You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
863 lines
24 KiB
863 lines
24 KiB
5 years ago
|
// NextBotPath.h
|
||
|
// Encapsulate and manipulate a path through the world
|
||
|
// Author: Michael Booth, February 2006
|
||
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
|
||
|
#ifndef _NEXT_BOT_PATH_H_
|
||
|
#define _NEXT_BOT_PATH_H_
|
||
|
|
||
|
#include "NextBotInterface.h"
|
||
|
|
||
|
#include "tier0/vprof.h"
|
||
|
|
||
|
#define PATH_NO_LENGTH_LIMIT 0.0f // non-default argument value for Path::Compute()
|
||
|
#define PATH_TRUNCATE_INCOMPLETE_PATH false // non-default argument value for Path::Compute()
|
||
|
|
||
|
class INextBot;
|
||
|
class CNavArea;
|
||
|
class CNavLadder;
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* The interface for pathfinding costs.
|
||
|
* TODO: Replace all template cost functors with this interface, so we can virtualize and derive from them.
|
||
|
*/
|
||
|
class IPathCost
|
||
|
{
|
||
|
public:
|
||
|
virtual float operator()( CNavArea *area, CNavArea *fromArea, const CNavLadder *ladder, const CFuncElevator *elevator, float length ) const = 0;
|
||
|
};
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* The interface for selecting a goal area during "open goal" pathfinding
|
||
|
*/
|
||
|
class IPathOpenGoalSelector
|
||
|
{
|
||
|
public:
|
||
|
// compare "newArea" to "currentGoal" and return the area that is the better goal area
|
||
|
virtual CNavArea *operator() ( CNavArea *currentGoal, CNavArea *newArea ) const = 0;
|
||
|
};
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* A Path through the world.
|
||
|
* Not only does this encapsulate a path to get from point A to point B,
|
||
|
* but also the selecting the decision algorithm for how to build that path.
|
||
|
*/
|
||
|
class Path
|
||
|
{
|
||
|
public:
|
||
|
Path( void );
|
||
|
virtual ~Path() { }
|
||
|
|
||
|
enum SegmentType
|
||
|
{
|
||
|
ON_GROUND,
|
||
|
DROP_DOWN,
|
||
|
CLIMB_UP,
|
||
|
JUMP_OVER_GAP,
|
||
|
LADDER_UP,
|
||
|
LADDER_DOWN,
|
||
|
|
||
|
NUM_SEGMENT_TYPES
|
||
|
};
|
||
|
|
||
|
// @todo Allow custom Segment classes for different kinds of paths
|
||
|
struct Segment
|
||
|
{
|
||
|
CNavArea *area; // the area along the path
|
||
|
NavTraverseType how; // how to enter this area from the previous one
|
||
|
Vector pos; // our movement goal position at this point in the path
|
||
|
const CNavLadder *ladder; // if "how" refers to a ladder, this is it
|
||
|
|
||
|
SegmentType type; // how to traverse this segment of the path
|
||
|
Vector forward; // unit vector along segment
|
||
|
float length; // length of this segment
|
||
|
float distanceFromStart; // distance of this node from the start of the path
|
||
|
float curvature; // how much the path 'curves' at this point in the XY plane (0 = none, 1 = 180 degree doubleback)
|
||
|
|
||
|
Vector m_portalCenter; // position of center of 'portal' between previous area and this area
|
||
|
float m_portalHalfWidth; // half width of 'portal'
|
||
|
};
|
||
|
|
||
|
virtual float GetLength( void ) const; // return length of path from start to finish
|
||
|
virtual const Vector &GetPosition( float distanceFromStart, const Segment *start = NULL ) const; // return a position on the path at the given distance from the path start
|
||
|
virtual const Vector &GetClosestPosition( const Vector &pos, const Segment *start = NULL, float alongLimit = 0.0f ) const; // return the closest point on the path to the given position
|
||
|
|
||
|
