Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3599 lines
105 KiB

5 years ago
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "vrad.h"
#include "lightmap.h"
#include "radial.h"
#include "mathlib/bumpvects.h"
#include "tier1/utlvector.h"
#include "vmpi.h"
#include "mathlib/anorms.h"
#include "map_utils.h"
#include "mathlib/halton.h"
#include "imagepacker.h"
#include "tier1/utlrbtree.h"
#include "tier1/utlbuffer.h"
#include "bitmap/tgawriter.h"
#include "mathlib/quantize.h"
#include "bitmap/imageformat.h"
#include "coordsize.h"
enum
{
AMBIENT_ONLY = 0x1,
NON_AMBIENT_ONLY = 0x2,
};
#define SMOOTHING_GROUP_HARD_EDGE 0xff000000
//==========================================================================//
// CNormalList.
//==========================================================================//
// This class keeps a list of unique normals and provides a fast
class CNormalList
{
public:
CNormalList();
// Adds the normal if unique. Otherwise, returns the normal's index into m_Normals.
int FindOrAddNormal( Vector const &vNormal );
public:
CUtlVector<Vector> m_Normals;
private:
// This represents a grid from (-1,-1,-1) to (1,1,1).
enum {NUM_SUBDIVS = 8};
CUtlVector<int> m_NormalGrid[NUM_SUBDIVS][NUM_SUBDIVS][NUM_SUBDIVS];
};
int g_iCurFace;
edgeshare_t edgeshare[MAX_MAP_EDGES];
Vector face_centroids[MAX_MAP_EDGES];
int vertexref[MAX_MAP_VERTS];
int *vertexface[MAX_MAP_VERTS];
faceneighbor_t faceneighbor[MAX_MAP_FACES];
static directlight_t *gSkyLight = NULL;
static directlight_t *gAmbient = NULL;
//==========================================================================//
// CNormalList implementation.
//==========================================================================//
CNormalList::CNormalList() : m_Normals( 128 )
{
for( int i=0; i < sizeof(m_NormalGrid)/sizeof(m_NormalGrid[0][0][0]); i++ )
{
(&m_NormalGrid[0][0][0] + i)->SetGrowSize( 16 );
}
}
int CNormalList::FindOrAddNormal( Vector const &vNormal )
{
int gi[3];
// See which grid element it's in.
for( int iDim=0; iDim < 3; iDim++ )
{
gi[iDim] = (int)( ((vNormal[iDim] + 1.0f) * 0.5f) * NUM_SUBDIVS - 0.000001f );
gi[iDim] = min( gi[iDim], NUM_SUBDIVS );
gi[iDim] = max( gi[iDim], 0 );
}
// Look for a matching vector in there.
CUtlVector<int> *pGridElement = &m_NormalGrid[gi[0]][gi[1]][gi[2]];
for( int i=0; i < pGridElement->Size(); i++ )
{
int iNormal = pGridElement->Element(i);
Vector *pVec = &m_Normals[iNormal];
//if( pVec->DistToSqr(vNormal) < 0.00001f )
if( *pVec == vNormal )
return iNormal;
}
// Ok, add a new one.
pGridElement->AddToTail( m_Normals.Size() );
return m_Normals.AddToTail( vNormal );
}
// FIXME: HACK until the plane normals are made more happy
void GetBumpNormals( const float* sVect, const float* tVect, const Vector& flatNormal,
const Vector& phongNormal, Vector bumpNormals[NUM_BUMP_VECTS] )
{
Vector stmp( sVect[0], sVect[1], sVect[2] );
Vector ttmp( tVect[0], tVect[1], tVect[2] );
GetBumpNormals( stmp, ttmp, flatNormal, phongNormal, bumpNormals );
}
int EdgeVertex( dface_t *f, int edge )
{
int k;
if (edge < 0)
edge += f->numedges;
else if (edge >= f->numedges)
edge = edge % f->numedges;
k = dsurfedges[f->firstedge + edge];
if (k < 0)
{
// Msg("(%d %d) ", dedges[-k].v[1], dedges[-k].v[0] );
return dedges[-k].v[1];
}
else
{
// Msg("(%d %d) ", dedges[k].v[0], dedges[k].v[1] );
return dedges[k].v[0];
}
}
/*
============
PairEdges
============
*/
void PairEdges (void)
{
int i, j, k, n, m;
dface_t *f;
int numneighbors;
int tmpneighbor[64];
faceneighbor_t *fn;
// count number of faces that reference each vertex
for (i=0, f = g_pFaces; i<numfaces ; i++, f++)
{
for (j=0 ; j<f->numedges ; j++)
{
// Store the count in vertexref
vertexref[EdgeVertex(f,j)]++;
}
}
// allocate room
for (i = 0; i < numvertexes; i++)
{
// use the count from above to allocate a big enough array
vertexface[i] = ( int* )calloc( vertexref[i], sizeof( vertexface[0] ) );
// clear the temporary data
vertexref[i] = 0;
}
// store a list of every face that uses a particular vertex
for (i=0, f = g_pFaces ; i<numfaces ; i++, f++)
{
for (j=0 ; j<f->numedges ; j++)
{
n = EdgeVertex(f,j);
for (k = 0; k < vertexref[n]; k++)
{
if (vertexface[n][k] == i)
break;
}
if (k >= vertexref[n])
{
// add the face to the list
vertexface[n][k] = i;
vertexref[n]++;
}
}
}
// calc normals and set displacement surface flag
for (i=0, f = g_pFaces; i<numfaces ; i++, f++)
{
fn = &faceneighbor[i];
// get face normal
VectorCopy( dplanes[f->planenum].normal, fn->facenormal );
// set displacement surface flag
fn->bHasDisp = false;
if( ValidDispFace( f ) )
{
fn->bHasDisp = true;
}
}
// find neighbors
for (i=0, f = g_pFaces ; i<numfaces ; i++, f++)
{
numneighbors = 0;
fn = &faceneighbor[i];
// allocate room for vertex normals
fn->normal = ( Vector* )calloc( f->numedges, sizeof( fn->normal[0] ) );
// look up all faces sharing vertices and add them to the list
for (j=0 ; j<f->numedges ; j++)
{
n = EdgeVertex(f,j);
for (k = 0; k < vertexref[n]; k++)
{
double cos_normals_angle;
Vector *pNeighbornormal;
// skip self
if (vertexface[n][k] == i)
continue;
// if this face doens't have a displacement -- don't consider displacement neighbors
if( ( !fn->bHasDisp ) && ( faceneighbor[vertexface[n][k]].bHasDisp ) )
continue;
pNeighbornormal = &faceneighbor[vertexface[n][k]].facenormal;
cos_normals_angle = DotProduct( *pNeighbornormal, fn->facenormal );
// add normal if >= threshold or its a displacement surface (this is only if the original
// face is a displacement)
if ( fn->bHasDisp )
{
// Always smooth with and against a displacement surface.
VectorAdd( fn->normal[j], *pNeighbornormal, fn->normal[j] );
}
else
{
// No smoothing - use of method (backwards compatibility).
if ( ( f->smoothingGroups == 0 ) && ( g_pFaces[vertexface[n][k]].smoothingGroups == 0 ) )
{
if ( cos_normals_angle >= smoothing_threshold )
{
VectorAdd( fn->normal[j], *pNeighbornormal, fn->normal[j] );
}
else
{
// not considered a neighbor
continue;
}
}
else
{
unsigned int smoothingGroup = ( f->smoothingGroups & g_pFaces[vertexface[n][k]].smoothingGroups );
// Hard edge.
if ( ( smoothingGroup & SMOOTHING_GROUP_HARD_EDGE ) != 0 )
continue;
if ( smoothingGroup != 0 )
{
VectorAdd( fn->normal[j], *pNeighbornormal, fn->normal[j] );
}
else
{
// not considered a neighbor
continue;
}
}
}
// look to see if we've already added this one
for (m = 0; m < numneighbors; m++)
{
if (tmpneighbor[m] == vertexface[n][k])
break;
}
if (m >= numneighbors)
{
// add to neighbor list
tmpneighbor[m] = vertexface[n][k];
numneighbors++;
if ( numneighbors > ARRAYSIZE(tmpneighbor) )
{
Error("Stack overflow in neighbors\n");
}
}
}
}
if (numneighbors)
{
// copy over neighbor list
fn->numneighbors = numneighbors;
fn->neighbor = ( int* )calloc( numneighbors, sizeof( fn->neighbor[0] ) );
for (m = 0; m < numneighbors; m++)
{
fn->neighbor[m] = tmpneighbor[m];
}
}
// fixup normals
for (j = 0; j < f->numedges; j++)
{
VectorAdd( fn->normal[j], fn->facenormal, fn->normal[j] );
VectorNormalize( fn->normal[j] );
}
}
}
void SaveVertexNormals( void )
{
faceneighbor_t *fn;
int i, j;
dface_t *f;
CNormalList normalList;
g_numvertnormalindices = 0;
for( i = 0 ;i<numfaces ; i++ )
{
fn = &faceneighbor[i];
f = &g_pFaces[i];
for( j = 0; j < f->numedges; j++ )
{
Vector vNormal;
if( fn->normal )
{
vNormal = fn->normal[j];
}
else
{
// original faces don't have normals
vNormal.Init( 0, 0, 0 );
}
if( g_numvertnormalindices == MAX_MAP_VERTNORMALINDICES )
{
Error( "g_numvertnormalindices == MAX_MAP_VERTNORMALINDICES" );
}
g_vertnormalindices[g_numvertnormalindices] = (unsigned short)normalList.FindOrAddNormal( vNormal );
g_numvertnormalindices++;
}
}
if( normalList.m_Normals.Size() > MAX_MAP_VERTNORMALS )
{
Error( "g_numvertnormals > MAX_MAP_VERTNORMALS" );
}
// Copy the list of unique vert normals into g_vertnormals.
g_numvertnormals = normalList.m_Normals.Size();
memcpy( g_vertnormals, normalList.m_Normals.Base(), sizeof(g_vertnormals[0]) * normalList.m_Normals.Size() );
}
/*
=================================================================
LIGHTMAP SAMPLE GENERATION
=================================================================
*/
//-----------------------------------------------------------------------------
// Purpose: Spits out an error message with information about a lightinfo_t.
// Input : s - Error message string.
// l - lightmap info struct.
//-----------------------------------------------------------------------------
void ErrorLightInfo(const char *s, lightinfo_t *l)
{
texinfo_t *tex = &texinfo[l->face->texinfo];
winding_t *w = WindingFromFace(&g_pFaces[l->facenum], l->modelorg);
//
// Show the face center and material name if possible.
//
if (w != NULL)
{
// Don't exit, we'll try to recover...
Vector vecCenter;
WindingCenter(w, vecCenter);
// FreeWinding(w);
Warning("%s at (%g, %g, %g)\n\tmaterial=%s\n", s, (double)vecCenter.x, (double)vecCenter.y, (double)vecCenter.z, TexDataStringTable_GetString( dtexdata[tex->texdata].nameStringTableID ) );
}
//
// If not, just show the material name.
//
else
{
Warning("%s at (degenerate face)\n\tmaterial=%s\n", s, TexDataStringTable_GetString( dtexdata[tex->texdata].nameStringTableID ));
}
}
void CalcFaceVectors(lightinfo_t *l)
{
texinfo_t *tex;
int i, j;
tex = &texinfo[l->face->texinfo];
// move into lightinfo_t
for (i=0 ; i<2 ; i++)
{
for (j=0 ; j<3 ; j++)
{
l->worldToLuxelSpace[i][j] = tex->lightmapVecsLuxelsPerWorldUnits[i][j];
}
}
//Solve[ { x * w00 + y * w01 + z * w02 - s == 0, x * w10 + y * w11 + z * w12 - t == 0, A * x + B * y + C * z + D == 0 }, { x, y, z } ]
//Rule(x,( C*s*w11 - B*s*w12 + B*t*w02 - C*t*w01 + D*w02*w11 - D*w01*w12) / (+ A*w01*w12 - A*w02*w11 + B*w02*w10 - B*w00*w12 + C*w00*w11 - C*w01*w10 )),
//Rule(y,( A*s*w12 - C*s*w10 + C*t*w00 - A*t*w02 + D*w00*w12 - D*w02*w10) / (+ A*w01*w12 - A*w02*w11 + B*w02*w10 - B*w00*w12 + C*w00*w11 - C*w01*w10 )),
//Rule(z,( B*s*w10 - A*s*w11 + A*t*w01 - B*t*w00 + D*w01*w10 - D*w00*w11) / (+ A*w01*w12 - A*w02*w11 + B*w02*w10 - B*w00*w12 + C*w00*w11 - C*w01*w10 ))))
Vector luxelSpaceCross;
luxelSpaceCross[0] =
tex->lightmapVecsLuxelsPerWorldUnits[1][1] * tex->lightmapVecsLuxelsPerWorldUnits[0][2] -
tex->lightmapVecsLuxelsPerWorldUnits[1][2] * tex->lightmapVecsLuxelsPerWorldUnits[0][1];
luxelSpaceCross[1] =
tex->lightmapVecsLuxelsPerWorldUnits[1][2] * tex->lightmapVecsLuxelsPerWorldUnits[0][0] -
tex->lightmapVecsLuxelsPerWorldUnits[1][0] * tex->lightmapVecsLuxelsPerWorldUnits[0][2];
luxelSpaceCross[2] =
tex->lightmapVecsLuxelsPerWorldUnits[1][0] * tex->lightmapVecsLuxelsPerWorldUnits[0][1] -
tex->lightmapVecsLuxelsPerWorldUnits[1][1] * tex->lightmapVecsLuxelsPerWorldUnits[0][0];
float det = -DotProduct( l->facenormal, luxelSpaceCross );
if ( fabs( det ) < 1.0e-20 )
{
Warning(" warning - face vectors parallel to face normal. bad lighting will be produced\n" );
l->luxelOrigin = vec3_origin;
}
else
{
// invert the matrix
l->luxelToWorldSpace[0][0] = (l->facenormal[2] * l->worldToLuxelSpace[1][1] - l->facenormal[1] * l->worldToLuxelSpace[1][2]) / det;
l->luxelToWorldSpace[1][0] = (l->facenormal[1] * l->worldToLuxelSpace[0][2] - l->facenormal[2] * l->worldToLuxelSpace[0][1]) / det;
l->luxelOrigin[0] = -(l->facedist * luxelSpaceCross[0]) / det;
l->luxelToWorldSpace[0][1] = (l->facenormal[0] * l->worldToLuxelSpace[1][2] - l->facenormal[2] * l->worldToLuxelSpace[1][0]) / det;
l->luxelToWorldSpace[1][1] = (l->facenormal[2] * l->worldToLuxelSpace[0][0] - l->facenormal[0] * l->worldToLuxelSpace[0][2]) / det;
l->luxelOrigin[1] = -(l->facedist * luxelSpaceCross[1]) / det;
l->luxelToWorldSpace[0][2] = (l->facenormal[1] * l->worldToLuxelSpace[1][0] - l->facenormal[0] * l->worldToLuxelSpace[1][1]) / det;
l->luxelToWorldSpace[1][2] = (l->facenormal[0] * l->worldToLuxelSpace[0][1] - l->facenormal[1] * l->worldToLuxelSpace[0][0]) / det;
l->luxelOrigin[2] = -(l->facedist * luxelSpaceCross[2]) / det;
// adjust for luxel offset
VectorMA( l->luxelOrigin, -tex->lightmapVecsLuxelsPerWorldUnits[0][3], l->luxelToWorldSpace[0], l->luxelOrigin );
VectorMA( l->luxelOrigin, -tex->lightmapVecsLuxelsPerWorldUnits[1][3], l->luxelToWorldSpace[1], l->luxelOrigin );
}
// compensate for org'd bmodels
VectorAdd (l->luxelOrigin, l->modelorg, l->luxelOrigin);
}
winding_t *LightmapCoordWindingForFace( lightinfo_t *l )
{
int i;
winding_t *w;
w = WindingFromFace( l->face, l->modelorg );
for (i = 0; i < w->numpoints; i++)
{
Vector2D coord;
WorldToLuxelSpace( l, w->p[i], coord );
w->p[i].x = coord.x;
w->p[i].y = coord.y;
w->p[i].z = 0;
}
return w;
}
void WriteCoordWinding (FILE *out, lightinfo_t *l, winding_t *w, Vector& color )
{
int i;
Vector pos;
fprintf (out, "%i\n", w->numpoints);
for (i=0 ; i<w->numpoints ; i++)
{
LuxelSpaceToWorld( l, w->p[i][0], w->p[i][1], pos );
fprintf (out, "%5.2f %5.2f %5.2f %5.3f %5.3f %5.3f\n",
pos[0],
pos[1],
pos[2],
color[ 0 ] / 256,
color[ 1 ] / 256,
color[ 2 ] / 256 );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void DumpFaces( lightinfo_t *pLightInfo, int ndxFace )
{
static FileHandle_t out;
// get face data
faceneighbor_t *fn = &faceneighbor[ndxFace];
Vector &centroid = face_centroids[ndxFace];
// disable threading (not a multi-threadable function!)
