You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
902 lines
28 KiB
902 lines
28 KiB
5 years ago
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
// $Id$
|
||
|
|
||
|
#include "raytrace.h"
|
||
|
#include <filesystem_tools.h>
|
||
|
#include <cmdlib.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
static bool SameSign(float a, float b)
|
||
|
{
|
||
|
int32 aa=*((int *) &a);
|
||
|
int32 bb=*((int *) &b);
|
||
|
return ((aa^bb)&0x80000000)==0;
|
||
|
}
|
||
|
|
||
|
int FourRays::CalculateDirectionSignMask(void) const
|
||
|
{
|
||
|
// this code treats the floats as integers since all it cares about is the sign bit and
|
||
|
// floating point compares suck.
|
||
|
|
||
|
int ret;
|
||
|
int ormask;
|
||
|
int andmask;
|
||
|
int32 const *treat_as_int=((int32 const *) (&direction));
|
||
|
|
||
|
ormask=andmask=*(treat_as_int++);
|
||
|
ormask|=*treat_as_int;
|
||
|
andmask&=*(treat_as_int++);
|
||
|
ormask|=*(treat_as_int);
|
||
|
andmask&=*(treat_as_int++);
|
||
|
ormask|=*(treat_as_int);
|
||
|
andmask&=*(treat_as_int++);
|
||
|
if (ormask>=0)
|
||
|
ret=0;
|
||
|
else
|
||
|
{
|
||
|
if (andmask<0)
|
||
|
ret=1;
|
||
|
else return -1;
|
||
|
}
|
||
|
ormask=andmask=*(treat_as_int++);
|
||
|
ormask|=*treat_as_int;
|
||
|
andmask&=*(treat_as_int++);
|
||
|
ormask|=*(treat_as_int);
|
||
|
andmask&=*(treat_as_int++);
|
||
|
ormask|=*(treat_as_int);
|
||
|
andmask&=*(treat_as_int++);
|
||
|
if (ormask<0)
|
||
|
{
|
||
|
if (andmask<0)
|
||
|
ret|=2;
|
||
|
else return -1;
|
||
|
}
|
||
|
ormask=andmask=*(treat_as_int++);
|
||
|
ormask|=*treat_as_int;
|
||
|
andmask&=*(treat_as_int++);
|
||
|
ormask|=*(treat_as_int);
|
||
|
andmask&=*(treat_as_int++);
|
||
|
ormask|=*(treat_as_int);
|
||
|
andmask&=*(treat_as_int++);
|
||
|
if (ormask<0)
|
||
|
{
|
||
|
if (andmask<0)
|
||
|
ret|=4;
|
||
|
else return -1;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::MakeRoomForTriangles( int ntris )
|
||
|
{
|
||
|
//OptimizedTriangleList.EnsureCapacity( ntris );
|
||
|
if (! (Flags & RTE_FLAGS_DONT_STORE_TRIANGLE_COLORS))
|
||
|
TriangleColors.EnsureCapacity( ntris );
|
||
|
}
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::AddTriangle(int32 id, const Vector &v1,
|
||
|
const Vector &v2, const Vector &v3,
|
||
|
const Vector &color)
|
||
|
{
|
||
|
AddTriangle( id, v1, v2, v3, color, 0, 0 );
|
||
|
}
|
||
|
|
||
|
void RayTracingEnvironment::AddTriangle(int32 id, const Vector &v1,
|
||
|
const Vector &v2, const Vector &v3,
|
||
|
const Vector &color, uint16 flags, int32 materialIndex)
|
||
|
{
|
||
|
CacheOptimizedTriangle tmptri;
|
||
|
tmptri.m_Data.m_GeometryData.m_nTriangleID = id;
|
||
|
tmptri.Vertex( 0 ) = v1;
|
||
|
tmptri.Vertex( 1 ) = v2;
|
||
|
tmptri.Vertex( 2 ) = v3;
|
||
|
tmptri.m_Data.m_GeometryData.m_nFlags = flags;
|
||
|
OptimizedTriangleList.AddToTail(tmptri);
|
||
|
if (! ( Flags & RTE_FLAGS_DONT_STORE_TRIANGLE_COLORS) )
|
||
|
TriangleColors.AddToTail(color);
|
||
|
if ( !( Flags & RTE_FLAGS_DONT_STORE_TRIANGLE_MATERIALS) )
|
||
|
TriangleMaterials.AddToTail(materialIndex);
|
||
|
// printf("add triange from (%f %f %f),(%f %f %f),(%f %f %f) id %d\n",
|
||
|
// XYZ(v1),XYZ(v2),XYZ(v3),id);
|
||
|
}
|
||
|
|
||
|
void RayTracingEnvironment::AddQuad(
|
||
|
int32 id, const Vector &v1, const Vector &v2, const Vector &v3,
|
||
|
const Vector &v4, // specify vertices in cw or ccw order
|
||
|
const Vector &color)
|
||
|
{
|
||
|
AddTriangle(id,v1,v2,v3,color);
|
||
|
AddTriangle(id+1,v1,v3,v4,color);
|
||
|
}
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::AddAxisAlignedRectangularSolid(int id,Vector minc, Vector maxc,
|
||
|
const Vector &color)
|
||
|
{
|
||
|
|
||
|
// "far" face
|
||
|
AddQuad(id,
|
||
|
Vector(minc.x,maxc.y,maxc.z),
|
||
|
Vector(maxc.x,maxc.y,maxc.z),Vector(maxc.x,minc.y,maxc.z),
|
||
|
Vector(minc.x,minc.y,maxc.z),color);
|
||
|
// "near" face
|
||
|
AddQuad(id,
|
||
|
Vector(minc.x,maxc.y,minc.z),
|
||
|
Vector(maxc.x,maxc.y,minc.z),Vector(maxc.x,minc.y,minc.z),
|
||
|
Vector(minc.x,minc.y,minc.z),color);
|
||
|
|
||
|
// "left" face
|
||
|
AddQuad(id,
|
||
|
Vector(minc.x,maxc.y,maxc.z),
|
||
|
Vector(minc.x,maxc.y,minc.z),
|
||
|
Vector(minc.x,minc.y,minc.z),
|
||
|
Vector(minc.x,minc.y,maxc.z),color);
|
||
|
// "right" face
|
||
