You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2475 lines
71 KiB
2475 lines
71 KiB
5 years ago
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose:
|
||
|
//
|
||
|
// $NoKeywords: $
|
||
|
//
|
||
|
//=============================================================================//
|
||
|
#include "cbase.h"
|
||
|
#include "cmodel.h"
|
||
|
#include "physics_trace.h"
|
||
|
#include "ivp_surman_polygon.hxx"
|
||
|
#include "ivp_compact_ledge.hxx"
|
||
|
#include "ivp_compact_ledge_solver.hxx"
|
||
|
#include "ivp_compact_surface.hxx"
|
||
|
#include "tier0/vprof.h"
|
||
|
#include "mathlib/ssemath.h"
|
||
|
#include "tier0/tslist.h"
|
||
|
// memdbgon must be the last include file in a .cpp file!!!
|
||
|
#include "tier0/memdbgon.h"
|
||
|
|
||
|
// this skips the sphere tree stuff for tracing
|
||
|
#define DEBUG_TEST_ALL_LEDGES 0
|
||
|
// this skips the optimization that shrinks the ray as each intersection is encountered
|
||
|
#define DEBUG_KEEP_FULL_RAY 0
|
||
|
// this skips the optimization that looks up the first vert in a cubemap
|
||
|
#define USE_COLLIDE_MAP 1
|
||
|
|
||
|
// objects with small numbers of verts build a cache of pre-transformed verts
|
||
|
#define USE_VERT_CACHE 1
|
||
|
#define USE_RLE_SPANS 1
|
||
|
|
||
|
// UNDONE: This is a boost on PC, but doesn't work yet on x360 - investigate
|
||
|
#define SIMD_MATRIX 0
|
||
|
|
||
|
// turn this on to get asserts in the low-level collision solver
|
||
|
#define CHECK_TOI_CALCS 0
|
||
|
|
||
|
#define BRUTE_FORCE_VERT_COUNT 128
|
||
|
|
||
|
// NOTE: This is in inches (HL units)
|
||
|
#define TEST_EPSILON (g_PhysicsUnits.collisionSweepIncrementalEpsilon)
|
||
|
|
||
|
struct simplexvert_t
|
||
|
{
|
||
|
Vector position;
|
||
|
unsigned short testIndex : 15;
|
||
|
unsigned short sweepIndex : 1;
|
||
|
unsigned short obstacleIndex;
|
||
|
};
|
||
|
|
||
|
struct simplex_t
|
||
|
{
|
||
|
simplexvert_t verts[4];
|
||
|
int vertCount;
|
||
|
|
||
|
inline bool PointSimplex( const simplexvert_t &newPoint, Vector *pOut );
|
||
|
inline bool EdgeSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &edge, Vector *pOut );
|
||
|
inline bool TriangleSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &faceNormal, Vector *pOut );
|
||
|
|
||
|
bool SolveGJKSet( const simplexvert_t &newPoint, Vector *pOut );
|
||
|
bool SolveVoronoiRegion2( const simplexvert_t &newPoint, Vector *pOut );
|
||
|
bool SolveVoronoiRegion3( const simplexvert_t &newPoint, Vector *pOut );
|
||
|
bool SolveVoronoiRegion4( const simplexvert_t &newPoint, Vector *pOut );
|
||
|
|
||
|
Vector ClipRayToTetrahedronBase( const Vector &dir );
|
||
|
Vector ClipRayToTetrahedron( const Vector &dir );
|
||
|
float ClipRayToTriangle( const Vector &dir, float epsilon );
|
||
|
};
|
||
|
|
||
|
class CTraceCone : public ITraceObject
|
||
|
{
|
||
|
public:
|
||
|
CTraceCone( const truncatedcone_t &cone, const Vector &translation )
|
||
|
{
|
||
|
m_cone = cone;
|
||
|
m_cone.origin += translation;
|
||
|
float cosTheta;
|
||
|
SinCos( DEG2RAD(m_cone.theta), &m_sinTheta, &cosTheta );
|
||
|
m_radius = m_cone.h * m_sinTheta / cosTheta;
|
||
|
m_centerBase = m_cone.origin + m_cone.h * m_cone.normal;
|
||
|
}
|
||
|
|
||
|
virtual int SupportMap( const Vector &dir, Vector *pOut ) const
|
||
|
{
|
||
|
Vector unitDir = dir;
|
||
|
VectorNormalize(unitDir);
|
||
|
|
||
|
float dot = DotProduct( unitDir, m_cone.normal );
|
||
|
|
||
|
// anti-cone is -normal, angle = 90 - theta
|
||
|
// If the normal is in the anti-cone, then return the apex
|
||
|
|
||
|
// not in anti-cone, support map is on the surface of the disc
|
||
|
if ( dot > -m_sinTheta )
|
||
|
{
|
||
|
unitDir -= m_cone.normal * dot;
|
||
|
float len = VectorNormalize( unitDir );
|
||
|
if ( len > 1e-4f )
|
||
|
{
|
||
|
*pOut = m_centerBase + (unitDir * m_radius);
|
||
|
return 0;
|
||
|
}
|
||
|
*pOut = m_centerBase;
|
||
|
return 0;
|
||
|
|
||
|
|
||
|
}
|
||
|
// outside the cone's angle, support map is on the surface of the cone
|
||
|
*pOut = m_cone.origin;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// BUGBUG: Doesn't work!
|
||
|
virtual Vector GetVertByIndex( int index ) const { return m_cone.origin; }
|
||
|
virtual float Radius( void ) const { return m_cone.h + m_radius; }
|
||
|
|
||
|
truncatedcone_t m_cone;
|
||
|
float m_radius;
|
||
|
float m_sinTheta;
|
||
|
Vector m_centerBase;
|
||
|
};
|
||
|
|
||
|
|
||
|
// really this is indexing a vertex, but the iteration code needs a triangle + edge index.
|
||
|
// edge is always 0-2 so return it in the bottom 2 bits
|
||
|
static unsigned short GetPackedIndex( const IVP_Compact_Ledge *pLedge, const IVP_U_Float_Point &dir )
|
||
|
{
|
||
|
const IVP_Compact_Poly_Point *RESTRICT pPoints = pLedge->get_point_array();
|
||
|
const IVP_Compact_Triangle *RESTRICT pTri = pLedge->get_first_triangle();
|
||
|
const IVP_Compact_Edge *RESTRICT pEdge = pTri->get_edge( 0 );
|
||
|
int best = pEdge->get_start_point_index();
|
||
|
float bestDot = pPoints[best].dot_product( &dir );
|
||
|
int triCount = pLedge->get_n_triangles();
|
||
|
const IVP_Compact_Triangle *RESTRICT pBestTri = pTri;
|
||
|
// this loop will early out, but keep it from being infinite
|
||
|
int i;
|
||
|
// hillclimbing search to find the best support vert
|
||
|
for ( i = 0; i < triCount; i++ )
|
||
|
{
|
||
|
// get the index to the end vert of this edge (start vert on next edge)
|
||
|
pEdge = pEdge->get_prev();
|
||
|
int stopVert = pEdge->get_start_point_index();
|
||
|
|
||
|
// loop through the verts that can be reached along edges from this vert
|
||
|
// stop if you get back to the one you're starting on.
|
||
|
int vert = stopVert;
|
||
|
do
|
||
|
{
|
||
|
float dot = pPoints[vert].dot_product( &dir );
|
||
|
if ( dot > bestDot )
|
||
|
{
|
||
|
bestDot = dot;
|
||
|
best = vert;
|
||
|
pBestTri = pEdge->get_triangle();
|
||
|
break;
|
||
|
}
|
||
|
// tri opposite next edge, same starting vert as next edge
|
||
|
pEdge = pEdge->get_opposite()->get_prev();
|
||
|
vert = pEdge->get_start_point_index();
|
||
|
} while ( vert != stopVert );
|
||
|
|
||
|
// if you exhausted the possibilities for this vert, it must be the best vert
|
||
|
if ( vert != best )
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
int triIndex = pBestTri - pLedge->get_first_triangle();
|
||
|
int edgeIndex = 0;
|
||
|
// just do a search for the edge containing this vert instead of storing it along the way
|
||
|
for ( i = 0; i < 3; i++ )
|
||
|
{
|
||
|
if ( pBestTri->get_edge(i)->get_start_point_index() == best )
|
||
|
{
|
||
|
edgeIndex = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (unsigned short) ( (triIndex<<2) + edgeIndex );
|
||
|
}
|
||
|
|
||
|
|
||
|
void InitLeafmap( IVP_Compact_Ledge *pLedge, leafmap_t *pLeafmapOut )
|
||
|
{
|
||
|
pLeafmapOut->pLeaf = pLedge;
|
||
|
pLeafmapOut->vertCount = 0;
|
||
|
pLeafmapOut->flags = 0;
|
||
|
pLeafmapOut->spanCount = 0;
|
||
|
if ( pLedge && pLedge->is_terminal() )
|
||
|
{
|
||
|
// for small numbers of verts it's much faster to simply do dot products with all verts
|
||
|
// since the best case for hillclimbing is to touch the start vert plus all neighbors (avg_valence+1 dots)
|
||
|
// in t
|
||
|
int triCount = pLedge->get_n_triangles();
|
||
|
// this is a guess that anything with more than brute_force * 4 tris will have at least brute_force verts
|
||
|
if ( triCount <= BRUTE_FORCE_VERT_COUNT*4 )
|
||
|
{
|
||
|
Assert(triCount>0);
|
||
|
int minV = MAX_CONVEX_VERTS;
|
||
|
int maxV = 0;
|
||
|
for ( int i = 0; i < triCount; i++ )
|
||
|
{
|
||
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
||
|
for ( int j = 0; j < 3; j++ )
|
||
|
{
|
||
|
const IVP_Compact_Edge *pEdge = pTri->get_edge( j );
|
||
|
int v = pEdge->get_start_point_index();
|
||
|
if ( v < minV )
|
||
|
{
|
||
|
minV = v;
|
||
|
}
|
||
|
if ( v > maxV )
|
||
|
{
|
||
|
maxV = v;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
int vertCount = (maxV-minV) + 1;
|
||
|
// max possible verts is < 48, so this is just here for some real failure
|
||
|
// or vert sharing with a large collection of convexes. In that case the
|
||
|
// number could be high, but this approach to implementing support is invalid
|
||
|
// because the vert range is polluted
|
||
|
if ( vertCount < BRUTE_FORCE_VERT_COUNT )
|
||
|
{
|
||
|
char hasVert[BRUTE_FORCE_VERT_COUNT];
|
||
|
memset(hasVert, 0, sizeof(hasVert[0])*vertCount);
|
||
|
for ( int i = 0; i < triCount; i++ )
|
||
|
{
|
||
|
const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle() + i;
|
||
|
for ( int j = 0; j < 3; j++ )
|
||
|
{
|
||
|
// mark each vert in the list
|
||
|
const IVP_Compact_Edge *pEdge = pTri->get_edge( j );
|
||
|
int v = pEdge->get_start_point_index();
|
||
|
hasVert[v-minV] = true;
|
||
|
}
|
||
|
}
|
||
|
// now find the vertex spans and encode them
|
||
|
byte spans[BRUTE_FORCE_VERT_COUNT];
|
||
|
int spanIndex = 0;
|
||
|
char has = hasVert[0];
|
||
|
Assert(has);
|
||
|
byte count = 1;
|
||
|
for ( int i = 1; i < vertCount && spanIndex < BRUTE_FORCE_VERT_COUNT; i++ )
|
||
|
{
|
||
|
// each change of state is a new span
|
||
|
if ( has != hasVert[i] )
|
||
|
{
|
||
|
spans[spanIndex] = count;
|
||
|
has = hasVert[i];
|
||
|
count = 0;
|
||
|
spanIndex++;
|
||
|
}
|
||
|
count++;
|
||
|
Assert(count < 255);
|
||
|
}
|
||
|
|
||
|
// rle spans only supported with vertex caching
|
||
|
#if USE_VERT_CACHE && USE_RLE_SPANS
|
||
|
if ( spanIndex < BRUTE_FORCE_VERT_COUNT )
|
||
|
#else
|
||
|
if ( spanIndex < 1 )
|
||
|
#endif
|
||
|
{
|
||
|
spans[spanIndex] = count;
|
||
|
spanIndex++;
|
||
|
pLeafmapOut->SetRLESpans( minV, spanIndex, spans );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( !pLeafmapOut->HasSpans() )
|
||
|
{
|
||
|
// otherwise make a 8-way directional map to pick the best start vert for hillclimbing
|
||
|
pLeafmapOut->SetHasCubemap();
|
||
|
for ( int i = 0; i < 8; i++ )
|
||
|
{
|
||
|
IVP_U_Float_Point tmp;
|
||
|
tmp.k[0] = ( i & 1 ) ? -1 : 1;
|
||
|
tmp.k[1] = ( i & 2 ) ? -1 : 1;
|
||
|
tmp.k[2] = ( i & 4 ) ? -1 : 1;
|
||
|
pLeafmapOut->startVert[i] = GetPackedIndex( pLedge, tmp );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void GetStartVert( const leafmap_t *pLeafmap, const IVP_U_Float_Point &localDirection, int &triIndex, int &edgeIndex )
|
||
|
{
|
||
|
if ( !pLeafmap || !pLeafmap->HasCubemap() )
|
||
|
return;
|
||
|
|
||
|
// map dir to index
|
||
|
int cacheIndex = (localDirection.k[0] < 0 ? 1 : 0) + (localDirection.k[1] < 0 ? 2 : 0) + (localDirection.k[2] < 0 ? 4 : 0 );
|
||
|
triIndex = pLeafmap->startVert[cacheIndex] >> 2;
|
||
|
edgeIndex = pLeafmap->startVert[cacheIndex] & 0x3;
|
||
|
}
|
||
|
|
||
|
CTSPool<CVisitHash> g_VisitHashPool;
|
||
|
|
||
|
CVisitHash *AllocVisitHash()
|
||
|
{
|
||
|
return g_VisitHashPool.GetObject();
|
||
|
}
|
||
|
|
||
|
void FreeVisitHash(CVisitHash *pFree)
|
||
|
{
|
||
|
if ( pFree )
|
||
|
{
|
||
|
g_VisitHashPool.PutObject(pFree);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Implementation for Trace against an IVP object
|
||
|
//-----------------------------------------------------------------------------
|
||
|
class CTraceIVP : public ITraceObject
|
||
|
{
|
||
|
public:
|
||
|
CTraceIVP( const CPhysCollide *pCollide, const Vector &origin, const QAngle &angles );
|
||
|
~CTraceIVP()
|
||
|
{
|
||
|
if ( m_pVisitHash )
|
||
|
FreeVisitHash(m_pVisitHash);
|
||
|
}
|
||
|
virtual int SupportMap( const Vector &dir, Vector *pOut ) const;
|
||
|
virtual Vector GetVertByIndex( int index ) const;
|
||
|
|
||
|
// UNDONE: Do general ITraceObject center/offset computation and move the ray to account
|
||
|
// for this delta like we do in TraceSweepIVP()
|
||
|
// Then we can shrink the radius of objects with mass centers NOT at the origin
|
||
|
virtual float Radius( void ) const
|
||
|
{
|
||
|
return m_radius;
|
||
|
}
|
||
|
|
||
|
inline float TransformLengthToLocal( float length )
|
||
|
{
|
||
|
return ConvertDistanceToIVP( length );
|
||
|
}
|
||
|
// UNDONE: Optimize this by storing 3 matrices? (one for each transform that includes rot/scale for HL/IVP)?
