308 lines
10 KiB
C++
Raw Normal View History

2023-10-03 17:23:56 +03:00
//============ Copyright (c) Valve Corporation, All rights reserved. ============
//
// Definition of a rule used in macro substitution for the layout system.
//
//===============================================================================
#include "KeyValues.h"
#include "tilegen_mission_preprocessor.h"
#include "tilegen_rule.h"
//////////////////////////////////////////////////////////////////////////
// Forward Declarations
//////////////////////////////////////////////////////////////////////////
bool ParseSourceTag( const char *pSourceTag, bool *pAllowLiterals, bool *pAllowExpressions );
bool ParseArrayTag( const char *pArrayTag, bool *pArray, bool *pIsOrdered );
bool ParseTypeTag( const char *pTypeTag, CUtlVector< RuleType_t > *pTypeList );
//////////////////////////////////////////////////////////////////////////
// Public Implementation
//////////////////////////////////////////////////////////////////////////
CTilegenRule::CTilegenRule() :
m_pRuleKV( NULL ),
m_pSubstitutionKV( NULL ),
m_pName( NULL ),
m_pFriendlyName( NULL ),
m_pDescription( NULL )
{
}
CTilegenRule::~CTilegenRule()
{
m_pRuleKV->deleteThis();
}
bool CTilegenRule::LoadFromKeyValues( KeyValues *pRuleKeyValues )
{
m_pRuleKV = pRuleKeyValues;
m_pName = m_pRuleKV->GetString( "name", "" );
if ( m_pName[0] == '\0' )
{
Log_Warning( LOG_TilegenLayoutSystem, "Rule must have a valid 'name' key.\n" );
return false;
}
m_pFriendlyName = m_pRuleKV->GetString( "friendly_name", m_pName );
m_pDescription = m_pRuleKV->GetString( "description", "No description." );
m_bHidden = m_pRuleKV->GetBool( "hidden", true );
const char *pType = m_pRuleKV->GetString( "type", NULL );
if ( pType == NULL || !ParseTypeTag( pType, &m_Types ) )
{
Log_Warning( LOG_TilegenLayoutSystem, "Rule '%s' must have a valid 'type' key.\n", m_pName );
return false;
}
m_pSubstitutionKV = m_pRuleKV->FindKey( "substitute" );
if ( m_pSubstitutionKV == NULL )
{
Log_Warning( LOG_TilegenLayoutSystem, "No 'substitute' blocks found in rule.\n" );
return false;
}
// Rename the 'substitute' key value to 'node', which is simply a grouping node of multiple sub-expressions.
m_pSubstitutionKV->SetName( "node" );
for ( KeyValues *pSubKey = pRuleKeyValues->GetFirstSubKey(); pSubKey != NULL; pSubKey = pSubKey->GetNextKey() )
{
if ( Q_stricmp( pSubKey->GetName(), "param" ) == 0 )
{
SubstitutionVariable_t variable;
variable.m_pName = pSubKey->GetString( "name", NULL );
if ( variable.m_pName == NULL )
{
Log_Warning( LOG_TilegenLayoutSystem, "No 'name' specified for parameter in rule '%s'.\n", m_pName );
return false;
}
else if ( variable.m_pName[0] != '$' )
{
Log_Warning( LOG_TilegenLayoutSystem, "First letter of parameter name ('%s') must start with '$'.\n", variable.m_pName );
return false;
}
variable.m_pFriendlyName = pSubKey->GetString( "friendly_name", variable.m_pName );
variable.m_pDescription = pSubKey->GetString( "description", "No description." );
variable.m_pTypeName = pSubKey->GetString( "type", "string" );
variable.m_pEnumName = pSubKey->GetString( "enum", NULL );
if ( Q_stricmp( variable.m_pTypeName, "enum" ) == 0 )
{
if ( variable.m_pEnumName == NULL )
{
Log_Warning( LOG_TilegenLayoutSystem, "Parameter 'type' is 'enum' but no 'enum' key is specified.\n" );
return false;
}
}
variable.m_pDefault = pSubKey->FindKey( "default" );
const char *pArrayType = pSubKey->GetString( "array", NULL );
ParseArrayTag( pArrayType, &variable.m_bArray, &variable.m_bOrderedArray );
variable.m_pElementContainer = pSubKey->GetString( "element_container", NULL );
if ( variable.m_pDefault != NULL )
{
// Rename the default value key to the parameter name so it can be copied directly into place.
