You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
869 lines
32 KiB
869 lines
32 KiB
5 years ago
|
#ifndef Py_OBJECT_H
|
||
|
#define Py_OBJECT_H
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Object and type object interface */
|
||
|
|
||
|
/*
|
||
|
Objects are structures allocated on the heap. Special rules apply to
|
||
|
the use of objects to ensure they are properly garbage-collected.
|
||
|
Objects are never allocated statically or on the stack; they must be
|
||
|
accessed through special macros and functions only. (Type objects are
|
||
|
exceptions to the first rule; the standard types are represented by
|
||
|
statically initialized type objects, although work on type/class unification
|
||
|
for Python 2.2 made it possible to have heap-allocated type objects too).
|
||
|
|
||
|
An object has a 'reference count' that is increased or decreased when a
|
||
|
pointer to the object is copied or deleted; when the reference count
|
||
|
reaches zero there are no references to the object left and it can be
|
||
|
removed from the heap.
|
||
|
|
||
|
An object has a 'type' that determines what it represents and what kind
|
||
|
of data it contains. An object's type is fixed when it is created.
|
||
|
Types themselves are represented as objects; an object contains a
|
||
|
pointer to the corresponding type object. The type itself has a type
|
||
|
pointer pointing to the object representing the type 'type', which
|
||
|
contains a pointer to itself!).
|
||
|
|
||
|
Objects do not float around in memory; once allocated an object keeps
|
||
|
the same size and address. Objects that must hold variable-size data
|
||
|
can contain pointers to variable-size parts of the object. Not all
|
||
|
objects of the same type have the same size; but the size cannot change
|
||
|
after allocation. (These restrictions are made so a reference to an
|
||
|
object can be simply a pointer -- moving an object would require
|
||
|
updating all the pointers, and changing an object's size would require
|
||
|
moving it if there was another object right next to it.)
|
||
|
|
||
|
Objects are always accessed through pointers of the type 'PyObject *'.
|
||
|
The type 'PyObject' is a structure that only contains the reference count
|
||
|
and the type pointer. The actual memory allocated for an object
|
||
|
contains other data that can only be accessed after casting the pointer
|
||
|
to a pointer to a longer structure type. This longer type must start
|
||
|
with the reference count and type fields; the macro PyObject_HEAD should be
|
||
|
used for this (to accommodate for future changes). The implementation
|
||
|
of a particular object type can cast the object pointer to the proper
|
||
|
type and back.
|
||
|
|
||
|
A standard interface exists for objects that contain an array of items
|
||
|
whose size is determined when the object is allocated.
|
||
|
*/
|
||
|
|
||
|
/* Py_DEBUG implies Py_TRACE_REFS. */
|
||
|
#if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
|
||
|
#define Py_TRACE_REFS
|
||
|
#endif
|
||
|
|
||
|
/* Py_TRACE_REFS implies Py_REF_DEBUG. */
|
||
|
#if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
|
||
|
#define Py_REF_DEBUG
|
||
|
#endif
|
||
|
|
||
|
#ifdef Py_TRACE_REFS
|
||
|
/* Define pointers to support a doubly-linked list of all live heap objects. */
|
||
|
#define _PyObject_HEAD_EXTRA \
|
||
|
struct _object *_ob_next; \
|
||
|
struct _object *_ob_prev;
|
||
|
|
||
|
#define _PyObject_EXTRA_INIT 0, 0,
|
||
|
|
||
|
#else
|
||
|
#define _PyObject_HEAD_EXTRA
|
||
|
#define _PyObject_EXTRA_INIT
|
||
|
#endif
|
||
|
|
||
|
/* PyObject_HEAD defines the initial segment of every PyObject. */
|
||
|
#define PyObject_HEAD \
|
||
|
_PyObject_HEAD_EXTRA \
|
||
|
Py_ssize_t ob_refcnt; \
|
||
|
struct _typeobject *ob_type;
|
||
|
|
||
|
#define PyObject_HEAD_INIT(type) \
|
||
|
_PyObject_EXTRA_INIT \
|
||
|
1, type,
|
||
|
|
||
|
/* PyObject_VAR_HEAD defines the initial segment of all variable-size
|
||
|
* container objects. These end with a declaration of an array with 1
|
||
|
* element, but enough space is malloc'ed so that the array actually
|
||
|
* has room for ob_size elements. Note that ob_size is an element count,
|
||
|
* not necessarily a byte count.
|
||
|
*/
|
||
|
#define PyObject_VAR_HEAD \
|
||
|
PyObject_HEAD \
|
||
|
Py_ssize_t ob_size; /* Number of items in variable part */
|
||
|
#define Py_INVALID_SIZE (Py_ssize_t)-1
|
||
|
|
||
|
/* Nothing is actually declared to be a PyObject, but every pointer to
|
||
|
* a Python object can be cast to a PyObject*. This is inheritance built
|
||
|
* by hand. Similarly every pointer to a variable-size Python object can,
|
||
|
* in addition, be cast to PyVarObject*.
