScale.z, m[2][3],
|
||
|
m[3][0]*vScale.x, m[3][1]*vScale.y, m[3][2]*vScale.z, 1.0f
|
||
|
);
|
||
|
}
|
||
|
|
||
|
VMatrix VMatrix::NormalizeBasisVectors() const
|
||
|
{
|
||
|
Vector vecs[3];
|
||
|
VMatrix mRet;
|
||
|
|
||
|
|
||
|
GetBasisVectors(vecs[0], vecs[1], vecs[2]);
|
||
|
|
||
|
VectorNormalize( vecs[0] );
|
||
|
VectorNormalize( vecs[1] );
|
||
|
VectorNormalize( vecs[2] );
|
||
|
|
||
|
mRet.SetBasisVectors(vecs[0], vecs[1], vecs[2]);
|
||
|
|
||
|
// Set everything but basis vectors to identity.
|
||
|
mRet.m[3][0] = mRet.m[3][1] = mRet.m[3][2] = 0.0f;
|
||
|
mRet.m[3][3] = 1.0f;
|
||
|
|
||
|
return mRet;
|
||
|
}
|
||
|
|
||
|
VMatrix VMatrix::Transpose() const
|
||
|
{
|
||
|
return VMatrix(
|
||
|
m[0][0], m[1][0], m[2][0], m[3][0],
|
||
|
m[0][1], m[1][1], m[2][1], m[3][1],
|
||
|
m[0][2], m[1][2], m[2][2], m[3][2],
|
||
|
m[0][3], m[1][3], m[2][3], m[3][3]);
|
||
|
}
|
||
|
|
||
|
// Transpose upper-left 3x3.
|
||
|
VMatrix VMatrix::Transpose3x3() const
|
||
|
{
|
||
|
return VMatrix(
|
||
|
m[0][0], m[1][0], m[2][0], m[0][3],
|
||
|
m[0][1], m[1][1], m[2][1], m[1][3],
|
||
|
m[0][2], m[1][2], m[2][2], m[2][3],
|
||
|
m[3][0], m[3][1], m[3][2], m[3][3]);
|
||
|
}
|
||
|
|
||
|
#endif // VECTOR_NO_SLOW_OPERATIONS
|
||
|
|
||
|
|
||
|
bool VMatrix::IsRotationMatrix() const
|
||
|
{
|
||
|
Vector &v1 = (Vector&)m[0][0];
|
||
|
Vector &v2 = (Vector&)m[1][0];
|
||
|
Vector &v3 = (Vector&)m[2][0];
|
||
|
|
||
|
return
|
||
|
FloatMakePositive( 1 - v1.Length() ) < 0.01f &&
|
||
|
FloatMakePositive( 1 - v2.Length() ) < 0.01f &&
|
||
|
FloatMakePositive( 1 - v3.Length() ) < 0.01f &&
|
||
|
FloatMakePositive( v1.Dot(v2) ) < 0.01f &&
|
||
|
FloatMakePositive( v1.Dot(v3) ) < 0.01f &&
|
||
|
FloatMakePositive( v2.Dot(v3) ) < 0.01f;
|
||
|
}
|
||
|
|
||
|
static void SetupMatrixAnglesInternal( vec_t m[4][4], const QAngle & vAngles )
|
||
|
{
|
||
|
float sr, sp, sy, cr, cp, cy;
|
||
|
|
||
|
SinCos( DEG2RAD( vAngles[YAW] ), &sy, &cy );
|
||
|
SinCos( DEG2RAD( vAngles[PITCH] ), &sp, &cp );
|
||
|
SinCos( DEG2RAD( vAngles[ROLL] ), &sr, &cr );
|
||
|
|
||
|
// matrix = (YAW * PITCH) * ROLL
|
||
|
m[0][0] = cp*cy;
|
||
|
m[1][0] = cp*sy;
|
||
|
m[2][0] = -sp;
|
||
|
m[0][1] = sr*sp*cy+cr*-sy;
|
||
|
m[1][1] = sr*sp*sy+cr*cy;
|
||
|
m[2][1] = sr*cp;
|
||
|
m[0][2] = (cr*sp*cy+-sr*-sy);
|
||
|
m[1][2] = (cr*sp*sy+-sr*cy);
|
||
|
m[2][2] = cr*cp;
|
||
|
m[0][3] = 0.f;
|
||
|
m[1][3] = 0.f;
|
||
|
m[2][3] = 0.f;
|
||
|
}
|
||
|
|
||
|
void VMatrix::SetupMatrixOrgAngles( const Vector &origin, const QAngle &vAngles )
|
||
|
{
|
||
|
SetupMatrixAnglesInternal( m, vAngles );
|
||
|
|
||
|
// Add translation
|
||
|
m[0][3] = origin.x;
|
||
|
m[1][3] = origin.y;
|
||
|
m[2][3] = origin.z;
|
||
|
m[3][0] = 0.0f;
|
||
|
m[3][1] = 0.0f;
|
||
|
m[3][2] = 0.0f;
|
||
|
m[3][3] = 1.0f;
|
||
|
}
|
||
|
|
||
|
|
||
|
void VMatrix::SetupMatrixAngles( const QAngle &vAngles )
|
||
|
{
|
||
|
SetupMatrixAnglesInternal( m, vAngles );
|
||
|
|
||
|
// Zero everything else
|
||
|
m[0][3] = 0.0f;
|
||
|
m[1][3] = 0.0f;
|
||
|
m[2][3] = 0.0f;
|
||
|
m[3][0] = 0.0f;
|
||
|
m[3][1] = 0.0f;
|
||
|
m[3][2] = 0.0f;
|
||
|
m[3][3] = 1.0f;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Sets matrix to identity
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixSetIdentity( VMatrix &dst )
|
||
|
{
|
||
|
dst[0][0] = 1.0f; dst[0][1] = 0.0f; dst[0][2] = 0.0f; dst[0][3] = 0.0f;
|
||
|
dst[1][0] = 0.0f; dst[1][1] = 1.0f; dst[1][2] = 0.0f; dst[1][3] = 0.0f;
|
||
|
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = 1.0f; dst[2][3] = 0.0f;
|
||
|
dst[3][0] = 0.0f; dst[3][1] = 0.0f; dst[3][2] = 0.0f; dst[3][3] = 1.0f;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Setup a matrix from euler angles.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixFromAngles( const QAngle& vAngles, VMatrix& dst )
|
||
|
{
|
||
|
dst.SetupMatrixOrgAngles( vec3_origin, vAngles );
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Creates euler angles from a matrix
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixToAngles( const VMatrix& src, QAngle& vAngles )
