2634 lines
63 KiB
C
Raw Normal View History

2020-04-22 12:56:21 -04:00
//====== Copyright 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef VECTOR_H
#define VECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include <math.h>
#include <float.h>
// For vec_t, put this somewhere else?
#include "tier0/basetypes.h"
#if defined( _PS3 )
//#include <ssemath.h>
#include <vectormath/c/vectormath_aos.h>
#include "platform.h"
#include "mathlib/math_pfns.h"
#endif
#ifndef PLATFORM_PPC // we want our linux with xmm support
// For MMX intrinsics
#include <xmmintrin.h>
#endif
#ifndef ALIGN16_POST
#define ALIGN16_POST
#endif
#include "tier0/dbg.h"
#include "tier0/platform.h"
#include "tier0/threadtools.h"
#include "mathlib/vector2d.h"
#include "mathlib/math_pfns.h"
#include "tier0/memalloc.h"
#include "vstdlib/random.h"
// Uncomment this to add extra Asserts to check for NANs, uninitialized vecs, etc.
//#define VECTOR_PARANOIA 1
// Uncomment this to make sure we don't do anything slow with our vectors
//#define VECTOR_NO_SLOW_OPERATIONS 1
// Used to make certain code easier to read.
#define X_INDEX 0
#define Y_INDEX 1
#define Z_INDEX 2
#ifdef VECTOR_PARANOIA
#define CHECK_VALID( _v) Assert( (_v).IsValid() )
#else
#ifdef GNUC
#define CHECK_VALID( _v)
#else
#define CHECK_VALID( _v) 0
#endif
#endif
#define VecToString(v) (static_cast<const char *>(CFmtStr("(%f, %f, %f)", (v).x, (v).y, (v).z))) // ** Note: this generates a temporary, don't hold reference!
class VectorByValue;
//=========================================================
// 3D Vector
//=========================================================
class Vector
{
public:
// Members
vec_t x, y, z;
// Construction/destruction:
Vector(void);
Vector(vec_t X, vec_t Y, vec_t Z);
// Initialization
void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f);
// TODO (Ilya): Should there be an init that takes a single float for consistency?
// Got any nasty NAN's?
bool IsValid() const;
void Invalidate();
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
// Base address...
vec_t* Base();
vec_t const* Base() const;
// Cast to Vector2D...
Vector2D& AsVector2D();
const Vector2D& AsVector2D() const;
// Initialization methods
void Random( vec_t minVal, vec_t maxVal );
inline void Zero(); ///< zero out a vector
// equality
bool operator==(const Vector& v) const;
bool operator!=(const Vector& v) const;
// arithmetic operations
FORCEINLINE Vector& operator+=(const Vector &v);
FORCEINLINE Vector& operator-=(const Vector &v);
FORCEINLINE Vector& operator*=(const Vector &v);
FORCEINLINE Vector& operator*=(float s);
FORCEINLINE Vector& operator/=(const Vector &v);
FORCEINLINE Vector& operator/=(float s);
FORCEINLINE Vector& operator+=(float fl) ; ///< broadcast add
FORCEINLINE Vector& operator-=(float fl) ; ///< broadcast sub
// negate the vector components
void Negate();
// Get the vector's magnitude.
inline vec_t Length() const;
// Get the vector's magnitude squared.
FORCEINLINE vec_t LengthSqr(void) const
{
CHECK_VALID(*this);
return (x*x + y*y + z*z);
}
// Get one over the vector's length
// via fast hardware approximation
inline vec_t LengthRecipFast(void) const
{
return FastRSqrtFast( LengthSqr() );
}
// return true if this vector is (0,0,0) within tolerance
bool IsZero( float tolerance = 0.01f ) const
{
return (x > -tolerance && x < tolerance &&
y > -tolerance && y < tolerance &&
z > -tolerance && z < tolerance);
}
// return true if this vector is exactly (0,0,0) -- only fast if vector is coming from memory, not registers
inline bool IsZeroFast( ) const RESTRICT
{
COMPILE_TIME_ASSERT( sizeof(vec_t) == sizeof(int) );
return ( *(const int *)(&x) == 0 &&
*(const int *)(&y) == 0 &&
*(const int *)(&z) == 0 );
}
vec_t NormalizeInPlace();
Vector Normalized() const;
bool IsLengthGreaterThan( float val ) const;
bool IsLengthLessThan( float val ) const;
// check if a vector is within the box defined by two other vectors
FORCEINLINE bool WithinAABox( Vector const &boxmin, Vector const &boxmax);
// Get the distance from this vector to the other one.
vec_t DistTo(const Vector &vOther) const;
// Get the distance from this vector to the other one squared.
// NJS: note, VC wasn't inlining it correctly in several deeply nested inlines due to being an 'out of line' inline.
// may be able to tidy this up after switching to VC7
FORCEINLINE vec_t DistToSqr(const Vector &vOther) const
{
Vector delta;
delta.x = x - vOther.x;
delta.y = y - vOther.y;
delta.z = z - vOther.z;
return delta.LengthSqr();
}
// Copy
void CopyToArray(float* rgfl) const;
// Multiply, add, and assign to this (ie: *this = a + b * scalar). This
// is about 12% faster than the actual vector equation (because it's done per-component
// rather than per-vector).
void MulAdd(const Vector& a, const Vector& b, float scalar);
// Dot product.
vec_t Dot(const Vector& vOther) const;
// assignment
Vector& operator=(const Vector &vOther);
// returns 0, 1, 2 corresponding to the component with the largest absolute value
inline int LargestComponent() const;
// 2d
vec_t Length2D(void) const;
vec_t Length2DSqr(void) const;
/// get the component of this vector parallel to some other given vector
inline Vector ProjectOnto( const Vector& onto );
operator VectorByValue &() { return *((VectorByValue *)(this)); }
operator const VectorByValue &() const { return *((const VectorByValue *)(this)); }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// copy constructors
// Vector(const Vector &vOther);
// arithmetic operations
Vector operator-(void) const;
Vector operator+(const Vector& v) const;
Vector operator-(const Vector& v) const;
Vector operator*(const Vector& v) const;
Vector operator/(const Vector& v) const;
Vector operator*(float fl) const;
Vector operator/(float fl) const;
// Cross product between two vectors.
Vector Cross(const Vector &vOther) const;
// Returns a vector with the min or max in X, Y, and Z.