ThreadLock();
if( !out )
{
// open the file
out = g_pFileSystem->Open( "face.txt", "w" );
if( !out )
return;
}
//
// write out face
//
for( int ndxEdge = 0; ndxEdge < pLightInfo->face->numedges; ndxEdge++ )
{
// int edge = dsurfedges[pLightInfo->face->firstedge+ndxEdge];
Vector p1, p2;
VectorAdd( dvertexes[EdgeVertex( pLightInfo->face, ndxEdge )].point, pLightInfo->modelorg, p1 );
VectorAdd( dvertexes[EdgeVertex( pLightInfo->face, ndxEdge+1 )].point, pLightInfo->modelorg, p2 );
Vector &n1 = fn->normal[ndxEdge];
Vector &n2 = fn->normal[(ndxEdge+1)%pLightInfo->face->numedges];
CmdLib_FPrintf( out, "3\n");
CmdLib_FPrintf(out, "%f %f %f %f %f %f\n", p1[0], p1[1], p1[2], n1[0] * 0.5 + 0.5, n1[1] * 0.5 + 0.5, n1[2] * 0.5 + 0.5 );
CmdLib_FPrintf(out, "%f %f %f %f %f %f\n", p2[0], p2[1], p2[2], n2[0] * 0.5 + 0.5, n2[1] * 0.5 + 0.5, n2[2] * 0.5 + 0.5 );
CmdLib_FPrintf(out, "%f %f %f %f %f %f\n", centroid[0] + pLightInfo->modelorg[0],
centroid[1] + pLightInfo->modelorg[1],
centroid[2] + pLightInfo->modelorg[2],
fn->facenormal[0] * 0.5 + 0.5,
fn->facenormal[1] * 0.5 + 0.5,
fn->facenormal[2] * 0.5 + 0.5 );
}
// enable threading
ThreadUnlock();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool BuildFacesamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight )
{
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// ratio of world area / lightmap area
texinfo_t *pTex = &texinfo[pLightInfo->face->texinfo];
pFaceLight->worldAreaPerLuxel = 1.0 / ( sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[0],
pTex->lightmapVecsLuxelsPerWorldUnits[0] ) ) *
sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[1],
pTex->lightmapVecsLuxelsPerWorldUnits[1] ) ) );
//
// quickly create samples and luxels (copy over samples)
//
pFaceLight->numsamples = width * height;
pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) );
if( !pFaceLight->sample )
return false;
pFaceLight->numluxels = width * height;
pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) );
if( !pFaceLight->luxel )
return false;
sample_t *pSamples = pFaceLight->sample;
Vector *pLuxels = pFaceLight->luxel;
for( int t = 0; t < height; t++ )
{
for( int s = 0; s < width; s++ )
{
pSamples->s = s;
pSamples->t = t;
pSamples->coord[0] = s;
pSamples->coord[1] = t;
// unused but initialized anyway
pSamples->mins[0] = s - 0.5;
pSamples->mins[1] = t - 0.5;
pSamples->maxs[0] = s + 0.5;
pSamples->maxs[1] = t + 0.5;
pSamples->area = pFaceLight->worldAreaPerLuxel;
LuxelSpaceToWorld( pLightInfo, pSamples->coord[0], pSamples->coord[1], pSamples->pos );
VectorCopy( pSamples->pos, *pLuxels );
pSamples++;
pLuxels++;
}
}
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool BuildSamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// build samples for a "face"
if( pLightInfo->face->dispinfo == -1 )
{
return BuildFacesamplesAndLuxels_DoFast( pLightInfo, pFaceLight );
}
// build samples for a "displacement"
else
{
return StaticDispMgr()->BuildDispSamplesAndLuxels_DoFast( pLightInfo, pFaceLight, ndxFace );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool BuildFacesamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight )
{
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// ratio of world area / lightmap area
texinfo_t *pTex = &texinfo[pLightInfo->face->texinfo];
pFaceLight->worldAreaPerLuxel = 1.0 / ( sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[0],
pTex->lightmapVecsLuxelsPerWorldUnits[0] ) ) *
sqrt( DotProduct( pTex->lightmapVecsLuxelsPerWorldUnits[1],
pTex->lightmapVecsLuxelsPerWorldUnits[1] ) ) );
// allocate a large number of samples for creation -- get copied later!
CUtlVector<sample_t> sampleData;
sampleData.SetCount( SINGLE_BRUSH_MAP * 2 );
sample_t *samples = sampleData.Base();
sample_t *pSamples = samples;
// lightmap space winding
winding_t *pLightmapWinding = LightmapCoordWindingForFace( pLightInfo );
//
// build vector pointing along the lightmap cutting planes
//
Vector sNorm( 1.0f, 0.0f, 0.0f );
Vector tNorm( 0.0f, 1.0f, 0.0f );
// sample center offset
float sampleOffset = ( do_centersamples ) ? 0.5 : 1.0;
//
// clip the lightmap "spaced" winding by the lightmap cutting planes
//
winding_t *pWindingT1, *pWindingT2;
winding_t *pWindingS1, *pWindingS2;
float dist;
for( int t = 0; t < height && pLightmapWinding; t++ )
{
dist = t + sampleOffset;
// lop off a sample in the t dimension
// hack - need a separate epsilon for lightmap space since ON_EPSILON is for texture space
ClipWindingEpsilon( pLightmapWinding, tNorm, dist, ON_EPSILON / 16.0f, &pWindingT1, &pWindingT2 );
for( int s = 0; s < width && pWindingT2; s++ )
{
dist = s + sampleOffset;
// lop off a sample in the s dimension, and put it in ws2
// hack - need a separate epsilon for lightmap space since ON_EPSILON is for texture space
ClipWindingEpsilon( pWindingT2, sNorm, dist, ON_EPSILON / 16.0f, &pWindingS1, &pWindingS2 );
//
// s2 winding is a single sample worth of winding
//
if( pWindingS2 )
{
// save the s, t positions
pSamples->s = s;
pSamples->t = t;
// get the lightmap space area of ws2 and convert to world area
// and find the center (then convert it to 2D)
Vector center;
pSamples->area = WindingAreaAndBalancePoint( pWindingS2, center ) * pFaceLight->worldAreaPerLuxel;
pSamples->coord[0] = center.x;
pSamples->coord[1] = center.y;
// find winding bounds (then convert it to 2D)
Vector minbounds, maxbounds;
WindingBounds( pWindingS2, minbounds, maxbounds );
pSamples->mins[0] = minbounds.x;
pSamples->mins[1] = minbounds.y;
pSamples->maxs[0] = maxbounds.x;
pSamples->maxs[1] = maxbounds.y;
// convert from lightmap space to world space
LuxelSpaceToWorld( pLightInfo, pSamples->coord[0], pSamples->coord[1], pSamples->pos );
if (g_bDumpPatches || (do_extra && pSamples->area < pFaceLight->worldAreaPerLuxel - EQUAL_EPSILON))
{
//
// convert the winding from lightmaps space to world for debug rendering and sub-sampling
//
Vector worldPos;
for( int ndxPt = 0; ndxPt < pWindingS2->numpoints; ndxPt++ )
{
LuxelSpaceToWorld( pLightInfo, pWindingS2->p[ndxPt].x, pWindingS2->p[ndxPt].y, worldPos );
VectorCopy( worldPos, pWindingS2->p[ndxPt] );
}
pSamples->w = pWindingS2;
}
else
{
// winding isn't needed, free it.
pSamples->w = NULL;
FreeWinding( pWindingS2 );
}
pSamples++;
}
//
// if winding T2 still exists free it and set it equal S1 (the rest of the row minus the sample just created)
//
if( pWindingT2 )
{
FreeWinding( pWindingT2 );
}
// clip the rest of "s"
pWindingT2 = pWindingS1;
}
//
// if the original lightmap winding exists free it and set it equal to T1 (the rest of the winding not cut into samples)
//
if( pLightmapWinding )
{
FreeWinding( pLightmapWinding );
}
if( pWindingT2 )
{
FreeWinding( pWindingT2 );
}
pLightmapWinding = pWindingT1;
}
//
// copy over samples
//
pFaceLight->numsamples = pSamples - samples;
pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) );
if( !pFaceLight->sample )
return false;
memcpy( pFaceLight->sample, samples, pFaceLight->numsamples * sizeof( *pFaceLight->sample ) );
// supply a default sample normal (face normal - assumed flat)
for( int ndxSample = 0; ndxSample < pFaceLight->numsamples; ndxSample++ )
{
Assert ( VectorLength ( pLightInfo->facenormal ) > 1.0e-20);
pFaceLight->sample[ndxSample].normal = pLightInfo->facenormal;
}
// statistics - warning?!
if( pFaceLight->numsamples == 0 )
{
Msg( "no samples %d\n", pLightInfo->face - g_pFaces );
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Free any windings used by this facelight. It's currently assumed they're not needed again
//-----------------------------------------------------------------------------
void FreeSampleWindings( facelight_t *fl )
{
int i;
for (i = 0; i < fl->numsamples; i++)
{
if (fl->sample[i].w)
{
FreeWinding( fl->sample[i].w );
fl->sample[i].w = NULL;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: build the sample data for each lightmapped primitive type
//-----------------------------------------------------------------------------
bool BuildSamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// build samples for a "face"
if( pLightInfo->face->dispinfo == -1 )
{
return BuildFacesamples( pLightInfo, pFaceLight );
}
// build samples for a "displacement"
else
{
return StaticDispMgr()->BuildDispSamples( pLightInfo, pFaceLight, ndxFace );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool BuildFaceLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight )
{
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calcuate actual luxel points
pFaceLight->numluxels = width * height;
pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) );
if( !pFaceLight->luxel )
return false;
for( int t = 0; t < height; t++ )
{
for( int s = 0; s < width; s++ )
{
LuxelSpaceToWorld( pLightInfo, s, t, pFaceLight->luxel[s+t*width] );
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: build the luxels (find the luxel centers) for each lightmapped
// primitive type
//-----------------------------------------------------------------------------
bool BuildLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// build luxels for a "face"
if( pLightInfo->face->dispinfo == -1 )
{
return BuildFaceLuxels( pLightInfo, pFaceLight );
}
// build luxels for a "displacement"
else
{
return StaticDispMgr()->BuildDispLuxels( pLightInfo, pFaceLight, ndxFace );
}
}
//-----------------------------------------------------------------------------
// Purpose: for each face, find the center of each luxel; for each texture
// aligned grid point, back project onto the plane and get the world
// xyz value of the sample point
// NOTE: ndxFace = facenum
//-----------------------------------------------------------------------------
void CalcPoints( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// debugging!
if( g_bDumpPatches )
{
DumpFaces( pLightInfo, ndxFace );
}
// quick and dirty!
if( do_fast )
{
if( !BuildSamplesAndLuxels_DoFast( pLightInfo, pFaceLight, ndxFace ) )
{
Msg( "Face %d: (Fast)Error Building Samples and Luxels\n", ndxFace );
}
return;
}
// build the samples
if( !BuildSamples( pLightInfo, pFaceLight, ndxFace ) )
{
Msg( "Face %d: Error Building Samples\n", ndxFace );
}
// build the luxels
if( !BuildLuxels( pLightInfo, pFaceLight, ndxFace ) )
{
Msg( "Face %d: Error Building Luxels\n", ndxFace );
}
}
//==============================================================
directlight_t *activelights;
directlight_t *freelights;
facelight_t facelight[MAX_MAP_FACES];
int numdlights;
/*
==================
FindTargetEntity
==================
*/
entity_t *FindTargetEntity (char *target)
{
int i;
char *n;
for (i=0 ; i<num_entities ; i++)
{
n = ValueForKey (&entities[i], "targetname");
if (!strcmp (n, target))
return &entities[i];
}
return NULL;
}
/*
=============
AllocDLight
=============
*/
int GetVisCache( int lastoffset, int cluster, byte *pvs );
void SetDLightVis( directlight_t *dl, int cluster );
void MergeDLightVis( directlight_t *dl, int cluster );
directlight_t *AllocDLight( Vector& origin, bool bAddToList )
{
directlight_t *dl;
dl = ( directlight_t* )calloc(1, sizeof(directlight_t));
dl->index = numdlights++;
VectorCopy( origin, dl->light.origin );
dl->light.cluster = ClusterFromPoint(dl->light.origin);
SetDLightVis( dl, dl->light.cluster );
dl->facenum = -1;
if ( bAddToList )
{
dl->next = activelights;
activelights = dl;
}
return dl;
}
void AddDLightToActiveList( directlight_t *dl )
{
dl->next = activelights;
activelights = dl;
}
void FreeDLights()
{
gSkyLight = NULL;
gAmbient = NULL;
directlight_t *pNext;
for( directlight_t *pCur=activelights; pCur; pCur=pNext )
{
pNext = pCur->next;
free( pCur );
}
activelights = 0;
}
void SetDLightVis( directlight_t *dl, int cluster )
{
if (dl->pvs == NULL)
{
dl->pvs = (byte *)calloc( 1, (dvis->numclusters / 8) + 1 );
}
GetVisCache( -1, cluster, dl->pvs );
}
void MergeDLightVis( directlight_t *dl, int cluster )
{
if (dl->pvs == NULL)
{
SetDLightVis( dl, cluster );
}
else
{
byte pvs[MAX_MAP_CLUSTERS/8];
GetVisCache( -1, cluster, pvs );
// merge both vis graphs
for (int i = 0; i < (dvis->numclusters / 8) + 1; i++)
{
dl->pvs[i] |= pvs[i];
}
}
}
/*
=============
LightForKey
=============
*/
int LightForKey (entity_t *ent, char *key, Vector& intensity )
{
char *pLight;
pLight = ValueForKey( ent, key );
return LightForString( pLight, intensity );
}
int LightForString( char *pLight, Vector& intensity )
{
double r, g, b, scaler;
int argCnt;
VectorFill( intensity, 0 );
// scanf into doubles, then assign, so it is vec_t size independent
r = g = b = scaler = 0;
double r_hdr,g_hdr,b_hdr,scaler_hdr;
argCnt = sscanf ( pLight, "%lf %lf %lf %lf %lf %lf %lf %lf",
&r, &g, &b, &scaler, &r_hdr,&g_hdr,&b_hdr,&scaler_hdr );
if (argCnt==8) // 2 4-tuples
{
if (g_bHDR)
{
r=r_hdr;
g=g_hdr;
b=b_hdr;
scaler=scaler_hdr;
}
argCnt=4;
}
// make sure light is legal
if( r < 0.0f || g < 0.0f || b < 0.0f || scaler < 0.0f )
{
intensity.Init( 0.0f, 0.0f, 0.0f );
return false;
}
intensity[0] = pow( r / 255.0, 2.2 ) * 255; // convert to linear
switch( argCnt)
{
case 1:
// The R,G,B values are all equal.