|
||
|
{
|
||
|
float forward[3];
|
||
|
float left[3];
|
||
|
float up[3];
|
||
|
|
||
|
// Extract the basis vectors from the matrix. Since we only need the Z
|
||
|
// component of the up vector, we don't get X and Y.
|
||
|
forward[0] = src[0][0];
|
||
|
forward[1] = src[1][0];
|
||
|
forward[2] = src[2][0];
|
||
|
left[0] = src[0][1];
|
||
|
left[1] = src[1][1];
|
||
|
left[2] = src[2][1];
|
||
|
up[2] = src[2][2];
|
||
|
|
||
|
float xyDist = sqrtf( forward[0] * forward[0] + forward[1] * forward[1] );
|
||
|
|
||
|
// enough here to get angles?
|
||
|
if ( xyDist > 0.001f )
|
||
|
{
|
||
|
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
|
||
|
vAngles[1] = RAD2DEG( atan2f( forward[1], forward[0] ) );
|
||
|
|
||
|
// The engine does pitch inverted from this, but we always end up negating it in the DLL
|
||
|
// UNDONE: Fix the engine to make it consistent
|
||
|
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
|
||
|
vAngles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) );
|
||
|
|
||
|
// (roll) z = ATAN( left.z, up.z );
|
||
|
vAngles[2] = RAD2DEG( atan2f( left[2], up[2] ) );
|
||
|
}
|
||
|
else // forward is mostly Z, gimbal lock-
|
||
|
{
|
||
|
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw
|
||
|
vAngles[1] = RAD2DEG( atan2f( -left[0], left[1] ) );
|
||
|
|
||
|
// The engine does pitch inverted from this, but we always end up negating it in the DLL
|
||
|
// UNDONE: Fix the engine to make it consistent
|
||
|
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
|
||
|
vAngles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) );
|
||
|
|
||
|
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
|
||
|
vAngles[2] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Transpose
|
||
|
//-----------------------------------------------------------------------------
|
||
|
inline void Swap( float& a, float& b )
|
||
|
{
|
||
|
float tmp = a;
|
||
|
a = b;
|
||
|
b = tmp;
|
||
|
}
|
||
|
|
||
|
void MatrixTranspose( const VMatrix& src, VMatrix& dst )
|
||
|
{
|
||
|
if (&src == &dst)
|
||
|
{
|
||
|
Swap( dst[0][1], dst[1][0] );
|
||
|
Swap( dst[0][2], dst[2][0] );
|
||
|
Swap( dst[0][3], dst[3][0] );
|
||
|
Swap( dst[1][2], dst[2][1] );
|
||
|
Swap( dst[1][3], dst[3][1] );
|
||
|
Swap( dst[2][3], dst[3][2] );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dst[0][0] = src[0][0]; dst[0][1] = src[1][0]; dst[0][2] = src[2][0]; dst[0][3] = src[3][0];
|
||
|
dst[1][0] = src[0][1]; dst[1][1] = src[1][1]; dst[1][2] = src[2][1]; dst[1][3] = src[3][1];
|
||
|
dst[2][0] = src[0][2]; dst[2][1] = src[1][2]; dst[2][2] = src[2][2]; dst[2][3] = src[3][2];
|
||
|
dst[3][0] = src[0][3]; dst[3][1] = src[1][3]; dst[3][2] = src[2][3]; dst[3][3] = src[3][3];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Matrix copy
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
void MatrixCopy( const VMatrix& src, VMatrix& dst )
|
||
|
{
|
||
|
if (&src != &dst)
|
||
|
{
|
||
|
memcpy( dst.m, src.m, 16 * sizeof(float) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Matrix multiply
|
||
|
//-----------------------------------------------------------------------------
|
||
|
typedef float VMatrixRaw_t[4];
|
||
|
|
||
|
void MatrixMultiply( const VMatrix& src1, const VMatrix& src2, VMatrix& dst )
|
||
|
{
|
||
|
// Make sure it works if src1 == dst or src2 == dst
|
||
|
VMatrix tmp1, tmp2;
|
||
|
const VMatrixRaw_t* s1 = (&src1 == &dst) ? tmp1.m : src1.m;
|
||
|
const VMatrixRaw_t* s2 = (&src2 == &dst) ? tmp2.m : src2.m;
|
||
|
|
||
|
if (&src1 == &dst)
|
||
|
{
|
||
|
MatrixCopy( src1, tmp1 );
|
||
|
}
|
||
|
if (&src2 == &dst)
|
||
|
{
|
||
|
MatrixCopy( src2, tmp2 );
|
||
|
}
|
||
|
|
||
|
dst[0][0] = s1[0][0] * s2[0][0] + s1[0][1] * s2[1][0] + s1[0][2] * s2[2][0] + s1[0][3] * s2[3][0];
|
||
|
dst[0][1] = s1[0][0] * s2[0][1] + s1[0][1] * s2[1][1] + s1[0][2] * s2[2][1] + s1[0][3] * s2[3][1];
|
||
|
dst[0][2] = s1[0][0] * s2[0][2] + s1[0][1] * s2[1][2] + s1[0][2] * s2[2][2] + s1[0][3] * s2[3][2];
|
||
|
dst[0][3] = s1[0][0] * s2[0][3] + s1[0][1] * s2[1][3] + s1[0][2] * s2[2][3] + s1[0][3] * s2[3][3];