|
||
|
// UNDONE: Not necessary if we remove the coordinate conversion
|
||
|
inline void TransformDirectionToLocal( const Vector &dir, IVP_U_Float_Point &local ) const
|
||
|
{
|
||
|
IVP_U_Float_Point tmp;
|
||
|
ConvertDirectionToIVP( dir, tmp );
|
||
|
m_matrix.vimult3( &tmp, &local );
|
||
|
}
|
||
|
|
||
|
inline void RotateRelativePositionToLocal( const Vector &delta, IVP_U_Float_Point &local ) const
|
||
|
{
|
||
|
IVP_U_Float_Point tmp;
|
||
|
ConvertPositionToIVP( delta, tmp );
|
||
|
m_matrix.vimult3( &tmp, &local );
|
||
|
}
|
||
|
|
||
|
inline void TransformPositionToLocal( const Vector &pos, IVP_U_Float_Point &local ) const
|
||
|
{
|
||
|
IVP_U_Float_Point tmp;
|
||
|
ConvertPositionToIVP( pos, tmp );
|
||
|
m_matrix.vimult4( &tmp, &local );
|
||
|
}
|
||
|
|
||
|
inline void TransformPositionFromLocal( const IVP_U_Float_Point &local, Vector &out ) const
|
||
|
{
|
||
|
VectorTransform( *(Vector *)&local, *((const matrix3x4_t *)&m_ivpLocalToHLWorld), out );
|
||
|
}
|
||
|
|
||
|
#if USE_VERT_CACHE
|
||
|
inline Vector CachedVertByIndex(int index) const
|
||
|
{
|
||
|
int subIndex = index & 3;
|
||
|
return m_vertCache[index>>2].Vec(subIndex);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
bool IsValid( void ) { return m_pLedge != NULL; }
|
||
|
|
||
|
void AllocateVisitHash()
|
||
|
{
|
||
|
if ( !m_pVisitHash )
|
||
|
m_pVisitHash = AllocVisitHash();
|
||
|
}
|
||
|
|
||
|
void SetLedge( const IVP_Compact_Ledge *pLedge )
|
||
|
{
|
||
|
m_pLedge = pLedge;
|
||
|
m_pLeafmap = NULL;
|
||
|
if ( !pLedge )
|
||
|
return;
|
||
|
|
||
|
#if USE_VERT_CACHE
|
||
|
m_cacheCount = 0;
|
||
|
#endif
|
||
|
if ( m_pCollideMap )
|
||
|
{
|
||
|
for ( int i = 0; i < m_pCollideMap->leafCount; i++ )
|
||
|
{
|
||
|
if ( m_pCollideMap->leafmap[i].pLeaf == pLedge )
|
||
|
{
|
||
|
m_pLeafmap = &m_pCollideMap->leafmap[i];
|
||
|
if ( !BuildLeafmapCache( &m_pCollideMap->leafmap[i] ) )
|
||
|
{
|
||
|
AllocateVisitHash();
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
AllocateVisitHash();
|
||
|
}
|
||
|
|
||
|
bool SetSingleConvex( void )
|
||
|
{
|
||
|
const IVP_Compact_Ledgetree_Node *node = m_pSurface->get_compact_ledge_tree_root();
|
||
|
if ( node->is_terminal() == IVP_TRUE )
|
||
|
{
|
||
|
SetLedge( node->get_compact_ledge() );
|
||
|
return true;
|
||
|
}
|
||
|
SetLedge( NULL );
|
||
|
return false;
|
||
|
}
|
||
|
bool BuildLeafmapCache(const leafmap_t * RESTRICT pLeafmap);
|
||
|
bool BuildLeafmapCacheRLE( const leafmap_t * RESTRICT pLeafmap );
|
||
|
inline int SupportMapCached( const Vector &dir, Vector *pOut ) const;
|
||
|
const collidemap_t *m_pCollideMap;
|
||
|
const IVP_Compact_Surface *m_pSurface;
|
||
|
|
||
|
private:
|
||
|
const leafmap_t *m_pLeafmap;
|
||
|
const IVP_Compact_Ledge *m_pLedge;
|
||
|
CVisitHash *m_pVisitHash;
|
||
|
#if SIMD_MATRIX
|
||
|
FourVectors m_ivpLocalToHLWorld;
|
||
|
#else
|
||
|
matrix3x4_t m_ivpLocalToHLWorld;
|
||
|
#endif
|
||
|
IVP_U_Matrix m_matrix;
|
||
|
// transform that includes scale from IVP to HL coords, do not VectorITransform or VectorRotate with this
|
||
|
float m_radius;
|
||
|
int m_nPointTest;
|
||
|
int m_nStartPoint;
|
||
|
bool m_bHasTranslation;
|
||
|
#if USE_VERT_CACHE
|
||
|
int m_cacheCount; // number of FourVectors used
|
||
|
FourVectors m_vertCache[BRUTE_FORCE_VERT_COUNT/4];
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
// GCC 4.2.1 can't handle loading a static const into a m128 register :(
|
||
|
#ifdef WIN32
|
||
|
static const
|
||
|
#endif
|
||
|
fltx4 g_IVPToHLDir = { 1.0f, -1.0f, 1.0f, 1.0f };
|
||
|
|
||
|
//static const fltx4 g_IVPToHLPosition = { IVP2HL(1.0f), -IVP2HL(1.0f), IVP2HL(1.0f), IVP2HL(1.0f) };
|
||
|
|
||
|
#if defined(_X360)
|
||
|
|
||
|
FORCEINLINE fltx4 ConvertDirectionToIVP( const fltx4 & a )
|
||
|
{
|
||
|
fltx4 t = __vpermwi( a, VPERMWI_CONST( 0, 2, 1, 3 ) );
|
||
|
// negate Y
|
||
|
return MulSIMD( t, g_IVPToHLDir );
|
||
|
}
|
||
|
#else
|
||
|
FORCEINLINE fltx4 ConvertDirectionToIVP( const fltx4 & a )
|
||
|
{
|
||
|
// swap Z & Y
|
||
|
fltx4 t = _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 0, 2, 1, 3 ) );
|
||
|
// negate Y
|
||
|
return MulSIMD( t, g_IVPToHLDir );
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
CTraceIVP::CTraceIVP( const CPhysCollide *pCollide, const Vector &origin, const QAngle &angles )
|
||
|
{
|
||
|
#if USE_COLLIDE_MAP
|
||
|
m_pCollideMap = pCollide->GetCollideMap();
|
||
|
#else
|
||
|
m_pCollideMap = NULL;
|
||
|
#endif
|
||
|
m_pSurface = pCollide->GetCompactSurface();
|
||
|
m_pLedge = NULL;
|
||
|
m_pVisitHash = NULL;
|
||
|
|
||
|
m_bHasTranslation = (origin==vec3_origin) ? false : true;
|
||
|
// UNDONE: Move this offset calculation into the tracing routines
|
||
|
// I didn't do this now because it seems to require changes to most of the
|
||
|
// transform routines - and this would cause bugs.
|
||
|
float centerOffset = VectorLength( m_pSurface->mass_center.k );
|
||
|
#if SIMD_MATRIX
|
||
|
VectorAligned forward, right, up;
|
||
|
IVP_U_Float_Point ivpForward, ivpLeft, ivpUp;
|
||
|
|
||
|
AngleVectors( angles, &forward, &right, &up );
|
||
|
|
||
|
Vector left = -right;
|
||
|
Vector down = -up;
|
||
|
|
||
|
ConvertDirectionToIVP( forward, ivpForward );
|
||
|
ConvertDirectionToIVP( left, ivpLeft );
|
||
|
ConvertDirectionToIVP( down, ivpUp );
|
||
|
|
||
|
m_matrix.set_col( IVP_INDEX_X, &ivpForward );
|
||
|
m_matrix.set_col( IVP_INDEX_Z, &ivpLeft );
|
||
|
m_matrix.set_col( IVP_INDEX_Y, &ivpUp );
|
||
|
ConvertPositionToIVP( origin, m_matrix.vv );
|
||
|
|
||
|
forward.w = HL2IVP(origin.x);
|
||
|
// This vector is supposed to be left, so we'll negate it later, but we don't want to
|
||
|
// negate the position, so add another minus to cancel out
|
||
|
right.w = -HL2IVP(origin.y);
|
||
|
up.w = HL2IVP(origin.z);
|
||
|
fltx4 rx = ConvertDirectionToIVP(LoadAlignedSIMD(forward.Base()));
|
||
|
fltx4 ry = ConvertDirectionToIVP(SubSIMD( Four_Zeros, LoadAlignedSIMD(right.Base())) );
|
||
|
fltx4 rz = ConvertDirectionToIVP(LoadAlignedSIMD(up.Base()) );
|
||
|
|
||
|
fltx4 scaleHL = ReplicateX4(IVP2HL(1.0f));
|
||
|
m_ivpLocalToHLWorld.x = MulSIMD( scaleHL, rx );
|
||
|
m_ivpLocalToHLWorld.y = MulSIMD( scaleHL, ry );
|
||
|
m_ivpLocalToHLWorld.z = MulSIMD( scaleHL, rz );
|
||
|
#else
|
||
|
ConvertRotationToIVP( angles, m_matrix );
|
||
|
ConvertPositionToIVP( origin, m_matrix.vv );
|
||
|
float scale = IVP2HL(1.0f);
|
||
|
float negScale = IVP2HL(-1.0f);
|
||
|
// copy the existing IVP local->world matrix (swap Y & Z)
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[0][0] = m_matrix.get_elem(IVP_INDEX_X,0) * scale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[0][1] = m_matrix.get_elem(IVP_INDEX_X,1) * scale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[0][2] = m_matrix.get_elem(IVP_INDEX_X,2) * scale;
|
||
|
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[1][0] = m_matrix.get_elem(IVP_INDEX_Z,0) * scale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[1][1] = m_matrix.get_elem(IVP_INDEX_Z,1) * scale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[1][2] = m_matrix.get_elem(IVP_INDEX_Z,2) * scale;
|
||
|
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[2][0] = m_matrix.get_elem(IVP_INDEX_Y,0) * negScale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[2][1] = m_matrix.get_elem(IVP_INDEX_Y,1) * negScale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[2][2] = m_matrix.get_elem(IVP_INDEX_Y,2) * negScale;
|
||
|
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[0][3] = m_matrix.vv.k[0] * scale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[1][3] = m_matrix.vv.k[2] * scale;
|
||
|
m_ivpLocalToHLWorld.m_flMatVal[2][3] = m_matrix.vv.k[1] * negScale;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
m_radius = ConvertDistanceToHL( m_pSurface->upper_limit_radius + centerOffset );
|
||
|
}
|
||
|
|
||
|
bool CTraceIVP::BuildLeafmapCacheRLE( const leafmap_t * RESTRICT pLeafmap )
|
||
|
{
|
||
|
// iterate the rle spans of verts and output them to a buffer in post-transform space
|
||
|
int startPoint = pLeafmap->startVert[0];
|
||
|
int pointCount = pLeafmap->vertCount;
|
||
|
m_cacheCount = (pointCount + 3)>>2;
|
||
|
const byte *RESTRICT pSpans = pLeafmap->GetSpans();
|
||
|
int countThisSpan = pSpans[0];
|
||
|
int spanIndex = 1;
|