intensity[1] = intensity[2] = intensity[0];
break;
case 3:
case 4:
// Save the other two G,B values.
intensity[1] = pow( g / 255.0, 2.2 ) * 255;
intensity[2] = pow( b / 255.0, 2.2 ) * 255;
// Did we also get an "intensity" scaler value too?
if ( argCnt == 4 )
{
// Scale the normalized 0-255 R,G,B values by the intensity scaler
VectorScale( intensity, scaler / 255.0, intensity );
}
break;
default:
printf("unknown light specifier type - %s\n",pLight);
return false;
}
// scale up source lights by scaling factor
VectorScale( intensity, lightscale, intensity );
return true;
}
//-----------------------------------------------------------------------------
// Various parsing methods
//-----------------------------------------------------------------------------
static void ParseLightGeneric( entity_t *e, directlight_t *dl )
{
entity_t *e2;
char *target;
Vector dest;
dl->light.style = (int)FloatForKey (e, "style");
// get intenfsity
if( g_bHDR && LightForKey( e, "_lightHDR", dl->light.intensity ) )
{
}
else
{
LightForKey( e, "_light", dl->light.intensity );
}
// check angle, targets
target = ValueForKey (e, "target");
if (target[0])
{ // point towards target
e2 = FindTargetEntity (target);
if (!e2)
Warning("WARNING: light at (%i %i %i) has missing target\n",
(int)dl->light.origin[0], (int)dl->light.origin[1], (int)dl->light.origin[2]);
else
{
GetVectorForKey (e2, "origin", dest);
VectorSubtract (dest, dl->light.origin, dl->light.normal);
VectorNormalize (dl->light.normal);
}
}
else
{
// point down angle
Vector angles;
GetVectorForKey( e, "angles", angles );
float pitch = FloatForKey (e, "pitch");
float angle = FloatForKey (e, "angle");
SetupLightNormalFromProps( QAngle( angles.x, angles.y, angles.z ), angle, pitch, dl->light.normal );
}
if ( g_bHDR )
VectorScale( dl->light.intensity,
FloatForKeyWithDefault( e, "_lightscaleHDR", 1.0 ),
dl->light.intensity );
}
static void SetLightFalloffParams( entity_t * e, directlight_t * dl )
{
float d50=FloatForKey( e, "_fifty_percent_distance" );
dl->m_flStartFadeDistance = 0;
dl->m_flEndFadeDistance = - 1;
dl->m_flCapDist = 1.0e22;
if ( d50 )
{
float d0 = FloatForKey( e, "_zero_percent_distance" );
if ( d0 < d50 )
{
Warning( "light has _fifty_percent_distance of %f but _zero_percent_distance of %f\n", d50, d0);
d0 = 2.0 * d50;
}
float a = 0, b = 1, c = 0;
if ( ! SolveInverseQuadraticMonotonic( 0, 1.0, d50, 2.0, d0, 256.0, a, b, c ))
{
Warning( "can't solve quadratic for light %f %f\n", d50, d0 );
}
// it it possible that the parameters couldn't be used because of enforing monoticity. If so, rescale so at
// least the 50 percent value is right
// printf("50 percent=%f 0 percent=%f\n",d50,d0);
// printf("a=%f b=%f c=%f\n",a,b,c);
float v50 = c + d50 * ( b + d50 * a );
float scale = 2.0 / v50;
a *= scale;
b *= scale;
c *= scale;
// printf("scaled=%f a=%f b=%f c=%f\n",scale,a,b,c);
// for(float d=0;d<1000;d+=20)
// printf("at %f, %f\n",d,1.0/(c+d*(b+d*a)));
dl->light.quadratic_attn = a;
dl->light.linear_attn = b;
dl->light.constant_attn = c;
if ( IntForKey(e, "_hardfalloff" ) )
{
dl->m_flEndFadeDistance = d0;
dl->m_flStartFadeDistance = 0.75 * d0 + 0.25 * d50; // start fading 3/4 way between 50 and 0. could allow adjust
}
else
{
// now, we will find the point at which the 1/x term reaches its maximum value, and
// prevent the light from going past there. If a user specifes an extreme falloff, the
// quadratic will start making the light brighter at some distance. We handle this by
// fading it from the minimum brightess point down to zero at 10x the minimum distance
if ( fabs( a ) > 0. )
{
float flMax = b / ( - 2.0 * a ); // where f' = 0
if ( flMax > 0.0 )
{
dl->m_flCapDist = flMax;
dl->m_flStartFadeDistance = flMax;
dl->m_flEndFadeDistance = 10.0 * flMax;
}
}
}
}
else
{
dl->light.constant_attn = FloatForKey (e, "_constant_attn" );
dl->light.linear_attn = FloatForKey (e, "_linear_attn" );
dl->light.quadratic_attn = FloatForKey (e, "_quadratic_attn" );
dl->light.radius = FloatForKey (e, "_distance");
// clamp values to >= 0
if ( dl->light.constant_attn < EQUAL_EPSILON )
dl->light.constant_attn = 0;
if ( dl->light.linear_attn < EQUAL_EPSILON )
dl->light.linear_attn = 0;
if ( dl->light.quadratic_attn < EQUAL_EPSILON )
dl->light.quadratic_attn = 0;
if ( dl->light.constant_attn < EQUAL_EPSILON && dl->light.linear_attn < EQUAL_EPSILON && dl->light.quadratic_attn < EQUAL_EPSILON )
dl->light.constant_attn = 1;
// scale intensity for unit 100 distance
float ratio = ( dl->light.constant_attn + 100 * dl->light.linear_attn + 100 * 100 * dl->light.quadratic_attn );
if ( ratio > 0 )
{
VectorScale( dl->light.intensity, ratio, dl->light.intensity );
}
}
}
static void ParseLightSpot( entity_t* e, directlight_t* dl )
{
Vector dest;
GetVectorForKey (e, "origin", dest );
dl = AllocDLight( dest, true );
ParseLightGeneric( e, dl );
dl->light.type = emit_spotlight;
dl->light.stopdot = FloatForKey (e, "_inner_cone");
if (!dl->light.stopdot)
dl->light.stopdot = 10;
dl->light.stopdot2 = FloatForKey (e, "_cone");
if (!dl->light.stopdot2)
dl->light.stopdot2 = dl->light.stopdot;
if (dl->light.stopdot2 < dl->light.stopdot)
dl->light.stopdot2 = dl->light.stopdot;
// This is a point light if stop dots are 180...
if ((dl->light.stopdot == 180) && (dl->light.stopdot2 == 180))
{
dl->light.stopdot = dl->light.stopdot2 = 0;
dl->light.type = emit_point;
dl->light.exponent = 0;
}
else
{
// Clamp to 90, that's all DX8 can handle!
if (dl->light.stopdot > 90)
{
Warning("WARNING: light_spot at (%i %i %i) has inner angle larger than 90 degrees! Clamping to 90...\n",
(int)dl->light.origin[0], (int)dl->light.origin[1], (int)dl->light.origin[2]);
dl->light.stopdot = 90;
}
if (dl->light.stopdot2 > 90)
{
Warning("WARNING: light_spot at (%i %i %i) has outer angle larger than 90 degrees! Clamping to 90...\n",
(int)dl->light.origin[0], (int)dl->light.origin[1], (int)dl->light.origin[2]);
dl->light.stopdot2 = 90;
}
dl->light.stopdot2 = (float)cos(dl->light.stopdot2/180*M_PI);
dl->light.stopdot = (float)cos(dl->light.stopdot/180*M_PI);
dl->light.exponent = FloatForKey (e, "_exponent");
}
SetLightFalloffParams(e,dl);
}
// NOTE: This is just a heuristic. It traces a finite number of rays to find sky
// NOTE: Full vis is necessary to make this 100% correct.
bool CanLeafTraceToSky( int iLeaf )
{
// UNDONE: Really want a point inside the leaf here. Center is a guess, may not be in the leaf
// UNDONE: Clip this to each plane bounding the leaf to guarantee
Vector center = vec3_origin;
for ( int i = 0; i < 3; i++ )
{
center[i] = ( (float)(dleafs[iLeaf].mins[i] + dleafs[iLeaf].maxs[i]) ) * 0.5f;
}
FourVectors center4, delta;
fltx4 fractionVisible;
for ( int j = 0; j < NUMVERTEXNORMALS; j+=4 )
{
// search back to see if we can hit a sky brush
delta.LoadAndSwizzle( g_anorms[j], g_anorms[min( j+1, NUMVERTEXNORMALS-1 )],
g_anorms[min( j+2, NUMVERTEXNORMALS-1 )], g_anorms[min( j+3, NUMVERTEXNORMALS-1 )] );
delta *= -MAX_TRACE_LENGTH;
delta += center4;
// return true if any hits sky
TestLine_DoesHitSky ( center4, delta, &fractionVisible );
if ( TestSignSIMD ( CmpGtSIMD ( fractionVisible, Four_Zeros ) ) )
return true;
}
return false;
}
void BuildVisForLightEnvironment( void )
{
// Create the vis.
for ( int iLeaf = 0; iLeaf < numleafs; ++iLeaf )
{
dleafs[iLeaf].flags &= ~( LEAF_FLAGS_SKY | LEAF_FLAGS_SKY2D );
unsigned int iFirstFace = dleafs[iLeaf].firstleafface;
for ( int iLeafFace = 0; iLeafFace < dleafs[iLeaf].numleaffaces; ++iLeafFace )
{
unsigned int iFace = dleaffaces[iFirstFace+iLeafFace];
texinfo_t &tex = texinfo[g_pFaces[iFace].texinfo];
if ( tex.flags & SURF_SKY )
{
if ( tex.flags & SURF_SKY2D )
{
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY2D;
}
else
{
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY;
}
MergeDLightVis( gSkyLight, dleafs[iLeaf].cluster );
MergeDLightVis( gAmbient, dleafs[iLeaf].cluster );
break;
}
}
}
// Second pass to set flags on leaves that don't contain sky, but touch leaves that
// contain sky.
byte pvs[MAX_MAP_CLUSTERS / 8];
int nLeafBytes = (numleafs >> 3) + 1;
unsigned char *pLeafBits = (unsigned char *)stackalloc( nLeafBytes * sizeof(unsigned char) );
unsigned char *pLeaf2DBits = (unsigned char *)stackalloc( nLeafBytes * sizeof(unsigned char) );
memset( pLeafBits, 0, nLeafBytes );
memset( pLeaf2DBits, 0, nLeafBytes );
for ( int iLeaf = 0; iLeaf < numleafs; ++iLeaf )
{
// If this leaf has light (3d skybox) in it, then don't bother
if ( dleafs[iLeaf].flags & LEAF_FLAGS_SKY )
continue;
// Don't bother with this leaf if it's solid
if ( dleafs[iLeaf].contents & CONTENTS_SOLID )
continue;
// See what other leaves are visible from this leaf
GetVisCache( -1, dleafs[iLeaf].cluster, pvs );
// Now check out all other leaves
int nByte = iLeaf >> 3;
int nBit = 1 << ( iLeaf & 0x7 );
for ( int iLeaf2 = 0; iLeaf2 < numleafs; ++iLeaf2 )
{
if ( iLeaf2 == iLeaf )
continue;
if ( !(dleafs[iLeaf2].flags & ( LEAF_FLAGS_SKY | LEAF_FLAGS_SKY2D ) ) )
continue;
// Can this leaf see into the leaf with the sky in it?
if ( !PVSCheck( pvs, dleafs[iLeaf2].cluster ) )
continue;
if ( dleafs[iLeaf2].flags & LEAF_FLAGS_SKY2D )
{
pLeaf2DBits[ nByte ] |= nBit;
}
if ( dleafs[iLeaf2].flags & LEAF_FLAGS_SKY )
{
pLeafBits[ nByte ] |= nBit;
// As soon as we know this leaf needs to draw the 3d skybox, we're done
break;
}
}
}
// Must set the bits in a separate pass so as to not flood-fill LEAF_FLAGS_SKY everywhere
// pLeafbits is a bit array of all leaves that need to be marked as seeing sky
for ( int iLeaf = 0; iLeaf < numleafs; ++iLeaf )
{
// If this leaf has light (3d skybox) in it, then don't bother
if ( dleafs[iLeaf].flags & LEAF_FLAGS_SKY )
continue;
// Don't bother with this leaf if it's solid
if ( dleafs[iLeaf].contents & CONTENTS_SOLID )
continue;
// Check to see if this is a 2D skybox leaf
if ( pLeaf2DBits[ iLeaf >> 3 ] & (1 << ( iLeaf & 0x7 )) )
{
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY2D;
}
// If this is a 3D skybox leaf, then we don't care if it was previously a 2D skybox leaf
if ( pLeafBits[ iLeaf >> 3 ] & (1 << ( iLeaf & 0x7 )) )
{
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY;
dleafs[iLeaf].flags &= ~LEAF_FLAGS_SKY2D;
}
else
{
// if radial vis was used on this leaf some of the portals leading
// to sky may have been culled. Try tracing to find sky.
if ( dleafs[iLeaf].flags & LEAF_FLAGS_RADIAL )
{
if ( CanLeafTraceToSky(iLeaf) )
{
// FIXME: Should make a version that checks if we hit 2D skyboxes.. oh well.
dleafs[iLeaf].flags |= LEAF_FLAGS_SKY;
}
}
}
}
}
static char *ValueForKeyWithDefault (entity_t *ent, char *key, char *default_value = NULL)
{
epair_t *ep;
for (ep=ent->epairs ; ep ; ep=ep->next)
if (!strcmp (ep->key, key) )
return ep->value;
return default_value;
}
static void ParseLightEnvironment( entity_t* e, directlight_t* dl )
{
Vector dest;
GetVectorForKey (e, "origin", dest );
dl = AllocDLight( dest, false );
ParseLightGeneric( e, dl );
char *angle_str=ValueForKeyWithDefault( e, "SunSpreadAngle" );
if (angle_str)
{
g_SunAngularExtent=atof(angle_str);
g_SunAngularExtent=sin((M_PI/180.0)*g_SunAngularExtent);
printf("sun extent from map=%f\n",g_SunAngularExtent);
}
if ( !gSkyLight )
{
// Sky light.
gSkyLight = dl;
dl->light.type = emit_skylight;
// Sky ambient light.
gAmbient = AllocDLight( dl->light.origin, false );
gAmbient->light.type = emit_skyambient;
if( g_bHDR && LightForKey( e, "_ambientHDR", gAmbient->light.intensity ) )
{
// we have a valid HDR ambient light value
}
else if ( !LightForKey( e, "_ambient", gAmbient->light.intensity ) )
{
VectorScale( dl->light.intensity, 0.5, gAmbient->light.intensity );
}
if ( g_bHDR )
{
VectorScale( gAmbient->light.intensity,
FloatForKeyWithDefault( e, "_AmbientScaleHDR", 1.0 ),
gAmbient->light.intensity );
}
BuildVisForLightEnvironment();
// Add sky and sky ambient lights to the list.