|
||
|
|
||
|
dst[1][0] = s1[1][0] * s2[0][0] + s1[1][1] * s2[1][0] + s1[1][2] * s2[2][0] + s1[1][3] * s2[3][0];
|
||
|
dst[1][1] = s1[1][0] * s2[0][1] + s1[1][1] * s2[1][1] + s1[1][2] * s2[2][1] + s1[1][3] * s2[3][1];
|
||
|
dst[1][2] = s1[1][0] * s2[0][2] + s1[1][1] * s2[1][2] + s1[1][2] * s2[2][2] + s1[1][3] * s2[3][2];
|
||
|
dst[1][3] = s1[1][0] * s2[0][3] + s1[1][1] * s2[1][3] + s1[1][2] * s2[2][3] + s1[1][3] * s2[3][3];
|
||
|
|
||
|
dst[2][0] = s1[2][0] * s2[0][0] + s1[2][1] * s2[1][0] + s1[2][2] * s2[2][0] + s1[2][3] * s2[3][0];
|
||
|
dst[2][1] = s1[2][0] * s2[0][1] + s1[2][1] * s2[1][1] + s1[2][2] * s2[2][1] + s1[2][3] * s2[3][1];
|
||
|
dst[2][2] = s1[2][0] * s2[0][2] + s1[2][1] * s2[1][2] + s1[2][2] * s2[2][2] + s1[2][3] * s2[3][2];
|
||
|
dst[2][3] = s1[2][0] * s2[0][3] + s1[2][1] * s2[1][3] + s1[2][2] * s2[2][3] + s1[2][3] * s2[3][3];
|
||
|
|
||
|
dst[3][0] = s1[3][0] * s2[0][0] + s1[3][1] * s2[1][0] + s1[3][2] * s2[2][0] + s1[3][3] * s2[3][0];
|
||
|
dst[3][1] = s1[3][0] * s2[0][1] + s1[3][1] * s2[1][1] + s1[3][2] * s2[2][1] + s1[3][3] * s2[3][1];
|
||
|
dst[3][2] = s1[3][0] * s2[0][2] + s1[3][1] * s2[1][2] + s1[3][2] * s2[2][2] + s1[3][3] * s2[3][2];
|
||
|
dst[3][3] = s1[3][0] * s2[0][3] + s1[3][1] * s2[1][3] + s1[3][2] * s2[2][3] + s1[3][3] * s2[3][3];
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Matrix/vector multiply
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
void Vector4DMultiply( const VMatrix& src1, Vector4D const& src2, Vector4D& dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
Vector4D tmp;
|
||
|
Vector4D const&v = (&src2 == &dst) ? tmp : src2;
|
||
|
|
||
|
if (&src2 == &dst)
|
||
|
{
|
||
|
Vector4DCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2] + src1[0][3] * v[3];
|
||
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2] + src1[1][3] * v[3];
|
||
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2] + src1[2][3] * v[3];
|
||
|
dst[3] = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2] + src1[3][3] * v[3];
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Matrix/vector multiply
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
void Vector4DMultiplyPosition( const VMatrix& src1, Vector const& src2, Vector4D& dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
Vector tmp;
|
||
|
Vector const&v = ( &src2 == &dst.AsVector3D() ) ? static_cast<const Vector&>(tmp) : src2;
|
||
|
|
||
|
if (&src2 == &dst.AsVector3D())
|
||
|
{
|
||
|
VectorCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2] + src1[0][3];
|
||
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2] + src1[1][3];
|
||
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2] + src1[2][3];
|
||
|
dst[3] = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2] + src1[3][3];
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Matrix/vector multiply
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
void Vector3DMultiply( const VMatrix &src1, const Vector &src2, Vector &dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
Vector tmp;
|
||
|
const Vector &v = (&src2 == &dst) ? static_cast<const Vector&>(tmp) : src2;
|
||
|
|
||
|
if( &src2 == &dst )
|
||
|
{
|
||
|
VectorCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2];
|
||
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2];
|
||
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2];
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Vector3DMultiplyPositionProjective treats src2 as if it's a point
|
||
|
// and does the perspective divide at the end
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void Vector3DMultiplyPositionProjective( const VMatrix& src1, const Vector &src2, Vector& dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
Vector tmp;
|
||
|
const Vector &v = (&src2 == &dst) ? static_cast<const Vector&>(tmp): src2;
|
||
|
if( &src2 == &dst )
|
||
|
{
|
||
|
VectorCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
float w = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2] + src1[3][3];
|
||
|
if ( w != 0.0f )
|
||
|
{
|