|
AddQuad(id,
|
||
|
Vector(maxc.x,maxc.y,maxc.z),
|
||
|
Vector(maxc.x,maxc.y,minc.z),
|
||
|
Vector(maxc.x,minc.y,minc.z),
|
||
|
Vector(maxc.x,minc.y,maxc.z),color);
|
||
|
|
||
|
// "top" face
|
||
|
AddQuad(id,
|
||
|
Vector(minc.x,maxc.y,maxc.z),
|
||
|
Vector(maxc.x,maxc.y,maxc.z),
|
||
|
Vector(maxc.x,maxc.y,minc.z),
|
||
|
Vector(minc.x,maxc.y,minc.z),color);
|
||
|
// "bot" face
|
||
|
AddQuad(id,
|
||
|
Vector(minc.x,minc.y,maxc.z),
|
||
|
Vector(maxc.x,minc.y,maxc.z),
|
||
|
Vector(maxc.x,minc.y,minc.z),
|
||
|
Vector(minc.x,minc.y,minc.z),color);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static Vector GetEdgeEquation(Vector p1, Vector p2, int c1, int c2, Vector InsidePoint)
|
||
|
{
|
||
|
float nx=p1[c2]-p2[c2];
|
||
|
float ny=p2[c1]-p1[c1];
|
||
|
float d=-(nx*p1[c1]+ny*p1[c2]);
|
||
|
// assert(fabs(nx*p1[c1]+ny*p1[c2]+d)<0.01);
|
||
|
// assert(fabs(nx*p2[c1]+ny*p2[c2]+d)<0.01);
|
||
|
|
||
|
// use the convention that negative is "outside"
|
||
|
float trial_dist=InsidePoint[c1]*nx+InsidePoint[c2]*ny+d;
|
||
|
if (trial_dist<0)
|
||
|
{
|
||
|
nx = -nx;
|
||
|
ny = -ny;
|
||
|
d = -d;
|
||
|
trial_dist = -trial_dist;
|
||
|
}
|
||
|
nx /= trial_dist; // scale so that it will be =1.0 at the oppositve vertex
|
||
|
ny /= trial_dist;
|
||
|
d /= trial_dist;
|
||
|
|
||
|
return Vector(nx,ny,d);
|
||
|
}
|
||
|
|
||
|
void CacheOptimizedTriangle::ChangeIntoIntersectionFormat(void)
|
||
|
{
|
||
|
// lose the vertices and use edge equations instead
|
||
|
|
||
|
// grab the whole original triangle to we don't overwrite it
|
||
|
TriGeometryData_t srcTri = m_Data.m_GeometryData;
|
||
|
|
||
|
m_Data.m_IntersectData.m_nFlags = srcTri.m_nFlags;
|
||
|
m_Data.m_IntersectData.m_nTriangleID = srcTri.m_nTriangleID;
|
||
|
|
||
|
Vector p1 = srcTri.Vertex( 0 );
|
||
|
Vector p2 = srcTri.Vertex( 1 );
|
||
|
Vector p3 = srcTri.Vertex( 2 );
|
||
|
|
||
|
Vector e1 = p2 - p1;
|
||
|
Vector e2 = p3 - p1;
|
||
|
|
||
|
Vector N = e1.Cross( e2 );
|
||
|
N.NormalizeInPlace();
|
||
|
// now, determine which axis to drop
|
||
|
int drop_axis = 0;
|
||
|
for(int c=1 ; c<3 ; c++)
|
||
|
if ( fabs(N[c]) > fabs( N[drop_axis] ) )
|
||
|
drop_axis = c;
|
||
|
|
||
|
m_Data.m_IntersectData.m_flD = N.Dot( p1 );
|
||
|
m_Data.m_IntersectData.m_flNx = N.x;
|
||
|
m_Data.m_IntersectData.m_flNy = N.y;
|
||
|
m_Data.m_IntersectData.m_flNz = N.z;
|
||
|
|
||
|
// decide which axes to keep
|
||
|
int nCoordSelect0 = ( drop_axis + 1 ) % 3;
|
||
|
int nCoordSelect1 = ( drop_axis + 2 ) % 3;
|
||
|
|
||
|
m_Data.m_IntersectData.m_nCoordSelect0 = nCoordSelect0;
|
||
|
m_Data.m_IntersectData.m_nCoordSelect1 = nCoordSelect1;
|
||
|
|
||
|
|
||
|
Vector edge1 = GetEdgeEquation( p1, p2, nCoordSelect0, nCoordSelect1, p3 );
|
||
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[0] = edge1.x;
|
||
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[1] = edge1.y;
|
||
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[2] = edge1.z;
|
||
|
|
||
|
Vector edge2 = GetEdgeEquation( p2, p3, nCoordSelect0, nCoordSelect1, p1 );
|
||
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[3] = edge2.x;
|
||
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[4] = edge2.y;
|
||
|
m_Data.m_IntersectData.m_ProjectedEdgeEquations[5] = edge2.z;
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
int n_intersection_calculations=0;
|
||
|
|
||
|
int CacheOptimizedTriangle::ClassifyAgainstAxisSplit(int split_plane, float split_value)
|
||
|
{
|
||
|
// classify a triangle against an axis-aligned plane
|
||
|
float minc=Vertex(0)[split_plane];
|
||
|
float maxc=minc;
|
||
|
for(int v=1;v<3;v++)
|
||
|
{
|
||
|
minc=min(minc,Vertex(v)[split_plane]);
|
||
|
maxc=max(maxc,Vertex(v)[split_plane]);
|
||
|
}
|
||
|
|
||
|
if (minc>=split_value)
|
||
|
return PLANECHECK_POSITIVE;
|
||
|
if (maxc<=split_value)
|
||
|
return PLANECHECK_NEGATIVE;
|
||
|
if (minc==maxc)
|
||
|
return PLANECHECK_POSITIVE;
|
||
|
return PLANECHECK_STRADDLING;
|
||
|
}
|
||
|
|
||
|
#define MAILBOX_HASH_SIZE 256
|
||
|
#define MAX_TREE_DEPTH 21
|
||
|
#define MAX_NODE_STACK_LEN (40*MAX_TREE_DEPTH)
|
||
|
|
||
|
struct NodeToVisit {
|
||
|
CacheOptimizedKDNode const *node;
|
||
|
fltx4 TMin;
|
||
|
fltx4 TMax;
|
||
|
};
|
||
|
|
||
|
|
||
|