AddDLightToActiveList( gSkyLight );
AddDLightToActiveList( gAmbient );
}
}
static void ParseLightPoint( entity_t* e, directlight_t* dl )
{
Vector dest;
GetVectorForKey (e, "origin", dest );
dl = AllocDLight( dest, true );
ParseLightGeneric( e, dl );
dl->light.type = emit_point;
SetLightFalloffParams(e,dl);
}
/*
=============
CreateDirectLights
=============
*/
#define DIRECT_SCALE (100.0*100.0)
void CreateDirectLights (void)
{
unsigned i;
CPatch *p = NULL;
directlight_t *dl = NULL;
entity_t *e = NULL;
char *name;
Vector dest;
numdlights = 0;
FreeDLights();
//
// surfaces
//
unsigned int uiPatchCount = g_Patches.Count();
for (i=0; i< uiPatchCount; i++)
{
p = &g_Patches.Element( i );
// skip parent patches
if (p->child1 != g_Patches.InvalidIndex() )
continue;
if (p->basearea < 1e-6)
continue;
if( VectorAvg( p->baselight ) >= dlight_threshold )
{
dl = AllocDLight( p->origin, true );
dl->light.type = emit_surface;
VectorCopy (p->normal, dl->light.normal);
Assert( VectorLength( p->normal ) > 1.0e-20 );
// scale intensity by number of texture instances
VectorScale( p->baselight, lightscale * p->area * p->scale[0] * p->scale[1] / p->basearea, dl->light.intensity );
// scale to a range that results in actual light
VectorScale( dl->light.intensity, DIRECT_SCALE, dl->light.intensity );
}
}
//
// entities
//
for (i=0 ; i<(unsigned)num_entities ; i++)
{
e = &entities[i];
name = ValueForKey (e, "classname");
if (strncmp (name, "light", 5))
continue;
// Light_dynamic is actually a real entity; not to be included here...
if (!strcmp (name, "light_dynamic"))
continue;
if (!strcmp (name, "light_spot"))
{
ParseLightSpot( e, dl );
}
else if (!strcmp(name, "light_environment"))
{
ParseLightEnvironment( e, dl );
}
else if (!strcmp(name, "light"))
{
ParseLightPoint( e, dl );
}
else
{
qprintf( "unsupported light entity: \"%s\"\n", name );
}
}
qprintf ("%i direct lights\n", numdlights);
// exit(1);
}
/*
=============
ExportDirectLightsToWorldLights
=============
*/
void ExportDirectLightsToWorldLights()
{
directlight_t *dl;
// In case the level has already been VRADed.
*pNumworldlights = 0;
for (dl = activelights; dl != NULL; dl = dl->next )
{
dworldlight_t *wl = &dworldlights[(*pNumworldlights)++];
if (*pNumworldlights > MAX_MAP_WORLDLIGHTS)
{
Error("too many lights %d / %d\n", *pNumworldlights, MAX_MAP_WORLDLIGHTS );
}
wl->cluster = dl->light.cluster;
wl->type = dl->light.type;
wl->style = dl->light.style;
VectorCopy( dl->light.origin, wl->origin );
// FIXME: why does vrad want 0 to 255 and not 0 to 1??
VectorScale( dl->light.intensity, (1.0 / 255.0), wl->intensity );
VectorCopy( dl->light.normal, wl->normal );
wl->stopdot = dl->light.stopdot;
wl->stopdot2 = dl->light.stopdot2;
wl->exponent = dl->light.exponent;
wl->radius = dl->light.radius;
wl->constant_attn = dl->light.constant_attn;
wl->linear_attn = dl->light.linear_attn;
wl->quadratic_attn = dl->light.quadratic_attn;
wl->flags = 0;
}
}
/*
=============
GatherSampleLight
=============
*/
#define NORMALFORMFACTOR 40.156979 // accumuated dot products for hemisphere
#define CONSTANT_DOT (.7/2)
#define NSAMPLES_SUN_AREA_LIGHT 30 // number of samples to take for an
// non-point sun light
// Helper function - gathers light from sun (emit_skylight)
void GatherSampleSkyLightSSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
int nLFlags, int static_prop_index_to_ignore,
float flEpsilon )
{
bool bIgnoreNormals = ( nLFlags & GATHERLFLAGS_IGNORE_NORMALS ) != 0;
bool force_fast = ( nLFlags & GATHERLFLAGS_FORCE_FAST ) != 0;
fltx4 dot;
if ( bIgnoreNormals )
dot = ReplicateX4( CONSTANT_DOT );
else
dot = NegSIMD( pNormals[0] * dl->light.normal );
dot = MaxSIMD( dot, Four_Zeros );
int zeroMask = TestSignSIMD ( CmpEqSIMD( dot, Four_Zeros ) );
if (zeroMask == 0xF)
return;
int nsamples = 1;
if ( g_SunAngularExtent > 0.0f )
{
nsamples = NSAMPLES_SUN_AREA_LIGHT;
if ( do_fast || force_fast )
nsamples /= 4;
}
fltx4 totalFractionVisible = Four_Zeros;
fltx4 fractionVisible = Four_Zeros;
DirectionalSampler_t sampler;
for ( int d = 0; d < nsamples; d++ )
{
// determine visibility of skylight
// serach back to see if we can hit a sky brush
Vector delta;
VectorScale( dl->light.normal, -MAX_TRACE_LENGTH, delta );
if ( d )
{
// jitter light source location
Vector ofs = sampler.NextValue();
ofs *= MAX_TRACE_LENGTH * g_SunAngularExtent;
delta += ofs;
}
FourVectors delta4;
delta4.DuplicateVector ( delta );
delta4 += pos;
TestLine_DoesHitSky ( pos, delta4, &fractionVisible, true, static_prop_index_to_ignore );
totalFractionVisible = AddSIMD ( totalFractionVisible, fractionVisible );
}
fltx4 seeAmount = MulSIMD ( totalFractionVisible, ReplicateX4 ( 1.0f / nsamples ) );
out.m_flDot[0] = MulSIMD ( dot, seeAmount );
out.m_flFalloff = Four_Ones;
out.m_flSunAmount = MulSIMD ( seeAmount, ReplicateX4( 10000.0f ) );
for ( int i = 1; i < normalCount; i++ )
{
if ( bIgnoreNormals )
out.m_flDot[i] = ReplicateX4 ( CONSTANT_DOT );
else
{
out.m_flDot[i] = NegSIMD( pNormals[i] * dl->light.normal );
out.m_flDot[i] = MulSIMD( out.m_flDot[i], seeAmount );
}
}
}
// Helper function - gathers light from ambient sky light
void GatherSampleAmbientSkySSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
int nLFlags, int static_prop_index_to_ignore,
float flEpsilon )
{
bool bIgnoreNormals = ( nLFlags & GATHERLFLAGS_IGNORE_NORMALS ) != 0;
bool force_fast = ( nLFlags & GATHERLFLAGS_FORCE_FAST ) != 0;
fltx4 sumdot = Four_Zeros;
fltx4 ambient_intensity[NUM_BUMP_VECTS+1];
fltx4 possibleHitCount[NUM_BUMP_VECTS+1];
fltx4 dots[NUM_BUMP_VECTS+1];
for ( int i = 0; i < normalCount; i++ )
{
ambient_intensity[i] = Four_Zeros;
possibleHitCount[i] = Four_Zeros;
}
DirectionalSampler_t sampler;
int nsky_samples = NUMVERTEXNORMALS;
if (do_fast || force_fast )
nsky_samples /= 4;
else
nsky_samples *= g_flSkySampleScale;
for (int j = 0; j < nsky_samples; j++)
{
FourVectors anorm;
anorm.DuplicateVector( sampler.NextValue() );
if ( bIgnoreNormals )
dots[0] = ReplicateX4( CONSTANT_DOT );
else
dots[0] = NegSIMD( pNormals[0] * anorm );
fltx4 validity = CmpGtSIMD( dots[0], ReplicateX4( EQUAL_EPSILON ) );
// No possibility of anybody getting lit
if ( !TestSignSIMD( validity ) )
continue;
dots[0] = AndSIMD( validity, dots[0] );
sumdot = AddSIMD( dots[0], sumdot );
possibleHitCount[0] = AddSIMD( AndSIMD( validity, Four_Ones ), possibleHitCount[0] );
for ( int i = 1; i < normalCount; i++ )
{
if ( bIgnoreNormals )
dots[i] = ReplicateX4( CONSTANT_DOT );
else
dots[i] = NegSIMD( pNormals[i] * anorm );
fltx4 validity2 = CmpGtSIMD( dots[i], ReplicateX4 ( EQUAL_EPSILON ) );
dots[i] = AndSIMD( validity2, dots[i] );
possibleHitCount[i] = AddSIMD( AndSIMD( AndSIMD( validity, validity2 ), Four_Ones ), possibleHitCount[i] );
}
// search back to see if we can hit a sky brush
FourVectors delta = anorm;
delta *= -MAX_TRACE_LENGTH;
delta += pos;
FourVectors surfacePos = pos;
FourVectors offset = anorm;
offset *= -flEpsilon;
surfacePos -= offset;
fltx4 fractionVisible = Four_Ones;
TestLine_DoesHitSky( surfacePos, delta, &fractionVisible, true, static_prop_index_to_ignore );
for ( int i = 0; i < normalCount; i++ )
{
fltx4 addedAmount = MulSIMD( fractionVisible, dots[i] );
ambient_intensity[i] = AddSIMD( ambient_intensity[i], addedAmount );
}
}
out.m_flFalloff = Four_Ones;
for ( int i = 0; i < normalCount; i++ )
{
// now scale out the missing parts of the hemisphere of this bump basis vector
fltx4 factor = ReciprocalSIMD( possibleHitCount[0] );
factor = MulSIMD( factor, possibleHitCount[i] );
out.m_flDot[i] = MulSIMD( factor, sumdot );
out.m_flDot[i] = ReciprocalSIMD( out.m_flDot[i] );
out.m_flDot[i] = MulSIMD( ambient_intensity[i], out.m_flDot[i] );
}
}
// Helper function - gathers light from area lights, spot lights, and point lights
void GatherSampleStandardLightSSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
int nLFlags, int static_prop_index_to_ignore,
float flEpsilon )
{
bool bIgnoreNormals = ( nLFlags & GATHERLFLAGS_IGNORE_NORMALS ) != 0;
FourVectors src;
src.DuplicateVector( vec3_origin );
if (dl->facenum == -1)
{
src.DuplicateVector( dl->light.origin );
}
// Find light vector
FourVectors delta;
delta = src;
delta -= pos;
fltx4 dist2 = delta.length2();
fltx4 rpcDist = ReciprocalSqrtSIMD( dist2 );
delta *= rpcDist;
fltx4 dist = SqrtEstSIMD( dist2 );//delta.VectorNormalize();
// Compute dot
fltx4 dot = ReplicateX4( (float) CONSTANT_DOT );
if ( !bIgnoreNormals )
dot = delta * pNormals[0];
dot = MaxSIMD( Four_Zeros, dot );
// Affix dot to zero if past fade distz
bool bHasHardFalloff = ( dl->m_flEndFadeDistance > dl->m_flStartFadeDistance );
if ( bHasHardFalloff )
{
fltx4 notPastFadeDist = CmpLeSIMD ( dist, ReplicateX4 ( dl->m_flEndFadeDistance ) );
dot = AndSIMD( dot, notPastFadeDist ); // dot = 0 if past fade distance
if ( !TestSignSIMD ( notPastFadeDist ) )
return;
}
dist = MaxSIMD( dist, Four_Ones );
fltx4 falloffEvalDist = MinSIMD( dist, ReplicateX4( dl->m_flCapDist ) );
fltx4 constant, linear, quadratic;
fltx4 dot2, inCone, inFringe, mult;
FourVectors offset;
switch (dl->light.type)
{
case emit_point:
constant = ReplicateX4( dl->light.constant_attn );
linear = ReplicateX4( dl->light.linear_attn );
quadratic = ReplicateX4( dl->light.quadratic_attn );
out.m_flFalloff = MulSIMD( falloffEvalDist, falloffEvalDist );
out.m_flFalloff = MulSIMD( out.m_flFalloff, quadratic );
out.m_flFalloff = AddSIMD( out.m_flFalloff, MulSIMD( linear, falloffEvalDist ) );
out.m_flFalloff = AddSIMD( out.m_flFalloff, constant );
out.m_flFalloff = ReciprocalSIMD( out.m_flFalloff );
break;
case emit_surface:
dot2 = delta * dl->light.normal;
dot2 = NegSIMD( dot2 );
// Light behind surface yields zero dot
dot2 = MaxSIMD( Four_Zeros, dot2 );
if ( TestSignSIMD( CmpEqSIMD( Four_Zeros, dot ) ) == 0xF )
return;
out.m_flFalloff = ReciprocalSIMD ( dist2 );
out.m_flFalloff = MulSIMD( out.m_flFalloff, dot2 );
// move the endpoint away from the surface by epsilon to prevent hitting the surface with the trace
offset.DuplicateVector ( dl->light.normal );
offset *= DIST_EPSILON;
src += offset;
break;
case emit_spotlight:
dot2 = delta * dl->light.normal;
dot2 = NegSIMD( dot2 );
// Affix dot2 to zero if outside light cone