Vector Min(const Vector &vOther) const;
Vector Max(const Vector &vOther) const;
#else
private:
// No copy constructors allowed if we're in optimal mode
Vector(const Vector& vOther);
#endif
};
#define USE_M64S defined( PLATFORM_WINDOWS_PC )
//=========================================================
// 4D Short Vector (aligned on 8-byte boundary)
//=========================================================
class ALIGN8 ShortVector
{
public:
short x, y, z, w;
// Initialization
void Init(short ix = 0, short iy = 0, short iz = 0, short iw = 0 );
#if USE_M64S
__m64 &AsM64() { return *(__m64*)&x; }
const __m64 &AsM64() const { return *(const __m64*)&x; }
#endif
// Setter
void Set( const ShortVector& vOther );
void Set( const short ix, const short iy, const short iz, const short iw );
// array access...
short operator[](int i) const;
short& operator[](int i);
// Base address...
short* Base();
short const* Base() const;
// equality
bool operator==(const ShortVector& v) const;
bool operator!=(const ShortVector& v) const;
// Arithmetic operations
FORCEINLINE ShortVector& operator+=(const ShortVector &v);
FORCEINLINE ShortVector& operator-=(const ShortVector &v);
FORCEINLINE ShortVector& operator*=(const ShortVector &v);
FORCEINLINE ShortVector& operator*=(float s);
FORCEINLINE ShortVector& operator/=(const ShortVector &v);
FORCEINLINE ShortVector& operator/=(float s);
FORCEINLINE ShortVector operator*(float fl) const;
private:
// No copy constructors allowed if we're in optimal mode
// ShortVector(ShortVector const& vOther);
// No assignment operators either...
// ShortVector& operator=( ShortVector const& src );
} ALIGN8_POST;
//=========================================================
// 4D Integer Vector
//=========================================================
class IntVector4D
{
public:
int x, y, z, w;
// Initialization
void Init(int ix = 0, int iy = 0, int iz = 0, int iw = 0 );
#if USE_M64S
__m64 &AsM64() { return *(__m64*)&x; }
const __m64 &AsM64() const { return *(const __m64*)&x; }
#endif
// Setter
void Set( const IntVector4D& vOther );
void Set( const int ix, const int iy, const int iz, const int iw );
// array access...
int operator[](int i) const;
int& operator[](int i);
// Base address...
int* Base();
int const* Base() const;
// equality
bool operator==(const IntVector4D& v) const;
bool operator!=(const IntVector4D& v) const;
// Arithmetic operations
FORCEINLINE IntVector4D& operator+=(const IntVector4D &v);
FORCEINLINE IntVector4D& operator-=(const IntVector4D &v);
FORCEINLINE IntVector4D& operator*=(const IntVector4D &v);
FORCEINLINE IntVector4D& operator*=(float s);
FORCEINLINE IntVector4D& operator/=(const IntVector4D &v);
FORCEINLINE IntVector4D& operator/=(float s);
FORCEINLINE IntVector4D operator*(float fl) const;
private:
// No copy constructors allowed if we're in optimal mode
// IntVector4D(IntVector4D const& vOther);
// No assignment operators either...
// IntVector4D& operator=( IntVector4D const& src );
};
//-----------------------------------------------------------------------------
// Allows us to specifically pass the vector by value when we need to
//-----------------------------------------------------------------------------
class VectorByValue : public Vector
{
public:
// Construction/destruction:
VectorByValue(void) : Vector() {}
VectorByValue(vec_t X, vec_t Y, vec_t Z) : Vector( X, Y, Z ) {}
VectorByValue(const VectorByValue& vOther) { *this = vOther; }
};
//-----------------------------------------------------------------------------
// Utility to simplify table construction. No constructor means can use
// traditional C-style initialization
//-----------------------------------------------------------------------------
class TableVector
{
public:
vec_t x, y, z;
operator Vector &() { return *((Vector *)(this)); }
operator const Vector &() const { return *((const Vector *)(this)); }
// array access...
inline vec_t& operator[](int i)
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
inline vec_t operator[](int i) const
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
};
//-----------------------------------------------------------------------------
// Here's where we add all those lovely SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 VectorAligned : public Vector
{
public:
inline VectorAligned(void) {};
inline VectorAligned(vec_t X, vec_t Y, vec_t Z)
{
Init(X,Y,Z);
}
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
// No copy constructors allowed if we're in optimal mode
VectorAligned(const VectorAligned& vOther);
VectorAligned(const Vector &vOther);
#else
public:
explicit VectorAligned(const Vector &vOther)
{
Init(vOther.x, vOther.y, vOther.z);
}
VectorAligned& operator=(const Vector &vOther)
{
Init(vOther.x, vOther.y, vOther.z);
return *this;
}
VectorAligned& operator=(const VectorAligned &vOther)
{
// we know we're aligned, so use simd
// we can't use the convenient abstract interface coz it gets declared later
#ifdef _X360
XMStoreVector4A(Base(), XMLoadVector4A(vOther.Base()));
#elif _WIN32
_mm_store_ps(Base(), _mm_load_ps( vOther.Base() ));
#else
Init(vOther.x, vOther.y, vOther.z);
#endif
return *this;
}
#endif
float w; // this space is used anyway
#if !defined(NO_MALLOC_OVERRIDE)
void* operator new[] ( size_t nSize)
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new[] ( size_t nSize, const char *pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new[] ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete[] ( void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete[] ( void* p, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete[] ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
// please don't allocate a single quaternion...
void* operator new ( size_t nSize )
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new ( size_t nSize, const char *pFileName, int nLine )
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine )
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete ( void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete ( void* p, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
#endif
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Vector related operations
//-----------------------------------------------------------------------------
// Vector clear
FORCEINLINE void VectorClear( Vector& a );
// Copy
FORCEINLINE void VectorCopy( const Vector& src, Vector& dst );
// Vector arithmetic
FORCEINLINE void VectorAdd( const Vector& a, const Vector& b, Vector& result );
FORCEINLINE void VectorSubtract( const Vector& a, const Vector& b, Vector& result );
FORCEINLINE void VectorMultiply( const Vector& a, vec_t b, Vector& result );
FORCEINLINE void VectorMultiply( const Vector& a, const Vector& b, Vector& result );
FORCEINLINE void VectorDivide( const Vector& a, vec_t b, Vector& result );
FORCEINLINE void VectorDivide( const Vector& a, const Vector& b, Vector& result );
inline void VectorScale ( const Vector& in, vec_t scale, Vector& result );
void VectorMA( const Vector& start, float scale, const Vector& direction, Vector& dest );
// Vector equality with tolerance
bool VectorsAreEqual( const Vector& src1, const Vector& src2, float tolerance = 0.0f );
#define VectorExpand(v) (v).x, (v).y, (v).z
// Normalization
// FIXME: Can't use quite yet
//vec_t VectorNormalize( Vector& v );
// Length
inline vec_t VectorLength( const Vector& v );
// Dot Product
FORCEINLINE vec_t DotProduct(const Vector& a, const Vector& b);
// Cross product
void CrossProduct(const Vector& a, const Vector& b, Vector& result );
// Store the min or max of each of x, y, and z into the result.