static fltx4 FourEpsilons={1.0e-10,1.0e-10,1.0e-10,1.0e-10};
|
||
|
static fltx4 FourZeros={1.0e-10,1.0e-10,1.0e-10,1.0e-10};
|
||
|
static fltx4 FourNegativeEpsilons={-1.0e-10,-1.0e-10,-1.0e-10,-1.0e-10};
|
||
|
|
||
|
static float BoxSurfaceArea(Vector const &boxmin, Vector const &boxmax)
|
||
|
{
|
||
|
Vector boxdim=boxmax-boxmin;
|
||
|
return 2.0*((boxdim[0]*boxdim[2])+(boxdim[0]*boxdim[1])+(boxdim[1]*boxdim[2]));
|
||
|
}
|
||
|
|
||
|
void RayTracingEnvironment::Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,
|
||
|
RayTracingResult *rslt_out,
|
||
|
int32 skip_id, ITransparentTriangleCallback *pCallback)
|
||
|
{
|
||
|
int msk=rays.CalculateDirectionSignMask();
|
||
|
if (msk!=-1)
|
||
|
Trace4Rays(rays,TMin,TMax,msk,rslt_out,skip_id, pCallback);
|
||
|
else
|
||
|
{
|
||
|
// sucky case - can't trace 4 rays at once. in the worst case, need to trace all 4
|
||
|
// separately, but usually we will still get 2x, Since our tracer only does 4 at a
|
||
|
// time, we will have to cover up the undesired rays with the desired ray
|
||
|
|
||
|
//!! speed!! there is room for some sse-ization here
|
||
|
FourRays tmprays;
|
||
|
tmprays.origin=rays.origin;
|
||
|
|
||
|
uint8 need_trace[4]={1,1,1,1};
|
||
|
for(int try_trace=0;try_trace<4;try_trace++)
|
||
|
{
|
||
|
if (need_trace[try_trace])
|
||
|
{
|
||
|
need_trace[try_trace]=2; // going to trace it
|
||
|
// replicate the ray being traced into all 4 rays
|
||
|
tmprays.direction.x=ReplicateX4(rays.direction.X(try_trace));
|
||
|
tmprays.direction.y=ReplicateX4(rays.direction.Y(try_trace));
|
||
|
tmprays.direction.z=ReplicateX4(rays.direction.Z(try_trace));
|
||
|
// now, see if any of the other remaining rays can be handled at the same time.
|
||
|
for(int try2=try_trace+1;try2<4;try2++)
|
||
|
if (need_trace[try2])
|
||
|
{
|
||
|
if (
|
||
|
SameSign(rays.direction.X(try2),
|
||
|
rays.direction.X(try_trace)) &&
|
||
|
SameSign(rays.direction.Y(try2),
|
||
|
rays.direction.Y(try_trace)) &&
|
||
|
SameSign(rays.direction.Z(try2),
|
||
|
rays.direction.Z(try_trace)))
|
||
|
{
|
||
|
need_trace[try2]=2;
|
||
|
tmprays.direction.X(try2) = rays.direction.X(try2);
|
||
|
tmprays.direction.Y(try2) = rays.direction.Y(try2);
|
||
|
tmprays.direction.Z(try2) = rays.direction.Z(try2);
|
||
|
}
|
||
|
}
|
||
|
// ok, now trace between 1 and 3 rays, and output the results
|
||
|
RayTracingResult tmpresults;
|
||
|
msk=tmprays.CalculateDirectionSignMask();
|
||
|
assert(msk!=-1);
|
||
|
Trace4Rays(tmprays,TMin,TMax,msk,&tmpresults,skip_id, pCallback);
|
||
|
// now, move results to proper place
|
||
|
for(int i=0;i<4;i++)
|
||
|
if (need_trace[i]==2)
|
||
|
{
|
||
|
need_trace[i]=0;
|
||
|
rslt_out->HitIds[i]=tmpresults.HitIds[i];
|
||
|
SubFloat(rslt_out->HitDistance, i) = SubFloat(tmpresults.HitDistance, i);
|
||
|
rslt_out->surface_normal.X(i) = tmpresults.surface_normal.X(i);
|
||
|
rslt_out->surface_normal.Y(i) = tmpresults.surface_normal.Y(i);
|
||
|
rslt_out->surface_normal.Z(i) = tmpresults.surface_normal.Z(i);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,
|
||
|
int DirectionSignMask, RayTracingResult *rslt_out,
|
||
|
int32 skip_id, ITransparentTriangleCallback *pCallback)
|
||
|
{
|
||
|
rays.Check();
|
||
|
|
||
|
memset(rslt_out->HitIds,0xff,sizeof(rslt_out->HitIds));
|
||
|
|
||
|
rslt_out->HitDistance=ReplicateX4(1.0e23);
|
||
|
|
||
|
rslt_out->surface_normal.DuplicateVector(Vector(0.,0.,0.));
|
||
|
FourVectors OneOverRayDir=rays.direction;
|
||
|
OneOverRayDir.MakeReciprocalSaturate();
|
||
|
|
||
|
// now, clip rays against bounding box
|
||
|
for(int c=0;c<3;c++)
|
||
|
{
|
||
|
fltx4 isect_min_t=
|
||
|
MulSIMD(SubSIMD(ReplicateX4(m_MinBound[c]),rays.origin[c]),OneOverRayDir[c]);
|
||
|
fltx4 isect_max_t=
|
||
|
MulSIMD(SubSIMD(ReplicateX4(m_MaxBound[c]),rays.origin[c]),OneOverRayDir[c]);
|
||
|
TMin=MaxSIMD(TMin,MinSIMD(isect_min_t,isect_max_t));
|
||
|
TMax=MinSIMD(TMax,MaxSIMD(isect_min_t,isect_max_t));
|
||
|
}
|
||
|
fltx4 active=CmpLeSIMD(TMin,TMax); // mask of which rays are active
|
||
|
if (! IsAnyNegative(active) )
|
||
|
return; // missed bounding box
|
||
|
|
||
|
int32 mailboxids[MAILBOX_HASH_SIZE]; // used to avoid redundant triangle tests
|
||
|
memset(mailboxids,0xff,sizeof(mailboxids)); // !!speed!! keep around?