inCone = CmpGtSIMD( dot2, ReplicateX4( dl->light.stopdot2 ) );
if ( !TestSignSIMD ( inCone ) )
return;
dot = AndSIMD( inCone, dot );
constant = ReplicateX4( dl->light.constant_attn );
linear = ReplicateX4( dl->light.linear_attn );
quadratic = ReplicateX4( dl->light.quadratic_attn );
out.m_flFalloff = MulSIMD( falloffEvalDist, falloffEvalDist );
out.m_flFalloff = MulSIMD( out.m_flFalloff, quadratic );
out.m_flFalloff = AddSIMD( out.m_flFalloff, MulSIMD( linear, falloffEvalDist ) );
out.m_flFalloff = AddSIMD( out.m_flFalloff, constant );
out.m_flFalloff = ReciprocalSIMD( out.m_flFalloff );
out.m_flFalloff = MulSIMD( out.m_flFalloff, dot2 );
// outside the inner cone
inFringe = CmpLeSIMD( dot2, ReplicateX4( dl->light.stopdot ) );
mult = ReplicateX4( dl->light.stopdot - dl->light.stopdot2 );
mult = ReciprocalSIMD( mult );
mult = MulSIMD( mult, SubSIMD( dot2, ReplicateX4( dl->light.stopdot2 ) ) );
mult = MinSIMD( mult, Four_Ones );
mult = MaxSIMD( mult, Four_Zeros );
// pow is fixed point, so this isn't the most accurate, but it doesn't need to be
if ( (dl->light.exponent != 0.0f ) && ( dl->light.exponent != 1.0f ) )
mult = PowSIMD( mult, dl->light.exponent );
// if not in between inner and outer cones, mult by 1
mult = AndSIMD( inFringe, mult );
mult = AddSIMD( mult, AndNotSIMD( inFringe, Four_Ones ) );
out.m_flFalloff = MulSIMD( mult, out.m_flFalloff );
break;
}
// we may be in the fade region - modulate lighting by the fade curve
//float t = ( dist - dl->m_flStartFadeDistance ) /
// ( dl->m_flEndFadeDistance - dl->m_flStartFadeDistance );
if ( bHasHardFalloff )
{
fltx4 t = ReplicateX4( dl->m_flEndFadeDistance - dl->m_flStartFadeDistance );
t = ReciprocalSIMD( t );
t = MulSIMD( t, SubSIMD( dist, ReplicateX4( dl->m_flStartFadeDistance ) ) );
// clamp t to [0...1]
t = MinSIMD( t, Four_Ones );
t = MaxSIMD( t, Four_Zeros );
t = SubSIMD( Four_Ones, t );
// Using QuinticInterpolatingPolynomial, SSE-ified
// t * t * t *( t * ( t* 6.0 - 15.0 ) + 10.0 )
mult = SubSIMD( MulSIMD( ReplicateX4( 6.0f ), t ), ReplicateX4( 15.0f ) );
mult = AddSIMD( MulSIMD( mult, t ), ReplicateX4( 10.0f ) );
mult = MulSIMD( MulSIMD( t, t), mult );
mult = MulSIMD( t, mult );
out.m_flFalloff = MulSIMD( mult, out.m_flFalloff );
}
// Raytrace for visibility function
fltx4 fractionVisible = Four_Ones;
TestLine( pos, src, &fractionVisible, static_prop_index_to_ignore);
dot = MulSIMD( fractionVisible, dot );
out.m_flDot[0] = dot;
for ( int i = 1; i < normalCount; i++ )
{
if ( bIgnoreNormals )
out.m_flDot[i] = ReplicateX4( (float) CONSTANT_DOT );
else
{
out.m_flDot[i] = pNormals[i] * delta;
out.m_flDot[i] = MaxSIMD( Four_Zeros, out.m_flDot[i] );
}
}
}
// returns dot product with normal and delta
// dl - light
// pos - position of sample
// normal - surface normal of sample
// out.m_flDot[] - returned dot products with light vector and each normal
// out.m_flFalloff - amount of light falloff
void GatherSampleLightSSE( SSE_sampleLightOutput_t &out, directlight_t *dl, int facenum,
FourVectors const& pos, FourVectors *pNormals, int normalCount, int iThread,
int nLFlags,
int static_prop_index_to_ignore,
float flEpsilon )
{
for ( int b = 0; b < normalCount; b++ )
out.m_flDot[b] = Four_Zeros;
out.m_flFalloff = Four_Zeros;
out.m_flSunAmount = Four_Zeros;
Assert( normalCount <= (NUM_BUMP_VECTS+1) );
// skylights work fundamentally differently than normal lights
switch( dl->light.type )
{
case emit_skylight:
GatherSampleSkyLightSSE( out, dl, facenum, pos, pNormals, normalCount,
iThread, nLFlags, static_prop_index_to_ignore, flEpsilon );
break;
case emit_skyambient:
GatherSampleAmbientSkySSE( out, dl, facenum, pos, pNormals, normalCount,
iThread, nLFlags, static_prop_index_to_ignore, flEpsilon );
break;
case emit_point:
case emit_surface:
case emit_spotlight:
GatherSampleStandardLightSSE( out, dl, facenum, pos, pNormals, normalCount,
iThread, nLFlags, static_prop_index_to_ignore, flEpsilon );
break;
default:
Error ("Bad dl->light.type");
return;
}
// NOTE: Notice here that if the light is on the back side of the face
// (tested by checking the dot product of the face normal and the light position)
// we don't want it to contribute to *any* of the bumped lightmaps. It glows
// in disturbing ways if we don't do this.
out.m_flDot[0] = MaxSIMD ( out.m_flDot[0], Four_Zeros );
fltx4 notZero = CmpGtSIMD( out.m_flDot[0], Four_Zeros );
for ( int n = 1; n < normalCount; n++ )
{
out.m_flDot[n] = MaxSIMD( out.m_flDot[n], Four_Zeros );
out.m_flDot[n] = AndSIMD( out.m_flDot[n], notZero );
}
}
/*
=============
AddSampleToPatch
Take the sample's collected light and
add it back into the apropriate patch
for the radiosity pass.
=============
*/
void AddSampleToPatch (sample_t *s, LightingValue_t& light, int facenum)
{
CPatch *patch;
Vector mins, maxs;
int i;
if (numbounce == 0)
return;
if( VectorAvg( light.m_vecLighting ) < 1)
return;
//
// fixed the sample position and normal -- need to find the equiv pos, etc to set up
// patches
//
if( g_FacePatches.Element( facenum ) == g_FacePatches.InvalidIndex() )
return;
float radius = sqrt( s->area ) / 2.0;
CPatch *pNextPatch = NULL;
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
{
// next patch
pNextPatch = NULL;
if( patch->ndxNext != g_Patches.InvalidIndex() )
{
pNextPatch = &g_Patches.Element( patch->ndxNext );
}
if (patch->sky)
continue;
// skip patches with children
if ( patch->child1 != g_Patches.InvalidIndex() )
continue;
// see if the point is in this patch (roughly)
WindingBounds (patch->winding, mins, maxs);
for (i=0 ; i<3 ; i++)
{
if (mins[i] > s->pos[i] + radius)
goto nextpatch;
if (maxs[i] < s->pos[i] - radius)
goto nextpatch;
}
// add the sample to the patch
patch->samplearea += s->area;
VectorMA( patch->samplelight, s->area, light.m_vecLighting, patch->samplelight );
nextpatch:;
}
// don't worry if some samples don't find a patch
}
void GetPhongNormal( int facenum, Vector const& spot, Vector& phongnormal )
{
int j;
dface_t *f = &g_pFaces[facenum];
// dplane_t *p = &dplanes[f->planenum];
Vector facenormal, vspot;
VectorCopy( dplanes[f->planenum].normal, facenormal );
VectorCopy( facenormal, phongnormal );
if ( smoothing_threshold != 1 )
{
faceneighbor_t *fn = &faceneighbor[facenum];
// Calculate modified point normal for surface
// Use the edge normals iff they are defined. Bend the surface towards the edge normal(s)
// Crude first attempt: find nearest edge normal and do a simple interpolation with facenormal.
// Second attempt: find edge points+center that bound the point and do a three-point triangulation(baricentric)
// Better third attempt: generate the point normals for all vertices and do baricentric triangulation.
for (j=0 ; j<f->numedges ; j++)
{
Vector v1, v2;
//int e = dsurfedges[f->firstedge + j];
//int e1 = dsurfedges[f->firstedge + ((j+f->numedges-1)%f->numedges)];
//int e2 = dsurfedges[f->firstedge + ((j+1)%f->numedges)];
//edgeshare_t *es = &edgeshare[abs(e)];
//edgeshare_t *es1 = &edgeshare[abs(e1)];
//edgeshare_t *es2 = &edgeshare[abs(e2)];
// dface_t *f2;
float a1, a2, aa, bb, ab;
int vert1, vert2;
Vector& n1 = fn->normal[j];
Vector& n2 = fn->normal[(j+1)%f->numedges];
/*
if (VectorCompare( n1, fn->facenormal )
&& VectorCompare( n2, fn->facenormal) )
continue;
*/
vert1 = EdgeVertex( f, j );
vert2 = EdgeVertex( f, j+1 );
Vector& p1 = dvertexes[vert1].point;
Vector& p2 = dvertexes[vert2].point;
// Build vectors from the middle of the face to the edge vertexes and the sample pos.
VectorSubtract( p1, face_centroids[facenum], v1 );
VectorSubtract( p2, face_centroids[facenum], v2 );
VectorSubtract( spot, face_centroids[facenum], vspot );
aa = DotProduct( v1, v1 );
bb = DotProduct( v2, v2 );
ab = DotProduct( v1, v2 );
a1 = (bb * DotProduct( v1, vspot ) - ab * DotProduct( vspot, v2 )) / (aa * bb - ab * ab);
a2 = (DotProduct( vspot, v2 ) - a1 * ab) / bb;
// Test center to sample vector for inclusion between center to vertex vectors (Use dot product of vectors)
if ( a1 >= 0.0 && a2 >= 0.0)
{
// calculate distance from edge to pos
Vector temp;
float scale;
// Interpolate between the center and edge normals based on sample position
scale = 1.0 - a1 - a2;
VectorScale( fn->facenormal, scale, phongnormal );
VectorScale( n1, a1, temp );
VectorAdd( phongnormal, temp, phongnormal );
VectorScale( n2, a2, temp );
VectorAdd( phongnormal, temp, phongnormal );
Assert( VectorLength( phongnormal ) > 1.0e-20 );
VectorNormalize( phongnormal );
/*
if (a1 > 1 || a2 > 1 || a1 + a2 > 1)
{
Msg("\n%.2f %.2f\n", a1, a2 );
Msg("%.2f %.2f %.2f\n", v1[0], v1[1], v1[2] );
Msg("%.2f %.2f %.2f\n", v2[0], v2[1], v2[2] );
Msg("%.2f %.2f %.2f\n", vspot[0], vspot[1], vspot[2] );
exit(1);
a1 = 0;
}
*/
/*
phongnormal[0] = (((j + 1) & 4) != 0) * 255;
phongnormal[1] = (((j + 1) & 2) != 0) * 255;
phongnormal[2] = (((j + 1) & 1) != 0) * 255;
*/
return;
}
}
}
}
void GetPhongNormal( int facenum, FourVectors const& spot, FourVectors& phongnormal )
{
int j;
dface_t *f = &g_pFaces[facenum];
// dplane_t *p = &dplanes[f->planenum];
Vector facenormal;
FourVectors vspot;
VectorCopy( dplanes[f->planenum].normal, facenormal );
phongnormal.DuplicateVector( facenormal );
FourVectors faceCentroid;
faceCentroid.DuplicateVector( face_centroids[facenum] );
if ( smoothing_threshold != 1 )
{
faceneighbor_t *fn = &faceneighbor[facenum];
// Calculate modified point normal for surface
// Use the edge normals iff they are defined. Bend the surface towards the edge normal(s)
// Crude first attempt: find nearest edge normal and do a simple interpolation with facenormal.
// Second attempt: find edge points+center that bound the point and do a three-point triangulation(baricentric)
// Better third attempt: generate the point normals for all vertices and do baricentric triangulation.
for ( j = 0; j < f->numedges; ++j )
{
Vector v1, v2;
fltx4 a1, a2;
float aa, bb, ab;
int vert1, vert2;
Vector& n1 = fn->normal[j];
Vector& n2 = fn->normal[(j+1)%f->numedges];
vert1 = EdgeVertex( f, j );
vert2 = EdgeVertex( f, j+1 );
Vector& p1 = dvertexes[vert1].point;
Vector& p2 = dvertexes[vert2].point;
// Build vectors from the middle of the face to the edge vertexes and the sample pos.