|
||
|
*/
|
||
|
typedef struct _object {
|
||
|
PyObject_HEAD
|
||
|
} PyObject;
|
||
|
|
||
|
typedef struct {
|
||
|
PyObject_VAR_HEAD
|
||
|
} PyVarObject;
|
||
|
|
||
|
|
||
|
/*
|
||
|
Type objects contain a string containing the type name (to help somewhat
|
||
|
in debugging), the allocation parameters (see PyObject_New() and
|
||
|
PyObject_NewVar()),
|
||
|
and methods for accessing objects of the type. Methods are optional, a
|
||
|
nil pointer meaning that particular kind of access is not available for
|
||
|
this type. The Py_DECREF() macro uses the tp_dealloc method without
|
||
|
checking for a nil pointer; it should always be implemented except if
|
||
|
the implementation can guarantee that the reference count will never
|
||
|
reach zero (e.g., for statically allocated type objects).
|
||
|
|
||
|
NB: the methods for certain type groups are now contained in separate
|
||
|
method blocks.
|
||
|
*/
|
||
|
|
||
|
typedef PyObject * (*unaryfunc)(PyObject *);
|
||
|
typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
|
||
|
typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
|
||
|
typedef int (*inquiry)(PyObject *);
|
||
|
typedef Py_ssize_t (*lenfunc)(PyObject *);
|
||
|
typedef int (*coercion)(PyObject **, PyObject **);
|
||
|
typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
|
||
|
typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
|
||
|
typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
|
||
|
typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
|
||
|
typedef int(*intobjargproc)(PyObject *, int, PyObject *);
|
||
|
typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
|
||
|
typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
|
||
|
typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
|
||
|
typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
|
||
|
|
||
|
/* int-based buffer interface */
|
||
|
typedef int (*getreadbufferproc)(PyObject *, int, void **);
|
||
|
typedef int (*getwritebufferproc)(PyObject *, int, void **);
|
||
|
typedef int (*getsegcountproc)(PyObject *, int *);
|
||
|
typedef int (*getcharbufferproc)(PyObject *, int, char **);
|
||
|
/* ssize_t-based buffer interface */
|
||
|
typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
|
||
|
typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
|
||
|
typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
|
||
|
typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
|
||
|
|
||
|
typedef int (*objobjproc)(PyObject *, PyObject *);
|
||
|
typedef int (*visitproc)(PyObject *, void *);
|
||
|
typedef int (*traverseproc)(PyObject *, visitproc, void *);
|
||
|
|
||
|
typedef struct {
|
||
|
/* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
|
||
|
arguments are guaranteed to be of the object's type (modulo
|
||
|
coercion hacks -- i.e. if the type's coercion function
|
||
|
returns other types, then these are allowed as well). Numbers that
|
||
|
have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
|
||
|
arguments for proper type and implement the necessary conversions
|
||
|
in the slot functions themselves. */
|
||
|
|
||
|
binaryfunc nb_add;
|
||
|
binaryfunc nb_subtract;
|
||
|
binaryfunc nb_multiply;
|
||
|
binaryfunc nb_divide;
|
||
|
binaryfunc nb_remainder;
|
||
|
binaryfunc nb_divmod;
|
||
|
ternaryfunc nb_power;
|
||
|
unaryfunc nb_negative;
|
||
|
unaryfunc nb_positive;
|
||
|
unaryfunc nb_absolute;
|
||
|
inquiry nb_nonzero;
|
||
|
unaryfunc nb_invert;
|
||
|
binaryfunc nb_lshift;
|
||
|
binaryfunc nb_rshift;
|
||
|
binaryfunc nb_and;
|
||
|
binaryfunc nb_xor;
|
||
|
binaryfunc nb_or;
|
||
|
coercion nb_coerce;
|
||
|
unaryfunc nb_int;
|
||
|
unaryfunc nb_long;
|
||
|
unaryfunc nb_float;
|
||
|
unaryfunc nb_oct;
|
||
|
unaryfunc nb_hex;
|
||
|
/* Added in release 2.0 */
|
||
|
binaryfunc nb_inplace_add;
|
||
|
binaryfunc nb_inplace_subtract;
|
||
|
binaryfunc nb_inplace_multiply;
|
||
|
binaryfunc nb_inplace_divide;
|
||
|
binaryfunc nb_inplace_remainder;
|
||
|
ternaryfunc nb_inplace_power;
|
||
|
binaryfunc nb_inplace_lshift;
|
||
|
binaryfunc nb_inplace_rshift;
|
||
|
binaryfunc nb_inplace_and;
|
||
|
binaryfunc nb_inplace_xor;
|
||
|
binaryfunc nb_inplace_or;
|
||
|
|
||
|
/* Added in release 2.2 */
|
||
|
/* The following require the Py_TPFLAGS_HAVE_CLASS flag */
|
||
|
binaryfunc nb_floor_divide;
|
||
|
binaryfunc nb_true_divide;
|
||
|
binaryfunc nb_inplace_floor_divide;
|
||
|
binaryfunc nb_inplace_true_divide;
|
||
|