||
|
int baseVert = 0;
|
||
|
const VectorAligned * RESTRICT pVerts = (const VectorAligned *)&m_pLedge->get_point_array()[startPoint];
|
||
|
for ( int i = 0; i < m_cacheCount-1; i++ )
|
||
|
{
|
||
|
if ( countThisSpan < 4 )
|
||
|
{
|
||
|
// unrolled for perf
|
||
|
// we need a batch of four verts, but they aren't in a single span
|
||
|
int v0, v1, v2, v3;
|
||
|
if ( !countThisSpan )
|
||
|
{
|
||
|
baseVert += pSpans[spanIndex];
|
||
|
countThisSpan = pSpans[spanIndex+1];
|
||
|
spanIndex += 2;
|
||
|
}
|
||
|
v0 = baseVert++;
|
||
|
countThisSpan--;
|
||
|
if ( !countThisSpan )
|
||
|
{
|
||
|
baseVert += pSpans[spanIndex];
|
||
|
countThisSpan = pSpans[spanIndex+1];
|
||
|
spanIndex += 2;
|
||
|
}
|
||
|
v1 = baseVert++;
|
||
|
countThisSpan--;
|
||
|
if ( !countThisSpan )
|
||
|
{
|
||
|
baseVert += pSpans[spanIndex];
|
||
|
countThisSpan = pSpans[spanIndex+1];
|
||
|
spanIndex += 2;
|
||
|
}
|
||
|
v2 = baseVert++;
|
||
|
countThisSpan--;
|
||
|
if ( !countThisSpan )
|
||
|
{
|
||
|
baseVert += pSpans[spanIndex];
|
||
|
countThisSpan = pSpans[spanIndex+1];
|
||
|
spanIndex += 2;
|
||
|
}
|
||
|
v3 = baseVert++;
|
||
|
countThisSpan--;
|
||
|
m_vertCache[i].LoadAndSwizzleAligned( pVerts[v0].Base(), pVerts[v1].Base(), pVerts[v2].Base(), pVerts[v3].Base() );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// we have four verts in this span, just grab the next four
|
||
|
m_vertCache[i].LoadAndSwizzleAligned( pVerts[baseVert+0].Base(), pVerts[baseVert+1].Base(), pVerts[baseVert+2].Base(), pVerts[baseVert+3].Base() );
|
||
|
baseVert += 4;
|
||
|
countThisSpan -= 4;
|
||
|
}
|
||
|
}
|
||
|
// the last iteration needs multiple spans and clamping to the last vert
|
||
|
int v[4];
|
||
|
for ( int i = 0; i < 4; i++ )
|
||
|
{
|
||
|
if ( spanIndex < pLeafmap->spanCount && !countThisSpan )
|
||
|
{
|
||
|
baseVert += pSpans[spanIndex];
|
||
|
countThisSpan = pSpans[spanIndex+1];
|
||
|
spanIndex += 2;
|
||
|
}
|
||
|
if ( spanIndex < pLeafmap->spanCount )
|
||
|
{
|
||
|
v[i] = baseVert;
|
||
|
baseVert++;
|
||
|
countThisSpan--;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
v[i] = baseVert;
|
||
|
if ( countThisSpan > 1 )
|
||
|
{
|
||
|
countThisSpan--;
|
||
|
baseVert++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
m_vertCache[m_cacheCount-1].LoadAndSwizzleAligned( pVerts[v[0]].Base(), pVerts[v[1]].Base(), pVerts[v[2]].Base(), pVerts[v[3]].Base() );
|
||
|
FourVectors::RotateManyBy( &m_vertCache[0], m_cacheCount, *((const matrix3x4_t *)&m_ivpLocalToHLWorld) );
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool CTraceIVP::BuildLeafmapCache( const leafmap_t * RESTRICT pLeafmap )
|
||
|
{
|
||
|
#if !USE_VERT_CACHE
|
||
|
return false;
|
||
|
#else
|
||
|
if ( !pLeafmap || !pLeafmap->HasSpans() || m_bHasTranslation )
|
||
|
return false;
|
||
|
if ( pLeafmap->HasRLESpans() )
|
||
|
{
|
||
|
return BuildLeafmapCacheRLE(pLeafmap);
|
||
|
}
|
||
|
|
||
|
// single vertex span, just xform + copy
|
||
|
|
||
|
// iterate the span of verts and output them to a buffer in post-transform space
|
||
|
// just iterate the range if one is specified
|
||
|
int startPoint = pLeafmap->startVert[0];
|
||
|
int pointCount = pLeafmap->vertCount;
|
||
|
m_cacheCount = (pointCount + 3)>>2;
|
||
|
Assert(m_cacheCount>=0 && m_cacheCount<= (BRUTE_FORCE_VERT_COUNT/4));
|
||
|
|
||
|
const VectorAligned * RESTRICT pVerts = (const VectorAligned *)&m_pLedge->get_point_array()[startPoint];
|
||
|
for ( int i = 0; i < m_cacheCount-1; i++ )
|
||
|
{
|
||
|
m_vertCache[i].LoadAndSwizzleAligned( pVerts[0].Base(), pVerts[1].Base(), pVerts[2].Base(), pVerts[3].Base() );
|
||
|
pVerts += 4;
|
||
|
}
|
||
|
|
||
|
int remIndex = (pointCount-1) & 3;
|
||
|
int x0 = 0;
|
||
|
int x1 = min(1,remIndex);
|
||
|
int x2 = min(2,remIndex);
|
||
|
int x3 = min(3,remIndex);
|
||
|
m_vertCache[m_cacheCount-1].LoadAndSwizzleAligned( pVerts[x0].Base(), pVerts[x1].Base(), pVerts[x2].Base(), pVerts[x3].Base() );
|
||
|
FourVectors::RotateManyBy( &m_vertCache[0], m_cacheCount, *((const matrix3x4_t *)&m_ivpLocalToHLWorld) );
|
||
|
return true;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static const fltx4 g_IndexBase = {0,1,2,3};
|
||
|
int CTraceIVP::SupportMapCached( const Vector &dir, Vector *pOut ) const
|
||
|
{
|
||
|
VPROF("SupportMapCached");
|
||
|
#if USE_VERT_CACHE
|
||
|
FourVectors fourDir;
|
||
|
#if defined(_X360)
|
||
|
fltx4 vec = LoadUnaligned3SIMD( dir.Base() );
|
||
|
fourDir.x = SplatXSIMD(vec);
|
||
|
fourDir.y = SplatYSIMD(vec);
|
||
|
fourDir.z = SplatZSIMD(vec);
|
||
|
#else
|
||
|
fourDir.DuplicateVector(dir);
|
||
|
#endif
|
||
|
|
||
|
fltx4 index = g_IndexBase;
|
||
|
fltx4 maxIndex = g_IndexBase;
|
||
|
fltx4 maxDot = fourDir * m_vertCache[0];
|
||
|
for ( int i = 1; i < m_cacheCount; i++ )
|
||
|
{
|
||
|
index = AddSIMD(index, Four_Fours);
|
||
|
fltx4 dot = fourDir * m_vertCache[i];
|
||
|
fltx4 cmpMask = CmpGtSIMD(dot,maxDot);
|
||
|
maxIndex = MaskedAssign( cmpMask, index, maxIndex );
|
||
|
maxDot = MaxSIMD(dot, maxDot);
|
||
|
}
|
||
|
|
||
|
// find highest of 4
|
||
|
fltx4 rot = RotateLeft2(maxDot);
|
||
|
fltx4 rotIndex = RotateLeft2(maxIndex);
|
||
|
fltx4 cmpMask = CmpGtSIMD(rot,maxDot);
|
||
|
maxIndex = MaskedAssign(cmpMask, rotIndex, maxIndex);
|
||
|
maxDot = MaxSIMD(rot,maxDot);
|
||
|
rotIndex = RotateLeft(maxIndex);
|
||
|
rot = RotateLeft(maxDot);
|
||
|
cmpMask = CmpGtSIMD(rot,maxDot);
|
||
|
maxIndex = MaskedAssign(cmpMask, rotIndex, maxIndex);
|
||
|
// not needed unless we need the actual max dot at the end
|
||
|
// maxDot = MaxSIMD(rot,maxDot);
|
||
|
|
||
|
int bestIndex = SubFloatConvertToInt(maxIndex,0);
|
||
|
*pOut = CachedVertByIndex(bestIndex);
|
||
|
|
||
|
return bestIndex;
|
||
|
#else
|
||
|
Assert(0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int CTraceIVP::SupportMap( const Vector &dir, Vector *pOut ) const
|
||
|
{
|
||
|
#if USE_VERT_CACHE
|
||
|
if ( m_cacheCount )
|
||
|
return SupportMapCached( dir, pOut );
|
||
|
#endif
|
||
|
|
||
|
if ( m_pLeafmap && m_pLeafmap->HasSingleVertexSpan() )
|
||
|
{
|
||
|
VPROF("SupportMap_Leaf");
|
||
|
const IVP_U_Float_Point *pPoints = m_pLedge->get_point_array();
|
||
|
IVP_U_Float_Point mapdir;
|
||
|
TransformDirectionToLocal( dir, mapdir );
|
||
|
// just iterate the range if one is specified
|
||
|
int startPoint = m_pLeafmap->startVert[0];
|
||
|
int pointCount = m_pLeafmap->vertCount;
|
||
|
float bestDot = pPoints[startPoint].dot_product(&mapdir);
|
||
|
int best = startPoint;
|
||
|
for ( int i = 1; i < pointCount; i++ )
|
||
|
{
|
||
|
float dot = pPoints[startPoint+i].dot_product(&mapdir);
|
||
|
if ( dot > bestDot )
|
||
|
{
|
||
|
bestDot = dot;
|
||
|
best = startPoint+i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TransformPositionFromLocal( pPoints[best], *pOut ); // transform point position to world space
|
||
|
return best;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
VPROF("SupportMap_Walk");
|
||
|
const IVP_U_Float_Point *pPoints = m_pLedge->get_point_array();
|
||
|
IVP_U_Float_Point mapdir;
|
||
|
TransformDirectionToLocal( dir, mapdir );
|
||
|
int triCount = m_pLedge->get_n_triangles();
|
||
|
Assert( m_pVisitHash );
|
||
|
m_pVisitHash->NewVisit();
|
||
|
|
||
|
float dot;
|
||
|
int triIndex = 0, edgeIndex = 0;
|
||
|
GetStartVert( m_pLeafmap, mapdir, triIndex, edgeIndex );
|
||
|
const IVP_Compact_Triangle *RESTRICT pTri = m_pLedge->get_first_triangle() + triIndex;
|
||
|
const IVP_Compact_Edge *RESTRICT pEdge = pTri->get_edge( edgeIndex );
|
||
|
int best = pEdge->get_start_point_index();
|
||
|
float bestDot = pPoints[best].dot_product( &mapdir );
|
||
|
m_pVisitHash->VisitVert(best);
|
||
|
|
||
|
// This should never happen. MAX_CONVEX_VERTS is very large (millions), none of our
|
||
|
// models have anywhere near this many verts in a convex piece
|
||
|
Assert(triCount*3<MAX_CONVEX_VERTS);
|
||
|
// this loop will early out, but keep it from being infinite
|
||
|
for ( int i = 0; i < triCount; i++ )
|
||
|
{
|
||
|
// get the index to the end vert of this edge (start vert on next edge)
|
||
|
pEdge = pEdge->get_prev();
|
||
|
int stopVert = pEdge->get_start_point_index();
|
||
|
|
||
|
// loop through the verts that can be reached along edges from this vert
|
||
|
// stop if you get back to the one you're starting on.