||
|
w = 1.0f / w;
|
||
|
}
|
||
|
|
||
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2] + src1[0][3];
|
||
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2] + src1[1][3];
|
||
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2] + src1[2][3];
|
||
|
dst *= w;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Vector3DMultiplyProjective treats src2 as if it's a direction
|
||
|
// and does the perspective divide at the end
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void Vector3DMultiplyProjective( const VMatrix& src1, const Vector &src2, Vector& dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
Vector tmp;
|
||
|
const Vector &v = (&src2 == &dst) ? static_cast<const Vector&>(tmp) : src2;
|
||
|
if( &src2 == &dst )
|
||
|
{
|
||
|
VectorCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
float w;
|
||
|
dst[0] = src1[0][0] * v[0] + src1[0][1] * v[1] + src1[0][2] * v[2];
|
||
|
dst[1] = src1[1][0] * v[0] + src1[1][1] * v[1] + src1[1][2] * v[2];
|
||
|
dst[2] = src1[2][0] * v[0] + src1[2][1] * v[1] + src1[2][2] * v[2];
|
||
|
w = src1[3][0] * v[0] + src1[3][1] * v[1] + src1[3][2] * v[2];
|
||
|
if (w != 0.0f)
|
||
|
{
|
||
|
dst /= w;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dst = vec3_origin;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Multiplies the vector by the transpose of the matrix
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void Vector4DMultiplyTranspose( const VMatrix& src1, Vector4D const& src2, Vector4D& dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
bool srcEqualsDst = (&src2 == &dst);
|
||
|
|
||
|
Vector4D tmp;
|
||
|
Vector4D const&v = srcEqualsDst ? tmp : src2;
|
||
|
|
||
|
if (srcEqualsDst)
|
||
|
{
|
||
|
Vector4DCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
dst[0] = src1[0][0] * v[0] + src1[1][0] * v[1] + src1[2][0] * v[2] + src1[3][0] * v[3];
|
||
|
dst[1] = src1[0][1] * v[0] + src1[1][1] * v[1] + src1[2][1] * v[2] + src1[3][1] * v[3];
|
||
|
dst[2] = src1[0][2] * v[0] + src1[1][2] * v[1] + src1[2][2] * v[2] + src1[3][2] * v[3];
|
||
|
dst[3] = src1[0][3] * v[0] + src1[1][3] * v[1] + src1[2][3] * v[2] + src1[3][3] * v[3];
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Multiplies the vector by the transpose of the matrix
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void Vector3DMultiplyTranspose( const VMatrix& src1, const Vector& src2, Vector& dst )
|
||
|
{
|
||
|
// Make sure it works if src2 == dst
|
||
|
bool srcEqualsDst = (&src2 == &dst);
|
||
|
|
||
|
Vector tmp;
|
||
|
const Vector&v = srcEqualsDst ? static_cast<const Vector&>(tmp) : src2;
|
||
|
|
||
|
if (srcEqualsDst)
|
||
|
{
|
||
|
VectorCopy( src2, tmp );
|
||
|
}
|
||
|
|
||
|
dst[0] = src1[0][0] * v[0] + src1[1][0] * v[1] + src1[2][0] * v[2];
|
||
|
dst[1] = src1[0][1] * v[0] + src1[1][1] * v[1] + src1[2][1] * v[2];
|
||
|
dst[2] = src1[0][2] * v[0] + src1[1][2] * v[1] + src1[2][2] * v[2];
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Transform a plane
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixTransformPlane( const VMatrix &src, const cplane_t &inPlane, cplane_t &outPlane )
|
||
|
{
|
||
|
// What we want to do is the following:
|
||
|
// 1) transform the normal into the new space.
|
||
|
// 2) Determine a point on the old plane given by plane dist * plane normal
|
||
|
// 3) Transform that point into the new space
|
||
|
// 4) Plane dist = DotProduct( new normal, new point )
|
||
|
|
||
|
// An optimized version, which works if the plane is orthogonal.
|
||
|
// 1) Transform the normal into the new space
|
||
|
// 2) Realize that transforming the old plane point into the new space
|
||
|
// is given by [ d * n'x + Tx, d * n'y + Ty, d * n'z + Tz ]
|
||
|
// where d = old plane dist, n' = transformed normal, Tn = translational component of transform
|
||
|
// 3) Compute the new plane dist using the dot product of the normal result of #2
|
||
|
|
||
|
// For a correct result, this should be an inverse-transpose matrix
|
||
|
// but that only matters if there are nonuniform scale or skew factors in this matrix.