|
||
|
/* Added in release 2.5 */
|
||
|
unaryfunc nb_index;
|
||
|
} PyNumberMethods;
|
||
|
|
||
|
typedef struct {
|
||
|
lenfunc sq_length;
|
||
|
binaryfunc sq_concat;
|
||
|
ssizeargfunc sq_repeat;
|
||
|
ssizeargfunc sq_item;
|
||
|
ssizessizeargfunc sq_slice;
|
||
|
ssizeobjargproc sq_ass_item;
|
||
|
ssizessizeobjargproc sq_ass_slice;
|
||
|
objobjproc sq_contains;
|
||
|
/* Added in release 2.0 */
|
||
|
binaryfunc sq_inplace_concat;
|
||
|
ssizeargfunc sq_inplace_repeat;
|
||
|
} PySequenceMethods;
|
||
|
|
||
|
typedef struct {
|
||
|
lenfunc mp_length;
|
||
|
binaryfunc mp_subscript;
|
||
|
objobjargproc mp_ass_subscript;
|
||
|
} PyMappingMethods;
|
||
|
|
||
|
typedef struct {
|
||
|
readbufferproc bf_getreadbuffer;
|
||
|
writebufferproc bf_getwritebuffer;
|
||
|
segcountproc bf_getsegcount;
|
||
|
charbufferproc bf_getcharbuffer;
|
||
|
} PyBufferProcs;
|
||
|
|
||
|
|
||
|
typedef void (*freefunc)(void *);
|
||
|
typedef void (*destructor)(PyObject *);
|
||
|
typedef int (*printfunc)(PyObject *, FILE *, int);
|
||
|
typedef PyObject *(*getattrfunc)(PyObject *, char *);
|
||
|
typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
|
||
|
typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
|
||
|
typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
|
||
|
typedef int (*cmpfunc)(PyObject *, PyObject *);
|
||
|
typedef PyObject *(*reprfunc)(PyObject *);
|
||
|
typedef long (*hashfunc)(PyObject *);
|
||
|
typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
|
||
|
typedef PyObject *(*getiterfunc) (PyObject *);
|
||
|
typedef PyObject *(*iternextfunc) (PyObject *);
|
||
|
typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
|
||
|
typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
|
||
|
typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
|
||
|
typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
|
||
|
typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
|
||
|
|
||
|
typedef struct _typeobject {
|
||
|
PyObject_VAR_HEAD
|
||
|
const char *tp_name; /* For printing, in format "<module>.<name>" */
|
||
|
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
|
||
|
|
||
|
/* Methods to implement standard operations */
|
||
|
|
||
|
destructor tp_dealloc;
|
||
|
printfunc tp_print;
|
||
|
getattrfunc tp_getattr;
|
||
|
setattrfunc tp_setattr;
|
||
|
cmpfunc tp_compare;
|
||
|
reprfunc tp_repr;
|
||
|
|
||
|
/* Method suites for standard classes */
|
||
|
|
||
|
PyNumberMethods *tp_as_number;
|
||
|
PySequenceMethods *tp_as_sequence;
|
||
|
PyMappingMethods *tp_as_mapping;
|
||
|
|
||
|
/* More standard operations (here for binary compatibility) */
|
||
|
|
||
|
hashfunc tp_hash;
|
||
|
ternaryfunc tp_call;
|
||
|
reprfunc tp_str;
|
||
|
getattrofunc tp_getattro;
|
||
|
setattrofunc tp_setattro;
|
||
|
|
||
|
/* Functions to access object as input/output buffer */
|
||
|
PyBufferProcs *tp_as_buffer;
|
||
|
|
||
|
/* Flags to define presence of optional/expanded features */
|
||
|
long tp_flags;
|
||
|
|
||
|
const char *tp_doc; /* Documentation string */
|
||
|
|
||
|
/* Assigned meaning in release 2.0 */
|
||
|
/* call function for all accessible objects */
|
||
|
traverseproc tp_traverse;
|
||
|
|
||
|
/* delete references to contained objects */
|
||
|
inquiry tp_clear;
|
||
|
|
||
|
/* Assigned meaning in release 2.1 */
|
||
|
/* rich comparisons */
|
||
|
richcmpfunc tp_richcompare;
|
||
|
|
||
|
/* weak reference enabler */
|
||
|
Py_ssize_t tp_weaklistoffset;
|
||
|
|
||
|
/* Added in release 2.2 */
|
||
|
/* Iterators */
|
||
|
getiterfunc tp_iter;
|
||
|
iternextfunc tp_iternext;
|
||
|
|
||
|
/* Attribute descriptor and subclassing stuff */
|
||
|
struct PyMethodDef *tp_methods;
|
||
|
struct PyMemberDef *tp_members;
|
||
|
struct PyGetSetDef *tp_getset;
|
||
|
struct _typeobject *tp_base;
|
||
|
PyObject *tp_dict;
|
||
|
descrgetfunc tp_descr_get;
|
||
|
descrsetfunc tp_descr_set;
|
||
|
Py_ssize_t tp_dictoffset;
|
||
|
initproc tp_init;
|
||
|
allocfunc tp_alloc;
|
||
|
newfunc tp_new;
|
||
|
freefunc tp_free; /* Low-level free-memory routine */
|
||
|
inquiry tp_is_gc; /* For PyObject_IS_GC */
|
||
|
PyObject *tp_bases;
|
||
|
PyObject *tp_mro; /* method resolution order */
|
||
|
PyObject *tp_cache;
|
||
|
PyObject *tp_subclasses;
|
||
|
PyObject *tp_weaklist;
|
||
|
destructor tp_del;
|
||
|
|
||
|
#ifdef COUNT_ALLOCS
|
||
|
/* these must be last and never explicitly initialized */
|
||
|
Py_ssize_t tp_allocs;
|
||
|