virtual const Vector &GetStartPosition( void ) const; // return the position where this path starts
|
||
|
virtual const Vector &GetEndPosition( void ) const; // return the position where this path ends
|
||
|
virtual CBaseCombatCharacter *GetSubject( void ) const; // return the actor this path leads to, or NULL if there is no subject
|
||
|
|
||
|
virtual const Path::Segment *GetCurrentGoal( void ) const; // return current goal along the path we are trying to reach
|
||
|
|
||
|
virtual float GetAge( void ) const; // return "age" of this path (time since it was built)
|
||
|
|
||
|
enum SeekType
|
||
|
{
|
||
|
SEEK_ENTIRE_PATH, // search the entire path length
|
||
|
SEEK_AHEAD, // search from current cursor position forward toward end of path
|
||
|
SEEK_BEHIND // search from current cursor position backward toward path start
|
||
|
};
|
||
|
virtual void MoveCursorToClosestPosition( const Vector &pos, SeekType type = SEEK_ENTIRE_PATH, float alongLimit = 0.0f ) const; // Set cursor position to closest point on path to given position
|
||
|
|
||
|
enum MoveCursorType
|
||
|
{
|
||
|
PATH_ABSOLUTE_DISTANCE,
|
||
|
PATH_RELATIVE_DISTANCE
|
||
|
};
|
||
|
virtual void MoveCursorToStart( void ); // set seek cursor to start of path
|
||
|
virtual void MoveCursorToEnd( void ); // set seek cursor to end of path
|
||
|
virtual void MoveCursor( float value, MoveCursorType type = PATH_ABSOLUTE_DISTANCE ); // change seek cursor position
|
||
|
virtual float GetCursorPosition( void ) const; // return position of seek cursor (distance along path)
|
||
|
|
||
|
struct Data
|
||
|
{
|
||
|
Vector pos; // the position along the path
|
||
|
Vector forward; // unit vector along path direction
|
||
|
float curvature; // how much the path 'curves' at this point in the XY plane (0 = none, 1 = 180 degree doubleback)
|
||
|
const Segment *segmentPrior; // the segment just before this position
|
||
|
};
|
||
|
virtual const Data &GetCursorData( void ) const; // return path state at the current cursor position
|
||
|
|
||
|
virtual bool IsValid( void ) const;
|
||
|
virtual void Invalidate( void ); // make path invalid (clear it)
|
||
|
|
||
|
virtual void Draw( const Path::Segment *start = NULL ) const; // draw the path for debugging
|
||
|
virtual void DrawInterpolated( float from, float to ); // draw the path for debugging - MODIFIES cursor position
|
||
|
|
||
|
virtual const Segment *FirstSegment( void ) const; // return first segment of path
|
||
|
virtual const Segment *NextSegment( const Segment *currentSegment ) const; // return next segment of path, given current one
|
||
|
virtual const Segment *PriorSegment( const Segment *currentSegment ) const; // return previous segment of path, given current one
|
||
|
virtual const Segment *LastSegment( void ) const; // return last segment of path
|
||
|
|
||
|
enum ResultType
|
||
|
{
|
||
|
COMPLETE_PATH,
|
||
|
PARTIAL_PATH,
|
||
|
NO_PATH
|
||
|
};
|
||
|
virtual void OnPathChanged( INextBot *bot, ResultType result ) { } // invoked when the path is (re)computed (path is valid at the time of this call)
|
||
|
|
||
|
virtual void Copy( INextBot *bot, const Path &path ); // Replace this path with the given path's data
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* Compute shortest path from bot to given actor via A* algorithm.
|
||
|
* If returns true, path was found to the subject.
|
||
|
* If returns false, path may either be invalid (use IsValid() to check), or valid but
|
||
|
* doesn't reach all the way to the subject.