|
||
|
int vert = stopVert;
|
||
|
do
|
||
|
{
|
||
|
if ( !m_pVisitHash->WasVisited(vert) )
|
||
|
{
|
||
|
// this lets us skip doing dot products on this vert
|
||
|
m_pVisitHash->VisitVert(vert);
|
||
|
dot = pPoints[vert].dot_product( &mapdir );
|
||
|
if ( dot > bestDot )
|
||
|
{
|
||
|
bestDot = dot;
|
||
|
best = vert;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// tri opposite next edge, same starting vert as next edge
|
||
|
pEdge = pEdge->get_opposite()->get_prev();
|
||
|
vert = pEdge->get_start_point_index();
|
||
|
} while ( vert != stopVert );
|
||
|
|
||
|
// if you exhausted the possibilities for this vert, it must be the best vert
|
||
|
if ( vert != best )
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// code to do the brute force method with no hill-climbing
|
||
|
#if 0
|
||
|
for ( i = 0; i < triCount; i++ )
|
||
|
{
|
||
|
pTri = m_pLedge->get_first_triangle() + i;
|
||
|
for ( int j = 0; j < 3; j++ )
|
||
|
{
|
||
|
pEdge = pTri->get_edge( j );
|
||
|
int test = pEdge->get_start_point_index();
|
||
|
dot = pPoints[test].dot_product( &mapdir );
|
||
|
if ( dot > bestDot )
|
||
|
{
|
||
|
Assert(0); // shouldn't hit this unless the hill-climb is broken
|
||
|
bestDot = dot;
|
||
|
best = test;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
TransformPositionFromLocal( pPoints[best], *pOut ); // transform point position to world space
|
||
|
|
||
|
return best;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Vector CTraceIVP::GetVertByIndex( int index ) const
|
||
|
{
|
||
|
#if USE_VERT_CACHE
|
||
|
if ( m_cacheCount )
|
||
|
{
|
||
|
return CachedVertByIndex(index);
|
||
|
}
|
||
|
#endif
|
||
|
const IVP_Compact_Poly_Point *pPoints = m_pLedge->get_point_array();
|
||
|
|
||
|
Vector out;
|
||
|
TransformPositionFromLocal( pPoints[index], out );
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Implementation for Trace against an AABB
|
||
|
//-----------------------------------------------------------------------------
|
||
|
class CTraceAABB : public ITraceObject
|
||
|
{
|
||
|
public:
|
||
|
CTraceAABB( const Vector &hlmins, const Vector &hlmaxs, bool isPoint );
|
||
|
virtual int SupportMap( const Vector &dir, Vector *pOut ) const;
|
||
|
virtual Vector GetVertByIndex( int index ) const;
|
||
|
virtual float Radius( void ) const { return m_radius; }
|
||
|
|
||
|
private:
|
||
|
float m_x[2];
|
||
|
float m_y[2];
|
||
|
float m_z[2];
|
||
|
float m_radius;
|
||
|
bool m_empty;
|
||
|
};
|
||
|
|
||
|
|
||
|
CTraceAABB::CTraceAABB( const Vector &hlmins, const Vector &hlmaxs, bool isPoint )
|
||
|
{
|
||
|
if ( isPoint )
|
||
|
{
|
||
|
m_x[0] = m_x[1] = 0;
|
||
|
m_y[0] = m_y[1] = 0;
|
||
|
m_z[0] = m_z[1] = 0;
|
||
|
m_radius = 0;
|
||
|
m_empty = true;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_x[0] = hlmaxs[0];
|
||
|
m_x[1] = hlmins[0];
|
||
|
m_y[0] = hlmaxs[1];
|
||
|
m_y[1] = hlmins[1];
|
||
|
m_z[0] = hlmaxs[2];
|
||
|
m_z[1] = hlmins[2];
|
||
|
m_radius = hlmaxs.Length();
|
||
|
m_empty = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int CTraceAABB::SupportMap( const Vector &dir, Vector *pOut ) const
|
||
|
{
|
||
|
Vector out;
|
||
|
|
||
|
if ( m_empty )
|
||
|
{
|
||
|
pOut->Init();
|
||
|
return 0;
|
||
|
}
|
||
|
// index is formed by the 3-bit bitfield SzSySx (negative is 1, positive is 0)
|
||
|
int x = ((*((unsigned int *)&dir.x)) & 0x80000000UL) >> 31;
|
||
|
int y = ((*((unsigned int *)&dir.y)) & 0x80000000UL) >> 31;
|
||
|
int z = ((*((unsigned int *)&dir.z)) & 0x80000000UL) >> 31;
|
||
|
pOut->x = m_x[x];
|
||
|
pOut->y = m_y[y];
|
||
|
pOut->z = m_z[z];
|
||
|
return (z<<2) | (y<<1) | x;
|
||
|
}
|
||
|
|
||
|
Vector CTraceAABB::GetVertByIndex( int index ) const
|
||
|
{
|
||
|
Vector out;
|
||
|
out.x = m_x[(index&1)];
|
||
|
out.y = m_y[(index&2)>>1];
|
||
|
out.z = m_z[(index&4)>>2];
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Implementation for Trace against an IVP object
|
||
|
//-----------------------------------------------------------------------------
|
||
|
class CTraceRay
|
||
|
{
|
||
|
public:
|
||
|
CTraceRay( const Vector &hlstart, const Vector &hlend );
|
||
|
CTraceRay( const Ray_t &ray );
|
||
|
CTraceRay( const Ray_t &ray, const Vector &offset );
|
||
|
void Init( const Vector &hlstart, const Vector &delta );
|
||
|
int SupportMap( const Vector &dir, Vector *pOut ) const;
|
||
|
Vector GetVertByIndex( int index ) const { return ( index ) ? m_end : m_start; }
|
||
|
float Radius( void ) const { return m_length * 0.5f; }
|
||
|
|
||
|
void Reset( float fraction );
|
||
|
|
||
|
Vector m_start;
|
||
|
Vector m_end;
|
||
|
Vector m_delta;
|
||
|
Vector m_dir;
|
||
|
|
||
|
float m_length;
|
||
|
float m_baseLength;
|
||
|
float m_ooBaseLength;
|
||
|
float m_bestDist;
|
||
|
};
|
||
|
CTraceRay::CTraceRay( const Vector &hlstart, const Vector &hlend )
|
||
|
{
|
||
|
Init(hlstart, hlend-hlstart);
|
||
|
}
|
||
|
|
||
|
void CTraceRay::Init( const Vector &hlstart, const Vector &delta )
|
||
|
{
|
||
|
m_start = hlstart;
|
||
|
m_end = hlstart + delta;
|
||
|
m_delta = delta;
|
||
|
m_dir = delta;
|
||
|
float len = DotProduct(delta, delta);
|
||
|
// don't use fast/sse sqrt here we need the precision
|
||
|
m_length = sqrt(len);
|
||
|
m_ooBaseLength = 0.0f;
|
||
|
if ( m_length > 0 )
|
||
|
{
|
||
|
m_ooBaseLength = 1.0f / m_length;
|
||
|
m_dir *= m_ooBaseLength;
|
||
|
}
|
||
|
m_baseLength = m_length;
|
||
|
m_bestDist = 0.f;
|
||
|
}
|
||
|
|
||
|
CTraceRay::CTraceRay( const Ray_t &ray )
|
||
|
{
|
||
|
Init( ray.m_Start, ray.m_Delta );
|
||
|
}
|
||
|
|
||
|
CTraceRay::CTraceRay( const Ray_t &ray, const Vector &offset )
|
||
|
{
|
||
|
Vector start;
|
||
|
VectorAdd( ray.m_Start, offset, start );
|
||
|
Init( start, ray.m_Delta );
|
||
|
}
|
||
|
|
||
|
void CTraceRay::Reset( float fraction )
|
||
|
{
|
||
|
// recompute from base values for max precision
|
||
|
m_length = m_baseLength * fraction;
|
||
|
m_end = m_start + fraction * m_delta;
|
||
|
m_bestDist = 0.f;
|
||
|
}
|
||
|
|
||
|
int CTraceRay::SupportMap( const Vector &dir, Vector *pOut ) const
|
||
|
{
|
||
|
if ( DotProduct( dir, m_delta ) > 0 )
|
||
|
{
|
||
|
*pOut = m_end;
|
||
|
return 1;
|
||
|
}
|
||
|
*pOut = m_start;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static char *map_nullname = "**empty**";
|
||
|
static csurface_t nullsurface = { map_nullname, 0 };
|
||
|
|
||
|
static void CM_ClearTrace( trace_t *trace )
|
||
|
{
|
||
|
memset( trace, 0, sizeof(*trace));
|
||
|
trace->fraction = 1.f;
|
||
|
trace->fractionleftsolid = 0;
|
||
|
trace->surface = nullsurface;
|
||
|
}
|
||
|
|
||
|
class CDefConvexInfo : public IConvexInfo
|
||
|
{
|
||
|
public:
|
||
|
IConvexInfo *GetPtr() { return this; }
|
||
|
|
||
|
virtual unsigned int GetContents( int convexGameData ) { return CONTENTS_SOLID; }
|
||
|
};
|
||
|
|
||
|
class CTraceSolver
|
||
|
{
|
||
|
public:
|
||
|
CTraceSolver( trace_t *ptr, ITraceObject *sweepobject, CTraceRay *ray, ITraceObject *obstacle, const Vector &axis )
|
||
|
{
|
||
|
m_pTotalTrace = ptr;
|
||
|
m_sweepObject = sweepobject;
|
||
|
m_sweepObjectRadius = m_sweepObject->Radius();
|
||
|
m_obstacle = obstacle;
|
||
|
m_ray = ray;
|
||
|
m_traceLength = 0;
|
||
|
m_totalTraceLength = max( ray->m_baseLength, 1e-8f );
|
||
|
m_pointClosestToIntersection = axis;
|
||
|
m_epsilon = g_PhysicsUnits.collisionSweepEpsilon;
|
||
|
}
|
||
|
|
||
|
bool SweepSingleConvex( void );
|
||
|
float SolveMeshIntersection( simplex_t &simplex );
|
||
|
float SolveMeshIntersection2D( simplex_t &simplex );
|
||
|
virtual void DoSweep( void )
|
||
|
{
|
||
|
SweepSingleConvex();
|
||
|
*m_pTotalTrace = m_trace;
|
||
|
}
|
||
|
|
||
|
|
||
|
void SetEpsilon( float epsilon )
|
||
|
{
|
||
|
m_epsilon = epsilon;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
trace_t m_trace;
|
||
|
|
||
|
Vector m_pointClosestToIntersection;
|
||
|
ITraceObject *m_sweepObject;
|
||
|
ITraceObject *m_obstacle;
|
||
|
CTraceRay *m_ray;
|
||
|
trace_t *m_pTotalTrace;
|
||
|
float m_traceLength;
|
||
|
float m_totalTraceLength;
|
||
|
float m_sweepObjectRadius;
|
||
|
float m_epsilon;
|
||
|
private:
|
||
|
CTraceSolver( const CTraceSolver & );
|
||
|
};
|
||
|
|
||
|
class CTraceSolverSweptObject : public CTraceSolver
|
||
|
{
|
||
|
public:
|
||
|
CTraceSolverSweptObject( trace_t *ptr, ITraceObject *sweepobject, CTraceRay *ray, CTraceIVP *obstacle, const Vector &axis, unsigned int contentsMask, IConvexInfo *pConvexInfo );
|
||
|
|
||
|
void InitOSRay( void );
|
||
|
void SweepLedgeTree_r( const IVP_Compact_Ledgetree_Node *node );
|
||
|
inline bool SweepHitsSphereOS( const IVP_U_Float_Point *sphereCenter, float radius );
|
||
|
virtual void DoSweep( void );
|
||
|
inline void SweepAgainstNode( const IVP_Compact_Ledgetree_Node *node );
|
||
|
|
||
|
CTraceIVP *m_obstacleIVP;
|
||
|
IConvexInfo *m_pConvexInfo;
|
||
|
unsigned int m_contentsMask;
|
||
|
CDefConvexInfo m_fakeConvexInfo;
|
||
|
|
||
|
|
||
|
IVP_U_Float_Point m_rayCenterOS;
|
||
|
IVP_U_Float_Point m_rayStartOS;
|
||
|
IVP_U_Float_Point m_rayDirOS;
|
||
|
IVP_U_Float_Point m_rayDeltaOS;
|
||
|
float m_rayLengthOS;
|
||
|
|
||
|
private:
|
||
|
CTraceSolverSweptObject( const CTraceSolverSweptObject & ); // no implementation, quells compiler warning
|
||
|
};
|
||
|
|
||
|
CTraceSolverSweptObject::CTraceSolverSweptObject( trace_t *ptr, ITraceObject *sweepobject, CTraceRay *ray, CTraceIVP *obstacle, const Vector &axis, unsigned int contentsMask, IConvexInfo *pConvexInfo )
|
||
|
: CTraceSolver( ptr, sweepobject, ray, obstacle, axis )
|
||
|
{
|
||
|
m_obstacleIVP = obstacle;
|
||
|
m_contentsMask = contentsMask;
|
||
|
m_pConvexInfo = (pConvexInfo != NULL) ? pConvexInfo : m_fakeConvexInfo.GetPtr();
|
||
|
}
|
||
|
|
||
|
|
||
|
bool CTraceSolverSweptObject::SweepHitsSphereOS( const IVP_U_Float_Point *sphereCenter, float radius )
|
||
|
{
|
||
|
// disable this to help find bugs
|
||
|
#if DEBUG_TEST_ALL_LEDGES
|
||
|
return true;
|
||
|
#endif
|
||
|
// the ray is actually a line-swept-sphere with sweep object's radius
|
||
|
IVP_U_Float_Point delta_vec; // quick check for ends of ray
|
||
|
delta_vec.subtract( sphereCenter, &m_rayCenterOS );
|
||
|
radius += m_sweepObjectRadius;
|
||
|
// Is the sphere close enough to the ray at the center?
|
||
|
float qsphere_rad = radius * radius;
|
||
|
|
||
|
// If this is a 0 length ray, then the conservative test is 100% accurate
|
||
|
if ( m_rayLengthOS > 0 )
|
||
|
{
|
||
|
// Calculate the perpendicular distance to the sphere
|
||
|
// The perpendicular forms a right triangle with the vector between the ray/sphere centers
|
||
|
// and the ray direction vector. Calculate the projection of the hypoteneuse along the perpendicular
|
||
|
IVP_U_Float_Point h;
|
||
|
h.inline_calc_cross_product(&m_rayDirOS, &delta_vec);
|
||
|
|
||
|
if( h.quad_length() < qsphere_rad )
|
||
|
return true;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
float quad_center_dist = delta_vec.quad_length();
|
||
|
|
||
|
if ( quad_center_dist < qsphere_rad )
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Could a ray in any direction away from the ray center intersect this sphere?