|
||
|
|
||
|
int front_idx[3],back_idx[3]; // based on ray direction, whether to
|
||
|
// visit left or right node first
|
||
|
|
||
|
if (DirectionSignMask & 1)
|
||
|
{
|
||
|
back_idx[0]=0;
|
||
|
front_idx[0]=1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
back_idx[0]=1;
|
||
|
front_idx[0]=0;
|
||
|
}
|
||
|
if (DirectionSignMask & 2)
|
||
|
{
|
||
|
back_idx[1]=0;
|
||
|
front_idx[1]=1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
back_idx[1]=1;
|
||
|
front_idx[1]=0;
|
||
|
}
|
||
|
if (DirectionSignMask & 4)
|
||
|
{
|
||
|
back_idx[2]=0;
|
||
|
front_idx[2]=1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
back_idx[2]=1;
|
||
|
front_idx[2]=0;
|
||
|
}
|
||
|
|
||
|
NodeToVisit NodeQueue[MAX_NODE_STACK_LEN];
|
||
|
CacheOptimizedKDNode const *CurNode=&(OptimizedKDTree[0]);
|
||
|
NodeToVisit *stack_ptr=&NodeQueue[MAX_NODE_STACK_LEN];
|
||
|
while(1)
|
||
|
{
|
||
|
while (CurNode->NodeType() != KDNODE_STATE_LEAF) // traverse until next leaf
|
||
|
{
|
||
|
int split_plane_number=CurNode->NodeType();
|
||
|
CacheOptimizedKDNode const *FrontChild=&(OptimizedKDTree[CurNode->LeftChild()]);
|
||
|
|
||
|
fltx4 dist_to_sep_plane= // dist=(split-org)/dir
|
||
|
MulSIMD(
|
||
|
SubSIMD(ReplicateX4(CurNode->SplittingPlaneValue),
|
||
|
rays.origin[split_plane_number]),OneOverRayDir[split_plane_number]);
|
||
|
active=CmpLeSIMD(TMin,TMax); // mask of which rays are active
|
||
|
|
||
|
// now, decide how to traverse children. can either do front,back, or do front and push
|
||
|
// back.
|
||
|
fltx4 hits_front=AndSIMD(active,CmpGeSIMD(dist_to_sep_plane,TMin));
|
||
|
if (! IsAnyNegative(hits_front))
|
||
|
{
|
||
|
// missed the front. only traverse back
|
||
|
//printf("only visit back %d\n",CurNode->LeftChild()+back_idx[split_plane_number]);
|
||
|
CurNode=FrontChild+back_idx[split_plane_number];
|
||
|
TMin=MaxSIMD(TMin, dist_to_sep_plane);
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fltx4 hits_back=AndSIMD(active,CmpLeSIMD(dist_to_sep_plane,TMax));
|
||
|
if (! IsAnyNegative(hits_back) )
|
||
|
{
|
||
|
// missed the back - only need to traverse front node
|
||
|
//printf("only visit front %d\n",CurNode->LeftChild()+front_idx[split_plane_number]);
|
||
|
CurNode=FrontChild+front_idx[split_plane_number];
|
||
|
TMax=MinSIMD(TMax, dist_to_sep_plane);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// at least some rays hit both nodes.