|
||
|
Vector vTrans;
|
||
|
Vector3DMultiply( src, inPlane.normal, outPlane.normal );
|
||
|
outPlane.dist = inPlane.dist * DotProduct( outPlane.normal, outPlane.normal );
|
||
|
outPlane.dist += DotProduct( outPlane.normal, src.GetTranslation(vTrans) );
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
||
|
|
||
|
VPlane VMatrix::operator*(const VPlane &thePlane) const
|
||
|
{
|
||
|
VPlane ret;
|
||
|
TransformPlane( thePlane, ret );
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Builds a rotation matrix that rotates one direction vector into another
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixBuildTranslation( VMatrix& dst, float x, float y, float z )
|
||
|
{
|
||
|
MatrixSetIdentity( dst );
|
||
|
dst[0][3] = x;
|
||
|
dst[1][3] = y;
|
||
|
dst[2][3] = z;
|
||
|
}
|
||
|
|
||
|
void MatrixBuildTranslation( VMatrix& dst, const Vector &translation )
|
||
|
{
|
||
|
MatrixSetIdentity( dst );
|
||
|
dst[0][3] = translation[0];
|
||
|
dst[1][3] = translation[1];
|
||
|
dst[2][3] = translation[2];
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis.
|
||
|
//
|
||
|
// | ax2 + (1 - ax2)cosQ axay(1 - cosQ) - azsinQ azax(1 - cosQ) + aysinQ |
|
||
|
// Ra(Q) = | axay(1 - cosQ) + azsinQ ay2 + (1 - ay2)cosQ ayaz(1 - cosQ) - axsinQ |
|
||
|
// | azax(1 - cosQ) - aysinQ ayaz(1 - cosQ) + axsinQ az2 + (1 - az2)cosQ |
|
||
|
//
|
||
|
// Input : mat -
|
||
|
// vAxisOrRot -
|
||
|
// angle -
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixBuildRotationAboutAxis( VMatrix &dst, const Vector &vAxisOfRot, float angleDegrees )
|
||
|
{
|
||
|
MatrixBuildRotationAboutAxis( vAxisOfRot, angleDegrees, const_cast< matrix3x4_t &> ( dst.As3x4() ) );
|
||
|
dst[3][0] = 0;
|
||
|
dst[3][1] = 0;
|
||
|
dst[3][2] = 0;
|
||
|
dst[3][3] = 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Builds a rotation matrix that rotates one direction vector into another
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixBuildRotation( VMatrix &dst, const Vector& initialDirection, const Vector& finalDirection )
|
||
|
{
|
||
|
float angle = DotProduct( initialDirection, finalDirection );
|
||
|
Assert( IsFinite(angle) );
|
||
|
|
||
|
Vector axis;
|
||
|
|
||
|
// No rotation required
|
||
|
if (angle - 1.0 > -1e-3)
|
||
|
{
|
||
|
// parallel case
|
||
|
MatrixSetIdentity(dst);
|
||
|
return;
|
||
|
}
|
||
|
else if (angle + 1.0 < 1e-3)
|
||
|
{
|
||
|
// antiparallel case, pick any axis in the plane
|
||
|
// perpendicular to the final direction. Choose the direction (x,y,z)
|
||
|
// which has the minimum component of the final direction, use that
|
||
|
// as an initial guess, then subtract out the component which is
|
||
|
// parallel to the final direction
|
||
|
int idx = 0;
|
||
|
if (FloatMakePositive(finalDirection[1]) < FloatMakePositive(finalDirection[idx]))
|
||
|
idx = 1;
|
||
|
if (FloatMakePositive(finalDirection[2]) < FloatMakePositive(finalDirection[idx]))
|
||
|
idx = 2;
|
||
|
|
||
|
axis.Init( 0, 0, 0 );
|
||
|
axis[idx] = 1.0f;
|
||
|
VectorMA( axis, -DotProduct( axis, finalDirection ), finalDirection, axis );
|
||
|
VectorNormalize(axis);
|
||
|
angle = 180.0f;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CrossProduct( initialDirection, finalDirection, axis );
|
||
|
VectorNormalize( axis );
|
||
|
angle = acos(angle) * 180 / M_PI;
|
||
|
}
|
||
|
|
||
|
MatrixBuildRotationAboutAxis( dst, axis, angle );
|
||
|
|
||
|
#ifdef _DEBUG
|
||
|
Vector test;
|
||
|
Vector3DMultiply( dst, initialDirection, test );
|
||
|
test -= finalDirection;
|
||
|
Assert( test.LengthSqr() < 1e-3 );
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void MatrixBuildRotateZ( VMatrix &dst, float angleDegrees )
|
||
|
{
|
||
|
float radians = angleDegrees * ( M_PI / 180.0f );
|
||
|
|
||
|
float fSin = ( float )sin( radians );
|
||
|
float fCos = ( float )cos( radians );
|
||
|
|
||
|
dst[0][0] = fCos; dst[0][1] = -fSin; dst[0][2] = 0.0f; dst[0][3] = 0.0f;
|
||
|
dst[1][0] = fSin; dst[1][1] = fCos; dst[1][2] = 0.0f; dst[1][3] = 0.0f;
|
||
|
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = 1.0f; dst[2][3] = 0.0f;
|
||
|
dst[3][0] = 0.0f; dst[3][1] = 0.0f; dst[3][2] = 0.0f; dst[3][3] = 1.0f;
|
||
|
}
|
||
|
|
||
|
// Builds a scale matrix
|
||
|
void MatrixBuildScale( VMatrix &dst, float x, float y, float z )
|
||
|
{
|
||
|
dst[0][0] = x; dst[0][1] = 0.0f; dst[0][2] = 0.0f; dst[0][3] = 0.0f;
|
||
|
dst[1][0] = 0.0f; dst[1][1] = y; dst[1][2] = 0.0f; dst[1][3] = 0.0f;
|
||
|
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = z; dst[2][3] = 0.0f;
|
||
|
dst[3][0] = 0.0f; dst[3][1] = 0.0f; dst[3][2] = 0.0f; dst[3][3] = 1.0f;
|
||
|
}
|
||
|
|
||
|
void MatrixBuildScale( VMatrix &dst, const Vector& scale )
|
||
|
{
|
||
|
MatrixBuildScale( dst, scale.x, scale.y, scale.z );
|
||
|
}
|
||
|
|
||
|
void MatrixBuildPerspective( VMatrix &dst, float fovX, float fovY, float zNear, float zFar )
|
||
|
{
|
||
|
// FIXME: collapse all of this into one matrix after we figure out what all should be in here.