Py_ssize_t tp_frees;
|
||
|
Py_ssize_t tp_maxalloc;
|
||
|
struct _typeobject *tp_prev;
|
||
|
struct _typeobject *tp_next;
|
||
|
#endif
|
||
|
} PyTypeObject;
|
||
|
|
||
|
|
||
|
/* The *real* layout of a type object when allocated on the heap */
|
||
|
typedef struct _heaptypeobject {
|
||
|
/* Note: there's a dependency on the order of these members
|
||
|
in slotptr() in typeobject.c . */
|
||
|
PyTypeObject ht_type;
|
||
|
PyNumberMethods as_number;
|
||
|
PyMappingMethods as_mapping;
|
||
|
PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
|
||
|
so that the mapping wins when both
|
||
|
the mapping and the sequence define
|
||
|
a given operator (e.g. __getitem__).
|
||
|
see add_operators() in typeobject.c . */
|
||
|
PyBufferProcs as_buffer;
|
||
|
PyObject *ht_name, *ht_slots;
|
||
|
/* here are optional user slots, followed by the members. */
|
||
|
} PyHeapTypeObject;
|
||
|
|
||
|
/* access macro to the members which are floating "behind" the object */
|
||
|
#define PyHeapType_GET_MEMBERS(etype) \
|
||
|
((PyMemberDef *)(((char *)etype) + (etype)->ht_type.ob_type->tp_basicsize))
|
||
|
|
||
|
|
||
|
/* Generic type check */
|
||
|
PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
|
||
|
#define PyObject_TypeCheck(ob, tp) \
|
||
|
((ob)->ob_type == (tp) || PyType_IsSubtype((ob)->ob_type, (tp)))
|
||
|
|
||
|
PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
|
||
|
PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
|
||
|
PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
|
||
|
|
||
|
#define PyType_Check(op) PyObject_TypeCheck(op, &PyType_Type)
|
||
|
#define PyType_CheckExact(op) ((op)->ob_type == &PyType_Type)
|
||
|
|
||
|
PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
|
||
|
PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
|
||
|
PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
|
||
|
PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
|
||
|
|
||
|
/* Generic operations on objects */
|
||
|
PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
|
||
|
PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
|
||
|
#ifdef Py_USING_UNICODE
|
||
|
PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
|
||
|
#endif
|
||
|
PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
|
||
|
PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
|
||
|
PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
|
||
|
PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
|
||
|
PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
|
||
|
PyObject *, PyObject *);
|
||
|
PyAPI_FUNC(long) PyObject_Hash(PyObject *);
|
||
|
PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
|
||
|
PyAPI_FUNC(int) PyObject_Not(PyObject *);
|
||
|
PyAPI_FUNC(int) PyCallable_Check(PyObject *);
|
||
|
PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
|
||
|
PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
|
||
|
|
||
|
PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
|
||
|
|
||
|
/* A slot function whose address we need to compare */
|
||
|
extern int _PyObject_SlotCompare(PyObject *, PyObject *);
|
||
|
|
||
|
|
||
|
/* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
|
||
|
list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
|
||
|
returning the names of the current locals. In this case, if there are
|
||
|
no current locals, NULL is returned, and PyErr_Occurred() is false.
|
||
|
*/
|
||
|
PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
|
||
|
|
||
|
|
||
|
/* Helpers for printing recursive container types */
|
||
|
PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
|
||
|
PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
|
||
|
|
||
|
/* Helpers for hash functions */
|
||
|
PyAPI_FUNC(long) _Py_HashDouble(double);
|
||
|
PyAPI_FUNC(long) _Py_HashPointer(void*);
|
||
|
|
||
|
/* Helper for passing objects to printf and the like */
|
||
|
#define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
|
||
|
|
||
|
/* Flag bits for printing: */
|
||
|
#define Py_PRINT_RAW 1 /* No string quotes etc. */
|
||
|
|
||
|
/*
|
||
|
`Type flags (tp_flags)
|
||
|
|
||
|
These flags are used to extend the type structure in a backwards-compatible
|
||
|
fashion. Extensions can use the flags to indicate (and test) when a given
|
||
|
type structure contains a new feature. The Python core will use these when
|
||
|
introducing new functionality between major revisions (to avoid mid-version
|
||
|
changes in the PYTHON_API_VERSION).