void VectorMin( const Vector &a, const Vector &b, Vector &result );
void VectorMax( const Vector &a, const Vector &b, Vector &result );
// Linearly interpolate between two vectors
void VectorLerp(const Vector& src1, const Vector& src2, vec_t t, Vector& dest );
Vector VectorLerp(const Vector& src1, const Vector& src2, vec_t t );
FORCEINLINE Vector ReplicateToVector( float x )
{
return Vector( x, x, x );
}
FORCEINLINE bool PointWithinViewAngle( Vector const &vecSrcPosition,
Vector const &vecTargetPosition,
Vector const &vecLookDirection, float flCosHalfFOV )
{
Vector vecDelta = vecTargetPosition - vecSrcPosition;
float cosDiff = DotProduct( vecLookDirection, vecDelta );
if ( flCosHalfFOV <= 0 ) // >180
{
// signs are different, answer is implicit
if ( cosDiff > 0 )
return true;
// a/sqrt(b) > c == a^2 < b * c ^2
// IFF left and right sides are <= 0
float flLen2 = vecDelta.LengthSqr();
return ( cosDiff * cosDiff <= flLen2 * flCosHalfFOV * flCosHalfFOV );
}
else // flCosHalfFOV > 0
{
// signs are different, answer is implicit
if ( cosDiff < 0 )
return false;
// a/sqrt(b) > c == a^2 > b * c ^2
// IFF left and right sides are >= 0
float flLen2 = vecDelta.LengthSqr();
return ( cosDiff * cosDiff >= flLen2 * flCosHalfFOV * flCosHalfFOV );
}
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Cross product
Vector CrossProduct( const Vector& a, const Vector& b );
// Random vector creation
Vector RandomVector( vec_t minVal, vec_t maxVal );
#endif
float RandomVectorInUnitSphere( Vector *pVector );
float RandomVectorInUnitCircle( Vector2D *pVector );
//-----------------------------------------------------------------------------
//
// Inlined Vector methods
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline Vector::Vector(void)
{
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
// Initialize to NAN to catch errors
x = y = z = VEC_T_NAN;
#endif
#endif
}
inline Vector::Vector(vec_t X, vec_t Y, vec_t Z)
{
x = X; y = Y; z = Z;
CHECK_VALID(*this);
}
//inline Vector::Vector(const float *pFloat)
//{
// Assert( pFloat );
// x = pFloat[0]; y = pFloat[1]; z = pFloat[2];
// CHECK_VALID(*this);
//}
#if 0
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
inline Vector::Vector(const Vector &vOther)
{
CHECK_VALID(vOther);
x = vOther.x; y = vOther.y; z = vOther.z;
}
#endif
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void Vector::Init( vec_t ix, vec_t iy, vec_t iz )
{
x = ix; y = iy; z = iz;
CHECK_VALID(*this);
}
inline void Vector::Random( vec_t minVal, vec_t maxVal )
{
x = RandomFloat( minVal, maxVal );
y = RandomFloat( minVal, maxVal );
z = RandomFloat( minVal, maxVal );
CHECK_VALID(*this);
}
// This should really be a single opcode on the PowerPC (move r0 onto the vec reg)
inline void Vector::Zero()
{
x = y = z = 0.0f;
}
inline void VectorClear( Vector& a )
{
a.x = a.y = a.z = 0.0f;
}
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline Vector& Vector::operator=(const Vector &vOther)
{
CHECK_VALID(vOther);
x=vOther.x; y=vOther.y; z=vOther.z;
return *this;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Vector::operator[](int i)
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
inline vec_t Vector::operator[](int i) const
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* Vector::Base()
{
return (vec_t*)this;
}
inline vec_t const* Vector::Base() const
{
return (vec_t const*)this;
}
//-----------------------------------------------------------------------------
// Cast to Vector2D...
//-----------------------------------------------------------------------------
inline Vector2D& Vector::AsVector2D()
{
return *(Vector2D*)this;
}
inline const Vector2D& Vector::AsVector2D() const
{
return *(const Vector2D*)this;
}
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool Vector::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
//-----------------------------------------------------------------------------
// Invalidate
//-----------------------------------------------------------------------------
inline void Vector::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
//#endif
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool Vector::operator==( const Vector& src ) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x == x) && (src.y == y) && (src.z == z);
}
inline bool Vector::operator!=( const Vector& src ) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x != x) || (src.y != y) || (src.z != z);
}
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
FORCEINLINE void VectorCopy( const Vector& src, Vector& dst )
{
CHECK_VALID(src);
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
}
inline void Vector::CopyToArray(float* rgfl) const
{
Assert( rgfl );
CHECK_VALID(*this);
rgfl[0] = x, rgfl[1] = y, rgfl[2] = z;
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
// #pragma message("TODO: these should be SSE")
inline void Vector::Negate()
{
CHECK_VALID(*this);
x = -x; y = -y; z = -z;
}
FORCEINLINE Vector& Vector::operator+=(const Vector& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x+=v.x; y+=v.y; z += v.z;
return *this;
}
FORCEINLINE Vector& Vector::operator-=(const Vector& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x-=v.x; y-=v.y; z -= v.z;
return *this;
}
FORCEINLINE Vector& Vector::operator*=(float fl)
{
x *= fl;
y *= fl;
z *= fl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector& Vector::operator*=(const Vector& v)
{
CHECK_VALID(v);
x *= v.x;
y *= v.y;
z *= v.z;
CHECK_VALID(*this);
return *this;
}
// this ought to be an opcode.