VectorSubtract( p1, face_centroids[facenum], v1 );
VectorSubtract( p2, face_centroids[facenum], v2 );
//VectorSubtract( spot, face_centroids[facenum], vspot );
vspot = spot;
vspot -= faceCentroid;
aa = DotProduct( v1, v1 );
bb = DotProduct( v2, v2 );
ab = DotProduct( v1, v2 );
//a1 = (bb * DotProduct( v1, vspot ) - ab * DotProduct( vspot, v2 )) / (aa * bb - ab * ab);
a1 = ReciprocalSIMD( ReplicateX4( aa * bb - ab * ab ) );
a1 = MulSIMD( a1, SubSIMD( MulSIMD( ReplicateX4( bb ), vspot * v1 ), MulSIMD( ReplicateX4( ab ), vspot * v2 ) ) );
//a2 = (DotProduct( vspot, v2 ) - a1 * ab) / bb;
a2 = ReciprocalSIMD( ReplicateX4( bb ) );
a2 = MulSIMD( a2, SubSIMD( vspot * v2, MulSIMD( a1, ReplicateX4( ab ) ) ) );
fltx4 resultMask = AndSIMD( CmpGeSIMD( a1, Four_Zeros ), CmpGeSIMD( a2, Four_Zeros ) );
if ( !TestSignSIMD( resultMask ) )
continue;
// Store the old phong normal to avoid overwriting already computed phong normals
FourVectors oldPhongNormal = phongnormal;
// calculate distance from edge to pos
FourVectors temp;
fltx4 scale;
// Interpolate between the center and edge normals based on sample position
scale = SubSIMD( SubSIMD( Four_Ones, a1 ), a2 );
phongnormal.DuplicateVector( fn->facenormal );
phongnormal *= scale;
temp.DuplicateVector( n1 );
temp *= a1;
phongnormal += temp;
temp.DuplicateVector( n2 );
temp *= a2;
phongnormal += temp;
// restore the old phong normals
phongnormal.x = AddSIMD( AndSIMD( resultMask, phongnormal.x ), AndNotSIMD( resultMask, oldPhongNormal.x ) );
phongnormal.y = AddSIMD( AndSIMD( resultMask, phongnormal.y ), AndNotSIMD( resultMask, oldPhongNormal.y ) );
phongnormal.z = AddSIMD( AndSIMD( resultMask, phongnormal.z ), AndNotSIMD( resultMask, oldPhongNormal.z ) );
}
phongnormal.VectorNormalize();
}
}
int GetVisCache( int lastoffset, int cluster, byte *pvs )
{
// get the PVS for the pos to limit the number of checks
if ( !visdatasize )
{
memset (pvs, 255, (dvis->numclusters+7)/8 );
lastoffset = -1;
}
else
{
if (cluster < 0)
{
// Error, point embedded in wall
// sampled[0][1] = 255;
memset (pvs, 255, (dvis->numclusters+7)/8 );
lastoffset = -1;
}
else
{
int thisoffset = dvis->bitofs[ cluster ][DVIS_PVS];
if ( thisoffset != lastoffset )
{
if ( thisoffset == -1 )
{
Error ("visofs == -1");
}
DecompressVis (&dvisdata[thisoffset], pvs);
}
lastoffset = thisoffset;
}
}
return lastoffset;
}
void BuildPatchLights( int facenum );
void DumpSamples( int ndxFace, facelight_t *pFaceLight )
{
ThreadLock();
dface_t *pFace = &g_pFaces[ndxFace];
if( pFace )
{
bool bBumpped = ( ( texinfo[pFace->texinfo].flags & SURF_BUMPLIGHT ) != 0 );
for( int iStyle = 0; iStyle < 4; ++iStyle )
{
if( pFace->styles[iStyle] != 255 )
{
for ( int iBump = 0; iBump < 4; ++iBump )
{
if ( iBump == 0 || ( iBump > 0 && bBumpped ) )
{
for( int iSample = 0; iSample < pFaceLight->numsamples; ++iSample )
{
sample_t *pSample = &pFaceLight->sample[iSample];
WriteWinding( pFileSamples[iStyle][iBump], pSample->w, pFaceLight->light[iStyle][iBump][iSample].m_vecLighting );
if( bDumpNormals )
{
WriteNormal( pFileSamples[iStyle][iBump], pSample->pos, pSample->normal, 15.0f, pSample->normal * 255.0f );
}
}
}
}
}
}
}
ThreadUnlock();
}
//-----------------------------------------------------------------------------
// Allocates light sample data
//-----------------------------------------------------------------------------
static inline void AllocateLightstyleSamples( facelight_t* fl, int styleIndex, int numnormals )
{
for (int n = 0; n < numnormals; ++n)
{
fl->light[styleIndex][n] = ( LightingValue_t* )calloc( fl->numsamples, sizeof(LightingValue_t ) );
}
}
//-----------------------------------------------------------------------------
// Used to find an existing lightstyle on a face
//-----------------------------------------------------------------------------
static inline int FindLightstyle( dface_t* f, int lightstyle )
{
for (int k = 0; k < MAXLIGHTMAPS; k++)
{
if (f->styles[k] == lightstyle)
return k;
}
return -1;
}
static int FindOrAllocateLightstyleSamples( dface_t* f, facelight_t *fl, int lightstyle, int numnormals )
{
// Search the lightstyles associated with the face for a match
int k;
for (k = 0; k < MAXLIGHTMAPS; k++)
{
if (f->styles[k] == lightstyle)
break;
// Found an empty entry, we can use it for a new lightstyle
if (f->styles[k] == 255)
{
AllocateLightstyleSamples( fl, k, numnormals );
f->styles[k] = lightstyle;
break;
}
}
// Check for overflow
if (k >= MAXLIGHTMAPS)
return -1;
return k;
}
//-----------------------------------------------------------------------------
// Compute the illumination point + normal for the sample
//-----------------------------------------------------------------------------
static void ComputeIlluminationPointAndNormalsSSE( lightinfo_t const& l, FourVectors const &pos, FourVectors const &norm, SSE_SampleInfo_t* pInfo, int numSamples )
{
Vector v[4];
pInfo->m_Points = pos;
bool computeNormals = ( pInfo->m_NormalCount > 1 && ( pInfo->m_IsDispFace || !l.isflat ) );
// FIXME: move sample point off the surface a bit, this is done so that
// light sampling will not be affected by a bug where raycasts will
// intersect with the face being lit. We really should just have that
// logic in GatherSampleLight
FourVectors faceNormal;
faceNormal.DuplicateVector( l.facenormal );
pInfo->m_Points += faceNormal;
if ( pInfo->m_IsDispFace )
{
pInfo->m_PointNormals[0] = norm;
}
else if ( !l.isflat )
{
// If the face isn't flat, use a phong-based normal instead
FourVectors modelorg;
modelorg.DuplicateVector( l.modelorg );
FourVectors vecSample = pos;
vecSample -= modelorg;
GetPhongNormal( pInfo->m_FaceNum, vecSample, pInfo->m_PointNormals[0] );
}
if ( computeNormals )
{
Vector bv[4][NUM_BUMP_VECTS];
for ( int i = 0; i < 4; ++i )
{
// TODO: using Vec may slow things down a bit
GetBumpNormals( pInfo->m_pTexInfo->textureVecsTexelsPerWorldUnits[0],
pInfo->m_pTexInfo->textureVecsTexelsPerWorldUnits[1],
l.facenormal, pInfo->m_PointNormals[0].Vec( i ), bv[i] );
}
for ( int b = 0; b < NUM_BUMP_VECTS; ++b )
{
pInfo->m_PointNormals[b+1].LoadAndSwizzle ( bv[0][b], bv[1][b], bv[2][b], bv[3][b] );
}
}
// TODO: this may slow things down a bit ( using Vec )
for ( int i = 0; i < 4; ++i )
pInfo->m_Clusters[i] = ClusterFromPoint( pos.Vec( i ) );
}
//-----------------------------------------------------------------------------
// Iterates over all lights and computes lighting at up to 4 sample points
//-----------------------------------------------------------------------------
static void GatherSampleLightAt4Points( SSE_SampleInfo_t& info, int sampleIdx, int numSamples )
{
SSE_sampleLightOutput_t out;
// Iterate over all direct lights and add them to the particular sample
for (directlight_t *dl = activelights; dl != NULL; dl = dl->next)
{
// is this lights cluster visible?
fltx4 dotMask = Four_Zeros;
bool skipLight = true;
for( int s = 0; s < numSamples; s++ )
{
if( PVSCheck( dl->pvs, info.m_Clusters[s] ) )
{
dotMask = SetComponentSIMD( dotMask, s, 1.0f );
skipLight = false;
}
}
if ( skipLight )
continue;
GatherSampleLightSSE( out, dl, info.m_FaceNum, info.m_Points, info.m_PointNormals, info.m_NormalCount, info.m_iThread );
// Apply the PVS check filter and compute falloff x dot
fltx4 fxdot[NUM_BUMP_VECTS + 1];
skipLight = true;
for ( int b = 0; b < info.m_NormalCount; b++ )
{
fxdot[b] = MulSIMD( out.m_flDot[b], dotMask );
fxdot[b] = MulSIMD( fxdot[b], out.m_flFalloff );
if ( !IsAllZeros( fxdot[b] ) )
{
skipLight = false;
}
}
if ( skipLight )
continue;
// Figure out the lightstyle for this particular sample
int lightStyleIndex = FindOrAllocateLightstyleSamples( info.m_pFace, info.m_pFaceLight,
dl->light.style, info.m_NormalCount );
if (lightStyleIndex < 0)
{
if (info.m_WarnFace != info.m_FaceNum)
{
Warning ("\nWARNING: Too many light styles on a face at (%f, %f, %f)\n",
info.m_Points.x.m128_f32[0], info.m_Points.y.m128_f32[0], info.m_Points.z.m128_f32[0] );
info.m_WarnFace = info.m_FaceNum;
}
continue;
}
// pLightmaps is an array of the lightmaps for each normal direction,
// here's where the result of the sample gathering goes
LightingValue_t** pLightmaps = info.m_pFaceLight->light[lightStyleIndex];
// Incremental lighting only cares about lightstyle zero
if( g_pIncremental && (dl->light.style == 0) )
{
for ( int i = 0; i < numSamples; i++ )
{
g_pIncremental->AddLightToFace( dl->m_IncrementalID, info.m_FaceNum, sampleIdx + i,
info.m_LightmapSize, SubFloat( fxdot[0], i ), info.m_iThread );
}
}
for( int n = 0; n < info.m_NormalCount; ++n )
{
for ( int i = 0; i < numSamples; i++ )
{
pLightmaps[n][sampleIdx + i].AddLight( SubFloat( fxdot[n], i ), dl->light.intensity, SubFloat( out.m_flSunAmount, i ) );
}
}
}
}
//-----------------------------------------------------------------------------
// Iterates over all lights and computes lighting at a sample point
//-----------------------------------------------------------------------------
static void ResampleLightAt4Points( SSE_SampleInfo_t& info, int lightStyleIndex, int flags, LightingValue_t pLightmap[4][NUM_BUMP_VECTS+1] )
{
SSE_sampleLightOutput_t out;
// Clear result
for ( int i = 0; i < 4; ++i )
{
for ( int n = 0; n < info.m_NormalCount; ++n )
{
pLightmap[i][n].Zero();
}
}
// Iterate over all direct lights and add them to the particular sample
for (directlight_t *dl = activelights; dl != NULL; dl = dl->next)
{
if ((flags & AMBIENT_ONLY) && (dl->light.type != emit_skyambient))
continue;
if ((flags & NON_AMBIENT_ONLY) && (dl->light.type == emit_skyambient))
continue;
// Only add contributions that match the lightstyle
Assert( lightStyleIndex <= MAXLIGHTMAPS );
Assert( info.m_pFace->styles[lightStyleIndex] != 255 );
if (dl->light.style != info.m_pFace->styles[lightStyleIndex])
continue;
// is this lights cluster visible?
fltx4 dotMask = Four_Zeros;
bool skipLight = true;
for( int s = 0; s < 4; s++ )
{
if( PVSCheck( dl->pvs, info.m_Clusters[s] ) )
{
dotMask = SetComponentSIMD( dotMask, s, 1.0f );
skipLight = false;
}
}
if ( skipLight )
continue;
// NOTE: Notice here that if the light is on the back side of the face
// (tested by checking the dot product of the face normal and the light position)
// we don't want it to contribute to *any* of the bumped lightmaps. It glows
// in disturbing ways if we don't do this.
GatherSampleLightSSE( out, dl, info.m_FaceNum, info.m_Points, info.m_PointNormals, info.m_NormalCount, info.m_iThread );
// Apply the PVS check filter and compute falloff x dot
fltx4 fxdot[NUM_BUMP_VECTS + 1];
for ( int b = 0; b < info.m_NormalCount; b++ )
{
fxdot[b] = MulSIMD( out.m_flFalloff, out.m_flDot[b] );
fxdot[b] = MulSIMD( fxdot[b], dotMask );
}
// Compute the contributions to each of the bumped lightmaps
// The first sample is for non-bumped lighting.
// The other sample are for bumpmapping.
for( int i = 0; i < 4; ++i )
{
for( int n = 0; n < info.m_NormalCount; ++n )
{
pLightmap[i][n].AddLight( SubFloat( fxdot[n], i ), dl->light.intensity, SubFloat( out.m_flSunAmount, i ) );
}
}
}
}
bool PointsInWinding ( FourVectors const & point, winding_t *w, int &invalidBits )
{
FourVectors edge, toPt, cross, testCross, p0, p1;
fltx4 invalidMask;
//
// get the first normal to test
//
p0.DuplicateVector( w->p[0] );
p1.DuplicateVector( w->p[1] );
toPt = point;
toPt -= p0;
edge = p1;
edge -= p0;
testCross = edge ^ toPt;
testCross.VectorNormalizeFast();
for( int ndxPt = 1; ndxPt < w->numpoints; ndxPt++ )
{
p0.DuplicateVector( w->p[ndxPt] );
p1.DuplicateVector( w->p[(ndxPt+1)%w->numpoints] );
toPt = point;
toPt -= p0;
edge = p1;
edge -= p0;
cross = edge ^ toPt;
cross.VectorNormalizeFast();
fltx4 dot = cross * testCross;
invalidMask = OrSIMD( invalidMask, CmpLtSIMD( dot, Four_Zeros ) );
invalidBits = TestSignSIMD ( invalidMask );
if ( invalidBits == 0xF )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// Perform supersampling at a particular point
//-----------------------------------------------------------------------------
static int SupersampleLightAtPoint( lightinfo_t& l, SSE_SampleInfo_t& info,
int sampleIndex, int lightStyleIndex, LightingValue_t *pLight, int flags )
{
sample_t& sample = info.m_pFaceLight->sample[sampleIndex];
// Get the position of the original sample in lightmapspace
Vector2D temp;
WorldToLuxelSpace( &l, sample.pos, temp );
Vector sampleLightOrigin( temp[0], temp[1], 0.0f );
// Some parameters related to supersampling
float sampleWidth = ( flags & NON_AMBIENT_ONLY ) ? 4 : 2;
float cscale = 1.0f / sampleWidth;
float csshift = -((sampleWidth - 1) * cscale) / 2.0;
// Clear out the light values
for (int i = 0; i < info.m_NormalCount; ++i )
pLight[i].Zero();
int subsampleCount = 0;
FourVectors superSampleNormal;
superSampleNormal.DuplicateVector( sample.normal );
FourVectors superSampleLightCoord;
FourVectors superSamplePosition;
if ( flags & NON_AMBIENT_ONLY )
{
float aRow[4];
for ( int coord = 0; coord < 4; ++coord )
aRow[coord] = csshift + coord * cscale;
fltx4 sseRow = LoadUnalignedSIMD( aRow );
for (int s = 0; s < 4; ++s)
{
// make sure the coordinate is inside of the sample's winding and when normalizing
// below use the number of samples used, not just numsamples and some of them
// will be skipped if they are not inside of the winding
superSampleLightCoord.DuplicateVector( sampleLightOrigin );
superSampleLightCoord.x = AddSIMD( superSampleLightCoord.x, ReplicateX4( aRow[s] ) );
superSampleLightCoord.y = AddSIMD( superSampleLightCoord.y, sseRow );
// Figure out where the supersample exists in the world, and make sure
// it lies within the sample winding
LuxelSpaceToWorld( &l, superSampleLightCoord[0], superSampleLightCoord[1], superSamplePosition );
// A winding should exist only if the sample wasn't a uniform luxel, or if g_bDumpPatches is true.
int invalidBits = 0;
if ( sample.w && !PointsInWinding( superSamplePosition, sample.w, invalidBits ) )
continue;
// Compute the super-sample illumination point and normal
// We're assuming the flat normal is the same for all supersamples
ComputeIlluminationPointAndNormalsSSE( l, superSamplePosition, superSampleNormal, &info, 4 );
// Resample the non-ambient light at this point...