|
||
|
|
||
|
Arbitration of the flag bit positions will need to be coordinated among
|
||
|
all extension writers who publically release their extensions (this will
|
||
|
be fewer than you might expect!)..
|
||
|
|
||
|
Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
|
||
|
|
||
|
Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
|
||
|
|
||
|
Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
|
||
|
given type object has a specified feature.
|
||
|
*/
|
||
|
|
||
|
/* PyBufferProcs contains bf_getcharbuffer */
|
||
|
#define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
|
||
|
|
||
|
/* PySequenceMethods contains sq_contains */
|
||
|
#define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
|
||
|
|
||
|
/* This is here for backwards compatibility. Extensions that use the old GC
|
||
|
* API will still compile but the objects will not be tracked by the GC. */
|
||
|
#define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
|
||
|
|
||
|
/* PySequenceMethods and PyNumberMethods contain in-place operators */
|
||
|
#define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
|
||
|
|
||
|
/* PyNumberMethods do their own coercion */
|
||
|
#define Py_TPFLAGS_CHECKTYPES (1L<<4)
|
||
|
|
||
|
/* tp_richcompare is defined */
|
||
|
#define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
|
||
|
|
||
|
/* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
|
||
|
#define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
|
||
|
|
||
|
/* tp_iter is defined */
|
||
|
#define Py_TPFLAGS_HAVE_ITER (1L<<7)
|
||
|
|
||
|
/* New members introduced by Python 2.2 exist */
|
||
|
#define Py_TPFLAGS_HAVE_CLASS (1L<<8)
|
||
|
|
||
|
/* Set if the type object is dynamically allocated */
|
||
|
#define Py_TPFLAGS_HEAPTYPE (1L<<9)
|
||
|
|
||
|
/* Set if the type allows subclassing */
|
||
|
#define Py_TPFLAGS_BASETYPE (1L<<10)
|
||
|
|
||
|
/* Set if the type is 'ready' -- fully initialized */
|
||
|
#define Py_TPFLAGS_READY (1L<<12)
|
||
|
|
||
|
/* Set while the type is being 'readied', to prevent recursive ready calls */
|
||
|
#define Py_TPFLAGS_READYING (1L<<13)
|
||
|
|
||
|
/* Objects support garbage collection (see objimp.h) */
|
||
|
#define Py_TPFLAGS_HAVE_GC (1L<<14)
|
||
|
|
||
|
/* These two bits are preserved for Stackless Python, next after this is 17 */
|
||
|
#ifdef STACKLESS
|
||
|
#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
|
||
|
#else
|
||
|
#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
|
||
|
#endif
|
||
|
|
||
|
/* Objects support nb_index in PyNumberMethods */
|
||
|
#define Py_TPFLAGS_HAVE_INDEX (1L<<17)
|
||
|
|
||
|
#define Py_TPFLAGS_DEFAULT ( \
|
||
|
Py_TPFLAGS_HAVE_GETCHARBUFFER | \
|
||
|
Py_TPFLAGS_HAVE_SEQUENCE_IN | \
|
||
|
Py_TPFLAGS_HAVE_INPLACEOPS | \
|
||
|
Py_TPFLAGS_HAVE_RICHCOMPARE | \
|
||
|
Py_TPFLAGS_HAVE_WEAKREFS | \
|
||
|
Py_TPFLAGS_HAVE_ITER | \
|
||
|
Py_TPFLAGS_HAVE_CLASS | \
|
||
|
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
|
||
|
Py_TPFLAGS_HAVE_INDEX | \
|
||
|
0)
|
||
|
|
||
|
#define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
|
||
|
|
||
|
|
||
|
/*
|
||
|
The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
|
||
|
reference counts. Py_DECREF calls the object's deallocator function when
|
||
|
the refcount falls to 0; for
|
||
|
objects that don't contain references to other objects or heap memory
|
||
|
this can be the standard function free(). Both macros can be used
|
||
|
wherever a void expression is allowed. The argument must not be a
|
||
|
NIL pointer. If it may be NIL, use Py_XINCREF/Py_XDECREF instead.
|
||
|
The macro _Py_NewReference(op) initialize reference counts to 1, and
|
||
|
in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
|
||
|
bookkeeping appropriate to the special build.
|
||
|
|
||
|
We assume that the reference count field can never overflow; this can
|
||
|
be proven when the size of the field is the same as the pointer size, so
|
||
|
we ignore the possibility. Provided a C int is at least 32 bits (which
|
||
|
is implicitly assumed in many parts of this code), that's enough for
|
||
|
about 2**31 references to an object.