|
||
|
*/
|
||
|
template< typename CostFunctor >
|
||
|
bool Compute( INextBot *bot, CBaseCombatCharacter *subject, CostFunctor &costFunc, float maxPathLength = 0.0f, bool includeGoalIfPathFails = true )
|
||
|
{
|
||
|
VPROF_BUDGET( "Path::Compute(subject)", "NextBot" );
|
||
|
|
||
|
Invalidate();
|
||
|
|
||
|
m_subject = subject;
|
||
|
|
||
|
const Vector &start = bot->GetPosition();
|
||
|
|
||
|
CNavArea *startArea = bot->GetEntity()->GetLastKnownArea();
|
||
|
if ( !startArea )
|
||
|
{
|
||
|
OnPathChanged( bot, NO_PATH );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
CNavArea *subjectArea = subject->GetLastKnownArea();
|
||
|
if ( !subjectArea )
|
||
|
{
|
||
|
OnPathChanged( bot, NO_PATH );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
Vector subjectPos = subject->GetAbsOrigin();
|
||
|
|
||
|
// if we are already in the subject area, build trivial path
|
||
|
if ( startArea == subjectArea )
|
||
|
{
|
||
|
BuildTrivialPath( bot, subjectPos );
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Compute shortest path to subject
|
||
|
//
|
||
|
CNavArea *closestArea = NULL;
|
||
|
bool pathResult = NavAreaBuildPath( startArea, subjectArea, &subjectPos, costFunc, &closestArea, maxPathLength, bot->GetEntity()->GetTeamNumber() );
|
||
|
|
||
|
// Failed?
|
||
|
if ( closestArea == NULL )
|
||
|
return false;
|
||
|
|
||
|
//
|
||
|
// Build actual path by following parent links back from goal area
|
||
|
//
|
||
|
|
||
|
// get count
|
||
|
int count = 0;
|
||
|
CNavArea *area;
|
||
|
for( area = closestArea; area; area = area->GetParent() )
|
||
|
{
|
||
|
++count;
|
||
|
|
||
|
if ( area == startArea )
|
||
|
{
|
||
|
// startArea can be re-evaluated during the pathfind and given a parent...
|
||
|
break;
|
||
|
}
|
||
|
if ( count >= MAX_PATH_SEGMENTS-1 ) // save room for endpoint
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ( count == 1 )
|
||
|
{
|
||
|
BuildTrivialPath( bot, subjectPos );
|
||
|
return pathResult;
|
||
|
}
|
||
|
|
||
|
// assemble path
|
||
|
m_segmentCount = count;
|
||
|
for( area = closestArea; count && area; area = area->GetParent() )
|
||
|
{
|
||
|
--count;
|
||
|
m_path[ count ].area = area;
|
||
|
m_path[ count ].how = area->GetParentHow();
|
||
|
m_path[ count ].type = ON_GROUND;
|
||
|
}
|
||
|
|
||
|
if ( pathResult || includeGoalIfPathFails )
|
||
|
{
|
||
|
// append actual subject position
|
||
|
m_path[ m_segmentCount ].area = closestArea;
|
||
|
m_path[ m_segmentCount ].pos = subjectPos;
|
||
|
m_path[ m_segmentCount ].ladder = NULL;
|
||
|
m_path[ m_segmentCount ].how = NUM_TRAVERSE_TYPES;
|
||
|
m_path[ m_segmentCount ].type = ON_GROUND;
|
||
|
++m_segmentCount;
|
||
|
}
|
||
|
|
||
|
// compute path positions
|
||
|
if ( ComputePathDetails( bot, start ) == false )
|
||
|
{
|
||
|
Invalidate();
|
||
|
OnPathChanged( bot, NO_PATH );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// remove redundant nodes and clean up path
|
||
|
Optimize( bot );
|
||
|
|
||
|
PostProcess();
|
||
|
|
||
|
OnPathChanged( bot, pathResult ? COMPLETE_PATH : PARTIAL_PATH );
|
||
|
|
||
|
return pathResult;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* Compute shortest path from bot to 'goal' via A* algorithm.
|
||
|
* If returns true, path was found to the goal position.
|
||
|
* If returns false, path may either be invalid (use IsValid() to check), or valid but
|
||
|
* doesn't reach all the way to the goal.