|
||
|
float qrad_sum = m_rayLengthOS * 0.5f + radius;
|
||
|
qrad_sum *= qrad_sum;
|
||
|
if ( quad_center_dist >= qrad_sum )
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
inline void CTraceSolverSweptObject::SweepAgainstNode(const IVP_Compact_Ledgetree_Node *node)
|
||
|
{
|
||
|
const IVP_Compact_Ledge *ledge = node->get_compact_ledge();
|
||
|
unsigned int ledgeContents = m_pConvexInfo->GetContents( ledge->get_client_data() );
|
||
|
if (m_contentsMask & ledgeContents)
|
||
|
{
|
||
|
m_obstacleIVP->SetLedge( ledge );
|
||
|
if ( SweepSingleConvex() )
|
||
|
{
|
||
|
if ( m_traceLength < m_totalTraceLength )
|
||
|
{
|
||
|
m_pTotalTrace->plane.normal = m_trace.plane.normal;
|
||
|
m_pTotalTrace->startsolid = m_trace.startsolid;
|
||
|
m_pTotalTrace->allsolid = m_trace.allsolid;
|
||
|
m_totalTraceLength = m_traceLength;
|
||
|
m_pTotalTrace->fraction = m_traceLength * m_ray->m_ooBaseLength;
|
||
|
Assert(m_pTotalTrace->fraction >= 0 && m_pTotalTrace->fraction <= 1.0f);
|
||
|
#if !DEBUG_KEEP_FULL_RAY
|
||
|
// shrink the ray to the shortened length, but leave a buffer of collisionSweepEpsilon units
|
||
|
// at the end to make sure that precision doesn't make you miss something slightly closer
|
||
|
float testFraction = (m_traceLength + m_epsilon*2) * m_ray->m_ooBaseLength;
|
||
|
if ( testFraction < 1.0f )
|
||
|
{
|
||
|
m_ray->Reset( testFraction );
|
||
|
// Update OS ray to limit tests
|
||
|
m_rayLengthOS = m_obstacleIVP->TransformLengthToLocal( m_ray->m_length );
|
||
|
m_rayCenterOS.add_multiple( &m_rayStartOS, &m_rayDeltaOS, 0.5f * testFraction );
|
||
|
}
|
||
|
#endif
|
||
|
m_pTotalTrace->contents = ledgeContents;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void CTraceSolverSweptObject::SweepLedgeTree_r( const IVP_Compact_Ledgetree_Node *node )
|
||
|
{
|
||
|
IVP_U_Float_Point center;
|
||
|
center.set(node->center.k);
|
||
|
if ( !SweepHitsSphereOS( ¢er, node->radius ) )
|
||
|
return;
|
||
|
|
||
|
// fast path for single leaf collision models
|
||
|
if ( node->is_terminal() == IVP_TRUE )
|
||
|
{
|
||
|
SweepAgainstNode(node);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// use an array to implement a simple stack
|
||
|
CUtlVectorFixedGrowable<const IVP_Compact_Ledgetree_Node *, 64> list;
|
||
|
|
||
|
// pull the last item in the array (top of stack)
|
||
|
// this is nearly a priority queue, but not actually, but it's cheaper (and faster in the benchmarks)
|
||
|
// this code is trying to visit the nodes closest to the ray start first - which helps performance
|
||
|
// since we're only interested in the first intersection of the swept object with the physcollide.
|
||
|
while ( 1 )
|
||
|
{
|
||
|
// don't use the temp storage unless you have to.
|
||
|
loop_without_store:
|
||
|
if ( node->is_terminal() == IVP_TRUE )
|
||
|
{
|
||
|
// leaf, do the test
|
||
|
SweepAgainstNode(node);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// check node's children
|
||
|
const IVP_Compact_Ledgetree_Node *node0 = node->left_son();
|
||
|
center.set(node0->center.k);
|
||
|
// if we don't insert, this is larger than any quad distance
|
||
|
float lastDist = 1e24f;
|
||
|
if ( SweepHitsSphereOS( ¢er, node0->radius ) )
|
||
|
{
|
||
|
lastDist = m_rayStartOS.quad_distance_to(¢er);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
node0 = NULL;
|
||
|
}
|
||
|
const IVP_Compact_Ledgetree_Node *node1 = node->right_son();
|
||
|
center.set(node1->center.k);
|
||
|
if ( SweepHitsSphereOS( ¢er, node1->radius ) )
|
||
|
{
|
||
|
if ( node0 )
|
||
|
{
|
||
|
// can hit, push on stack
|
||
|
int index = list.AddToTail();
|
||
|
float dist1 = m_rayStartOS.quad_distance_to(¢er);
|
||
|
if ( lastDist < dist1 )
|
||
|
{
|
||
|
node = node0;
|
||
|
list[index] = node1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
node = node1;
|
||
|
list[index] = node0;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
node = node1;
|
||
|
}
|
||
|
goto loop_without_store;
|
||
|
}
|
||
|
if ( node0 )
|
||
|
{
|
||
|
node = node0;
|
||
|
goto loop_without_store;
|
||
|
}
|
||
|
}
|
||
|
int last = list.Count()-1;
|
||
|
if ( last < 0 )
|
||
|
break;
|
||
|
node = list[last];
|
||
|
list.FastRemove(last);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void CTraceSolverSweptObject::InitOSRay( void )
|
||
|
{
|
||
|
// transform ray into object space
|
||
|
m_rayLengthOS = m_obstacleIVP->TransformLengthToLocal( m_ray->m_length );
|
||
|
m_obstacleIVP->TransformPositionToLocal( m_ray->m_start, m_rayStartOS );
|
||
|
|
||
|
// no translation on matrix mult because this is a vector
|
||
|
m_obstacleIVP->RotateRelativePositionToLocal( m_ray->m_delta, m_rayDeltaOS );
|
||
|
m_rayDirOS.set(&m_rayDeltaOS);
|
||
|
m_rayDirOS.normize();
|
||
|
|
||
|
// add_multiple with 3 params assumes no initial value (should be set_add_multiple)
|
||
|
m_rayCenterOS.add_multiple( &m_rayStartOS, &m_rayDeltaOS, 0.5f );
|
||
|
}
|
||
|
|
||
|
|
||
|
void CTraceSolverSweptObject::DoSweep( void )
|
||
|
{
|
||
|
VPROF("TraceSolver::DoSweep");
|
||
|
InitOSRay();
|
||
|
|
||
|
// iterate ledge tree of obstacle
|
||
|
const IVP_Compact_Surface *pSurface = m_obstacleIVP->m_pSurface;
|
||
|
|
||
|
const IVP_Compact_Ledgetree_Node *lt_node_root;
|
||
|
lt_node_root = pSurface->get_compact_ledge_tree_root();
|
||
|
SweepLedgeTree_r( lt_node_root );
|
||
|
}
|
||
|
|
||
|
void CPhysicsTrace::SweepBoxIVP( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pCollide, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr )
|
||
|
{
|
||
|
Ray_t ray;
|
||
|
ray.Init( start, end, mins, maxs );
|
||
|
SweepBoxIVP( ray, MASK_ALL, NULL, pCollide, surfaceOrigin, surfaceAngles, ptr );
|
||
|
}
|
||
|
|
||
|
void CPhysicsTrace::SweepBoxIVP( const Ray_t &raySrc, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pCollide, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr )
|
||
|
{
|
||
|
CM_ClearTrace( ptr );
|
||
|
|
||
|
CTraceAABB box( -raySrc.m_Extents, raySrc.m_Extents, raySrc.m_IsRay );
|
||
|
CTraceIVP ivp( pCollide, vec3_origin, surfaceAngles );
|
||
|
|
||
|
// offset the space of this sweep so that the surface is at the origin of the solution space
|
||
|
CTraceRay ray( raySrc, -surfaceOrigin );
|
||
|
|
||
|
CTraceSolverSweptObject solver( ptr, &box, &ray, &ivp, ray.m_start, contentsMask, pConvexInfo );
|
||
|
solver.DoSweep();
|
||
|
|
||
|
VectorAdd( raySrc.m_Start, raySrc.m_StartOffset, ptr->startpos );
|
||
|
VectorMA( ptr->startpos, ptr->fraction, raySrc.m_Delta, ptr->endpos );
|
||
|
// The plane was shifted because we shifted everything over by surfaceOrigin, shift it back
|
||
|
if ( ptr->DidHit() )
|
||
|
{
|
||
|
ptr->plane.dist = DotProduct( ptr->endpos, ptr->plane.normal );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CPhysicsTrace::SweepIVP( const Vector &start, const Vector &end, const CPhysCollide *pSweptSurface, const QAngle &sweptAngles, const CPhysCollide *pSurface, const Vector &surfaceOrigin, const QAngle &surfaceAngles, trace_t *ptr )
|
||
|
{
|
||
|
CM_ClearTrace( ptr );
|
||
|
|
||
|
CTraceIVP sweptObject( pSweptSurface, vec3_origin, sweptAngles );
|
||
|
|
||
|
// offset the space of this sweep so that the surface is at the origin of the solution space
|
||
|
CTraceIVP ivp( pSurface, vec3_origin, surfaceAngles );
|
||
|
CTraceRay ray( start - surfaceOrigin, end - surfaceOrigin );
|
||
|
|
||
|
IVP_U_BigVector<IVP_Compact_Ledge> objectLedges(32);
|
||
|
IVP_Compact_Ledge_Solver::get_all_ledges( pSweptSurface->GetCompactSurface(), &objectLedges );
|
||
|
for ( int i = objectLedges.len() - 1; i >= 0; --i )
|
||
|
{
|
||
|
trace_t tr;
|
||
|
CM_ClearTrace( &tr );
|
||
|
sweptObject.SetLedge( objectLedges.element_at(i) );
|
||
|
CTraceSolverSweptObject solver( &tr, &sweptObject, &ray, &ivp, start - surfaceOrigin, MASK_ALL, NULL );
|
||
|
// UNDONE: Need just more than 0.25" tolerance here because the output position will be used by vphysics
|
||
|
// UNDONE: Really this should be the collision radius from the environment.
|
||
|
solver.SetEpsilon( g_PhysicsUnits.globalCollisionTolerance );
|
||
|
solver.DoSweep();
|
||
|
if ( tr.fraction < ptr->fraction )
|
||
|
{
|
||
|
*ptr = tr;
|
||
|
}
|
||
|
}
|
||
|
ptr->endpos = start*(1.f-ptr->fraction) + end * ptr->fraction;
|
||
|
if ( ptr->DidHit() )
|
||
|
{
|
||
|
ptr->plane.dist = DotProduct( ptr->endpos, ptr->plane.normal );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void CalculateSeparatingPlane( trace_t *ptr, ITraceObject *sweepObject, CTraceRay *ray, ITraceObject *obstacle, simplex_t &simplex );
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// What is this doing? It's going to be hard to understand without reading a
|
||
|
// reference on the GJK algorithm. But here's a quick overview:
|
||
|
// Basically (remember this is glossing over a ton of details!) the
|
||
|
// algorithm is building up a simplex that is trying to contain the origin.
|
||
|
// A simplex is a point, line segment, triangle, or tetrahedron - depending on
|
||
|
// how many verts you have.
|
||
|
// Anyway it slowly builds one of these one vert at a time with a directed search.
|
||
|
// So you start out with a point, then it guesses the next point that would be
|
||
|
// most likely to form a line through the origin. If the line doesn't go quite
|
||
|
// through the origin it tries to find a third point to capture the origin
|
||
|
// within a triangle. If that doesn't work it tries to make a
|
||
|
// tent (tetrahedron) out of the triangle to capture the origin.
|
||
|
//
|
||
|
// But at each step if the origin is not contained within, it tries to
|
||
|
// find which sub-feature is most likely to be in the solution. In
|
||
|
// the point case it's always just the point. In the line/edge case it
|
||
|
// can reduce back to a point (origin is closest to one of the points)
|
||
|
// or be the line (origin is closest to some point between them).
|
||
|
// Same with the triangle (origin is closest to one vert - vert, origin is
|
||
|
// closest to one edge - reduce to that edge, origin is closes to some point
|
||
|
// in the triangle's surface - keep the whole triangle). With a tetrahedron
|
||
|
// keeping the whole isn't possible unless the origin is inside and you're
|
||
|
// done (the origin has been captured).
|
||
|
//
|
||
|
// "You're done" means that there is an intersection between the two
|
||
|
// volumes. Assuming you're testing a sweep, it still has to test whether that
|
||
|
// sweep can be shrunk back until there is no intersection. So it checks that.
|
||
|
// If it's a swept test so it does the search with SolveMeshIntersection
|
||
|
// Otherwise, there's nothing to shrink, so you set startsolid and allsolid
|
||
|
// because it's a point/box in solid test, not a swept box/ray hits solid test.
|
||
|
//
|
||
|
// Why is it trying to capture the origin? Basically GJK sets up a space
|
||
|
// and a convex hull (the minkowski sum) in that space. The convex hull
|
||
|
// represents a field of the distances between different features of the pair
|
||
|
// of objects (e.g. for two circles, this minkowski sum is just a circle).