|
||
|
|
||
|
XXX The following became out of date in Python 2.2, but I'm not sure
|
||
|
XXX what the full truth is now. Certainly, heap-allocated type objects
|
||
|
XXX can and should be deallocated.
|
||
|
Type objects should never be deallocated; the type pointer in an object
|
||
|
is not considered to be a reference to the type object, to save
|
||
|
complications in the deallocation function. (This is actually a
|
||
|
decision that's up to the implementer of each new type so if you want,
|
||
|
you can count such references to the type object.)
|
||
|
|
||
|
*** WARNING*** The Py_DECREF macro must have a side-effect-free argument
|
||
|
since it may evaluate its argument multiple times. (The alternative
|
||
|
would be to mace it a proper function or assign it to a global temporary
|
||
|
variable first, both of which are slower; and in a multi-threaded
|
||
|
environment the global variable trick is not safe.)
|
||
|
*/
|
||
|
|
||
|
/* First define a pile of simple helper macros, one set per special
|
||
|
* build symbol. These either expand to the obvious things, or to
|
||
|
* nothing at all when the special mode isn't in effect. The main
|
||
|
* macros can later be defined just once then, yet expand to different
|
||
|
* things depending on which special build options are and aren't in effect.
|
||
|
* Trust me <wink>: while painful, this is 20x easier to understand than,
|
||
|
* e.g, defining _Py_NewReference five different times in a maze of nested
|
||
|
* #ifdefs (we used to do that -- it was impenetrable).
|
||
|
*/
|
||
|
#ifdef Py_REF_DEBUG
|
||
|
PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
|
||
|
PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
|
||
|
int lineno, PyObject *op);
|
||
|
PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
|
||
|
PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
|
||
|
PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
|
||
|
#define _Py_INC_REFTOTAL _Py_RefTotal++
|
||
|
#define _Py_DEC_REFTOTAL _Py_RefTotal--
|
||
|
#define _Py_REF_DEBUG_COMMA ,
|
||
|
#define _Py_CHECK_REFCNT(OP) \
|
||
|
{ if ((OP)->ob_refcnt < 0) \
|
||
|
_Py_NegativeRefcount(__FILE__, __LINE__, \
|
||
|
(PyObject *)(OP)); \
|
||
|
}
|
||
|
#else
|
||
|
#define _Py_INC_REFTOTAL
|
||
|
#define _Py_DEC_REFTOTAL
|
||
|
#define _Py_REF_DEBUG_COMMA
|
||
|
#define _Py_CHECK_REFCNT(OP) /* a semicolon */;
|
||
|
#endif /* Py_REF_DEBUG */
|
||
|
|
||
|
#ifdef COUNT_ALLOCS
|
||
|
PyAPI_FUNC(void) inc_count(PyTypeObject *);
|
||
|
PyAPI_FUNC(void) dec_count(PyTypeObject *);
|
||
|
#define _Py_INC_TPALLOCS(OP) inc_count((OP)->ob_type)
|
||
|
#define _Py_INC_TPFREES(OP) dec_count((OP)->ob_type)
|
||
|
#define _Py_DEC_TPFREES(OP) (OP)->ob_type->tp_frees--
|
||
|
#define _Py_COUNT_ALLOCS_COMMA ,
|
||
|
#else
|
||
|
#define _Py_INC_TPALLOCS(OP)
|
||
|
#define _Py_INC_TPFREES(OP)
|
||
|
#define _Py_DEC_TPFREES(OP)
|
||
|
#define _Py_COUNT_ALLOCS_COMMA
|
||
|
#endif /* COUNT_ALLOCS */
|
||
|
|
||
|
#ifdef Py_TRACE_REFS
|
||
|
/* Py_TRACE_REFS is such major surgery that we call external routines. */
|
||
|
PyAPI_FUNC(void) _Py_NewReference(PyObject *);
|
||
|
PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
|
||
|
PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
|
||
|
PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
|
||
|
PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
|
||
|
PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
|
||
|
|
||
|
#else
|
||
|
/* Without Py_TRACE_REFS, there's little enough to do that we expand code
|
||
|
* inline.
|
||
|
*/
|
||
|
#define _Py_NewReference(op) ( \
|
||
|
_Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
|
||
|
_Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
|
||
|
(op)->ob_refcnt = 1)
|
||
|
|
||
|
#define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
|
||
|
|
||
|
#define _Py_Dealloc(op) ( \
|
||
|
_Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
|
||
|
(*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
|
||
|
#endif /* !Py_TRACE_REFS */
|
||
|
|
||
|
#define Py_INCREF(op) ( \
|
||
|
_Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
|
||
|
(op)->ob_refcnt++)
|
||
|
|
||
|
#define Py_DECREF(op) \
|
||
|
if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
|
||
|
--(op)->ob_refcnt != 0) \
|
||
|
_Py_CHECK_REFCNT(op) \
|
||
|
else \
|
||
|
_Py_Dealloc((PyObject *)(op))
|
||
|
|
||
|
/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
|
||
|
* and tp_dealloc implementatons.