variable.m_pDefault->SetName( variable.m_pName );
}
variable.m_bCanOmit = pSubKey->GetBool( "can_omit", false );
// "array" implies that the field can be omitted, since a zero element array deletes the list
variable.m_bCanOmit |= variable.m_bArray;
const char *pSource = pSubKey->GetString( "source", "literal|expression" );
if ( !ParseSourceTag( pSource, &variable.m_bAllowLiteral, &variable.m_bAllowExpression ) )
{
return false;
}
m_SubstitutionVariables.AddToTail( variable );
}
}
return true;
}
KeyValues *CTilegenRule::InstantiateRule( KeyValues *pRuleInstanceKV, CTilegenMissionPreprocessor *pPreprocessor ) const
{
for ( int i = 0; i < m_SubstitutionVariables.Count(); ++ i )
{
if ( !m_SubstitutionVariables[i].IsOptional() && pRuleInstanceKV->FindKey( m_SubstitutionVariables[i].m_pName ) == NULL )
{
Log_Warning( LOG_TilegenLayoutSystem, "Non-optional substitution variable '%s' not found in rule_instance.\n", m_SubstitutionVariables[i].m_pName );
return NULL;
}
}
KeyValues *pNewKeyValues = m_pSubstitutionKV->MakeCopy();
// Perform fixup recursively
RecursiveFixup( pNewKeyValues, pRuleInstanceKV, pPreprocessor );
return pNewKeyValues;
}
//////////////////////////////////////////////////////////////////////////
// Private Implementation
//////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
// Once a rule_instance has been matched to this rule and all non-optional
// parameters have been validated, this function performs
// the actual rule parameter substitution given the parameters from the
// rule_instance.
//
// pNewInstanceKV - newly stamped out instance on which the
// operation is performed
// pRuleInstanceKV - original rule_instance which contains parameters
// to substitute
//-----------------------------------------------------------------------------
void CTilegenRule::RecursiveFixup( KeyValues *pNewInstanceKV, KeyValues *pRuleInstanceKV, CTilegenMissionPreprocessor *pPreprocessor ) const
{
for ( KeyValues *pSubKey = pNewInstanceKV->GetFirstSubKey(); pSubKey != NULL; ) // pSubKey is advanced in the loop
{
int i;
KeyValues *pNextKey = pSubKey->GetNextKey();
pPreprocessor->EvaluateMetaVariables( pSubKey );
for ( i = 0; i < m_SubstitutionVariables.Count(); ++ i )
{
// Compare the value of the copied rule's sub-key to see if it should be substituted.
if ( Q_stricmp( pSubKey->GetString(), m_SubstitutionVariables[i].m_pName ) == 0 )
{
// This is the value of the parameter specified in the "rule_instance" block.
// Its contents will replace pSubKey.
KeyValues *pSubstituteKV = pRuleInstanceKV->FindKey( m_SubstitutionVariables[i].m_pName );
// This value may only be NULL if the substitution variable is optional
Assert( m_SubstitutionVariables[i].IsOptional() || pSubstituteKV != NULL );
if ( pSubstituteKV == NULL )
{
// If default is NULL, then m_bCanOmit must be true
pSubstituteKV = m_SubstitutionVariables[i].m_pDefault;
}
if ( pSubstituteKV != NULL )
{
// We must make a copy of the rule_instance's substitution in case it is inserted multiple times in the rule.