|
||
|
// So the origin is the point in the field where the distance between the
|
||
|
// objects is zero. This means they intersect.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
#if defined(_X360)
|
||
|
inline void VectorNormalize_FastLowPrecision( Vector &a )
|
||
|
{
|
||
|
float quad = (a.x*a.x) + (a.y*a.y) + (a.z*a.z);
|
||
|
float ilen = __frsqrte(quad);
|
||
|
a.x *= ilen;
|
||
|
a.y *= ilen;
|
||
|
a.z *= ilen;
|
||
|
}
|
||
|
#else
|
||
|
#define VectorNormalize_FastLowPrecision VectorNormalize
|
||
|
#endif
|
||
|
|
||
|
bool CTraceSolver::SweepSingleConvex( void )
|
||
|
{
|
||
|
VPROF("TraceSolver::SweepSingleConvex");
|
||
|
simplex_t simplex;
|
||
|
simplexvert_t vert;
|
||
|
Vector tmp;
|
||
|
|
||
|
simplex.vertCount = 0;
|
||
|
|
||
|
if ( m_pointClosestToIntersection == vec3_origin )
|
||
|
{
|
||
|
m_pointClosestToIntersection.Init(1,0,0);
|
||
|
}
|
||
|
|
||
|
float testLen = 1;
|
||
|
Vector dir = -m_pointClosestToIntersection;
|
||
|
VectorNormalize_FastLowPrecision(dir);
|
||
|
// safe loop, max 100 iterations
|
||
|
for ( int i = 0; i < 100; i++ )
|
||
|
{
|
||
|
// map the direction into the minkowski sum, get a new surface point
|
||
|
vert.testIndex = m_sweepObject->SupportMap( dir, &vert.position );
|
||
|
vert.sweepIndex = m_ray->SupportMap( dir, &tmp );
|
||
|
VectorAdd( vert.position, tmp, vert.position );
|
||
|
vert.obstacleIndex = m_obstacle->SupportMap( -dir, &tmp );
|
||
|
VectorSubtract( vert.position, tmp, vert.position );
|
||
|
|
||
|
testLen = DotProduct( dir, vert.position );
|
||
|
// found a separating axis, no intersection
|
||
|
if ( testLen < 0 )
|
||
|
{
|
||
|
VPROF("SolveSeparation");
|
||
|
// make sure we're separated by at least m_epsilon
|
||
|
testLen = fabs(testLen);
|
||
|
if ( testLen < m_epsilon && m_ray->m_length > 0 )
|
||
|
{
|
||
|
// not separated by enough
|
||
|
Vector normal = dir;
|
||
|
if ( testLen > 0 )
|
||
|
{
|
||
|
// try to find a better separating plane or clip the ray to the current one
|
||
|
for ( int j = 0; j < 20; j++ )
|
||
|
{
|
||
|
Vector lastVert = vert.position;
|
||
|
simplex.SolveGJKSet( vert, &m_pointClosestToIntersection );
|
||
|
dir = -m_pointClosestToIntersection;
|
||
|
VectorNormalize_FastLowPrecision( dir );
|
||
|
// map the direction into the minkowski sum, get a new surface point
|
||
|
vert.testIndex = m_sweepObject->SupportMap( dir, &vert.position );
|
||
|
vert.sweepIndex = m_ray->SupportMap( dir, &tmp );
|
||
|
VectorAdd( vert.position, tmp, vert.position );
|
||
|
vert.obstacleIndex = m_obstacle->SupportMap( -dir, &tmp );
|
||
|
VectorSubtract( vert.position, tmp, vert.position );
|
||
|
|
||
|
// found a separating axis, no intersection
|
||
|
float est = -DotProduct( dir, vert.position );
|
||
|
if ( est > m_epsilon ) // big enough separation, no hit
|
||
|
return false;
|
||
|
// take plane with the most separation
|
||
|
if ( est > testLen )
|
||
|
{
|
||
|
testLen = est;
|
||
|
normal = dir;
|
||
|
}
|
||
|
float last = -DotProduct( dir, lastVert );
|
||
|
// search is not converging, exit.
|
||
|
if ( (est - last) > -1e-4f )
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This trace is going to miss, but not by enough.
|
||
|
// Hit the separating plane instead
|
||
|
float dot = -DotProduct( m_ray->m_delta, normal );
|
||
|
if ( dot < -(m_epsilon*0.1) || (dot < -1e-4f && testLen < (m_epsilon*0.9)) )
|
||
|
{
|
||
|
CM_ClearTrace( &m_trace );
|
||
|
float backupDistance = m_epsilon - testLen;
|
||
|
backupDistance = -(backupDistance * m_ray->m_baseLength) / dot;
|
||
|
m_traceLength = m_ray->m_length - backupDistance;
|
||
|
if ( m_traceLength < 0 )
|
||
|
{
|
||
|
m_traceLength = 0;
|
||
|
// try sliding along the surface of the minkowski sum
|
||
|
backupDistance = SolveMeshIntersection2D( simplex );
|
||
|
if ( m_ray->m_length > backupDistance )
|
||
|
{
|
||
|
m_traceLength = m_ray->m_length - backupDistance;
|
||
|
}
|
||
|
}
|
||
|
m_trace.plane.normal = -normal;
|
||
|
// this is fixed up by the outer code
|
||
|
//m_trace.endpos = m_ray->m_start*(1.f-m_trace.fraction) + m_ray->m_end*m_trace.fraction;
|
||
|
m_trace.contents = CONTENTS_SOLID;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// contains the origin
|
||
|
if ( simplex.SolveGJKSet( vert, &m_pointClosestToIntersection ) )
|
||
|
{
|
||
|
VPROF("TraceSolver::SolveMeshIntersection");
|
||
|
CM_ClearTrace( &m_trace );
|
||
|
// now solve for t along the sweep
|
||
|
if ( m_ray->m_length != 0 )
|
||
|
{
|
||
|
float dist = SolveMeshIntersection( simplex );
|
||
|
if ( dist < m_ray->m_length && dist > 0.f )
|
||
|
{
|
||
|
m_traceLength = (m_ray->m_length - dist);
|
||
|
CalculateSeparatingPlane( &m_trace, m_sweepObject, m_ray, m_obstacle, simplex );
|
||
|
float dot = DotProduct( m_ray->m_dir, m_trace.plane.normal );
|
||
|
if ( dot < 0 )
|
||
|
{
|
||
|
m_traceLength += (m_epsilon / dot);
|
||
|
}
|
||
|
|
||
|
if ( m_traceLength < 0 )
|
||
|
{
|
||
|
m_traceLength = 0;
|
||
|
}
|
||
|
//m_trace.fraction = m_traceLength * m_ray->m_ooBaseLength;
|
||
|
//m_trace.endpos = m_ray->m_start*(1.f-m_trace.fraction) + m_ray->m_end*m_trace.fraction;
|
||
|
m_trace.contents = CONTENTS_SOLID;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// UNDONE: This case happens when you start solid as well as when a false
|
||
|
// intersection is detected at the very end of the trace
|
||
|
m_trace.startsolid = true;
|
||
|
m_trace.allsolid = true;
|
||
|
m_traceLength = 0;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_trace.startsolid = true;
|
||
|
m_trace.allsolid = true;
|
||
|
m_traceLength = 0;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
dir = -m_pointClosestToIntersection;
|
||
|
VectorNormalize_FastLowPrecision( dir );
|
||
|
}
|
||
|
|
||
|
// BUGBUG: The solution never converged - something is probably wrong!
|
||
|
AssertMsg( false, "Solution never converged.");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
// NEW SWEPT GJK SOLVER 2/16/2006
|
||
|
// convenience routines - just makes the code a little simpler.
|
||
|
FORCEINLINE bool simplex_t::TriangleSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &faceNormal, Vector *pOut )
|
||
|
{
|
||
|
vertCount = 3;
|
||
|
verts[outIndex] = newPoint;
|
||
|
*pOut = -faceNormal;
|
||
|
return false;
|
||
|
}
|
||
|
FORCEINLINE bool simplex_t::EdgeSimplex( const simplexvert_t &newPoint, int outIndex, const Vector &edge, Vector *pOut )
|
||
|
{
|
||
|
vertCount = 2;
|
||
|
verts[outIndex] = newPoint;
|
||
|
Vector cross;
|
||
|
CrossProduct( edge, newPoint.position, cross );
|
||
|
CrossProduct( cross, edge, *pOut );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
FORCEINLINE bool simplex_t::PointSimplex( const simplexvert_t &newPoint, Vector *pOut )
|
||
|
{
|
||
|
vertCount = 1;
|
||
|
verts[0] = newPoint;
|
||
|
*pOut = newPoint.position;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// In general the voronoi region routines have comments referring to the verts
|
||
|
// All of the code assumes that vert A is the new vert being added to the set
|
||
|
// verts B, C, D are the previous set. If BCD is a triangle it is assumed to be
|
||
|
// counter-clockwise winding order. This must be maintained by the code!
|
||
|
|
||
|
// parametric value for closes point on a line segment (p0->p1) to the origin.
|
||
|
bool simplex_t::SolveVoronoiRegion2( const simplexvert_t &newPoint, Vector *pOut )
|
||
|
{
|
||
|
// solve the line segment AB (where A is the new point)
|
||
|
Vector AB = verts[0].position - newPoint.position;
|
||
|
float d = DotProduct(AB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
return EdgeSimplex(newPoint, 1, AB, pOut);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// UNDONE: Collapse these routines into a single general routine?
|
||
|
bool simplex_t::SolveVoronoiRegion3( const simplexvert_t &newPoint, Vector *pOut )
|
||
|
{
|
||
|
// solve the triangle ABC (where A is the new point)
|
||
|
Vector AB = verts[0].position - newPoint.position;
|
||
|
Vector AC = verts[1].position - newPoint.position;
|
||
|
Vector ABC;
|
||
|
CrossProduct(AB, AC, ABC);
|
||
|
Vector ABCxAC;
|
||
|
CrossProduct(ABC, AC, ABCxAC);
|
||
|
float d = DotProduct(ABCxAC, newPoint.position);
|
||
|
// edge AC or edgeAB / A?
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AC
|
||
|
return EdgeSimplex(newPoint, 0, AC, pOut);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// face or A / edge AB?
|
||
|
Vector ABxABC;
|
||
|
CrossProduct(AB, ABC, ABxABC);
|
||
|
d = DotProduct(ABxABC, newPoint.position);
|
||
|
if ( d > 0 )
|
||
|
{
|
||
|
// closest to face
|
||
|
vertCount = 3;
|
||
|
d = DotProduct(ABC, newPoint.position);
|
||
|
// in front of face, return opposite direction
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
verts[2] = newPoint;
|
||
|
*pOut = -ABC;
|
||
|
return false;
|
||
|
}
|
||
|
verts[2] = verts[1]; // swap to keep CCW
|
||
|
verts[1] = newPoint;
|
||
|
*pOut = ABC;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
// edge AB or A
|
||
|
d = DotProduct(AB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
return EdgeSimplex(newPoint, 1, AB, pOut);
|
||
|
}
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
|
||
|
bool simplex_t::SolveVoronoiRegion4( const simplexvert_t &newPoint, Vector *pOut )
|
||
|
{
|
||
|
// solve the tetrahedron ABCD (where A is the new point)
|
||
|
|
||
|
// compute edge vectors
|
||
|
Vector AB = verts[0].position - newPoint.position;
|
||
|
Vector AC = verts[1].position - newPoint.position;
|
||
|
Vector AD = verts[2].position - newPoint.position;
|
||
|
|
||
|
// compute face normals
|
||
|
Vector ABC, ACD, ADB;
|
||
|
CrossProduct( AB, AC, ABC );
|
||
|
CrossProduct( AC, AD, ACD );
|
||
|
CrossProduct( AD, AB, ADB );
|
||
|
|
||
|
// edge plane normals
|
||
|
Vector ABCxAC, ABxABC;
|
||
|
CrossProduct( ABC, AC, ABCxAC );
|
||
|
CrossProduct( AB, ABC, ABxABC );
|
||
|
Vector ACDxAD, ACxACD;
|
||
|
CrossProduct( ACD, AD, ACDxAD );
|
||
|
CrossProduct( AC, ACD, ACxACD );
|
||
|
Vector ADBxAB, ADxADB;
|
||
|
CrossProduct( ADB, AB, ADBxAB );
|
||
|
CrossProduct( AD, ADB, ADxADB );
|
||
|
|
||
|
int faceFlags = 0;
|
||
|
float d;
|
||
|
d = DotProduct(ABC,newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
faceFlags |= 0x1;
|
||
|
}
|
||
|
d = DotProduct(ACD,newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
faceFlags |= 0x2;
|
||
|
}
|
||
|
d = DotProduct(ADB,newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
faceFlags |= 0x4;
|
||
|
}
|
||
|
|
||
|
switch( faceFlags )
|
||
|
{
|
||
|
case 0:
|
||
|
// inside all 3 faces, we're done
|
||
|
verts[3] = newPoint;
|
||
|
vertCount = 4;
|
||
|
return true;
|
||
|
case 1:
|
||
|
// ABC only, solve as a triangle
|
||
|
return SolveVoronoiRegion3(newPoint, pOut);
|
||
|
case 2:
|
||
|
// ACD only, solve as a triangle
|
||
|
verts[0] = verts[2]; // collapse BCD to DC
|
||
|
return SolveVoronoiRegion3(newPoint, pOut);
|
||
|
case 4:
|
||
|
// ADB only, solve as a triangle
|
||
|
verts[1] = verts[2]; // collapse BCD to BD
|
||
|
return SolveVoronoiRegion3(newPoint, pOut);
|
||
|
case 3:
|
||
|
{
|
||
|
// in front of ABC & ACD
|
||
|
d = DotProduct(ABCxAC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(ACxACD, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AC,newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AC
|
||
|
return EdgeSimplex( newPoint, 0, AC, pOut);
|
||
|
}
|
||
|
// point A
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(ACDxAD, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AD
|
||
|
verts[0] = verts[2]; // collapse BCD to D
|
||
|
return EdgeSimplex(newPoint, 1, AD, pOut);
|
||
|
}
|
||
|
// face ACD
|
||
|
return TriangleSimplex(newPoint,0,ACD, pOut);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(ABxABC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AB
|
||
|
return EdgeSimplex(newPoint, 1, AB, pOut);
|
||
|
}
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
return TriangleSimplex(newPoint,2,ABC,pOut);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 5:
|
||
|
{
|
||
|