LightingValue_t result[4][NUM_BUMP_VECTS+1];
ResampleLightAt4Points( info, lightStyleIndex, NON_AMBIENT_ONLY, result );
// Got more subsamples
for ( int i = 0; i < 4; i++ )
{
if ( !( ( invalidBits >> i ) & 0x1 ) )
{
for ( int n = 0; n < info.m_NormalCount; ++n )
{
pLight[n].AddLight( result[i][n] );
}
++subsampleCount;
}
}
}
}
else
{
FourVectors superSampleOffsets;
superSampleOffsets.LoadAndSwizzle( Vector( csshift, csshift, 0 ), Vector( csshift, csshift + cscale, 0),
Vector( csshift + cscale, csshift, 0 ), Vector( csshift + cscale, csshift + cscale, 0 ) );
superSampleLightCoord.DuplicateVector( sampleLightOrigin );
superSampleLightCoord += superSampleOffsets;
LuxelSpaceToWorld( &l, superSampleLightCoord[0], superSampleLightCoord[1], superSamplePosition );
int invalidBits = 0;
if ( sample.w && !PointsInWinding( superSamplePosition, sample.w, invalidBits ) )
return 0;
ComputeIlluminationPointAndNormalsSSE( l, superSamplePosition, superSampleNormal, &info, 4 );
LightingValue_t result[4][NUM_BUMP_VECTS+1];
ResampleLightAt4Points( info, lightStyleIndex, AMBIENT_ONLY, result );
// Got more subsamples
for ( int i = 0; i < 4; i++ )
{
if ( !( ( invalidBits >> i ) & 0x1 ) )
{
for ( int n = 0; n < info.m_NormalCount; ++n )
{
pLight[n].AddLight( result[i][n] );
}
++subsampleCount;
}
}
}
return subsampleCount;
}
//-----------------------------------------------------------------------------
// Compute gradients of a lightmap
//-----------------------------------------------------------------------------
static void ComputeLightmapGradients( SSE_SampleInfo_t& info, bool const* pHasProcessedSample,
float* pIntensity, float* gradient )
{
int w = info.m_LightmapWidth;
int h = info.m_LightmapHeight;
facelight_t* fl = info.m_pFaceLight;
for (int i=0 ; i<fl->numsamples ; i++)
{
// Don't supersample the same sample twice
if (pHasProcessedSample[i])
continue;
gradient[i] = 0.0f;
sample_t& sample = fl->sample[i];
// Choose the maximum gradient of all bumped lightmap intensities
for ( int n = 0; n < info.m_NormalCount; ++n )
{
int j = n * info.m_LightmapSize + sample.s + sample.t * w;
if (sample.t > 0)
{
if (sample.s > 0) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-1-w] ) );
gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-w] ) );
if (sample.s < w-1) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+1-w] ) );
}
if (sample.t < h-1)
{
if (sample.s > 0) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-1+w] ) );
gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+w] ) );
if (sample.s < w-1) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+1+w] ) );
}
if (sample.s > 0) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j-1] ) );
if (sample.s < w-1) gradient[i] = max( gradient[i], fabs( pIntensity[j] - pIntensity[j+1] ) );
}
}
}
//-----------------------------------------------------------------------------
// ComputeLuxelIntensity...
//-----------------------------------------------------------------------------
static inline void ComputeLuxelIntensity( SSE_SampleInfo_t& info, int sampleIdx,
LightingValue_t **ppLightSamples, float* pSampleIntensity )
{
// Compute a separate intensity for each
sample_t& sample = info.m_pFaceLight->sample[sampleIdx];
int destIdx = sample.s + sample.t * info.m_LightmapWidth;
for (int n = 0; n < info.m_NormalCount; ++n)
{
float intensity = ppLightSamples[n][sampleIdx].Intensity();
// convert to a linear perception space
pSampleIntensity[n * info.m_LightmapSize + destIdx] = pow( intensity / 256.0, 1.0 / 2.2 );
}
}
//-----------------------------------------------------------------------------
// Compute the maximum intensity based on all bumped lighting
//-----------------------------------------------------------------------------
static void ComputeSampleIntensities( SSE_SampleInfo_t& info, LightingValue_t **ppLightSamples, float* pSampleIntensity )
{
for (int i=0; i<info.m_pFaceLight->numsamples; i++)
{
ComputeLuxelIntensity( info, i, ppLightSamples, pSampleIntensity );
}
}
//-----------------------------------------------------------------------------
// Perform supersampling on a particular lightstyle
//-----------------------------------------------------------------------------
static void BuildSupersampleFaceLights( lightinfo_t& l, SSE_SampleInfo_t& info, int lightstyleIndex )
{
LightingValue_t pAmbientLight[NUM_BUMP_VECTS+1];
LightingValue_t pDirectLight[NUM_BUMP_VECTS+1];
// This is used to make sure we don't supersample a light sample more than once
int processedSampleSize = info.m_LightmapSize * sizeof(bool);
bool* pHasProcessedSample = (bool*)stackalloc( processedSampleSize );
memset( pHasProcessedSample, 0, processedSampleSize );
// This is used to compute a simple gradient computation of the light samples
// We're going to store the maximum intensity of all bumped samples at each sample location
float* pGradient = (float*)stackalloc( info.m_pFaceLight->numsamples * sizeof(float) );
float* pSampleIntensity = (float*)stackalloc( info.m_NormalCount * info.m_LightmapSize * sizeof(float) );
// Compute the maximum intensity of all lighting associated with this lightstyle
// for all bumped lighting
LightingValue_t **ppLightSamples = info.m_pFaceLight->light[lightstyleIndex];
ComputeSampleIntensities( info, ppLightSamples, pSampleIntensity );
Vector *pVisualizePass = NULL;
if (debug_extra)
{
int visualizationSize = info.m_pFaceLight->numsamples * sizeof(Vector);
pVisualizePass = (Vector*)stackalloc( visualizationSize );
memset( pVisualizePass, 0, visualizationSize );
}
// What's going on here is that we're looking for large lighting discontinuities
// (large light intensity gradients) as a clue that we should probably be supersampling
// in that area. Because the supersampling operation will cause lighting changes,
// we've found that it's good to re-check the gradients again and see if any other
// areas should be supersampled as a result of the previous pass. Keep going
// until all the gradients are reasonable or until we hit a max number of passes
bool do_anotherpass = true;
int pass = 1;
while (do_anotherpass && pass <= extrapasses)
{
// Look for lighting discontinuities to see what we should be supersampling
ComputeLightmapGradients( info, pHasProcessedSample, pSampleIntensity, pGradient );
do_anotherpass = false;
// Now check all of the samples and supersample those which we have
// marked as having high gradients
for (int i=0 ; i<info.m_pFaceLight->numsamples; ++i)
{
// Don't supersample the same sample twice
if (pHasProcessedSample[i])
continue;
// Don't supersample if the lighting is pretty uniform near the sample
if (pGradient[i] < 0.0625)
continue;
// Joy! We're supersampling now, and we therefore must do another pass
// Also, we need never bother with this sample again
pHasProcessedSample[i] = true;
do_anotherpass = true;
if (debug_extra)
{
// Mark the little visualization bitmap with a color indicating
// which pass it was updated on.
pVisualizePass[i][0] = (pass & 1) * 255;
pVisualizePass[i][1] = (pass & 2) * 128;
pVisualizePass[i][2] = (pass & 4) * 64;
}
// Supersample the ambient light for each bump direction vector
int ambientSupersampleCount = SupersampleLightAtPoint( l, info, i, lightstyleIndex, pAmbientLight, AMBIENT_ONLY );
// Supersample the non-ambient light for each bump direction vector
int directSupersampleCount = SupersampleLightAtPoint( l, info, i, lightstyleIndex, pDirectLight, NON_AMBIENT_ONLY );
// Because of sampling problems, small area triangles may have no samples.
// In this case, just use what we already have
if ( ambientSupersampleCount > 0 && directSupersampleCount > 0 )
{
// Add the ambient + directional terms together, stick it back into the lightmap
for (int n = 0; n < info.m_NormalCount; ++n)
{
ppLightSamples[n][i].Zero();
ppLightSamples[n][i].AddWeighted( pDirectLight[n],1.0f / directSupersampleCount );
ppLightSamples[n][i].AddWeighted( pAmbientLight[n], 1.0f / ambientSupersampleCount );
}
// Recompute the luxel intensity based on the supersampling
ComputeLuxelIntensity( info, i, ppLightSamples, pSampleIntensity );
}
}
// We've finished another pass
pass++;
}
if (debug_extra)
{
// Copy colors representing which supersample pass the sample was messed with
// into the actual lighting values so we can visualize it
for (int i=0 ; i<info.m_pFaceLight->numsamples ; ++i)
{
for (int j = 0; j <info.m_NormalCount; ++j)
{
VectorCopy( pVisualizePass[i], ppLightSamples[j][i].m_vecLighting );
}
}
}
}
void InitLightinfo( lightinfo_t *pl, int facenum )
{
dface_t *f;
f = &g_pFaces[facenum];
memset (pl, 0, sizeof(*pl));
pl->facenum = facenum;
pl->face = f;
//
// rotate plane
//
VectorCopy (dplanes[f->planenum].normal, pl->facenormal);
pl->facedist = dplanes[f->planenum].dist;
// get the origin offset for rotating bmodels
VectorCopy (face_offset[facenum], pl->modelorg);
CalcFaceVectors( pl );
// figure out if the surface is flat
pl->isflat = true;
if (smoothing_threshold != 1)
{
faceneighbor_t *fn = &faceneighbor[facenum];
for (int j=0 ; j<f->numedges ; j++)
{
float dot = DotProduct( pl->facenormal, fn->normal[j] );
if (dot < 1.0 - EQUAL_EPSILON)
{
pl->isflat = false;
break;
}
}
}
}
static void InitSampleInfo( lightinfo_t const& l, int iThread, SSE_SampleInfo_t& info )
{
info.m_LightmapWidth = l.face->m_LightmapTextureSizeInLuxels[0]+1;
info.m_LightmapHeight = l.face->m_LightmapTextureSizeInLuxels[1]+1;
info.m_LightmapSize = info.m_LightmapWidth * info.m_LightmapHeight;
// How many lightmaps are we going to need?
info.m_pTexInfo = &texinfo[l.face->texinfo];
info.m_NormalCount = (info.m_pTexInfo->flags & SURF_BUMPLIGHT) ? NUM_BUMP_VECTS + 1 : 1;
info.m_FaceNum = l.facenum;
info.m_pFace = l.face;
info.m_pFaceLight = &facelight[info.m_FaceNum];
info.m_IsDispFace = ValidDispFace( info.m_pFace );
info.m_iThread = iThread;
info.m_WarnFace = -1;
info.m_NumSamples = info.m_pFaceLight->numsamples;
info.m_NumSampleGroups = ( info.m_NumSamples & 0x3) ? ( info.m_NumSamples / 4 ) + 1 : ( info.m_NumSamples / 4 );
// initialize normals if the surface is flat
if (l.isflat)
{
info.m_PointNormals[0].DuplicateVector( l.facenormal );
// use facenormal along with the smooth normal to build the three bump map vectors
if( info.m_NormalCount > 1 )
{
Vector bumpVects[NUM_BUMP_VECTS];
GetBumpNormals( info.m_pTexInfo->textureVecsTexelsPerWorldUnits[0],
info.m_pTexInfo->textureVecsTexelsPerWorldUnits[1], l.facenormal,
l.facenormal, bumpVects );//&info.m_PointNormal[1] );
for ( int b = 0; b < NUM_BUMP_VECTS; ++b )
{
info.m_PointNormals[b + 1].DuplicateVector( bumpVects[b] );
}
}
}
}
void BuildFacelights (int iThread, int facenum)
{
int i, j;
lightinfo_t l;
dface_t *f;
facelight_t *fl;
SSE_SampleInfo_t sampleInfo;
directlight_t *dl;
Vector spot;
Vector v[4], n[4];
if( g_bInterrupt )
return;
// FIXME: Is there a better way to do this? Like, in RunThreadsOn, for instance?
// Don't pay this cost unless we have to; this is super perf-critical code.
if (g_pIncremental)
{
// Both threads will be accessing this so it needs to be protected or else thread A
// will load it in and thread B will increment it but its increment will be
// overwritten by thread A when thread A writes it back.
ThreadLock();
++g_iCurFace;
ThreadUnlock();
}
// some surfaces don't need lightmaps
f = &g_pFaces[facenum];
f->lightofs = -1;
for (j=0 ; j<MAXLIGHTMAPS ; j++)
f->styles[j] = 255;
// Trivial-reject the whole face?
if( !( g_FacesVisibleToLights[facenum>>3] & (1 << (facenum & 7)) ) )
return;
if ( texinfo[f->texinfo].flags & TEX_SPECIAL)
return; // non-lit texture
// check for patches for this face. If none it must be degenerate. Ignore.
if( g_FacePatches.Element( facenum ) == g_FacePatches.InvalidIndex() )
return;
fl = &facelight[facenum];
InitLightinfo( &l, facenum );
CalcPoints( &l, fl, facenum );
InitSampleInfo( l, iThread, sampleInfo );
// Allocate sample positions/normals to SSE
int numGroups = ( fl->numsamples & 0x3) ? ( fl->numsamples / 4 ) + 1 : ( fl->numsamples / 4 );
// always allocate style 0 lightmap
f->styles[0] = 0;
AllocateLightstyleSamples( fl, 0, sampleInfo.m_NormalCount );
// sample the lights at each sample location
for ( int grp = 0; grp < numGroups; ++grp )
{
int nSample = 4 * grp;
sample_t *sample = sampleInfo.m_pFaceLight->sample + nSample;
int numSamples = min ( 4, sampleInfo.m_pFaceLight->numsamples - nSample );
FourVectors positions;
FourVectors normals;
for ( int i = 0; i < 4; i++ )
{
v[i] = ( i < numSamples ) ? sample[i].pos : sample[numSamples - 1].pos;
n[i] = ( i < numSamples ) ? sample[i].normal : sample[numSamples - 1].normal;
}
positions.LoadAndSwizzle( v[0], v[1], v[2], v[3] );
normals.LoadAndSwizzle( n[0], n[1], n[2], n[3] );
ComputeIlluminationPointAndNormalsSSE( l, positions, normals, &sampleInfo, numSamples );
// Fixup sample normals in case of smooth faces
if ( !l.isflat )
{
for ( int i = 0; i < numSamples; i++ )
sample[i].normal = sampleInfo.m_PointNormals[0].Vec( i );
}
// Iterate over all the lights and add their contribution to this group of spots
GatherSampleLightAt4Points( sampleInfo, nSample, numSamples );
}
// Tell the incremental light manager that we're done with this face.