FORCEINLINE Vector& Vector::operator+=(float fl)
{
x += fl;
y += fl;
z += fl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector& Vector::operator-=(float fl)
{
x -= fl;
y -= fl;
z -= fl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector& Vector::operator/=(float fl)
{
Assert( fl != 0.0f );
float oofl = 1.0f / fl;
x *= oofl;
y *= oofl;
z *= oofl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector& Vector::operator/=(const Vector& v)
{
CHECK_VALID(v);
Assert( v.x != 0.0f && v.y != 0.0f && v.z != 0.0f );
x /= v.x;
y /= v.y;
z /= v.z;
CHECK_VALID(*this);
return *this;
}
// get the component of this vector parallel to some other given vector
inline Vector Vector::ProjectOnto( const Vector& onto )
{
return onto * ( this->Dot(onto) / ( onto.LengthSqr() ) );
}
//-----------------------------------------------------------------------------
//
// Inlined Short Vector methods
//
//-----------------------------------------------------------------------------
inline void ShortVector::Init( short ix, short iy, short iz, short iw )
{
x = ix; y = iy; z = iz; w = iw;
}
FORCEINLINE void ShortVector::Set( const ShortVector& vOther )
{
x = vOther.x;
y = vOther.y;
z = vOther.z;
w = vOther.w;
}
FORCEINLINE void ShortVector::Set( const short ix, const short iy, const short iz, const short iw )
{
x = ix;
y = iy;
z = iz;
w = iw;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline short ShortVector::operator[](int i) const
{
Assert( (i >= 0) && (i < 4) );
return ((short*)this)[i];
}
inline short& ShortVector::operator[](int i)
{
Assert( (i >= 0) && (i < 4) );
return ((short*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline short* ShortVector::Base()
{
return (short*)this;
}
inline short const* ShortVector::Base() const
{
return (short const*)this;
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool ShortVector::operator==( const ShortVector& src ) const
{
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
}
inline bool ShortVector::operator!=( const ShortVector& src ) const
{
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
FORCEINLINE ShortVector& ShortVector::operator+=(const ShortVector& v)
{
x+=v.x; y+=v.y; z += v.z; w += v.w;
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator-=(const ShortVector& v)
{
x-=v.x; y-=v.y; z -= v.z; w -= v.w;
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator*=(float fl)
{
x = (short)(x * fl);
y = (short)(y * fl);
z = (short)(z * fl);
w = (short)(w * fl);
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator*=(const ShortVector& v)
{
x = (short)(x * v.x);
y = (short)(y * v.y);
z = (short)(z * v.z);
w = (short)(w * v.w);
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator/=(float fl)
{
Assert( fl != 0.0f );
float oofl = 1.0f / fl;
x = (short)(x * oofl);
y = (short)(y * oofl);
z = (short)(z * oofl);
w = (short)(w * oofl);
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator/=(const ShortVector& v)
{
Assert( v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0 );
x = (short)(x / v.x);
y = (short)(y / v.y);
z = (short)(z / v.z);
w = (short)(w / v.w);
return *this;
}
FORCEINLINE void ShortVectorMultiply( const ShortVector& src, float fl, ShortVector& res )
{
Assert( IsFinite(fl) );
res.x = (short)(src.x * fl);
res.y = (short)(src.y * fl);
res.z = (short)(src.z * fl);
res.w = (short)(src.w * fl);
}
FORCEINLINE ShortVector ShortVector::operator*(float fl) const
{
ShortVector res;
ShortVectorMultiply( *this, fl, res );
return res;
}
//-----------------------------------------------------------------------------
//
// Inlined Integer Vector methods
//
//-----------------------------------------------------------------------------
inline void IntVector4D::Init( int ix, int iy, int iz, int iw )
{
x = ix; y = iy; z = iz; w = iw;
}
FORCEINLINE void IntVector4D::Set( const IntVector4D& vOther )
{
x = vOther.x;
y = vOther.y;
z = vOther.z;
w = vOther.w;
}
FORCEINLINE void IntVector4D::Set( const int ix, const int iy, const int iz, const int iw )
{
x = ix;
y = iy;
z = iz;
w = iw;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline int IntVector4D::operator[](int i) const
{
Assert( (i >= 0) && (i < 4) );
return ((int*)this)[i];
}
inline int& IntVector4D::operator[](int i)
{
Assert( (i >= 0) && (i < 4) );
return ((int*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline int* IntVector4D::Base()
{
return (int*)this;
}
inline int const* IntVector4D::Base() const
{
return (int const*)this;
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool IntVector4D::operator==( const IntVector4D& src ) const
{
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
}
inline bool IntVector4D::operator!=( const IntVector4D& src ) const
{
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
FORCEINLINE IntVector4D& IntVector4D::operator+=(const IntVector4D& v)
{
x+=v.x; y+=v.y; z += v.z; w += v.w;
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator-=(const IntVector4D& v)
{
x-=v.x; y-=v.y; z -= v.z; w -= v.w;
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator*=(float fl)
{
x = (int)(x * fl);
y = (int)(y * fl);
z = (int)(z * fl);
w = (int)(w * fl);
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator*=(const IntVector4D& v)
{
x = (int)(x * v.x);
y = (int)(y * v.y);
z = (int)(z * v.z);
w = (int)(w * v.w);
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator/=(float fl)
{
Assert( fl != 0.0f );
float oofl = 1.0f / fl;
x = (int)(x * oofl);
y = (int)(y * oofl);
z = (int)(z * oofl);
w = (int)(w * oofl);
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator/=(const IntVector4D& v)
{
Assert( v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0 );
x = (int)(x / v.x);
y = (int)(y / v.y);
z = (int)(z / v.z);
w = (int)(w / v.w);
return *this;
}
FORCEINLINE void IntVector4DMultiply( const IntVector4D& src, float fl, IntVector4D& res )
{
Assert( IsFinite(fl) );
res.x = (int)(src.x * fl);
res.y = (int)(src.y * fl);
res.z = (int)(src.z * fl);
res.w = (int)(src.w * fl);
}
FORCEINLINE IntVector4D IntVector4D::operator*(float fl) const
{
IntVector4D res;
IntVector4DMultiply( *this, fl, res );
return res;
}
// =======================
FORCEINLINE void VectorAdd( const Vector& a, const Vector& b, Vector& c )
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
}
FORCEINLINE void VectorSubtract( const Vector& a, const Vector& b, Vector& c )