|
||
|
// must push far, traverse near
|
||
|
//printf("visit %d,%d\n",CurNode->LeftChild()+front_idx[split_plane_number],
|
||
|
// CurNode->LeftChild()+back_idx[split_plane_number]);
|
||
|
assert(stack_ptr>NodeQueue);
|
||
|
--stack_ptr;
|
||
|
stack_ptr->node=FrontChild+back_idx[split_plane_number];
|
||
|
stack_ptr->TMin=MaxSIMD(TMin,dist_to_sep_plane);
|
||
|
stack_ptr->TMax=TMax;
|
||
|
CurNode=FrontChild+front_idx[split_plane_number];
|
||
|
TMax=MinSIMD(TMax,dist_to_sep_plane);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// hit a leaf! must do intersection check
|
||
|
int ntris=CurNode->NumberOfTrianglesInLeaf();
|
||
|
if (ntris)
|
||
|
{
|
||
|
int32 const *tlist=&(TriangleIndexList[CurNode->TriangleIndexStart()]);
|
||
|
do
|
||
|
{
|
||
|
int tnum=*(tlist++);
|
||
|
//printf("try tri %d\n",tnum);
|
||
|
// check mailbox
|
||
|
int mbox_slot=tnum & (MAILBOX_HASH_SIZE-1);
|
||
|
TriIntersectData_t const *tri = &( OptimizedTriangleList[tnum].m_Data.m_IntersectData );
|
||
|
if ( ( mailboxids[mbox_slot] != tnum ) && ( tri->m_nTriangleID != skip_id ) )
|
||
|
{
|
||
|
n_intersection_calculations++;
|
||
|
mailboxids[mbox_slot] = tnum;
|
||
|
// compute plane intersection
|
||
|
|
||
|
|
||
|
FourVectors N;
|
||
|
N.x = ReplicateX4( tri->m_flNx );
|
||
|
N.y = ReplicateX4( tri->m_flNy );
|
||
|
N.z = ReplicateX4( tri->m_flNz );
|
||
|
|
||
|
fltx4 DDotN = rays.direction * N;
|
||
|
// mask off zero or near zero (ray parallel to surface)
|
||
|
fltx4 did_hit = OrSIMD( CmpGtSIMD( DDotN,FourEpsilons ),
|
||
|
CmpLtSIMD( DDotN, FourNegativeEpsilons ) );
|
||
|
|
||
|
fltx4 numerator=SubSIMD( ReplicateX4( tri->m_flD ), rays.origin * N );
|
||
|
|
||
|
fltx4 isect_t=DivSIMD( numerator,DDotN );
|
||
|
// now, we have the distance to the plane. lets update our mask
|
||
|
did_hit = AndSIMD( did_hit, CmpGtSIMD( isect_t, FourZeros ) );
|
||
|
//did_hit=AndSIMD(did_hit,CmpLtSIMD(isect_t,TMax));
|
||
|
did_hit = AndSIMD( did_hit, CmpLtSIMD( isect_t, rslt_out->HitDistance ) );
|
||
|
|
||
|
if ( ! IsAnyNegative( did_hit ) )
|
||
|
continue;
|
||
|
|
||
|
// now, check 3 edges
|
||
|
fltx4 hitc1 = AddSIMD( rays.origin[tri->m_nCoordSelect0],
|
||
|
MulSIMD( isect_t, rays.direction[ tri->m_nCoordSelect0] ) );
|
||
|
fltx4 hitc2 = AddSIMD( rays.origin[tri->m_nCoordSelect1],
|
||
|
MulSIMD( isect_t, rays.direction[tri->m_nCoordSelect1] ) );
|
||
|
|
||
|
// do barycentric coordinate check
|
||
|
fltx4 B0 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[0] ), hitc1 );
|
||
|
|
||
|
B0 = AddSIMD(
|
||
|
B0,
|
||
|
MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[1] ), hitc2 ) );
|
||
|
B0 = AddSIMD(
|
||
|
B0, ReplicateX4( tri->m_ProjectedEdgeEquations[2] ) );
|
||
|
|
||
|
did_hit = AndSIMD( did_hit, CmpGeSIMD( B0, FourZeros ) );
|
||
|
|
||
|
fltx4 B1 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[3] ), hitc1 );
|
||
|
B1 = AddSIMD(
|
||
|
B1,
|
||
|
MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[4]), hitc2 ) );
|
||
|
|
||
|
B1 = AddSIMD(
|
||
|
B1, ReplicateX4( tri->m_ProjectedEdgeEquations[5] ) );
|
||
|
|
||
|
did_hit = AndSIMD( did_hit, CmpGeSIMD( B1, FourZeros ) );
|
||
|
|
||
|
fltx4 B2 = AddSIMD( B1, B0 );
|
||
|
did_hit = AndSIMD( did_hit, CmpLeSIMD( B2, Four_Ones ) );
|
||
|
|
||
|
if ( ! IsAnyNegative( did_hit ) )
|
||
|
continue;
|
||
|
|
||
|
// if the triangle is transparent
|
||
|
if ( tri->m_nFlags & FCACHETRI_TRANSPARENT )
|
||
|
{
|
||
|
if ( pCallback )
|
||
|
{
|
||
|
// assuming a triangle indexed as v0, v1, v2
|
||
|
// the projected edge equations are set up such that the vert opposite the first
|
||
|
// equation is v2, and the vert opposite the second equation is v0
|
||
|
// Therefore we pass them back in 1, 2, 0 order
|
||
|
// Also B2 is currently B1 + B0 and needs to be 1 - (B1+B0) in order to be a real
|
||
|
// barycentric coordinate. Compute that now and pass it to the callback
|
||
|
fltx4 b2 = SubSIMD( Four_Ones, B2 );
|
||
|
if ( pCallback->VisitTriangle_ShouldContinue( *tri, rays, &did_hit, &B1, &b2, &B0, tnum ) )
|
||
|
{
|
||
|
did_hit = Four_Zeros;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// now, set the hit_id and closest_hit fields for any enabled rays
|
||
|
fltx4 replicated_n = ReplicateIX4(tnum);
|
||
|
StoreAlignedSIMD((float *) rslt_out->HitIds,
|
||
|
OrSIMD(AndSIMD(replicated_n,did_hit),
|
||
|
AndNotSIMD(did_hit,LoadAlignedSIMD(
|
||
|
(float *) rslt_out->HitIds))));
|
||
|
rslt_out->HitDistance=OrSIMD(AndSIMD(isect_t,did_hit),
|
||
|
AndNotSIMD(did_hit,rslt_out->HitDistance));
|
||
|
|
||
|
rslt_out->surface_normal.x=OrSIMD(
|
||
|
AndSIMD(N.x,did_hit),
|
||
|
AndNotSIMD(did_hit,rslt_out->surface_normal.x));
|
||
|
rslt_out->surface_normal.y=OrSIMD(
|
||
|
AndSIMD(N.y,did_hit),
|
||
|
AndNotSIMD(did_hit,rslt_out->surface_normal.y));
|
||
|
rslt_out->surface_normal.z=OrSIMD(
|
||
|
AndSIMD(N.z,did_hit),
|
||
|
AndNotSIMD(did_hit,rslt_out->surface_normal.z));
|
||
|
|
||
|
}
|
||
|
} while (--ntris);
|
||
|
// now, check if all rays have terminated
|
||
|
fltx4 raydone=CmpLeSIMD(TMax,rslt_out->HitDistance);
|
||
|
if (! IsAnyNegative(raydone))
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (stack_ptr==&NodeQueue[MAX_NODE_STACK_LEN])
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
// pop stack!