|
||
|
float width = 2 * zNear * tan( fovX * ( M_PI/180.0f ) * 0.5f );
|
||
|
float height = 2 * zNear * tan( fovY * ( M_PI/180.0f ) * 0.5f );
|
||
|
|
||
|
memset( dst.Base(), 0, sizeof( dst ) );
|
||
|
dst[0][0] = 2.0F * zNear / width;
|
||
|
dst[1][1] = 2.0F * zNear / height;
|
||
|
dst[2][2] = -zFar / ( zNear - zFar );
|
||
|
dst[3][2] = 1.0f;
|
||
|
dst[2][3] = zNear * zFar / ( zNear - zFar );
|
||
|
|
||
|
// negate X and Y so that X points right, and Y points up.
|
||
|
VMatrix negateXY;
|
||
|
negateXY.Identity();
|
||
|
negateXY[0][0] = -1.0f;
|
||
|
negateXY[1][1] = -1.0f;
|
||
|
MatrixMultiply( negateXY, dst, dst );
|
||
|
|
||
|
VMatrix addW;
|
||
|
addW.Identity();
|
||
|
addW[0][3] = 1.0f;
|
||
|
addW[1][3] = 1.0f;
|
||
|
addW[2][3] = 0.0f;
|
||
|
MatrixMultiply( addW, dst, dst );
|
||
|
|
||
|
VMatrix scaleHalf;
|
||
|
scaleHalf.Identity();
|
||
|
scaleHalf[0][0] = 0.5f;
|
||
|
scaleHalf[1][1] = 0.5f;
|
||
|
MatrixMultiply( scaleHalf, dst, dst );
|
||
|
}
|
||
|
|
||
|
static inline void CalculateAABBForNormalizedFrustum_Helper( float x, float y, float z, const VMatrix &volumeToWorld, Vector &mins, Vector &maxs )
|
||
|
{
|
||
|
Vector volumeSpacePos( x, y, z );
|
||
|
|
||
|
// Make sure it's been clipped
|
||
|
Assert( volumeSpacePos[0] >= -1e-3f );
|
||
|
Assert( volumeSpacePos[0] - 1.0f <= 1e-3f );
|
||
|
Assert( volumeSpacePos[1] >= -1e-3f );
|
||
|
Assert( volumeSpacePos[1] - 1.0f <= 1e-3f );
|
||
|
Assert( volumeSpacePos[2] >= -1e-3f );
|
||
|
Assert( volumeSpacePos[2] - 1.0f <= 1e-3f );
|
||
|
|
||
|
Vector worldPos;
|
||
|
Vector3DMultiplyPositionProjective( volumeToWorld, volumeSpacePos, worldPos );
|
||
|
AddPointToBounds( worldPos, mins, maxs );
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
|
||
|
// get a bounding box.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void CalculateAABBFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pMins, Vector *pMaxs )
|
||
|
{
|
||
|
// FIXME: Could maybe do better than the compile with all of these multiplies by 0 and 1.
|
||
|
ClearBounds( *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 0, 0, 0, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 0, 0, 1, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 0, 1, 0, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 0, 1, 1, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 1, 0, 0, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 1, 0, 1, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 1, 1, 0, volumeToWorld, *pMins, *pMaxs );
|
||
|
CalculateAABBForNormalizedFrustum_Helper( 1, 1, 1, volumeToWorld, *pMins, *pMaxs );
|
||
|
}
|
||
|
|
||
|
void CalculateAABBFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pMins, Vector *pMaxs )
|
||
|
{
|
||
|
VMatrix volumeToWorld;
|
||
|
MatrixInverseGeneral( worldToVolume, volumeToWorld );
|
||
|
CalculateAABBFromProjectionMatrixInverse( volumeToWorld, pMins, pMaxs );
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
|
||
|
// get a bounding sphere.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void CalculateSphereFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pCenter, float *pflRadius )
|
||
|
{
|
||
|
// FIXME: Could maybe do better than the compile with all of these multiplies by 0 and 1.
|
||
|
|
||
|
// Need 3 points: the endpoint of the line through the center of the near + far planes,
|
||
|
// and one point on the far plane. From that, we can derive a point somewhere on the center line
|
||
|
// which would produce the smallest bounding sphere.