// in front of ADB & ABC
|
||
|
d = DotProduct(ADBxAB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(ABxABC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AB,newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AB
|
||
|
return EdgeSimplex( newPoint, 1, AB , pOut);
|
||
|
}
|
||
|
// point A
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(ABCxAC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AC
|
||
|
return EdgeSimplex(newPoint, 0, AC, pOut);
|
||
|
}
|
||
|
// face ABC
|
||
|
return TriangleSimplex(newPoint,2,ABC,pOut);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(ADxADB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AD, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AD
|
||
|
verts[0] = verts[2]; // collapse BCD to D
|
||
|
return EdgeSimplex(newPoint, 1, AD, pOut);
|
||
|
}
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
return TriangleSimplex(newPoint,1,ADB,pOut);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 6:
|
||
|
{
|
||
|
// in front of ACD & ADB
|
||
|
d = DotProduct(ACDxAD, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(ADxADB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AD,newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AD
|
||
|
verts[0] = verts[2]; // collapse BCD to D
|
||
|
return EdgeSimplex(newPoint, 1, AD, pOut);
|
||
|
}
|
||
|
// point A
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(ADBxAB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AB
|
||
|
return EdgeSimplex(newPoint, 1, AB, pOut);
|
||
|
}
|
||
|
// face ADB
|
||
|
return TriangleSimplex(newPoint,1,ADB, pOut);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(ACxACD, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
d = DotProduct(AC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
// edge AC
|
||
|
return EdgeSimplex(newPoint, 0, AC, pOut);
|
||
|
}
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
return TriangleSimplex(newPoint,0,ACD, pOut);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 7:
|
||
|
{
|
||
|
d = DotProduct(AB, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
return EdgeSimplex(newPoint, 1, AB, pOut);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(AC, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
return EdgeSimplex(newPoint, 0, AC, pOut);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
d = DotProduct(AD, newPoint.position);
|
||
|
if ( d < 0 )
|
||
|
{
|
||
|
verts[0] = verts[2]; // collapse BCD to D
|
||
|
return EdgeSimplex(newPoint, 1, AD, pOut);
|
||
|
}
|
||
|
return PointSimplex(newPoint, pOut);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
verts[3] = newPoint;
|
||
|
vertCount = 4;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool simplex_t::SolveGJKSet( const simplexvert_t &w, Vector *pOut )
|
||
|
{
|
||
|
VPROF("TraceSolver::simplex::SolveGJKSet");
|
||
|
|
||
|
#if 0
|
||
|
for ( int v = 0; v < vertCount; v++ )
|
||
|
{
|
||
|
for ( int v2 = v+1; v2 < vertCount; v2++ )
|
||
|
{
|
||
|
if ( (verts[v].obstacleIndex == verts[v2].obstacleIndex) &&
|
||
|
(verts[v].sweepIndex == verts[v2].sweepIndex) &&
|
||
|
(verts[v].testIndex == verts[v2].testIndex) )
|
||
|
{
|
||
|
// same vert in the list twice! degenerate
|
||
|
Assert(0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
switch( vertCount )
|
||
|
{
|
||
|
case 0:
|
||
|
vertCount = 1;
|
||
|
verts[0] = w;
|
||
|
*pOut = w.position;
|
||
|
return false;
|
||
|
case 1:
|
||
|
return SolveVoronoiRegion2( w, pOut );
|
||
|
case 2:
|
||
|
return SolveVoronoiRegion3( w, pOut );
|
||
|
case 3:
|
||
|
return SolveVoronoiRegion4( w, pOut );
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CalculateSeparatingPlane( trace_t *ptr, ITraceObject *sweepObject, CTraceRay *ray, ITraceObject *obstacle, simplex_t &simplex )
|
||
|
{
|
||
|
int testCount = 1, obstacleCount = 1;
|
||
|
unsigned int testIndex[4], obstacleIndex[4];
|
||
|
testIndex[0] = simplex.verts[0].testIndex;
|
||
|
obstacleIndex[0] = simplex.verts[0].obstacleIndex;
|
||
|
Assert( simplex.vertCount <= 4 );
|
||
|
int i, j;
|
||
|
for ( i = 1; i < simplex.vertCount; i++ )
|
||
|
{
|
||
|
for ( j = 0; j < obstacleCount; j++ )
|
||
|
{
|
||
|
if ( obstacleIndex[j] == simplex.verts[i].obstacleIndex )
|
||
|
break;
|
||
|
}
|
||
|
if ( j == obstacleCount )
|
||
|
{
|
||
|
obstacleIndex[obstacleCount++] = simplex.verts[i].obstacleIndex;
|
||
|
}
|
||
|
|
||
|
for ( j = 0; j < testCount; j++ )
|
||
|
{
|
||
|
if ( testIndex[j] == simplex.verts[i].testIndex )
|
||
|
break;
|
||
|
}
|
||
|
if ( j == testCount )
|
||
|
{
|
||
|
testIndex[testCount++] = simplex.verts[i].testIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( simplex.vertCount < 3 )
|
||
|
{
|
||
|
if ( simplex.vertCount == 2 && testCount == 2 )
|
||
|
{
|
||
|
// edge / point
|
||
|
Vector t0 = sweepObject->GetVertByIndex( testIndex[0] );
|
||
|
Vector t1 = sweepObject->GetVertByIndex( testIndex[1] );
|
||
|
Vector edge = t1-t0;
|
||
|
Vector tangent = CrossProduct( edge, ray->m_delta );
|
||
|
ptr->plane.normal = CrossProduct( edge, tangent );
|
||
|
VectorNormalize( ptr->plane.normal );
|
||
|
ptr->plane.dist = DotProduct( t0 + ptr->endpos, ptr->plane.normal );
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
if ( testCount == 3 )
|
||
|
{
|
||
|
// face / xxx
|
||
|
Vector t0 = sweepObject->GetVertByIndex( testIndex[0] );
|
||
|
Vector t1 = sweepObject->GetVertByIndex( testIndex[1] );
|
||
|
Vector t2 = sweepObject->GetVertByIndex( testIndex[2] );
|
||
|
ptr->plane.normal = CrossProduct( t1-t0, t2-t0 );
|
||
|
VectorNormalize( ptr->plane.normal );
|
||
|
if ( DotProduct( ptr->plane.normal, ray->m_delta ) > 0 )
|
||
|
{
|
||
|
ptr->plane.normal = -ptr->plane.normal;
|
||
|
}
|
||
|
ptr->plane.dist = DotProduct( t0 + ptr->endpos, ptr->plane.normal );
|
||
|
}
|
||
|
else if ( testCount == 2 && obstacleCount == 2 )
|
||
|
{
|
||
|
// edge / edge
|
||
|
Vector t0 = sweepObject->GetVertByIndex( testIndex[0] );
|
||
|
Vector t1 = sweepObject->GetVertByIndex( testIndex[1] );
|
||
|
Vector t2 = obstacle->GetVertByIndex( obstacleIndex[0] );
|
||
|
Vector t3 = obstacle->GetVertByIndex( obstacleIndex[1] );
|
||
|
ptr->plane.normal = CrossProduct( t1-t0, t3-t2 );
|
||
|
VectorNormalize( ptr->plane.normal );
|
||
|
if ( DotProduct( ptr->plane.normal, ray->m_delta ) > 0 )
|
||
|
{
|
||
|
ptr->plane.normal = -ptr->plane.normal;
|
||
|
}
|
||
|
ptr->plane.dist = DotProduct( t0 + ptr->endpos, ptr->plane.normal );
|
||
|
}
|
||
|
else if ( obstacleCount == 3 )
|
||
|
{
|
||
|
// xxx / face
|
||
|
Vector t0 = obstacle->GetVertByIndex( obstacleIndex[0] );
|
||
|
Vector t1 = obstacle->GetVertByIndex( obstacleIndex[1] );
|
||
|
Vector t2 = obstacle->GetVertByIndex( obstacleIndex[2] );
|
||
|
ptr->plane.normal = CrossProduct( t1-t0, t2-t0 );
|
||
|
VectorNormalize( ptr->plane.normal );
|
||
|
if ( DotProduct( ptr->plane.normal, ray->m_delta ) > 0 )
|
||
|
{
|
||
|
ptr->plane.normal = -ptr->plane.normal;
|
||
|
}
|
||
|
ptr->plane.dist = DotProduct( t0, ptr->plane.normal );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ptr->plane.normal = -ray->m_dir;
|
||
|
if ( simplex.vertCount )
|
||
|
{
|
||
|
ptr->plane.dist = DotProduct( ptr->plane.normal, obstacle->GetVertByIndex( simplex.verts[0].obstacleIndex ) );
|
||
|
}
|
||
|
else
|
||
|
ptr->plane.dist = 0.f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// clip a direction vector to a plane (ray begins at the origin)
|
||
|
inline float Clip( const Vector &dir, const Vector &pos, const Vector &normal )
|
||
|
{
|
||
|
float dist = DotProduct(pos, normal);
|
||
|
float cosTheta = DotProduct(dir,normal);
|
||
|
if ( cosTheta > 0 )
|
||
|
return dist / cosTheta;
|
||
|
|
||
|
// parallel or not facing the plane
|
||
|
return 1e24f;
|
||
|
}
|
||
|
|
||
|
// This is the first iteration of solving time of intersection.
|
||
|
// It needs to test all 4 faces of the tetrahedron to find the one the ray leaves through
|
||
|
// this is done by finding the closest plane by clipping the ray to each plane
|
||
|
Vector simplex_t::ClipRayToTetrahedronBase( const Vector &dir )
|
||
|
{
|
||
|
Vector AB = verts[0].position - verts[3].position;
|
||
|
Vector AC = verts[1].position - verts[3].position;
|
||
|
Vector AD = verts[2].position - verts[3].position;
|
||
|
Vector BC = verts[1].position - verts[0].position;
|
||
|
Vector BD = verts[2].position - verts[0].position;
|
||
|
|
||
|
// compute face normals
|
||
|
Vector ABC, ACD, ADB, BCD;
|
||
|
CrossProduct( AB, AC, ABC );
|
||
|
CrossProduct( AC, AD, ACD );
|
||
|
CrossProduct( AD, AB, ADB );
|
||
|
CrossProduct( BD, BC, BCD ); // flipped to point out of the tetrahedron
|
||
|
|
||
|
// NOTE: These cancel out in the clipping equation
|
||
|
//VectorNormalize(ABC);
|
||
|
//VectorNormalize(ACD);
|
||
|
//VectorNormalize(ADB);
|
||
|
//VectorNormalize(BCD);
|
||
|
|
||
|
// Assert valid tetrahedron/winding order
|
||
|
#if CHECK_TOI_CALCS
|
||
|
Assert(DotProduct(verts[2].position, ABC) < DotProduct(verts[3].position, ABC ));
|
||
|
Assert(DotProduct(verts[0].position, ACD) < DotProduct(verts[3].position, ACD ));
|
||
|
Assert(DotProduct(verts[1].position, ADB) < DotProduct(verts[3].position, ADB ));
|
||
|
Assert(DotProduct(verts[3].position, BCD) < DotProduct(verts[0].position, BCD ));
|
||
|
#endif
|
||
|
|
||
|
float dists[4];
|
||
|
dists[0] = Clip( dir, verts[3].position, ABC );
|
||
|
dists[1] = Clip( dir, verts[3].position, ACD );
|
||
|
dists[2] = Clip( dir, verts[3].position, ADB );
|
||
|
dists[3] = Clip( dir, verts[0].position, BCD );
|
||
|
float dmin = dists[3];
|
||
|
int best = 3;
|
||
|
for ( int i = 0; i < 3; i++ )
|
||
|
{
|
||
|
if ( dists[i] < dmin )
|
||
|
{
|
||
|
best = i;
|
||
|
dmin = dists[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vertCount = 3;
|
||
|
// push back down to a triangle
|
||
|
// Note that we need to preserve winding so that the vector order assumptions above are still valid!
|
||
|
switch( best )
|
||
|
{
|
||
|
case 0:
|
||
|
verts[2] = verts[3];
|
||
|
return ABC;
|
||
|
case 1:
|
||
|
verts[0] = verts[3];
|
||
|
return ACD;
|
||
|
case 2:
|
||
|
verts[1] = verts[3];
|
||
|
return ADB;
|
||
|
case 3:
|
||
|
// swap 1 & 2
|
||
|
verts[3] = verts[1];
|
||
|
verts[1] = verts[2];
|
||
|
verts[2] = verts[3];
|
||
|
return BCD;
|
||
|
}
|
||
|
Assert(0); // failed!
|
||
|
return vec3_origin;
|
||
|
}
|
||
|
|
||
|
// for subsequent iterations you don't need to test one of the faces (face you previously left through)
|
||
|
// so only test the three faces involving the new point A
|
||
|
Vector simplex_t::ClipRayToTetrahedron( const Vector &dir )
|
||
|
{
|
||
|
Vector AB = verts[0].position - verts[3].position;
|
||
|
Vector AC = verts[1].position - verts[3].position;
|
||
|
Vector AD = verts[2].position - verts[3].position;
|
||
|
|
||
|
// compute face normals
|
||
|
Vector ABC, ACD, ADB;
|
||
|
CrossProduct( AB, AC, ABC );
|
||
|
CrossProduct( AC, AD, ACD );
|
||
|
CrossProduct( AD, AB, ADB );
|
||
|
|
||
|
// NOTE: These cancel out in the clipping equation
|
||
|
//VectorNormalize(ABC);
|
||
|
//VectorNormalize(ACD);
|
||
|
//VectorNormalize(ADB);
|
||
|
|
||
|
// Assert valid tetrahedron/winding order
|
||
|
#if CHECK_TOI_CALCS
|
||
|
Assert(DotProduct(verts[2].position, ABC) < DotProduct(verts[3].position, ABC ));
|
||
|
Assert(DotProduct(verts[0].position, ACD) < DotProduct(verts[3].position, ACD ));
|
||
|
Assert(DotProduct(verts[1].position, ADB) < DotProduct(verts[3].position, ADB ));
|
||
|
#endif
|
||
|
|
||
|
float dists[3];
|
||
|
dists[0] = Clip( dir, verts[3].position, ABC );
|
||
|
dists[1] = Clip( dir, verts[3].position, ACD );
|
||
|
dists[2] = Clip( dir, verts[3].position, ADB );
|
||
|
|
||
|
float dmin = dists[2];
|
||
|
int best = 2;
|
||
|
for ( int i = 0; i < 2; i++ )
|
||
|
{
|
||
|
if ( dists[i] < dmin )
|
||
|
{
|
||
|
best = i;
|
||
|
dmin = dists[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vertCount = 3;
|
||
|
// push back down to a triangle
|
||
|
// Note that we need to preserve winding so that the vector order assumptions above are still valid!