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
}
FORCEINLINE void VectorMultiply( const Vector& a, vec_t b, Vector& c )
{
CHECK_VALID(a);
Assert( IsFinite(b) );
c.x = a.x * b;
c.y = a.y * b;
c.z = a.z * b;
}
FORCEINLINE void VectorMultiply( const Vector& a, const Vector& b, Vector& c )
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
}
// for backwards compatability
inline void VectorScale ( const Vector& in, vec_t scale, Vector& result )
{
VectorMultiply( in, scale, result );
}
FORCEINLINE void VectorDivide( const Vector& a, vec_t b, Vector& c )
{
CHECK_VALID(a);
Assert( b != 0.0f );
vec_t oob = 1.0f / b;
c.x = a.x * oob;
c.y = a.y * oob;
c.z = a.z * oob;
}
FORCEINLINE void VectorDivide( const Vector& a, const Vector& b, Vector& c )
{
CHECK_VALID(a);
CHECK_VALID(b);
Assert( (b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f) );
c.x = a.x / b.x;
c.y = a.y / b.y;
c.z = a.z / b.z;
}
// FIXME: Remove
// For backwards compatability
inline void Vector::MulAdd(const Vector& a, const Vector& b, float scalar)
{
CHECK_VALID(a);
CHECK_VALID(b);
x = a.x + b.x * scalar;
y = a.y + b.y * scalar;
z = a.z + b.z * scalar;
}
inline void VectorLerp(const Vector& src1, const Vector& src2, vec_t t, Vector& dest )
{
CHECK_VALID(src1);
CHECK_VALID(src2);
dest.x = src1.x + (src2.x - src1.x) * t;
dest.y = src1.y + (src2.y - src1.y) * t;
dest.z = src1.z + (src2.z - src1.z) * t;
}
inline Vector VectorLerp(const Vector& src1, const Vector& src2, vec_t t )
{
Vector result;
VectorLerp( src1, src2, t, result );
return result;
}
//-----------------------------------------------------------------------------
// Temporary storage for vector results so const Vector& results can be returned
//-----------------------------------------------------------------------------
inline Vector &AllocTempVector()
{
static Vector s_vecTemp[128];
static CInterlockedInt s_nIndex;
int nIndex;
for (;;)
{
int nOldIndex = s_nIndex;
nIndex = ( (nOldIndex + 0x10001) & 0x7F );
if ( s_nIndex.AssignIf( nOldIndex, nIndex ) )
{
break;
}
ThreadPause();
}
return s_vecTemp[nIndex & 0xffff];
}
//-----------------------------------------------------------------------------
// dot, cross
//-----------------------------------------------------------------------------
FORCEINLINE vec_t DotProduct(const Vector& a, const Vector& b)
{
CHECK_VALID(a);
CHECK_VALID(b);
return( a.x*b.x + a.y*b.y + a.z*b.z );
}
// for backwards compatability
inline vec_t Vector::Dot( const Vector& vOther ) const
{
CHECK_VALID(vOther);
return DotProduct( *this, vOther );
}
inline int Vector::LargestComponent() const
{
float flAbsx = fabs(x);
float flAbsy = fabs(y);
float flAbsz = fabs(z);
if ( flAbsx > flAbsy )
{
if ( flAbsx > flAbsz )
return X_INDEX;
return Z_INDEX;
}
if ( flAbsy > flAbsz )
return Y_INDEX;
return Z_INDEX;
}
inline void CrossProduct(const Vector& a, const Vector& b, Vector& result )
{
CHECK_VALID(a);
CHECK_VALID(b);
Assert( &a != &result );
Assert( &b != &result );
result.x = a.y*b.z - a.z*b.y;
result.y = a.z*b.x - a.x*b.z;
result.z = a.x*b.y - a.y*b.x;
}
inline vec_t DotProductAbs( const Vector &v0, const Vector &v1 )
{
CHECK_VALID(v0);
CHECK_VALID(v1);
return FloatMakePositive(v0.x*v1.x) + FloatMakePositive(v0.y*v1.y) + FloatMakePositive(v0.z*v1.z);
}
inline vec_t DotProductAbs( const Vector &v0, const float *v1 )
{
return FloatMakePositive(v0.x * v1[0]) + FloatMakePositive(v0.y * v1[1]) + FloatMakePositive(v0.z * v1[2]);
}
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t VectorLength( const Vector& v )
{
CHECK_VALID(v);
return (vec_t)FastSqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}
inline vec_t Vector::Length(void) const
{
CHECK_VALID(*this);
return VectorLength( *this );
}
//-----------------------------------------------------------------------------
// Normalization
//-----------------------------------------------------------------------------
/*
// FIXME: Can't use until we're un-macroed in mathlib.h
inline vec_t VectorNormalize( Vector& v )
{
Assert( v.IsValid() );
vec_t l = v.Length();
if (l != 0.0f)
{
v /= l;
}
else
{
// FIXME:
// Just copying the existing implemenation; shouldn't res.z == 0?
v.x = v.y = 0.0f; v.z = 1.0f;
}
return l;
}
*/
// check a point against a box
bool Vector::WithinAABox( Vector const &boxmin, Vector const &boxmax)
{
return (
( x >= boxmin.x ) && ( x <= boxmax.x) &&
( y >= boxmin.y ) && ( y <= boxmax.y) &&
( z >= boxmin.z ) && ( z <= boxmax.z)
);
}
//-----------------------------------------------------------------------------
// Get the distance from this vector to the other one
//-----------------------------------------------------------------------------
inline vec_t Vector::DistTo(const Vector &vOther) const
{
Vector delta;
VectorSubtract( *this, vOther, delta );
return delta.Length();
}
//-----------------------------------------------------------------------------
// Vector equality with tolerance
//-----------------------------------------------------------------------------
inline bool VectorsAreEqual( const Vector& src1, const Vector& src2, float tolerance )
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
}
//-----------------------------------------------------------------------------
// Computes the closest point to vecTarget no farther than flMaxDist from vecStart
//-----------------------------------------------------------------------------
inline void ComputeClosestPoint( const Vector& vecStart, float flMaxDist, const Vector& vecTarget, Vector *pResult )
{
Vector vecDelta;
VectorSubtract( vecTarget, vecStart, vecDelta );
float flDistSqr = vecDelta.LengthSqr();
if ( flDistSqr <= flMaxDist * flMaxDist )
{
*pResult = vecTarget;
}
else
{
vecDelta /= FastSqrt( flDistSqr );
VectorMA( vecStart, flMaxDist, vecDelta, *pResult );
}
}
//-----------------------------------------------------------------------------
// Takes the absolute value of a vector
//-----------------------------------------------------------------------------
inline void VectorAbs( const Vector& src, Vector& dst )
{
dst.x = FloatMakePositive(src.x);
dst.y = FloatMakePositive(src.y);
dst.z = FloatMakePositive(src.z);
}
//-----------------------------------------------------------------------------
//
// Slow methods
//
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// Returns a vector with the min or max in X, Y, and Z.