|
||
|
*/
|
||
|
template< typename CostFunctor >
|
||
|
bool Compute( INextBot *bot, const Vector &goal, CostFunctor &costFunc, float maxPathLength = 0.0f, bool includeGoalIfPathFails = true )
|
||
|
{
|
||
|
VPROF_BUDGET( "Path::Compute(goal)", "NextBotSpiky" );
|
||
|
|
||
|
Invalidate();
|
||
|
|
||
|
const Vector &start = bot->GetPosition();
|
||
|
|
||
|
CNavArea *startArea = bot->GetEntity()->GetLastKnownArea();
|
||
|
if ( !startArea )
|
||
|
{
|
||
|
OnPathChanged( bot, NO_PATH );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// check line-of-sight to the goal position when finding it's nav area
|
||
|
const float maxDistanceToArea = 200.0f;
|
||
|
CNavArea *goalArea = TheNavMesh->GetNearestNavArea( goal, true, maxDistanceToArea, true );
|
||
|
|
||
|
// if we are already in the goal area, build trivial path
|
||
|
if ( startArea == goalArea )
|
||
|
{
|
||
|
BuildTrivialPath( bot, goal );
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// make sure path end position is on the ground
|
||
|
Vector pathEndPosition = goal;
|
||
|
if ( goalArea )
|
||
|
{
|
||
|
pathEndPosition.z = goalArea->GetZ( pathEndPosition );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
TheNavMesh->GetGroundHeight( pathEndPosition, &pathEndPosition.z );
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Compute shortest path to goal
|
||
|
//
|
||
|
CNavArea *closestArea = NULL;
|
||
|
bool pathResult = NavAreaBuildPath( startArea, goalArea, &goal, costFunc, &closestArea, maxPathLength, bot->GetEntity()->GetTeamNumber() );
|
||
|
|
||
|
// Failed?
|
||
|
if ( closestArea == NULL )
|
||
|
return false;
|
||
|
|
||
|
//
|
||
|
// Build actual path by following parent links back from goal area
|
||
|
//
|
||
|
|
||
|
// get count
|
||
|
int count = 0;
|
||
|
CNavArea *area;
|
||
|
for( area = closestArea; area; area = area->GetParent() )
|
||
|
{
|
||
|
++count;
|
||
|
|
||
|
if ( area == startArea )
|
||
|
{
|
||
|
// startArea can be re-evaluated during the pathfind and given a parent...
|
||
|
break;
|
||
|
}
|
||
|
if ( count >= MAX_PATH_SEGMENTS-1 ) // save room for endpoint
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ( count == 1 )
|
||
|
{
|
||
|
BuildTrivialPath( bot, goal );
|
||
|
return pathResult;
|
||
|
}
|
||
|
|
||
|
// assemble path
|
||
|
m_segmentCount = count;
|
||
|
for( area = closestArea; count && area; area = area->GetParent() )
|
||
|
{
|
||
|
--count;
|
||
|
m_path[ count ].area = area;
|
||
|
m_path[ count ].how = area->GetParentHow();
|
||
|
m_path[ count ].type = ON_GROUND;
|
||
|
}
|
||
|
|
||
|
if ( pathResult || includeGoalIfPathFails )
|
||
|
{
|
||
|
// append actual goal position
|
||
|
m_path[ m_segmentCount ].area = closestArea;
|
||
|
m_path[ m_segmentCount ].pos = pathEndPosition;
|
||
|
m_path[ m_segmentCount ].ladder = NULL;
|
||
|
m_path[ m_segmentCount ].how = NUM_TRAVERSE_TYPES;
|
||
|
m_path[ m_segmentCount ].type = ON_GROUND;
|
||
|
++m_segmentCount;
|
||
|
}
|
||
|
|
||
|
// compute path positions
|
||
|
if ( ComputePathDetails( bot, start ) == false )
|
||
|
{
|
||
|
Invalidate();
|
||
|
OnPathChanged( bot, NO_PATH );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// remove redundant nodes and clean up path
|
||
|
Optimize( bot );
|
||
|
|
||
|
PostProcess();
|
||
|
|
||
|
OnPathChanged( bot, pathResult ? COMPLETE_PATH : PARTIAL_PATH );
|
||
|
|
||
|
return pathResult;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* Build a path from bot's current location to an undetermined goal area
|
||
|
* that minimizes the given cost along the final path and meets the
|
||
|
* goal criteria.