|
||
|
CurNode=stack_ptr->node;
|
||
|
TMin=stack_ptr->TMin;
|
||
|
TMax=stack_ptr->TMax;
|
||
|
stack_ptr++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int RayTracingEnvironment::MakeLeafNode(int first_tri, int last_tri)
|
||
|
{
|
||
|
CacheOptimizedKDNode ret;
|
||
|
ret.Children=KDNODE_STATE_LEAF+(TriangleIndexList.Count()<<2);
|
||
|
ret.SetNumberOfTrianglesInLeafNode(1+(last_tri-first_tri));
|
||
|
for(int tnum=first_tri;tnum<=last_tri;tnum++)
|
||
|
TriangleIndexList.AddToTail(tnum);
|
||
|
OptimizedKDTree.AddToTail(ret);
|
||
|
return OptimizedKDTree.Count()-1;
|
||
|
}
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::CalculateTriangleListBounds(int32 const *tris,int ntris,
|
||
|
Vector &minout, Vector &maxout)
|
||
|
{
|
||
|
minout = Vector( 1.0e23, 1.0e23, 1.0e23);
|
||
|
maxout = Vector( -1.0e23, -1.0e23, -1.0e23);
|
||
|
for(int i=0; i<ntris; i++)
|
||
|
{
|
||
|
CacheOptimizedTriangle const &tri=OptimizedTriangleList[tris[i]];
|
||
|
for(int v=0; v<3; v++)
|
||
|
for(int c=0; c<3; c++)
|
||
|
{
|
||
|
minout[c]=min(minout[c],tri.Vertex(v)[c]);
|
||
|
maxout[c]=max(maxout[c],tri.Vertex(v)[c]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Both the "quick" and regular kd tree building algorithms here use the "surface area heuristic":
|
||
|
// the relative probability of hitting the "left" subvolume (Vl) from a split is equal to that
|
||
|
// subvolume's surface area divided by its parent's surface area (Vp) : P(Vl | V)=SA(Vl)/SA(Vp).
|
||
|
// The same holds for the right subvolume, Vp. Nl is the number of triangles in the left volume,
|
||
|
// and Nr in the right volume. if Ct is the cost of traversing one tree node, and Ci is the cost of
|
||
|
// intersection with the primitive, than the cost of splitting is estimated as:
|
||
|
//
|
||
|
// Ct+Ci*((SA(Vl)/SA(V))*Nl+(SA(Vr)/SA(V)*Nr)).
|
||
|
// and the cost of not splitting is
|
||
|
// Ci*N
|
||
|
//
|
||
|
// This both provides a metric to minimize when computing how and where to split, and also a
|
||
|
// termination criterion.
|
||
|
//
|
||
|
// the "quick" method just splits down the middle, while the slow method splits at the best
|
||
|
// discontinuity of the cost formula. The quick method splits along the longest axis ; the
|
||
|
// regular algorithm tries all 3 to find which one results in the minimum cost
|
||
|
//
|
||
|
// both methods use the additional optimization of "growing" empty nodes - if the split results in
|
||
|
// one side being devoid of triangles, the empty side is "grown" as much as possible.
|
||
|
//
|
||
|
|
||
|
#define COST_OF_TRAVERSAL 75 // approximate #operations
|
||
|
#define COST_OF_INTERSECTION 167 // approximate #operations
|
||
|
|
||
|
|
||
|
float RayTracingEnvironment::CalculateCostsOfSplit(
|
||
|
int split_plane,int32 const *tri_list,int ntris,
|
||
|
Vector MinBound,Vector MaxBound, float &split_value,
|
||
|
int &nleft, int &nright, int &nboth)
|
||
|
{
|
||
|
// determine the costs of splitting on a given axis, and label triangles with respect to
|
||
|
// that axis by storing the value in coordselect0. It will also return the number of
|
||
|
// tris in the left, right, and nboth groups, in order to facilitate memory
|
||
|
nleft=nboth=nright=0;
|
||
|
|
||
|
// now, label each triangle. Since we have not converted the triangles into
|
||
|
// intersection fromat yet, we can use the CoordSelect0 field of each as a temp.