//-----------------------------------------------------------------------------
inline Vector Vector::Min(const Vector &vOther) const
{
return Vector(x < vOther.x ? x : vOther.x,
y < vOther.y ? y : vOther.y,
z < vOther.z ? z : vOther.z);
}
inline Vector Vector::Max(const Vector &vOther) const
{
return Vector(x > vOther.x ? x : vOther.x,
y > vOther.y ? y : vOther.y,
z > vOther.z ? z : vOther.z);
}
//-----------------------------------------------------------------------------
// arithmetic operations
//-----------------------------------------------------------------------------
inline Vector Vector::operator-(void) const
{
return Vector(-x,-y,-z);
}
inline Vector Vector::operator+(const Vector& v) const
{
Vector res;
VectorAdd( *this, v, res );
return res;
}
inline Vector Vector::operator-(const Vector& v) const
{
Vector res;
VectorSubtract( *this, v, res );
return res;
}
inline Vector Vector::operator*(float fl) const
{
Vector res;
VectorMultiply( *this, fl, res );
return res;
}
inline Vector Vector::operator*(const Vector& v) const
{
Vector res;
VectorMultiply( *this, v, res );
return res;
}
inline Vector Vector::operator/(float fl) const
{
Vector res;
VectorDivide( *this, fl, res );
return res;
}
inline Vector Vector::operator/(const Vector& v) const
{
Vector res;
VectorDivide( *this, v, res );
return res;
}
inline Vector operator*(float fl, const Vector& v)
{
return v * fl;
}
//-----------------------------------------------------------------------------
// cross product
//-----------------------------------------------------------------------------
inline Vector Vector::Cross(const Vector& vOther) const
{
Vector res;
CrossProduct( *this, vOther, res );
return res;
}
//-----------------------------------------------------------------------------
// 2D
//-----------------------------------------------------------------------------
inline vec_t Vector::Length2D(void) const
{
return (vec_t)FastSqrt(x*x + y*y);
}
inline vec_t Vector::Length2DSqr(void) const
{
return (x*x + y*y);
}
inline Vector CrossProduct(const Vector& a, const Vector& b)
{
return Vector( a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x );
}
inline void VectorMin( const Vector &a, const Vector &b, Vector &result )
{
result.x = fpmin(a.x, b.x);
result.y = fpmin(a.y, b.y);
result.z = fpmin(a.z, b.z);
}
inline void VectorMax( const Vector &a, const Vector &b, Vector &result )
{
result.x = fpmax(a.x, b.x);
result.y = fpmax(a.y, b.y);
result.z = fpmax(a.z, b.z);
}
// and when you want to return the vector rather than cause a LHS with it...
inline Vector VectorMin( const Vector &a, const Vector &b )
{
return Vector( fpmin(a.x, b.x), fpmin(a.y, b.y), fpmin(a.z, b.z) );
}
inline Vector VectorMax( const Vector &a, const Vector &b )
{
return Vector( fpmax(a.x, b.x), fpmax(a.y, b.y), fpmax(a.z, b.z) );
}
inline float ComputeVolume( const Vector &vecMins, const Vector &vecMaxs )
{
Vector vecDelta;
VectorSubtract( vecMaxs, vecMins, vecDelta );
return DotProduct( vecDelta, vecDelta );
}
// Get a random vector.
inline Vector RandomVector( float minVal, float maxVal )
{
Vector random;
random.Random( minVal, maxVal );
return random;
}
#endif //slow
//-----------------------------------------------------------------------------
// Helper debugging stuff....
//-----------------------------------------------------------------------------
inline bool operator==( float const* f, const Vector& v )
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
inline bool operator==( const Vector& v, float const* f )
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
inline bool operator!=( float const* f, const Vector& v )
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
inline bool operator!=( const Vector& v, float const* f )
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
// return a vector perpendicular to another, with smooth variation. The difference between this and
// something like VectorVectors is that there are now discontinuities. _unlike_ VectorVectors,
// you won't get an "u
void VectorPerpendicularToVector( Vector const &in, Vector *pvecOut );
//-----------------------------------------------------------------------------
// AngularImpulse
//-----------------------------------------------------------------------------
// AngularImpulse are exponetial maps (an axis scaled by a "twist" angle in degrees)
typedef Vector AngularImpulse;
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline AngularImpulse RandomAngularImpulse( float minVal, float maxVal )
{
AngularImpulse angImp;
angImp.Random( minVal, maxVal );
return angImp;
}
#endif
//-----------------------------------------------------------------------------
// Quaternion
//-----------------------------------------------------------------------------
class RadianEuler;
class Quaternion // same data-layout as engine's vec4_t,
{ // which is a vec_t[4]
public:
inline Quaternion(void) {
// Initialize to NAN to catch errors
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
x = y = z = w = VEC_T_NAN;
#endif
#endif
}
inline Quaternion(vec_t ix, vec_t iy, vec_t iz, vec_t iw) : x(ix), y(iy), z(iz), w(iw) { }
inline Quaternion(RadianEuler const &angle); // evil auto type promotion!!!