|
||
|
*/
|
||
|
virtual bool ComputeWithOpenGoal( INextBot *bot, const IPathCost &costFunc, const IPathOpenGoalSelector &goalSelector, float maxSearchRadius = 0.0f )
|
||
|
{
|
||
|
VPROF_BUDGET( "ComputeWithOpenGoal", "NextBot" );
|
||
|
|
||
|
int teamID = bot->GetEntity()->GetTeamNumber();
|
||
|
|
||
|
CNavArea *startArea = bot->GetEntity()->GetLastKnownArea();
|
||
|
|
||
|
if ( startArea == NULL )
|
||
|
return NULL;
|
||
|
|
||
|
startArea->SetParent( NULL );
|
||
|
|
||
|
// start search
|
||
|
CNavArea::ClearSearchLists();
|
||
|
|
||
|
float initCost = costFunc( startArea, NULL, NULL, NULL, -1.0f );
|
||
|
if ( initCost < 0.0f )
|
||
|
return NULL;
|
||
|
|
||
|
startArea->SetTotalCost( initCost );
|
||
|
startArea->AddToOpenList();
|
||
|
|
||
|
// find our goal as we search
|
||
|
CNavArea *goalArea = NULL;
|
||
|
|
||
|
//
|
||
|
// Dijkstra's algorithm (since we don't know our goal).
|
||
|
//
|
||
|
while( !CNavArea::IsOpenListEmpty() )
|
||
|
{
|
||
|
// get next area to check
|
||
|
CNavArea *area = CNavArea::PopOpenList();
|
||
|
|
||
|
area->AddToClosedList();
|
||
|
|
||
|
// don't consider blocked areas
|
||
|
if ( area->IsBlocked( teamID ) )
|
||
|
continue;
|
||
|
|
||
|
// build adjacent area array
|
||
|
CollectAdjacentAreas( area );
|
||
|
|
||
|
// search adjacent areas
|
||
|
for( int i=0; i<m_adjAreaIndex; ++i )
|
||
|
{
|
||
|
CNavArea *newArea = m_adjAreaVector[ i ].area;
|
||
|
|
||
|
// only visit each area once
|
||
|
if ( newArea->IsClosed() )
|
||
|
continue;
|
||
|
|
||
|
// don't consider blocked areas
|
||
|
if ( newArea->IsBlocked( teamID ) )
|
||
|
continue;
|
||
|
|
||
|
// don't use this area if it is out of range
|
||
|
if ( maxSearchRadius > 0.0f && ( newArea->GetCenter() - bot->GetEntity()->GetAbsOrigin() ).IsLengthGreaterThan( maxSearchRadius ) )
|
||
|
continue;
|
||
|
|
||
|
// determine cost of traversing this area
|
||
|
float newCost = costFunc( newArea, area, m_adjAreaVector[ i ].ladder, NULL, -1.0f );
|
||
|
|
||
|
// don't use adjacent area if cost functor says it is a dead-end
|
||
|
if ( newCost < 0.0f )
|
||
|
continue;
|
||
|
|
||
|
if ( newArea->IsOpen() && newArea->GetTotalCost() <= newCost )
|
||
|
{
|
||
|
// we have already visited this area, and it has a better path
|
||
|
continue;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// whether this area has been visited or not, we now have a better path to it
|
||
|
newArea->SetParent( area, m_adjAreaVector[ i ].how );
|
||
|
newArea->SetTotalCost( newCost );
|
||
|
|
||
|
// use 'cost so far' to hold cumulative cost
|
||
|
newArea->SetCostSoFar( newCost );
|
||
|
|
||
|
// tricky bit here - relying on OpenList being sorted by cost
|
||
|
if ( newArea->IsOpen() )
|
||
|
{
|
||
|
// area already on open list, update the list order to keep costs sorted
|
||
|
newArea->UpdateOnOpenList();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
newArea->AddToOpenList();
|
||
|
}
|
||
|
|
||
|
// keep track of best goal so far
|
||
|
goalArea = goalSelector( goalArea, newArea );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( goalArea )
|
||
|
{
|
||
|
// compile the path details into a usable path
|
||
|
AssemblePrecomputedPath( bot, goalArea->GetCenter(), goalArea );
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// all adjacent areas are likely too far away
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------------------------------------------
|
||
|
/**
|
||
|
* Given the last area in a path with valid parent pointers,
|
||
|
* construct the actual path.