|
||
|
Vector vecCenterNear, vecCenterFar, vecNearEdge, vecFarEdge;
|
||
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.5f, 0.5f, 0.0f ), vecCenterNear );
|
||
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.5f, 0.5f, 1.0f ), vecCenterFar );
|
||
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.0f, 0.0f, 0.0f ), vecNearEdge );
|
||
|
Vector3DMultiplyPositionProjective( volumeToWorld, Vector( 0.0f, 0.0f, 1.0f ), vecFarEdge );
|
||
|
|
||
|
// Let the distance between the near + far center points = l
|
||
|
// Let the distance between the near center point + near edge point = h1
|
||
|
// Let the distance between the far center point + far edge point = h2
|
||
|
// Let the distance along the center line from the near point to the sphere center point = x
|
||
|
// Then let the distance between the sphere center point + near edge point ==
|
||
|
// the distance between the sphere center point + far edge point == r == radius of sphere
|
||
|
// Then h1^2 + x^2 == r^2 == (l-x)^2 + h2^2
|
||
|
// h1^x + x^2 = l^2 - 2 * l * x + x^2 + h2^2
|
||
|
// 2 * l * x = l^2 + h2^2 - h1^2
|
||
|
// x = (l^2 + h2^2 - h1^2) / (2 * l)
|
||
|
// r = sqrt( hl^1 + x^2 )
|
||
|
Vector vecDelta;
|
||
|
VectorSubtract( vecCenterFar, vecCenterNear, vecDelta );
|
||
|
float l = vecDelta.Length();
|
||
|
float h1Sqr = vecCenterNear.DistToSqr( vecNearEdge );
|
||
|
float h2Sqr = vecCenterFar.DistToSqr( vecFarEdge );
|
||
|
float x = (l*l + h2Sqr - h1Sqr) / (2.0f * l);
|
||
|
VectorMA( vecCenterNear, (x / l), vecDelta, *pCenter );
|
||
|
*pflRadius = sqrt( h1Sqr + x*x );
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Given a projection matrix, take the extremes of the space in transformed into world space and
|
||
|
// get a bounding sphere.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void CalculateSphereFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pCenter, float *pflRadius )
|
||
|
{
|
||
|
VMatrix volumeToWorld;
|
||
|
MatrixInverseGeneral( worldToVolume, volumeToWorld );
|
||
|
CalculateSphereFromProjectionMatrixInverse( volumeToWorld, pCenter, pflRadius );
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void FrustumPlanesFromMatrixHelper( const VMatrix &shadowToWorld, const Vector &p1, const Vector &p2, const Vector &p3,
|
||
|
Vector &normal, float &dist )
|
||
|
{
|
||
|
Vector world1, world2, world3;
|
||
|
Vector3DMultiplyPositionProjective( shadowToWorld, p1, world1 );
|
||
|
Vector3DMultiplyPositionProjective( shadowToWorld, p2, world2 );
|
||
|
Vector3DMultiplyPositionProjective( shadowToWorld, p3, world3 );
|
||
|
|
||
|
Vector v1, v2;
|
||
|
VectorSubtract( world2, world1, v1 );
|
||
|
VectorSubtract( world3, world1, v2 );
|
||
|
|
||
|
CrossProduct( v1, v2, normal );
|
||
|
VectorNormalize( normal );
|
||
|
dist = DotProduct( normal, world1 );
|
||
|
}
|
||
|
|
||
|
void FrustumPlanesFromMatrix( const VMatrix &clipToWorld, Frustum_t &frustum )
|
||
|
{
|
||
|
Vector normal;
|
||
|
float dist;
|
||
|
|
||
|
FrustumPlanesFromMatrixHelper( clipToWorld,
|
||
|
Vector( 0.0f, 0.0f, 0.0f ), Vector( 1.0f, 0.0f, 0.0f ), Vector( 0.0f, 1.0f, 0.0f ), normal, dist );
|
||
|
frustum.SetPlane( FRUSTUM_NEARZ, PLANE_ANYZ, normal, dist );
|
||
|
|
||
|
FrustumPlanesFromMatrixHelper( clipToWorld,
|
||
|
Vector( 0.0f, 0.0f, 1.0f ), Vector( 0.0f, 1.0f, 1.0f ), Vector( 1.0f, 0.0f, 1.0f ), normal, dist );
|
||
|
frustum.SetPlane( FRUSTUM_FARZ, PLANE_ANYZ, normal, dist );
|
||
|
|
||
|
FrustumPlanesFromMatrixHelper( clipToWorld,
|
||
|
Vector( 1.0f, 0.0f, 0.0f ), Vector( 1.0f, 1.0f, 1.0f ), Vector( 1.0f, 1.0f, 0.0f ), normal, dist );
|
||
|
frustum.SetPlane( FRUSTUM_RIGHT, PLANE_ANYZ, normal, dist );
|
||
|
|
||
|
FrustumPlanesFromMatrixHelper( clipToWorld,
|
||
|