inline void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f, vec_t iw=0.0f) { x = ix; y = iy; z = iz; w = iw; }
bool IsValid() const;
void Invalidate();
bool operator==( const Quaternion &src ) const;
bool operator!=( const Quaternion &src ) const;
inline Quaternion Conjugate() const { return Quaternion( -x, -y, -z, w ); }
vec_t* Base() { return (vec_t*)this; }
const vec_t* Base() const { return (vec_t*)this; }
// convenience for debugging
inline void Print() const;
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
vec_t x, y, z, w;
};
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Quaternion::operator[](int i)
{
Assert( (i >= 0) && (i < 4) );
return ((vec_t*)this)[i];
}
inline vec_t Quaternion::operator[](int i) const
{
Assert( (i >= 0) && (i < 4) );
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Equality test
//-----------------------------------------------------------------------------
inline bool Quaternion::operator==( const Quaternion &src ) const
{
return ( x == src.x ) && ( y == src.y ) && ( z == src.z ) && ( w == src.w );
}
inline bool Quaternion::operator!=( const Quaternion &src ) const
{
return !operator==( src );
}
//-----------------------------------------------------------------------------
// Debugging only
//-----------------------------------------------------------------------------
void Quaternion::Print() const
{
#ifndef _CERT
Msg("q{ %.3fi + %.3fj + %.3fk + %.3f }", x, y, z, w );
#endif
}
//-----------------------------------------------------------------------------
// Quaternion equality with tolerance
//-----------------------------------------------------------------------------
inline bool QuaternionsAreEqual( const Quaternion& src1, const Quaternion& src2, float tolerance )
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
if (FloatMakePositive(src1.z - src2.z) > tolerance)
return false;
return (FloatMakePositive(src1.w - src2.w) <= tolerance);
}
//-----------------------------------------------------------------------------
// Here's where we add all those lovely SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 QuaternionAligned : public Quaternion
{
public:
inline QuaternionAligned(void) {};
inline QuaternionAligned(vec_t X, vec_t Y, vec_t Z, vec_t W)
{
Init(X,Y,Z,W);
}
operator Quaternion * () { return this; }
operator const Quaternion * () { return this; }
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
// No copy constructors allowed if we're in optimal mode
QuaternionAligned(const QuaternionAligned& vOther);
QuaternionAligned(const Quaternion &vOther);
#else
public:
explicit QuaternionAligned(const Quaternion &vOther)
{
Init(vOther.x, vOther.y, vOther.z, vOther.w);
}
QuaternionAligned& operator=(const Quaternion &vOther)
{
Init(vOther.x, vOther.y, vOther.z, vOther.w);
return *this;
}
QuaternionAligned& operator=(const QuaternionAligned &vOther)
{
// we know we're aligned, so use simd
// we can't use the convenient abstract interface coz it gets declared later
#ifdef _X360
XMStoreVector4A(Base(), XMLoadVector4A(vOther.Base()));
#elif _WIN32
_mm_store_ps(Base(), _mm_load_ps( vOther.Base() ));
#else
Init(vOther.x, vOther.y, vOther.z, vOther.w);
#endif
return *this;
}
#endif
#if !defined(NO_MALLOC_OVERRIDE)
void* operator new[] ( size_t nSize)
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new[] ( size_t nSize, const char *pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new[] ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete[] ( void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete[] ( void* p, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete[] ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
// please don't allocate a single quaternion...
void* operator new ( size_t nSize )
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new ( size_t nSize, const char *pFileName, int nLine )
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine )
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete ( void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete ( void* p, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
#endif
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Radian Euler angle aligned to axis (NOT ROLL/PITCH/YAW)
//-----------------------------------------------------------------------------
class QAngle;
class RadianEuler
{
public:
inline RadianEuler(void) { }
inline RadianEuler(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; }
inline RadianEuler(Quaternion const &q); // evil auto type promotion!!!
inline RadianEuler(QAngle const &angles); // evil auto type promotion!!!
// Initialization
inline void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f) { x = ix; y = iy; z = iz; }
// conversion to qangle
QAngle ToQAngle( void ) const;
bool IsValid() const;
void Invalidate();
inline vec_t *Base() { return &x; }
inline const vec_t *Base() const { return &x; }
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
vec_t x, y, z;
};
extern void AngleQuaternion( RadianEuler const &angles, Quaternion &qt );
extern void QuaternionAngles( Quaternion const &q, RadianEuler &angles );
inline Quaternion::Quaternion(RadianEuler const &angle)
{
AngleQuaternion( angle, *this );
}
inline bool Quaternion::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w);
}
inline void Quaternion::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = w = VEC_T_NAN;
//#endif
//#endif
}
inline RadianEuler::RadianEuler(Quaternion const &q)
{
QuaternionAngles( q, *this );
}
inline void VectorCopy( RadianEuler const& src, RadianEuler &dst )
{
CHECK_VALID(src);
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
}
inline void VectorScale( RadianEuler const& src, float b, RadianEuler &dst )
{
CHECK_VALID(src);
Assert( IsFinite(b) );
dst.x = src.x * b;
dst.y = src.y * b;
dst.z = src.z * b;
}
inline bool RadianEuler::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
inline void RadianEuler::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
//#endif
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& RadianEuler::operator[](int i)
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
inline vec_t RadianEuler::operator[](int i) const
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Degree Euler QAngle pitch, yaw, roll
//-----------------------------------------------------------------------------
class QAngleByValue;
class QAngle
{
public:
// Members
vec_t x, y, z;
// Construction/destruction
QAngle(void);
QAngle(vec_t X, vec_t Y, vec_t Z);
#ifndef _PS3
// QAngle(RadianEuler const &angles); // evil auto type promotion!!!
#endif
// Allow pass-by-value
operator QAngleByValue &() { return *((QAngleByValue *)(this)); }
operator const QAngleByValue &() const { return *((const QAngleByValue *)(this)); }
// Initialization
void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f);
void Random( vec_t minVal, vec_t maxVal );
// Got any nasty NAN's?
bool IsValid() const;
void Invalidate();
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
// Base address...
vec_t* Base();
vec_t const* Base() const;
// equality
bool operator==(const QAngle& v) const;
bool operator!=(const QAngle& v) const;
// arithmetic operations
QAngle& operator+=(const QAngle &v);
QAngle& operator-=(const QAngle &v);
QAngle& operator*=(float s);
QAngle& operator/=(float s);
// Get the vector's magnitude.
vec_t Length() const;
vec_t LengthSqr() const;
// negate the QAngle components
//void Negate();
// No assignment operators either...