|
||
|
switch( best )
|
||
|
{
|
||
|
case 0:
|
||
|
verts[2] = verts[3];
|
||
|
return ABC;
|
||
|
case 1:
|
||
|
verts[0] = verts[3];
|
||
|
return ACD;
|
||
|
case 2:
|
||
|
verts[1] = verts[3];
|
||
|
return ADB;
|
||
|
}
|
||
|
return vec3_origin;
|
||
|
}
|
||
|
|
||
|
float simplex_t::ClipRayToTriangle( const Vector &dir, float epsilon )
|
||
|
{
|
||
|
Vector AB = verts[0].position - verts[2].position;
|
||
|
Vector AC = verts[1].position - verts[2].position;
|
||
|
Vector BC = verts[1].position - verts[0].position;
|
||
|
|
||
|
// compute face normal
|
||
|
Vector ABC;
|
||
|
CrossProduct( AB, AC, ABC ); // this points toward the origin
|
||
|
VectorNormalize(ABC);
|
||
|
Vector edgeAB, edgeAC, edgeBC;
|
||
|
// these should point out of the triangle
|
||
|
CrossProduct( AB, ABC, edgeAB );
|
||
|
CrossProduct( ABC, AC, edgeAC );
|
||
|
CrossProduct( BC, ABC, edgeBC );
|
||
|
|
||
|
// NOTE: These cancel out in the clipping equation
|
||
|
VectorNormalize(edgeAB);
|
||
|
VectorNormalize(edgeAC);
|
||
|
VectorNormalize(edgeBC);
|
||
|
|
||
|
#if CHECK_TOI_CALCS
|
||
|
Assert(DotProduct(verts[2].position, ABC) < 0); // points toward
|
||
|
// Assert valid triangle/winding order (all normals point away from the origin)
|
||
|
Assert(DotProduct(verts[2].position, edgeAB) > 0);
|
||
|
Assert(DotProduct(verts[2].position, edgeAC) > 0);
|
||
|
Assert(DotProduct(verts[0].position, edgeBC) > 0);
|
||
|
#endif
|
||
|
|
||
|
float dists[3];
|
||
|
dists[0] = Clip( dir, verts[0].position, edgeAB );
|
||
|
dists[1] = Clip( dir, verts[1].position, edgeAC );
|
||
|
dists[2] = Clip( dir, verts[1].position, edgeBC );
|
||
|
Vector *normals[3] = {&edgeAB, &edgeAC, &edgeBC};
|
||
|
|
||
|
float dmin = dists[0];
|
||
|
int best = 0;
|
||
|
if ( dists[1] < dmin )
|
||
|
{
|
||
|
dmin = dists[1];
|
||
|
best = 1;
|
||
|
}
|
||
|
if ( dists[2] < dmin )
|
||
|
{
|
||
|
best = 2;
|
||
|
dmin = dists[2];
|
||
|
}
|
||
|
float dot = DotProduct( dir, *normals[best] );
|
||
|
if ( dot <= 0 )
|
||
|
return 1e24f;
|
||
|
dmin += epsilon/dot;
|
||
|
|
||
|
return dmin;
|
||
|
}
|
||
|
|
||
|
// Solve for time of intersection along the sweep
|
||
|
// Do this by iteratively clipping the ray to the tetrahedron containing the origin
|
||
|
// when a triangle is found intersecting the ray, reduce the simplex to that triangle
|
||
|
// and then re-expand it to a tetrahedron using the support point normal to the triangle (away from the origin)
|
||
|
// iterate until no new points can be found. That's the surface of the sum.
|
||
|
float CTraceSolver::SolveMeshIntersection( simplex_t &simplex )
|
||
|
{
|
||
|
Vector tmp;
|
||
|
Assert( simplex.vertCount == 4 );
|
||
|
if ( simplex.vertCount < 4 )
|
||
|
return 0.0f;
|
||
|
|
||
|
Vector v = simplex.ClipRayToTetrahedronBase( m_ray->m_dir );
|
||
|
|
||
|
simplexvert_t vert;
|
||
|
// safe loop, max 100 iterations
|
||
|
for ( int i = 0; i < 100; i++ )
|
||
|
{
|
||
|
VectorNormalize(v);
|
||
|
vert.testIndex = m_sweepObject->SupportMap( v, &vert.position );
|
||
|
vert.sweepIndex = m_ray->SupportMap( v, &tmp );
|
||
|
VectorAdd( vert.position, tmp, vert.position );
|
||
|
vert.obstacleIndex = m_obstacle->SupportMap( -v, &tmp );
|
||
|
VectorSubtract( vert.position, tmp, vert.position );
|
||
|
|
||
|
// map the new separating axis (NOTE: This test is inverted from the GJK - we are trying to get out, not in)
|
||
|
// found a separating axis, we've moved the sweep back enough
|
||
|
float dist = DotProduct( v, simplex.verts[0].position ) + TEST_EPSILON;
|
||
|
if ( DotProduct( v, vert.position ) <= dist )
|
||
|
{
|
||
|
Vector BC = simplex.verts[1].position - simplex.verts[0].position;
|
||
|
Vector BD = simplex.verts[2].position - simplex.verts[0].position;
|
||
|
|
||
|
// compute face normals
|
||
|
Vector BCD;
|
||
|
CrossProduct( BC, BD, BCD );
|
||
|
// NOTE: This cancels out inside Clip()
|
||
|
//VectorNormalize( BCD );
|
||
|
// clip ray to triangle
|
||
|
return Clip( m_ray->m_dir, simplex.verts[0].position, BCD );
|
||
|
}
|
||
|
|
||
|
// add the new vert
|
||
|
simplex.verts[simplex.vertCount] = vert;
|
||
|
simplex.vertCount++;
|
||
|
v = simplex.ClipRayToTetrahedron( m_ray->m_dir );
|
||
|
}
|
||
|
|
||
|
Assert(0);
|
||
|
return 0.0f;
|
||
|
}
|
||
|
|
||
|
// similar to SolveMeshIntersection, but solves projected into the 2D triangle simplex remaining
|
||
|
// this is used for the near miss case
|
||
|
float CTraceSolver::SolveMeshIntersection2D( simplex_t &simplex )
|
||
|
{
|
||
|
AssertMsg( simplex.vertCount == 3, "simplex.vertCount != 3: %d", simplex.vertCount );
|
||
|
if ( simplex.vertCount != 3 )
|
||
|
return 0.0f;
|
||
|
|
||
|
// note: This should really do this iteratively in case the triangle is coplanar with another triangle that
|
||
|
// is between this one and the edge of the sum in this plane
|
||
|
float dist = simplex.ClipRayToTriangle( m_ray->m_dir, m_epsilon );
|
||
|
return dist;
|
||
|
}
|
||
|
|
||
|
|
||
|
static const Vector g_xpos(1,0,0), g_xneg(-1,0,0);
|
||
|
static const Vector g_ypos(0,1,0), g_yneg(0,-1,0);
|
||
|
static const Vector g_zpos(0,0,1), g_zneg(0,0,-1);
|
||
|
|
||
|
void TraceGetAABB_r( Vector *pMins, Vector *pMaxs, const IVP_Compact_Ledgetree_Node *node, CTraceIVP &ivp )
|
||
|
{
|
||
|
if ( node->is_terminal() == IVP_TRUE )
|
||
|
{
|
||
|
Vector tmp;
|
||
|
ivp.SetLedge( node->get_compact_ledge() );
|
||
|
ivp.SupportMap( g_xneg, &tmp );
|
||
|
AddPointToBounds( tmp, *pMins, *pMaxs );
|
||
|
ivp.SupportMap( g_yneg, &tmp );
|
||
|
AddPointToBounds( tmp, *pMins, *pMaxs );
|
||
|
ivp.SupportMap( g_zneg, &tmp );
|
||
|
AddPointToBounds( tmp, *pMins, *pMaxs );
|
||
|
ivp.SupportMap( g_xpos, &tmp );
|
||
|
AddPointToBounds( tmp, *pMins, *pMaxs );
|
||
|
ivp.SupportMap( g_ypos, &tmp );
|
||
|
AddPointToBounds( tmp, *pMins, *pMaxs );
|
||
|
ivp.SupportMap( g_zpos, &tmp );
|
||
|
AddPointToBounds( tmp, *pMins, *pMaxs );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
TraceGetAABB_r( pMins, pMaxs, node->left_son(), ivp );
|
||
|
TraceGetAABB_r( pMins, pMaxs, node->right_son(), ivp );
|
||
|
}
|
||
|
|
||
|
void CPhysicsTrace::GetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles )
|
||
|
{
|
||
|
CTraceIVP ivp( pCollide, collideOrigin, collideAngles );
|
||
|
|
||
|
if ( ivp.SetSingleConvex() )
|
||
|
{
|
||
|
Vector tmp;
|
||
|
ivp.SupportMap( g_xneg, &tmp );
|
||
|
pMins->x = tmp.x;
|
||
|
ivp.SupportMap( g_yneg, &tmp );
|
||
|
pMins->y = tmp.y;
|
||
|
ivp.SupportMap( g_zneg, &tmp );
|
||
|
pMins->z = tmp.z;
|
||
|
|
||
|
ivp.SupportMap( g_xpos, &tmp );
|
||
|
pMaxs->x = tmp.x;
|
||
|
ivp.SupportMap( g_ypos, &tmp );
|
||
|
pMaxs->y = tmp.y;
|
||
|
ivp.SupportMap( g_zpos, &tmp );
|
||
|
pMaxs->z = tmp.z;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const IVP_Compact_Ledgetree_Node *lt_node_root;
|
||
|
lt_node_root = pCollide->GetCompactSurface()->get_compact_ledge_tree_root();
|
||
|
ClearBounds( *pMins, *pMaxs );
|
||
|
TraceGetAABB_r( pMins, pMaxs, lt_node_root, ivp );
|
||
|
}
|
||
|
// JAY: Disable this here, do it in the engine instead. That way the tools get
|
||
|
// accurate bboxes
|
||
|
#if 0
|
||
|
const float radius = g_PhysicsUnits.collisionSweepEpsilon;
|
||
|
mins -= Vector(radius,radius,radius);
|
||
|
maxs += Vector(radius,radius,radius);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void TraceGetExtent_r( const IVP_Compact_Ledgetree_Node *node, CTraceIVP &ivp, const Vector &dir, float &dot, Vector &point )
|
||
|
{
|
||
|
if ( node->is_terminal() == IVP_TRUE )
|
||
|
{
|
||
|
ivp.SetLedge( node->get_compact_ledge() );
|
||
|
Vector tmp;
|
||
|
ivp.SupportMap( dir, &tmp );
|
||
|
float newDot = DotProduct( tmp, dir );
|
||
|
|
||
|
if ( newDot > dot )
|
||
|
{
|
||
|
dot = newDot;
|
||
|
point = tmp;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
TraceGetExtent_r( node->left_son(), ivp, dir, dot, point );
|
||
|
TraceGetExtent_r( node->right_son(), ivp, dir, dot, point );
|
||
|
}
|
||
|
|
||
|
|
||
|
Vector CPhysicsTrace::GetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction )
|
||
|
{
|
||
|
CTraceIVP ivp( pCollide, collideOrigin, collideAngles );
|
||
|
|
||
|
if ( ivp.SetSingleConvex() )
|
||
|
{
|
||
|
Vector tmp;
|
||
|
ivp.SupportMap( direction, &tmp );
|
||
|
return tmp;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const IVP_Compact_Ledgetree_Node *lt_node_root;
|
||
|
lt_node_root = pCollide->GetCompactSurface()->get_compact_ledge_tree_root();
|
||
|
Vector out = vec3_origin;
|
||
|
float tmp = -1e6f;
|
||
|
TraceGetExtent_r( lt_node_root, ivp, direction, tmp, out );
|
||
|
return out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool CPhysicsTrace::IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone )
|
||
|
{
|
||
|
trace_t tr;
|
||
|
CM_ClearTrace( &tr );
|
||
|
bool bPoint = (boxAbsMins == boxAbsMaxs) ? true : false;
|
||
|
CTraceAABB box( boxAbsMins - cone.origin, boxAbsMaxs - cone.origin, bPoint );
|
||
|
CTraceCone traceCone( cone, -cone.origin );
|
||
|
|
||
|
// offset the space of this sweep so that the surface is at the origin of the solution space
|
||
|
CTraceRay ray( vec3_origin, vec3_origin );
|
||
|
|
||
|
CTraceSolver solver( &tr, &box, &ray, &traceCone, boxAbsMaxs );
|
||
|
solver.DoSweep();
|
||
|
|
||
|
return tr.startsolid;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
CPhysicsTrace::CPhysicsTrace()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
CPhysicsTrace::~CPhysicsTrace()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
CVisitHash::CVisitHash()
|
||
|
{
|
||
|
m_vertVisitID = 1;
|
||
|
memset( m_vertVisit, 0, sizeof(m_vertVisit) );
|
||
|
}
|