|
||
|
nleft=0;
|
||
|
nright=0;
|
||
|
nboth=0;
|
||
|
float min_coord=1.0e23,max_coord=-1.0e23;
|
||
|
|
||
|
for(int t=0;t<ntris;t++)
|
||
|
{
|
||
|
CacheOptimizedTriangle &tri=OptimizedTriangleList[tri_list[t]];
|
||
|
// determine max and min coordinate values for later optimization
|
||
|
for(int v=0;v<3;v++)
|
||
|
{
|
||
|
min_coord = min( min_coord, tri.Vertex(v)[split_plane] );
|
||
|
max_coord = max( max_coord, tri.Vertex(v)[split_plane] );
|
||
|
}
|
||
|
switch(tri.ClassifyAgainstAxisSplit(split_plane,split_value))
|
||
|
{
|
||
|
case PLANECHECK_NEGATIVE:
|
||
|
nleft++;
|
||
|
tri.m_Data.m_GeometryData.m_nTmpData0 = PLANECHECK_NEGATIVE;
|
||
|
break;
|
||
|
|
||
|
case PLANECHECK_POSITIVE:
|
||
|
nright++;
|
||
|
tri.m_Data.m_GeometryData.m_nTmpData0 = PLANECHECK_POSITIVE;
|
||
|
break;
|
||
|
|
||
|
case PLANECHECK_STRADDLING:
|
||
|
nboth++;
|
||
|
tri.m_Data.m_GeometryData.m_nTmpData0 = PLANECHECK_STRADDLING;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// now, if the split resulted in one half being empty, "grow" the empty half
|
||
|
if (nleft && (nboth==0) && (nright==0))
|
||
|
split_value=max_coord;
|
||
|
if (nright && (nboth==0) && (nleft==0))
|
||
|
split_value=min_coord;
|
||
|
|
||
|
// now, perform surface area/cost check to determine whether this split was worth it
|
||
|
Vector LeftMins=MinBound;
|
||
|
Vector LeftMaxes=MaxBound;
|
||
|
Vector RightMins=MinBound;
|
||
|
Vector RightMaxes=MaxBound;
|
||
|
LeftMaxes[split_plane]=split_value;
|
||
|
RightMins[split_plane]=split_value;
|
||
|
float SA_L=BoxSurfaceArea(LeftMins,LeftMaxes);
|
||
|
float SA_R=BoxSurfaceArea(RightMins,RightMaxes);
|
||
|
float ISA=1.0/BoxSurfaceArea(MinBound,MaxBound);
|
||
|
float cost_of_split=COST_OF_TRAVERSAL+COST_OF_INTERSECTION*(nboth+
|
||
|
(SA_L*ISA*(nleft))+(SA_R*ISA*(nright)));
|
||
|
return cost_of_split;
|
||
|
}
|
||
|
|
||
|
|
||
|
#define NEVER_SPLIT 0
|
||
|
|
||
|
void RayTracingEnvironment::RefineNode(int node_number,int32 const *tri_list,int ntris,
|
||
|
Vector MinBound,Vector MaxBound, int depth)
|
||
|
{
|
||
|
if (ntris<3) // never split empty lists
|
||
|
{
|
||
|
// no point in continuing
|
||
|
OptimizedKDTree[node_number].Children=KDNODE_STATE_LEAF+(TriangleIndexList.Count()<<2);
|
||
|
OptimizedKDTree[node_number].SetNumberOfTrianglesInLeafNode(ntris);
|
||
|
|
||
|
#ifdef DEBUG_RAYTRACE
|
||
|
OptimizedKDTree[node_number].vecMins = MinBound;
|
||
|
OptimizedKDTree[node_number].vecMaxs = MaxBound;
|
||
|
#endif
|
||
|
|
||
|
for(int t=0;t<ntris;t++)
|
||
|
TriangleIndexList.AddToTail(tri_list[t]);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
float best_cost=1.0e23;
|
||
|
int best_nleft=0,best_nright=0,best_nboth=0;
|
||
|
float best_splitvalue=0;
|
||
|
int split_plane=0;
|
||
|
|
||
|
int tri_skip=1+(ntris/10); // don't try all trinagles as split
|
||
|
// points when there are a lot of them
|
||
|
for(int axis=0;axis<3;axis++)
|
||
|
{
|
||
|
for(int ts=-1;ts<ntris;ts+=tri_skip)
|
||
|
{
|
||
|
for(int tv=0;tv<3;tv++)
|
||
|
{
|
||
|
int trial_nleft,trial_nright,trial_nboth;
|
||
|
float trial_splitvalue;
|
||
|
if (ts==-1)
|
||
|
trial_splitvalue=0.5*(MinBound[axis]+MaxBound[axis]);
|
||
|
else
|
||
|
{
|
||
|
// else, split at the triangle vertex if possible
|
||
|
CacheOptimizedTriangle &tri=OptimizedTriangleList[tri_list[ts]];
|
||
|
trial_splitvalue = tri.Vertex(tv)[axis];
|
||
|
if ((trial_splitvalue>MaxBound[axis]) || (trial_splitvalue<MinBound[axis]))
|
||
|
continue; // don't try this vertex - not inside
|
||
|
|
||
|
}
|
||
|
// printf("ts=%d tv=%d tp=%f\n",ts,tv,trial_splitvalue);
|
||
|
float trial_cost=
|
||
|
CalculateCostsOfSplit(axis,tri_list,ntris,MinBound,MaxBound,trial_splitvalue,
|
||
|
trial_nleft,trial_nright, trial_nboth);
|
||
|
// printf("try %d cost=%f nl=%d nr=%d nb=%d sp=%f\n",axis,trial_cost,trial_nleft,trial_nright, trial_nboth,
|
||
|
// trial_splitvalue);
|
||
|
if (trial_cost<best_cost)
|
||
|
{
|
||
|
split_plane=axis;
|
||
|
best_cost=trial_cost;
|
||
|
best_nleft=trial_nleft;
|
||
|
best_nright=trial_nright;
|
||
|
best_nboth=trial_nboth;
|
||
|
best_splitvalue=trial_splitvalue;
|
||
|
// save away the axis classification of each triangle
|
||
|
for(int t=0 ; t < ntris; t++)
|
||
|
{
|
||
|
CacheOptimizedTriangle &tri=OptimizedTriangleList[tri_list[t]];
|
||
|
tri.m_Data.m_GeometryData.m_nTmpData1 = tri.m_Data.m_GeometryData.m_nTmpData0;
|
||
|
}
|
||
|
}
|
||
|
if (ts==-1)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
float cost_of_no_split=COST_OF_INTERSECTION*ntris;
|
||
|
if ( (cost_of_no_split<=best_cost) || NEVER_SPLIT || (depth>MAX_TREE_DEPTH))
|
||
|
{
|
||
|
// no benefit to splitting. just make this a leaf node
|
||
|
OptimizedKDTree[node_number].Children=KDNODE_STATE_LEAF+(TriangleIndexList.Count()<<2);
|
||
|
OptimizedKDTree[node_number].SetNumberOfTrianglesInLeafNode(ntris);
|
||
|
#ifdef DEBUG_RAYTRACE
|
||
|
OptimizedKDTree[node_number].vecMins = MinBound;
|
||
|
OptimizedKDTree[node_number].vecMaxs = MaxBound;
|
||
|
#endif
|
||
|
for(int t=0;t<ntris;t++)
|
||
|
TriangleIndexList.AddToTail(tri_list[t]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// printf("best split was %d at %f (mid=%f,n=%d, sk=%d)\n",split_plane,best_splitvalue,
|
||
|
// 0.5*(MinBound[split_plane]+MaxBound[split_plane]),ntris,tri_skip);
|
||
|
// its worth splitting!