|
||
|
*/
|
||
|
void AssemblePrecomputedPath( INextBot *bot, const Vector &goal, CNavArea *endArea )
|
||
|
{
|
||
|
VPROF_BUDGET( "AssemblePrecomputedPath", "NextBot" );
|
||
|
|
||
|
const Vector &start = bot->GetPosition();
|
||
|
|
||
|
// get count
|
||
|
int count = 0;
|
||
|
CNavArea *area;
|
||
|
for( area = endArea; area; area = area->GetParent() )
|
||
|
{
|
||
|
++count;
|
||
|
}
|
||
|
|
||
|
// save room for endpoint
|
||
|
if ( count > MAX_PATH_SEGMENTS-1 )
|
||
|
{
|
||
|
count = MAX_PATH_SEGMENTS-1;
|
||
|
}
|
||
|
else if ( count == 0 )
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if ( count == 1 )
|
||
|
{
|
||
|
BuildTrivialPath( bot, goal );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// assemble path
|
||
|
m_segmentCount = count;
|
||
|
for( area = endArea; count && area; area = area->GetParent() )
|
||
|
{
|
||
|
--count;
|
||
|
m_path[ count ].area = area;
|
||
|
m_path[ count ].how = area->GetParentHow();
|
||
|
m_path[ count ].type = ON_GROUND;
|
||
|
}
|
||
|
|
||
|
// append actual goal position
|
||
|
m_path[ m_segmentCount ].area = endArea;
|
||
|
m_path[ m_segmentCount ].pos = goal;
|
||
|
m_path[ m_segmentCount ].ladder = NULL;
|
||
|
m_path[ m_segmentCount ].how = NUM_TRAVERSE_TYPES;
|
||
|
m_path[ m_segmentCount ].type = ON_GROUND;
|
||
|
++m_segmentCount;
|
||
|
|
||
|
// compute path positions
|
||
|
if ( ComputePathDetails( bot, start ) == false )
|
||
|
{
|
||
|
Invalidate();
|
||
|
OnPathChanged( bot, NO_PATH );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// remove redundant nodes and clean up path
|
||
|
Optimize( bot );
|
||
|
|
||
|
PostProcess();
|
||
|
|
||
|
OnPathChanged( bot, COMPLETE_PATH );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Utility function for when start and goal are in the same area
|
||
|
*/
|
||
|
bool BuildTrivialPath( INextBot *bot, const Vector &goal );
|
||
|
|
||
|
/**
|
||
|
* Determine exactly where the path goes between the given two areas
|
||
|
* on the path. Return this point in 'crossPos'.
|
||
|
*/
|
||
|
virtual void ComputeAreaCrossing( INextBot *bot, const CNavArea *from, const Vector &fromPos, const CNavArea *to, NavDirType dir, Vector *crossPos ) const;
|
||
|
|
||
|
|
||
|
private:
|
||
|
enum { MAX_PATH_SEGMENTS = 256 };
|
||
|
Segment m_path[ MAX_PATH_SEGMENTS ];
|
||
|
int m_segmentCount;
|
||
|
|
||
|
bool ComputePathDetails( INextBot *bot, const Vector &start ); // determine actual path positions
|
||
|
|
||
|
void Optimize( INextBot *bot );
|
||
|
void PostProcess( void );
|
||
|
int FindNextOccludedNode( INextBot *bot, int anchor ); // used by Optimize()
|
||
|
|
||
|
void InsertSegment( Segment newSegment, int i ); // insert new segment at index i
|
||
|
|
||
|
mutable Vector m_pathPos; // used by GetPosition()
|
||
|
mutable Vector m_closePos; // used by GetClosestPosition()
|
||
|
|
||
|
mutable float m_cursorPos; // current cursor position (distance along path)
|
||
|
mutable Data m_cursorData; // used by GetCursorData()
|
||
|
mutable bool m_isCursorDataDirty;
|
||
|
|
||
|
IntervalTimer m_ageTimer; // how old is this path?