if( g_pIncremental )
{
for (dl = activelights; dl != NULL; dl = dl->next)
{
// Only deal with lightstyle 0 for incremental lighting
if (dl->light.style == 0)
g_pIncremental->FinishFace( dl->m_IncrementalID, facenum, iThread );
}
// Don't have to deal with patch lights (only direct lighting is used)
// or supersampling
return;
}
// get rid of the -extra functionality on displacement surfaces
if (do_extra && !sampleInfo.m_IsDispFace)
{
// For each lightstyle, perform a supersampling pass
for ( i = 0; i < MAXLIGHTMAPS; ++i )
{
// Stop when we run out of lightstyles
if (f->styles[i] == 255)
break;
BuildSupersampleFaceLights( l, sampleInfo, i );
}
}
if (!g_bUseMPI)
{
//
// This is done on the master node when MPI is used
//
BuildPatchLights( facenum );
}
if( g_bDumpPatches )
{
DumpSamples( facenum, fl );
}
else
{
FreeSampleWindings( fl );
}
}
void BuildPatchLights( int facenum )
{
int i, k;
CPatch *patch;
dface_t *f = &g_pFaces[facenum];
facelight_t *fl = &facelight[facenum];
for( k = 0; k < MAXLIGHTMAPS; k++ )
{
if (f->styles[k] == 0)
break;
}
if (k >= MAXLIGHTMAPS)
return;
for (i = 0; i < fl->numsamples; i++)
{
AddSampleToPatch( &fl->sample[i], fl->light[k][0][i], facenum);
}
// check for a valid face
if( g_FacePatches.Element( facenum ) == g_FacePatches.InvalidIndex() )
return;
// push up sampled light to parents (children always exist first in the list)
CPatch *pNextPatch;
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
{
// next patch
pNextPatch = NULL;
if( patch->ndxNext != g_Patches.InvalidIndex() )
{
pNextPatch = &g_Patches.Element( patch->ndxNext );
}
// skip patches without parents
if( patch->parent == g_Patches.InvalidIndex() )
// if (patch->parent == -1)
continue;
CPatch *parent = &g_Patches.Element( patch->parent );
parent->samplearea += patch->samplearea;
VectorAdd( parent->samplelight, patch->samplelight, parent->samplelight );
}
// average up the direct light on each patch for radiosity
if (numbounce > 0)
{
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
{
// next patch
pNextPatch = NULL;
if( patch->ndxNext != g_Patches.InvalidIndex() )
{
pNextPatch = &g_Patches.Element( patch->ndxNext );
}
if (patch->samplearea)
{
float scale;
Vector v;
scale = 1.0 / patch->samplearea;
VectorScale( patch->samplelight, scale, v );
VectorAdd( patch->totallight.light[0], v, patch->totallight.light[0] );
VectorAdd( patch->directlight, v, patch->directlight );
}
}
}
// pull totallight from children (children always exist first in the list)
for( patch = &g_Patches.Element( g_FacePatches.Element( facenum ) ); patch; patch = pNextPatch )
{
// next patch
pNextPatch = NULL;
if( patch->ndxNext != g_Patches.InvalidIndex() )
{
pNextPatch = &g_Patches.Element( patch->ndxNext );
}
if ( patch->child1 != g_Patches.InvalidIndex() )
{
float s1, s2;
CPatch *child1;
CPatch *child2;
child1 = &g_Patches.Element( patch->child1 );
child2 = &g_Patches.Element( patch->child2 );
s1 = child1->area / (child1->area + child2->area);
s2 = child2->area / (child1->area + child2->area);
VectorScale( child1->totallight.light[0], s1, patch->totallight.light[0] );
VectorMA( patch->totallight.light[0], s2, child2->totallight.light[0], patch->totallight.light[0] );
VectorCopy( patch->totallight.light[0], patch->directlight );
}
}
bool needsBumpmap = false;
if( texinfo[f->texinfo].flags & SURF_BUMPLIGHT )
{
needsBumpmap = true;
}
// add an ambient term if desired
if (ambient[0] || ambient[1] || ambient[2])
{
for( int j=0; j < MAXLIGHTMAPS && f->styles[j] != 255; j++ )
{
if ( f->styles[j] == 0 )
{
for (i = 0; i < fl->numsamples; i++)
{
fl->light[j][0][i].m_vecLighting += ambient;
if( needsBumpmap )
{
fl->light[j][1][i].m_vecLighting += ambient;
fl->light[j][2][i].m_vecLighting += ambient;
fl->light[j][3][i].m_vecLighting += ambient;
}
}
break;
}
}
}
// light from dlight_threshold and above is sent out, but the
// texture itself should still be full bright
#if 0
// if( VectorAvg( g_FacePatches[facenum]->baselight ) >= dlight_threshold) // Now all lighted surfaces glow
{
for( j=0; j < MAXLIGHTMAPS && f->styles[j] != 255; j++ )
{
if ( f->styles[j] == 0 )
{
// BUG: shouldn't this be done for all patches on the face?
for (i=0 ; i<fl->numsamples ; i++)
{
// garymctchange
VectorAdd( fl->light[j][0][i], g_FacePatches[facenum]->baselight, fl->light[j][0][i] );
if( needsBumpmap )
{
for( bumpSample = 1; bumpSample < NUM_BUMP_VECTS + 1; bumpSample++ )
{
VectorAdd( fl->light[j][bumpSample][i], g_FacePatches[facenum]->baselight, fl->light[j][bumpSample][i] );
}
}
}
break;
}
}
}
#endif
}
/*
=============
PrecompLightmapOffsets
=============
*/
void PrecompLightmapOffsets()
{
int facenum;
dface_t *f;
int lightstyles;
int lightdatasize = 0;
// NOTE: We store avg face light data in this lump *before* the lightmap data itself
// in *reverse order* of the way the lightstyles appear in the styles array.
for( facenum = 0; facenum < numfaces; facenum++ )
{
f = &g_pFaces[facenum];
if ( texinfo[f->texinfo].flags & TEX_SPECIAL)
continue; // non-lit texture
if ( dlight_map != 0 )
f->styles[1] = 0;
for (lightstyles=0; lightstyles < MAXLIGHTMAPS; lightstyles++ )
{
if ( f->styles[lightstyles] == 255 )
break;
}
if ( !lightstyles )
continue;
// Reserve room for the avg light color data
lightdatasize += lightstyles * 4;
f->lightofs = lightdatasize;
bool needsBumpmap = false;
if( texinfo[f->texinfo].flags & SURF_BUMPLIGHT )
{
needsBumpmap = true;
}
int nLuxels = (f->m_LightmapTextureSizeInLuxels[0]+1) * (f->m_LightmapTextureSizeInLuxels[1]+1);
if( needsBumpmap )
{
lightdatasize += nLuxels * 4 * lightstyles * ( NUM_BUMP_VECTS + 1 );
}
else
{
lightdatasize += nLuxels * 4 * lightstyles;
}
}
// The incremental lighting code needs us to preserve the contents of dlightdata
// since it only recomposites lighting for faces that have lights that touch them.
if( g_pIncremental && pdlightdata->Count() )
return;
pdlightdata->SetSize( lightdatasize );
}
// Clamp the three values for bumped lighting such that we trade off directionality for brightness.
static void ColorClampBumped( Vector& color1, Vector& color2, Vector& color3 )
{
Vector maxs;
Vector *colors[3] = { &color1, &color2, &color3 };
maxs[0] = VectorMaximum( color1 );
maxs[1] = VectorMaximum( color2 );
maxs[2] = VectorMaximum( color3 );
// HACK! Clean this up, and add some else statements
#define CONDITION(a,b,c) do { if( maxs[a] >= maxs[b] && maxs[b] >= maxs[c] ) { order[0] = a; order[1] = b; order[2] = c; } } while( 0 )
int order[3];
CONDITION(0,1,2);
CONDITION(0,2,1);
CONDITION(1,0,2);
CONDITION(1,2,0);
CONDITION(2,0,1);
CONDITION(2,1,0);
int i;
for( i = 0; i < 3; i++ )
{
float max = VectorMaximum( *colors[order[i]] );
if( max <= 1.0f )
{
continue;
}
// This channel is too bright. . take half of the amount that we are over and
// add it to the other two channel.
float factorToRedist = ( max - 1.0f ) / max;
Vector colorToRedist = factorToRedist * *colors[order[i]];
*colors[order[i]] -= colorToRedist;
colorToRedist *= 0.5f;
*colors[order[(i+1)%3]] += colorToRedist;
*colors[order[(i+2)%3]] += colorToRedist;
}
ColorClamp( color1 );
ColorClamp( color2 );
ColorClamp( color3 );
if( color1[0] < 0.f ) color1[0] = 0.f;
if( color1[1] < 0.f ) color1[1] = 0.f;
if( color1[2] < 0.f ) color1[2] = 0.f;
if( color2[0] < 0.f ) color2[0] = 0.f;
if( color2[1] < 0.f ) color2[1] = 0.f;
if( color2[2] < 0.f ) color2[2] = 0.f;
if( color3[0] < 0.f ) color3[0] = 0.f;
if( color3[1] < 0.f ) color3[1] = 0.f;
if( color3[2] < 0.f ) color3[2] = 0.f;
}
static void LinearToBumpedLightmap(
const float *linearColor,
const float *linearBumpColor1,
const float *linearBumpColor2,
const float *linearBumpColor3,
unsigned char *ret,
unsigned char *retBump1,
unsigned char *retBump2,
unsigned char *retBump3 )
{
const Vector &linearBump1 = *( ( const Vector * )linearBumpColor1 );
const Vector &linearBump2 = *( ( const Vector * )linearBumpColor2 );
const Vector &linearBump3 = *( ( const Vector * )linearBumpColor3 );
Vector gammaGoal;
// gammaGoal is premultiplied by 1/overbright, which we want
gammaGoal[0] = LinearToVertexLight( linearColor[0] );
gammaGoal[1] = LinearToVertexLight( linearColor[1] );
gammaGoal[2] = LinearToVertexLight( linearColor[2] );
Vector bumpAverage = linearBump1;
bumpAverage += linearBump2;
bumpAverage += linearBump3;
bumpAverage *= ( 1.0f / 3.0f );
Vector correctionScale;
if( *( int * )&bumpAverage[0] != 0 && *( int * )&bumpAverage[1] != 0 && *( int * )&bumpAverage[2] != 0 )
{
// fast path when we know that we don't have to worry about divide by zero.
VectorDivide( gammaGoal, bumpAverage, correctionScale );
// correctionScale = gammaGoal / bumpSum;
}
else
{
correctionScale.Init( 0.0f, 0.0f, 0.0f );
if( bumpAverage[0] != 0.0f )
{
correctionScale[0] = gammaGoal[0] / bumpAverage[0];
}
if( bumpAverage[1] != 0.0f )
{
correctionScale[1] = gammaGoal[1] / bumpAverage[1];
}
if( bumpAverage[2] != 0.0f )
{
correctionScale[2] = gammaGoal[2] / bumpAverage[2];
}
}
Vector correctedBumpColor1;
Vector correctedBumpColor2;
Vector correctedBumpColor3;
VectorMultiply( linearBump1, correctionScale, correctedBumpColor1 );
VectorMultiply( linearBump2, correctionScale, correctedBumpColor2 );
VectorMultiply( linearBump3, correctionScale, correctedBumpColor3 );
Vector check = ( correctedBumpColor1 + correctedBumpColor2 + correctedBumpColor3 ) / 3.0f;
ColorClampBumped( correctedBumpColor1, correctedBumpColor2, correctedBumpColor3 );
ret[0] = RoundFloatToByte( gammaGoal[0] * 255.0f );
ret[1] = RoundFloatToByte( gammaGoal[1] * 255.0f );
ret[2] = RoundFloatToByte( gammaGoal[2] * 255.0f );
retBump1[0] = RoundFloatToByte( correctedBumpColor1[0] * 255.0f );
retBump1[1] = RoundFloatToByte( correctedBumpColor1[1] * 255.0f );
retBump1[2] = RoundFloatToByte( correctedBumpColor1[2] * 255.0f );
retBump2[0] = RoundFloatToByte( correctedBumpColor2[0] * 255.0f );
retBump2[1] = RoundFloatToByte( correctedBumpColor2[1] * 255.0f );
retBump2[2] = RoundFloatToByte( correctedBumpColor2[2] * 255.0f );
retBump3[0] = RoundFloatToByte( correctedBumpColor3[0] * 255.0f );
retBump3[1] = RoundFloatToByte( correctedBumpColor3[1] * 255.0f );
retBump3[2] = RoundFloatToByte( correctedBumpColor3[2] * 255.0f );
}
//-----------------------------------------------------------------------------
// Convert a RGBExp32 to a RGBA8888
// This matches the engine's conversion, so the lighting result is consistent.
//-----------------------------------------------------------------------------
void ConvertRGBExp32ToRGBA8888( const ColorRGBExp32 *pSrc, unsigned char *pDst, Vector* _optOutLinear )
{
Vector linearColor;
// convert from ColorRGBExp32 to linear space
linearColor[0] = TexLightToLinear( ((ColorRGBExp32 *)pSrc)->r, ((ColorRGBExp32 *)pSrc)->exponent );
linearColor[1] = TexLightToLinear( ((ColorRGBExp32 *)pSrc)->g, ((ColorRGBExp32 *)pSrc)->exponent );
linearColor[2] = TexLightToLinear( ((ColorRGBExp32 *)pSrc)->b, ((ColorRGBExp32 *)pSrc)->exponent );
ConvertLinearToRGBA8888( &linearColor, pDst );
if ( _optOutLinear )
*_optOutLinear = linearColor;
}
//-----------------------------------------------------------------------------
// Converts a RGBExp32 to a linear color value.
//-----------------------------------------------------------------------------
void ConvertRGBExp32ToLinear(const ColorRGBExp32 *pSrc, Vector* pDst)
{
(*pDst)[0] = TexLightToLinear(((ColorRGBExp32 *)pSrc)->r, ((ColorRGBExp32 *)pSrc)->exponent);
(*pDst)[1] = TexLightToLinear(((ColorRGBExp32 *)pSrc)->g, ((ColorRGBExp32 *)pSrc)->exponent);
(*pDst)[2] = TexLightToLinear(((ColorRGBExp32 *)pSrc)->b, ((ColorRGBExp32 *)pSrc)->exponent);
}
//-----------------------------------------------------------------------------
// Converts a linear color value (suitable for combining linearly) to an RBGA8888 value expected by the engine.
//-----------------------------------------------------------------------------
void ConvertLinearToRGBA8888(const Vector *pSrcLinear, unsigned char *pDst)
{
Vector vertexColor;
// convert from linear space to lightmap space
// cannot use mathlib routine directly because it doesn't match
// the colorspace version found in the engine, which *is* the same sequence here
vertexColor[0] = LinearToVertexLight((*pSrcLinear)[0]);
vertexColor[1] = LinearToVertexLight((*pSrcLinear)[1]);
vertexColor[2] = LinearToVertexLight((*pSrcLinear)[2]);
// this is really a color normalization with a floor
ColorClamp(vertexColor);
// final [0..255] scale
pDst[0] = RoundFloatToByte(vertexColor[0] * 255.0f);
pDst[1] = RoundFloatToByte(vertexColor[1] * 255.0f);
pDst[2] = RoundFloatToByte(vertexColor[2] * 255.0f);
pDst[3] = 255;
}