|
||
|
// we will achieve the splitting without sorting by using a selection algorithm.
|
||
|
int32 *new_triangle_list;
|
||
|
new_triangle_list=new int32[ntris];
|
||
|
|
||
|
// now, perform surface area/cost check to determine whether this split was worth it
|
||
|
Vector LeftMins=MinBound;
|
||
|
Vector LeftMaxes=MaxBound;
|
||
|
Vector RightMins=MinBound;
|
||
|
Vector RightMaxes=MaxBound;
|
||
|
LeftMaxes[split_plane]=best_splitvalue;
|
||
|
RightMins[split_plane]=best_splitvalue;
|
||
|
|
||
|
int n_left_output=0;
|
||
|
int n_both_output=0;
|
||
|
int n_right_output=0;
|
||
|
for(int t=0;t<ntris;t++)
|
||
|
{
|
||
|
CacheOptimizedTriangle &tri=OptimizedTriangleList[tri_list[t]];
|
||
|
switch( tri.m_Data.m_GeometryData.m_nTmpData1 )
|
||
|
{
|
||
|
case PLANECHECK_NEGATIVE:
|
||
|
// printf("%d goes left\n",t);
|
||
|
new_triangle_list[n_left_output++]=tri_list[t];
|
||
|
break;
|
||
|
case PLANECHECK_POSITIVE:
|
||
|
n_right_output++;
|
||
|
// printf("%d goes right\n",t);
|
||
|
new_triangle_list[ntris-n_right_output]=tri_list[t];
|
||
|
break;
|
||
|
case PLANECHECK_STRADDLING:
|
||
|
// printf("%d goes both\n",t);
|
||
|
new_triangle_list[best_nleft+n_both_output]=tri_list[t];
|
||
|
n_both_output++;
|
||
|
break;
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|
||
|
int left_child=OptimizedKDTree.Count();
|
||
|
int right_child=left_child+1;
|
||
|
// printf("node %d split on axis %d at %f, nl=%d nr=%d nb=%d lc=%d rc=%d\n",node_number,
|
||
|
// split_plane,best_splitvalue,best_nleft,best_nright,best_nboth,
|
||
|
// left_child,right_child);
|
||
|
OptimizedKDTree[node_number].Children=split_plane+(left_child<<2);
|
||
|
OptimizedKDTree[node_number].SplittingPlaneValue=best_splitvalue;
|
||
|
#ifdef DEBUG_RAYTRACE
|
||
|
OptimizedKDTree[node_number].vecMins = MinBound;
|
||
|
OptimizedKDTree[node_number].vecMaxs = MaxBound;
|
||
|
#endif
|
||
|
CacheOptimizedKDNode newnode;
|
||
|
OptimizedKDTree.AddToTail(newnode);
|
||
|
OptimizedKDTree.AddToTail(newnode);
|
||
|
// now, recurse!
|
||
|
if ( (ntris<20) && ((best_nleft==0) || (best_nright==0)) )
|
||
|
depth+=100;
|
||
|
RefineNode(left_child,new_triangle_list,best_nleft+best_nboth,LeftMins,LeftMaxes,depth+1);
|
||
|
RefineNode(right_child,new_triangle_list+best_nleft,best_nright+best_nboth,
|
||
|
RightMins,RightMaxes,depth+1);
|
||
|
delete[] new_triangle_list;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::SetupAccelerationStructure(void)
|
||
|
{
|
||
|
CacheOptimizedKDNode root;
|
||
|
OptimizedKDTree.AddToTail(root);
|
||
|
int32 *root_triangle_list=new int32[OptimizedTriangleList.Count()];
|
||
|
for(int t=0;t<OptimizedTriangleList.Count();t++)
|
||
|
root_triangle_list[t]=t;
|
||
|
CalculateTriangleListBounds(root_triangle_list,OptimizedTriangleList.Count(),m_MinBound,
|
||
|
m_MaxBound);
|
||
|
RefineNode(0,root_triangle_list,OptimizedTriangleList.Count(),m_MinBound,m_MaxBound,0);
|
||
|
delete[] root_triangle_list;
|
||
|
|
||
|
// now, convert all triangles to "intersection format"
|
||
|
for(int i=0;i<OptimizedTriangleList.Count();i++)
|
||
|
OptimizedTriangleList[i].ChangeIntoIntersectionFormat();
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void RayTracingEnvironment::AddInfinitePointLight(Vector position, Vector intensity)
|
||
|
{
|
||
|
LightDesc_t mylight(position,intensity);
|
||
|
LightList.AddToTail(mylight);
|
||
|
|
||
|
}
|
||
|
|
||
|
|