|
||
|
CHandle< CBaseCombatCharacter > m_subject; // the subject this path leads to
|
||
|
|
||
|
/**
|
||
|
* Build a vector of adjacent areas reachable from the given area
|
||
|
*/
|
||
|
void CollectAdjacentAreas( CNavArea *area )
|
||
|
{
|
||
|
m_adjAreaIndex = 0;
|
||
|
|
||
|
const NavConnectVector &adjNorth = *area->GetAdjacentAreas( NORTH );
|
||
|
FOR_EACH_VEC( adjNorth, it )
|
||
|
{
|
||
|
if ( m_adjAreaIndex >= MAX_ADJ_AREAS )
|
||
|
break;
|
||
|
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = adjNorth[ it ].area;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_NORTH;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = NULL;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
|
||
|
const NavConnectVector &adjSouth = *area->GetAdjacentAreas( SOUTH );
|
||
|
FOR_EACH_VEC( adjSouth, it )
|
||
|
{
|
||
|
if ( m_adjAreaIndex >= MAX_ADJ_AREAS )
|
||
|
break;
|
||
|
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = adjSouth[ it ].area;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_SOUTH;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = NULL;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
|
||
|
const NavConnectVector &adjWest = *area->GetAdjacentAreas( WEST );
|
||
|
FOR_EACH_VEC( adjWest, it )
|
||
|
{
|
||
|
if ( m_adjAreaIndex >= MAX_ADJ_AREAS )
|
||
|
break;
|
||
|
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = adjWest[ it ].area;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_WEST;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = NULL;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
|
||
|
const NavConnectVector &adjEast = *area->GetAdjacentAreas( EAST );
|
||
|
FOR_EACH_VEC( adjEast, it )
|
||
|
{
|
||
|
if ( m_adjAreaIndex >= MAX_ADJ_AREAS )
|
||
|
break;
|
||
|
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = adjEast[ it ].area;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_EAST;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = NULL;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
|
||
|
const NavLadderConnectVector &adjUpLadder = *area->GetLadders( CNavLadder::LADDER_UP );
|
||
|
FOR_EACH_VEC( adjUpLadder, it )
|
||
|
{
|
||
|
CNavLadder *ladder = adjUpLadder[ it ].ladder;
|
||
|
|
||
|
if ( ladder->m_topForwardArea && m_adjAreaIndex < MAX_ADJ_AREAS )
|
||
|
{
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = ladder->m_topForwardArea;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_LADDER_UP;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = ladder;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
|
||
|
if ( ladder->m_topLeftArea && m_adjAreaIndex < MAX_ADJ_AREAS )
|
||
|
{
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = ladder->m_topLeftArea;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_LADDER_UP;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = ladder;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
|
||
|
if ( ladder->m_topRightArea && m_adjAreaIndex < MAX_ADJ_AREAS )
|
||
|
{
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = ladder->m_topRightArea;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_LADDER_UP;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = ladder;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const NavLadderConnectVector &adjDownLadder = *area->GetLadders( CNavLadder::LADDER_DOWN );
|
||
|
FOR_EACH_VEC( adjDownLadder, it )
|
||
|
{
|
||
|
CNavLadder *ladder = adjDownLadder[ it ].ladder;
|
||
|
|
||
|
if ( m_adjAreaIndex >= MAX_ADJ_AREAS )
|
||
|
break;
|
||
|
|
||
|
if ( ladder->m_bottomArea )
|
||
|
{
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].area = ladder->m_bottomArea;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].how = GO_LADDER_DOWN;
|
||
|