|
||
|
*
|
||
|
* Note that "the obvious" code can be deadly:
|
||
|
*
|
||
|
* Py_XDECREF(op);
|
||
|
* op = NULL;
|
||
|
*
|
||
|
* Typically, `op` is something like self->containee, and `self` is done
|
||
|
* using its `containee` member. In the code sequence above, suppose
|
||
|
* `containee` is non-NULL with a refcount of 1. Its refcount falls to
|
||
|
* 0 on the first line, which can trigger an arbitrary amount of code,
|
||
|
* possibly including finalizers (like __del__ methods or weakref callbacks)
|
||
|
* coded in Python, which in turn can release the GIL and allow other threads
|
||
|
* to run, etc. Such code may even invoke methods of `self` again, or cause
|
||
|
* cyclic gc to trigger, but-- oops! --self->containee still points to the
|
||
|
* object being torn down, and it may be in an insane state while being torn
|
||
|
* down. This has in fact been a rich historic source of miserable (rare &
|
||
|
* hard-to-diagnose) segfaulting (and other) bugs.
|
||
|
*
|
||
|
* The safe way is:
|
||
|
*
|
||
|
* Py_CLEAR(op);
|
||
|
*
|
||
|
* That arranges to set `op` to NULL _before_ decref'ing, so that any code
|
||
|
* triggered as a side-effect of `op` getting torn down no longer believes
|
||
|
* `op` points to a valid object.
|
||
|
*
|
||
|
* There are cases where it's safe to use the naive code, but they're brittle.
|
||
|
* For example, if `op` points to a Python integer, you know that destroying
|
||
|
* one of those can't cause problems -- but in part that relies on that
|
||
|
* Python integers aren't currently weakly referencable. Best practice is
|
||
|
* to use Py_CLEAR() even if you can't think of a reason for why you need to.
|
||
|
*/
|
||
|
#define Py_CLEAR(op) \
|
||
|
do { \
|
||
|
if (op) { \
|
||
|
PyObject *tmp = (PyObject *)(op); \
|
||
|
(op) = NULL; \
|
||
|
Py_DECREF(tmp); \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
/* Macros to use in case the object pointer may be NULL: */
|
||
|
#define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
|
||
|
#define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
|
||
|
|
||
|
/*
|
||
|
These are provided as conveniences to Python runtime embedders, so that
|
||
|
they can have object code that is not dependent on Python compilation flags.
|
||
|
*/
|
||
|
PyAPI_FUNC(void) Py_IncRef(PyObject *);
|
||
|
PyAPI_FUNC(void) Py_DecRef(PyObject *);
|
||
|
|
||
|
/*
|
||
|
_Py_NoneStruct is an object of undefined type which can be used in contexts
|
||
|
where NULL (nil) is not suitable (since NULL often means 'error').
|
||
|
|
||
|
Don't forget to apply Py_INCREF() when returning this value!!!
|
||
|
*/
|
||
|
PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
|
||
|
#define Py_None (&_Py_NoneStruct)
|
||
|
|
||
|
/* Macro for returning Py_None from a function */
|
||
|
#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
|
||
|
|
||
|
/*
|
||
|
Py_NotImplemented is a singleton used to signal that an operation is
|
||
|
not implemented for a given type combination.
|
||
|
*/
|
||
|
PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
|
||
|
#define Py_NotImplemented (&_Py_NotImplementedStruct)
|
||
|
|
||
|
/* Rich comparison opcodes */
|
||
|
#define Py_LT 0
|
||
|
#define Py_LE 1
|
||
|
#define Py_EQ 2
|
||
|
#define Py_NE 3
|
||
|
#define Py_GT 4
|
||
|
#define Py_GE 5
|
||
|
|
||
|
/* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
|
||
|
* Defined in object.c.
|
||
|
*/
|
||
|
PyAPI_DATA(int) _Py_SwappedOp[];
|
||
|
|
||
|
/*
|
||
|
Define staticforward and statichere for source compatibility with old
|
||
|
C extensions.
|
||
|
|
||
|
The staticforward define was needed to support certain broken C
|
||
|
compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
|
||
|
static keyword when it was used with a forward declaration of a static
|
||
|
initialized structure. Standard C allows the forward declaration with
|
||
|
static, and we've decided to stop catering to broken C compilers.
|
||
|
(In fact, we expect that the compilers are all fixed eight years later.)
|
||
|
*/
|
||
|
|
||
|
#define staticforward static
|
||
|
#define statichere static
|
||
|
|
||
|
|
||
|
/*
|
||
|
More conventions
|
||
|
================
|
||
|
|
||
|
Argument Checking
|
||
|
-----------------
|
||
|
|
||
|
Functions that take objects as arguments normally don't check for nil
|
||
|
arguments, but they do check the type of the argument, and return an
|
||
|
error if the function doesn't apply to the type.