Vector( 0.0f, 0.0f, 0.0f ), Vector( 0.0f, 1.0f, 1.0f ), Vector( 0.0f, 0.0f, 1.0f ), normal, dist );
|
||
|
frustum.SetPlane( FRUSTUM_LEFT, PLANE_ANYZ, normal, dist );
|
||
|
|
||
|
FrustumPlanesFromMatrixHelper( clipToWorld,
|
||
|
Vector( 1.0f, 1.0f, 0.0f ), Vector( 1.0f, 1.0f, 1.0f ), Vector( 0.0f, 1.0f, 1.0f ), normal, dist );
|
||
|
frustum.SetPlane( FRUSTUM_TOP, PLANE_ANYZ, normal, dist );
|
||
|
|
||
|
FrustumPlanesFromMatrixHelper( clipToWorld,
|
||
|
Vector( 1.0f, 0.0f, 0.0f ), Vector( 0.0f, 0.0f, 1.0f ), Vector( 1.0f, 0.0f, 1.0f ), normal, dist );
|
||
|
frustum.SetPlane( FRUSTUM_BOTTOM, PLANE_ANYZ, normal, dist );
|
||
|
}
|
||
|
|
||
|
void MatrixBuildOrtho( VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar )
|
||
|
{
|
||
|
// FIXME: This is being used incorrectly! Should read:
|
||
|
// D3DXMatrixOrthoOffCenterRH( &matrix, left, right, bottom, top, zNear, zFar );
|
||
|
// Which is certainly why we need these extra -1 scales in y. Bleah
|
||
|
|
||
|
// NOTE: The camera can be imagined as the following diagram:
|
||
|
// /z
|
||
|
// /
|
||
|
// /____ x Z is going into the screen
|
||
|
// |
|
||
|
// |
|
||
|
// |y
|
||
|
//
|
||
|
// (0,0,z) represents the upper-left corner of the screen.
|
||
|
// Our projection transform needs to transform from this space to a LH coordinate
|
||
|
// system that looks thusly:
|
||
|
//
|
||
|
// y| /z
|
||
|
// | /
|
||
|
// |/____ x Z is going into the screen
|
||
|
//
|
||
|
// Where x,y lies between -1 and 1, and z lies from 0 to 1
|
||
|
// This is because the viewport transformation from projection space to pixels
|
||
|
// introduces a -1 scale in the y coordinates
|
||
|
// D3DXMatrixOrthoOffCenterRH( &matrix, left, right, top, bottom, zNear, zFar );
|
||
|
|
||
|
dst.Init( 2.0f / ( right - left ), 0.0f, 0.0f, ( left + right ) / ( left - right ),
|
||
|
0.0f, 2.0f / ( bottom - top ), 0.0f, ( bottom + top ) / ( top - bottom ),
|
||
|
0.0f, 0.0f, 1.0f / ( zNear - zFar ), zNear / ( zNear - zFar ),
|
||
|
0.0f, 0.0f, 0.0f, 1.0f );
|
||
|
}
|
||
|
|
||
|
void MatrixBuildPerspectiveZRange( VMatrix& dst, double flZNear, double flZFar )
|
||
|
{
|
||
|
dst.m[2][0] = 0.0f;
|
||
|
dst.m[2][1] = 0.0f;
|
||
|
dst.m[2][2] = flZFar / ( flZNear - flZFar );
|
||
|
dst.m[2][3] = flZNear * flZFar / ( flZNear - flZFar );
|
||
|
}
|
||
|
|
||
|
void MatrixBuildPerspectiveX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar )
|
||
|
{
|
||
|
float flWidthScale = 1.0f / tanf( flFovX * M_PI / 360.0f );
|
||
|
float flHeightScale = flAspect * flWidthScale;
|
||
|
dst.Init( flWidthScale, 0.0f, 0.0f, 0.0f,
|
||
|
0.0f, flHeightScale, 0.0f, 0.0f,
|
||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||
|
0.0f, 0.0f, -1.0f, 0.0f );
|
||
|
|
||
|
MatrixBuildPerspectiveZRange ( dst, flZNear, flZFar );
|
||
|
}
|
||
|
|
||
|
void MatrixBuildPerspectiveOffCenterX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right )
|
||
|
{
|
||
|
float flWidth = tanf( flFovX * M_PI / 360.0f );
|
||
|
float flHeight = flWidth / flAspect;
|
||
|
|
||
|
// bottom, top, left, right are 0..1 so convert to -<val>/2..<val>/2
|
||
|
float flLeft = -(flWidth/2.0f) * (1.0f - left) + left * (flWidth/2.0f);
|
||
|
float flRight = -(flWidth/2.0f) * (1.0f - right) + right * (flWidth/2.0f);
|
||
|
float flBottom = -(flHeight/2.0f) * (1.0f - bottom) + bottom * (flHeight/2.0f);
|
||
|
float flTop = -(flHeight/2.0f) * (1.0f - top) + top * (flHeight/2.0f);
|
||
|
|
||
|
dst.Init( 1.0f / (flRight-flLeft), 0.0f, (flLeft+flRight)/(flRight-flLeft), 0.0f,
|
||
|
0.0f, 1.0f /(flTop-flBottom), (flTop+flBottom)/(flTop-flBottom), 0.0f,
|
||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||
|
0.0f, 0.0f, -1.0f, 0.0f );
|
||
|
|
||
|
MatrixBuildPerspectiveZRange ( dst, flZNear, flZFar );
|
||
|
}
|
||
|
#endif // !_STATIC_LINKED || _SHARED_LIB
|
||
|
|