m_adjAreaVector[ m_adjAreaIndex ].ladder = ladder;
|
||
|
++m_adjAreaIndex;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
enum { MAX_ADJ_AREAS = 64 };
|
||
|
|
||
|
struct AdjInfo
|
||
|
{
|
||
|
CNavArea *area;
|
||
|
CNavLadder *ladder;
|
||
|
NavTraverseType how;
|
||
|
};
|
||
|
|
||
|
AdjInfo m_adjAreaVector[ MAX_ADJ_AREAS ];
|
||
|
int m_adjAreaIndex;
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
inline float Path::GetLength( void ) const
|
||
|
{
|
||
|
if (m_segmentCount <= 0)
|
||
|
{
|
||
|
return 0.0f;
|
||
|
}
|
||
|
|
||
|
return m_path[ m_segmentCount-1 ].distanceFromStart;
|
||
|
}
|
||
|
|
||
|
inline bool Path::IsValid( void ) const
|
||
|
{
|
||
|
return (m_segmentCount > 0);
|
||
|
}
|
||
|
|
||
|
inline void Path::Invalidate( void )
|
||
|
{
|
||
|
m_segmentCount = 0;
|
||
|
|
||
|
m_cursorPos = 0.0f;
|
||
|
|
||
|
m_cursorData.pos = vec3_origin;
|
||
|
m_cursorData.forward = Vector( 1.0f, 0, 0 );
|
||
|
m_cursorData.curvature = 0.0f;
|
||
|
m_cursorData.segmentPrior = NULL;
|
||
|
|
||
|
m_isCursorDataDirty = true;
|
||
|
|
||
|
m_subject = NULL;
|
||
|
}
|
||
|
|
||
|
inline const Path::Segment *Path::FirstSegment( void ) const
|
||
|
{
|
||
|
return (IsValid()) ? &m_path[0] : NULL;
|
||
|
}
|
||
|
|
||
|
inline const Path::Segment *Path::NextSegment( const Segment *currentSegment ) const
|
||
|
{
|
||
|
if (currentSegment == NULL || !IsValid())
|
||
|
return NULL;
|
||
|
|
||
|
int i = currentSegment - m_path;
|
||
|
|
||
|
if (i < 0 || i >= m_segmentCount-1)
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return &m_path[ i+1 ];
|
||
|
}
|
||
|
|
||
|
inline const Path::Segment *Path::PriorSegment( const Segment *currentSegment ) const
|
||
|
{
|
||
|
if (currentSegment == NULL || !IsValid())
|
||
|
return NULL;
|
||
|
|
||
|
int i = currentSegment - m_path;
|
||
|
|
||
|
if (i < 1 || i >= m_segmentCount)
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return &m_path[ i-1 ];
|
||
|
}
|
||
|
|
||
|
inline const Path::Segment *Path::LastSegment( void ) const
|
||
|
{
|
||
|
return ( IsValid() ) ? &m_path[ m_segmentCount-1 ] : NULL;
|
||
|
}
|
||
|
|
||
|
inline const Vector &Path::GetStartPosition( void ) const
|
||
|
{
|
||
|
return ( IsValid() ) ? m_path[ 0 ].pos : vec3_origin;
|
||
|
}
|
||
|
|
||
|
inline const Vector &Path::GetEndPosition( void ) const
|
||
|
{
|
||
|
return ( IsValid() ) ? m_path[ m_segmentCount-1 ].pos : vec3_origin;
|
||
|
}
|
||
|
|
||
|
inline CBaseCombatCharacter *Path::GetSubject( void ) const
|
||
|
{
|
||
|
return m_subject;
|
||
|
}
|
||
|
|
||
|
inline void Path::MoveCursorToStart( void )
|
||
|
{
|
||
|
m_cursorPos = 0.0f;
|
||
|
m_isCursorDataDirty = true;
|
||
|
}
|
||
|
|
||
|
inline void Path::MoveCursorToEnd( void )
|
||
|
{
|
||
|
m_cursorPos = GetLength();
|
||
|
m_isCursorDataDirty = true;
|
||
|
}
|
||
|
|
||
|
inline void Path::MoveCursor( float value, MoveCursorType type )
|
||
|
{
|
||
|
if ( type == PATH_ABSOLUTE_DISTANCE )
|
||
|
{
|
||
|
m_cursorPos = value;
|
||
|
}
|
||
|
else // relative distance
|
||
|
{
|
||
|
m_cursorPos += value;
|
||
|
}
|
||
|
|
||
|
if ( m_cursorPos < 0.0f )
|
||
|
{
|
||
|
m_cursorPos = 0.0f;
|
||
|
}
|
||
|
else if ( m_cursorPos > GetLength() )
|
||
|
{
|
||
|
m_cursorPos = GetLength();
|
||
|
}
|
||
|
|
||
|
m_isCursorDataDirty = true;
|
||
|
}
|
||
|
|
||
|
inline float Path::GetCursorPosition( void ) const
|
||
|
{
|
||
|
return m_cursorPos;
|
||
|
}
|
||
|
|
||
|
inline const Path::Segment *Path::GetCurrentGoal( void ) const
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
inline float Path::GetAge( void ) const
|
||
|
{
|
||
|
return m_ageTimer.GetElapsedTime();
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif // _NEXT_BOT_PATH_H_
|
||
|
|