|
||
|
|
||
|
Failure Modes
|
||
|
-------------
|
||
|
|
||
|
Functions may fail for a variety of reasons, including running out of
|
||
|
memory. This is communicated to the caller in two ways: an error string
|
||
|
is set (see errors.h), and the function result differs: functions that
|
||
|
normally return a pointer return NULL for failure, functions returning
|
||
|
an integer return -1 (which could be a legal return value too!), and
|
||
|
other functions return 0 for success and -1 for failure.
|
||
|
Callers should always check for errors before using the result. If
|
||
|
an error was set, the caller must either explicitly clear it, or pass
|
||
|
the error on to its caller.
|
||
|
|
||
|
Reference Counts
|
||
|
----------------
|
||
|
|
||
|
It takes a while to get used to the proper usage of reference counts.
|
||
|
|
||
|
Functions that create an object set the reference count to 1; such new
|
||
|
objects must be stored somewhere or destroyed again with Py_DECREF().
|
||
|
Some functions that 'store' objects, such as PyTuple_SetItem() and
|
||
|
PyList_SetItem(),
|
||
|
don't increment the reference count of the object, since the most
|
||
|
frequent use is to store a fresh object. Functions that 'retrieve'
|
||
|
objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
|
||
|
don't increment
|
||
|
the reference count, since most frequently the object is only looked at
|
||
|
quickly. Thus, to retrieve an object and store it again, the caller
|
||
|
must call Py_INCREF() explicitly.
|
||
|
|
||
|
NOTE: functions that 'consume' a reference count, like
|
||
|
PyList_SetItem(), consume the reference even if the object wasn't
|
||
|
successfully stored, to simplify error handling.
|
||
|
|
||
|
It seems attractive to make other functions that take an object as
|
||
|
argument consume a reference count; however, this may quickly get
|
||
|
confusing (even the current practice is already confusing). Consider
|
||
|
it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
|
||
|
times.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* Trashcan mechanism, thanks to Christian Tismer.
|
||
|
|
||
|
When deallocating a container object, it's possible to trigger an unbounded
|
||
|
chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
|
||
|
next" object in the chain to 0. This can easily lead to stack faults, and
|
||
|
especially in threads (which typically have less stack space to work with).
|
||
|
|
||
|
A container object that participates in cyclic gc can avoid this by
|
||
|
bracketing the body of its tp_dealloc function with a pair of macros:
|
||
|
|
||
|
static void
|
||
|
mytype_dealloc(mytype *p)
|
||
|
{
|
||
|
... declarations go here ...
|
||
|
|
||
|
PyObject_GC_UnTrack(p); // must untrack first
|
||
|
Py_TRASHCAN_SAFE_BEGIN(p)
|
||
|
... The body of the deallocator goes here, including all calls ...
|
||
|
... to Py_DECREF on contained objects. ...
|
||
|
Py_TRASHCAN_SAFE_END(p)
|
||
|
}
|
||
|
|
||
|
CAUTION: Never return from the middle of the body! If the body needs to
|
||
|
"get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
|
||
|
call, and goto it. Else the call-depth counter (see below) will stay
|
||
|
above 0 forever, and the trashcan will never get emptied.
|
||
|
|
||
|
How it works: The BEGIN macro increments a call-depth counter. So long
|
||
|
as this counter is small, the body of the deallocator is run directly without
|
||
|
further ado. But if the counter gets large, it instead adds p to a list of
|
||
|
objects to be deallocated later, skips the body of the deallocator, and
|
||
|
resumes execution after the END macro. The tp_dealloc routine then returns
|
||
|
without deallocating anything (and so unbounded call-stack depth is avoided).
|
||
|
|
||
|
When the call stack finishes unwinding again, code generated by the END macro
|
||
|
notices this, and calls another routine to deallocate all the objects that
|
||
|
may have been added to the list of deferred deallocations. In effect, a
|
||
|
chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
|
||
|
with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
|
||
|
*/
|
||
|
|
||
|
PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
|
||
|
PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
|
||
|
PyAPI_DATA(int) _PyTrash_delete_nesting;
|
||
|
PyAPI_DATA(PyObject *) _PyTrash_delete_later;
|
||
|
|
||
|
#define PyTrash_UNWIND_LEVEL 50
|
||
|
|
||
|
#define Py_TRASHCAN_SAFE_BEGIN(op) \
|
||
|
if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
|
||
|
++_PyTrash_delete_nesting;
|
||
|
/* The body of the deallocator is here. */
|
||
|
#define Py_TRASHCAN_SAFE_END(op) \
|
||
|
--_PyTrash_delete_nesting; \
|
||
|
if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
|
||
|
_PyTrash_destroy_chain(); \
|
||
|
} \
|
||
|
else \
|
||
|
_PyTrash_deposit_object((PyObject*)op);
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
#endif /* !Py_OBJECT_H */
|