// (The original rule_instance will be cleaned up after InstantiateRule().)
pSubstituteKV = pSubstituteKV->MakeCopy();
pNewInstanceKV->SwapSubKey( pSubKey, pSubstituteKV );
pSubstituteKV->SetName( pSubKey->GetName() );
// Nodes called "_elide" are automatically elided, which allows for flattening an array into
// a parent hierarchy.
if ( Q_stricmp( pSubKey->GetName(), "_elide" ) == 0 )
{
pNewInstanceKV->ElideSubKey( pSubstituteKV );
}
}
else
{
Assert( m_SubstitutionVariables[i].m_bCanOmit );
// Optional parameter not found; simply remove any reference to it.
pNewInstanceKV->RemoveSubKey( pSubKey );
}
pSubKey->deleteThis();
pSubKey = pNextKey;
break;
}
}
// Performed a substitution
if ( i < m_SubstitutionVariables.Count() )
{
continue;
}
// No substitutions made on this value; recursively check it for more substitutions.
RecursiveFixup( pSubKey, pRuleInstanceKV, pPreprocessor );
pSubKey = pNextKey;
}
}
bool ParseSourceTag( const char *pSourceTag, bool *pAllowLiterals, bool *pAllowExpressions )
{
// @TODO: this is ghetto parsing
if ( Q_stricmp( pSourceTag, "literal" ) == 0 )
{
*pAllowLiterals = true;
*pAllowExpressions = false;
}
else if ( Q_stricmp( pSourceTag, "expression" ) == 0 )
{
*pAllowLiterals = false;
*pAllowExpressions = true;
}
else if ( Q_stricmp( pSourceTag, "expression|literal" ) == 0 || Q_stricmp( pSourceTag, "literal|expression" ) == 0 )
{
*pAllowLiterals = true;
*pAllowExpressions = true;
}
else
{
*pAllowLiterals = false;
*pAllowExpressions = false;
Log_Warning( LOG_TilegenLayoutSystem, "Unrecognized 'source' tag in rule parameter: %s.\n", pSourceTag );
return false;
}
return true;
}
bool ParseArrayTag( const char *pArrayTag, bool *pArray, bool *pIsOrdered )
{
if ( pArrayTag == NULL )
{
*pArray = false;
*pIsOrdered = false;
}
else if ( Q_stricmp( pArrayTag, "ordered" ) == 0 )
{
*pArray = true;
*pIsOrdered = true;
}
else if ( Q_stricmp( pArrayTag, "unordered" ) == 0 )
{
*pArray = true;
*pIsOrdered = false;
}
else
{
*pArray = false;
*pIsOrdered = false;
Log_Warning( LOG_TilegenLayoutSystem, "Unrecognized 'array' tag in rule parameter: %s.\n", pArray );
return false;
}
return true;
}
bool ParseTypeTag( const char *pTypeTag, CUtlVector< RuleType_t > *pTypeList )
{
int nCurrentIndex = 0;
const char *pCurrentTypeName = pTypeTag;
do
{
if ( pTypeTag[nCurrentIndex] == '|' || pTypeTag[nCurrentIndex] == '\0' )
{
int nChars = ( pTypeTag + nCurrentIndex ) - pCurrentTypeName;
if ( nChars <= 0 || nChars > MAX_TILEGEN_IDENTIFIER_LENGTH - 1 )
{
// Invalid number of characters
Log_Warning( LOG_TilegenLayoutSystem, "Malformed 'type' tag in rule parameter: %s.\n", pTypeTag );
return false;
}
RuleType_t *pNewRule = &pTypeList->Element( pTypeList->AddToTail() );
Q_memcpy( pNewRule->m_Name, pCurrentTypeName, nChars );
pNewRule->m_Name[nChars] = '\0';
// Advance past the delimiter
pCurrentTypeName = pTypeTag + nCurrentIndex + 1;
}
}
while ( pTypeTag[nCurrentIndex ++] != '\0' );
return true;
}