QAngle& operator=( const QAngle& src );
#ifndef VECTOR_NO_SLOW_OPERATIONS
// copy constructors
// arithmetic operations
QAngle operator-(void) const;
QAngle operator+(const QAngle& v) const;
QAngle operator-(const QAngle& v) const;
QAngle operator*(float fl) const;
QAngle operator/(float fl) const;
#else
private:
// No copy constructors allowed if we're in optimal mode
QAngle(const QAngle& vOther);
#endif
};
//-----------------------------------------------------------------------------
// Allows us to specifically pass the vector by value when we need to
//-----------------------------------------------------------------------------
class QAngleByValue : public QAngle
{
public:
// Construction/destruction:
QAngleByValue(void) : QAngle() {}
QAngleByValue(vec_t X, vec_t Y, vec_t Z) : QAngle( X, Y, Z ) {}
QAngleByValue(const QAngleByValue& vOther) { *this = vOther; }
};
inline void VectorAdd( const QAngle& a, const QAngle& b, QAngle& result )
{
CHECK_VALID(a);
CHECK_VALID(b);
result.x = a.x + b.x;
result.y = a.y + b.y;
result.z = a.z + b.z;
}
inline void VectorMA( const QAngle &start, float scale, const QAngle &direction, QAngle &dest )
{
CHECK_VALID(start);
CHECK_VALID(direction);
dest.x = start.x + scale * direction.x;
dest.y = start.y + scale * direction.y;
dest.z = start.z + scale * direction.z;
}
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline QAngle::QAngle(void)
{
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
// Initialize to NAN to catch errors
x = y = z = VEC_T_NAN;
#endif
#endif
}
inline QAngle::QAngle(vec_t X, vec_t Y, vec_t Z)
{
x = X; y = Y; z = Z;
CHECK_VALID(*this);
}
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void QAngle::Init( vec_t ix, vec_t iy, vec_t iz )
{
x = ix; y = iy; z = iz;
CHECK_VALID(*this);
}
inline void QAngle::Random( vec_t minVal, vec_t maxVal )
{
x = RandomFloat( minVal, maxVal );
y = RandomFloat( minVal, maxVal );
z = RandomFloat( minVal, maxVal );
CHECK_VALID(*this);
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline QAngle RandomAngle( float minVal, float maxVal )
{
Vector random;
random.Random( minVal, maxVal );
QAngle ret( random.x, random.y, random.z );
return ret;
}
#endif
inline RadianEuler::RadianEuler(QAngle const &angles)
{
Init(
angles.z * 3.14159265358979323846f / 180.f,
angles.x * 3.14159265358979323846f / 180.f,
angles.y * 3.14159265358979323846f / 180.f );
}
inline QAngle RadianEuler::ToQAngle( void) const
{
return QAngle(
y * 180.f / 3.14159265358979323846f,
z * 180.f / 3.14159265358979323846f,
x * 180.f / 3.14159265358979323846f );
}
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline QAngle& QAngle::operator=(const QAngle &vOther)
{
CHECK_VALID(vOther);
x=vOther.x; y=vOther.y; z=vOther.z;
return *this;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& QAngle::operator[](int i)
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
inline vec_t QAngle::operator[](int i) const
{
Assert( (i >= 0) && (i < 3) );
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* QAngle::Base()
{
return (vec_t*)this;
}
inline vec_t const* QAngle::Base() const
{
return (vec_t const*)this;
}
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool QAngle::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
//-----------------------------------------------------------------------------
// Invalidate
//-----------------------------------------------------------------------------
inline void QAngle::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
//#endif
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool QAngle::operator==( const QAngle& src ) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x == x) && (src.y == y) && (src.z == z);
}
inline bool QAngle::operator!=( const QAngle& src ) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x != x) || (src.y != y) || (src.z != z);
}
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
inline void VectorCopy( const QAngle& src, QAngle& dst )
{
CHECK_VALID(src);
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
inline QAngle& QAngle::operator+=(const QAngle& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x+=v.x; y+=v.y; z += v.z;
return *this;
}
inline QAngle& QAngle::operator-=(const QAngle& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x-=v.x; y-=v.y; z -= v.z;
return *this;
}
inline QAngle& QAngle::operator*=(float fl)
{
x *= fl;
y *= fl;
z *= fl;
CHECK_VALID(*this);
return *this;
}
inline QAngle& QAngle::operator/=(float fl)
{
Assert( fl != 0.0f );
float oofl = 1.0f / fl;
x *= oofl;
y *= oofl;
z *= oofl;
CHECK_VALID(*this);
return *this;
}
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t QAngle::Length( ) const
{
CHECK_VALID(*this);
return (vec_t)FastSqrt( LengthSqr( ) );
}
inline vec_t QAngle::LengthSqr( ) const
{
CHECK_VALID(*this);
return x * x + y * y + z * z;
}
//-----------------------------------------------------------------------------
// Vector equality with tolerance
//-----------------------------------------------------------------------------
inline bool QAnglesAreEqual( const QAngle& src1, const QAngle& src2, float tolerance = 0.0f )
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
}
//-----------------------------------------------------------------------------
// arithmetic operations (SLOW!!)
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline QAngle QAngle::operator-(void) const
{
QAngle ret(-x,-y,-z);
return ret;
}
inline QAngle QAngle::operator+(const QAngle& v) const
{
QAngle res;
res.x = x + v.x;
res.y = y + v.y;
res.z = z + v.z;
return res;
}
inline QAngle QAngle::operator-(const QAngle& v) const
{
QAngle res;
res.x = x - v.x;
res.y = y - v.y;
res.z = z - v.z;
return res;
}
inline QAngle QAngle::operator*(float fl) const
{
QAngle res;
res.x = x * fl;
res.y = y * fl;
res.z = z * fl;
return res;
}
inline QAngle QAngle::operator/(float fl) const
{
QAngle res;
res.x = x / fl;
res.y = y / fl;
res.z = z / fl;
return res;
}
inline QAngle operator*(float fl, const QAngle& v)
{
QAngle ret( v * fl );
return ret;
}
#endif // VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// NOTE: These are not completely correct. The representations are not equivalent
// unless the QAngle represents a rotational impulse along a coordinate axis (x,y,z)
inline void QAngleToAngularImpulse( const QAngle &angles, AngularImpulse &impulse )
{
impulse.x = angles.z;
impulse.y = angles.x;
impulse.z = angles.y;
}
inline void AngularImpulseToQAngle( const AngularImpulse &impulse, QAngle &angles )
{
angles.x = impulse.y;
angles.y = impulse.z;
angles.z = impulse.x;
}
#if !defined( _X360 ) && !defined( _PS3 )
FORCEINLINE vec_t InvRSquared( const float* v )
{
return 1.0 / MAX( 1.0, v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
}
FORCEINLINE vec_t InvRSquared( const Vector &v )
{
return InvRSquared( v.Base() );
}
#else
// call directly
FORCEINLINE float _VMX_InvRSquared( const Vector &v )
{
#if !defined (_PS3)
XMVECTOR xmV = XMVector3ReciprocalLength( XMLoadVector3( v.Base() ) );
xmV = XMVector3Dot( xmV, xmV );
return xmV.x;
#else //!_PS3
vector_float_union vRet;
vec_float4 v0, v1, vIn, vOut;
vector unsigned char permMask;
v0 = vec_ld( 0, v.Base() );
permMask = vec_lvsl( 0, v.Base() );
v1 = vec_ld( 11, v.Base() );
vIn = vec_perm(v0, v1, permMask);
vOut = vec_madd( vIn, vIn, _VEC_ZEROF );
vec_float4 vTmp = vec_sld( vIn, vIn, 4 );
vec_float4 vTmp2 = vec_sld( vIn, vIn, 8 );
vOut = vec_madd( vTmp, vTmp, vOut );
vOut = vec_madd( vTmp2, vTmp2, vOut );
vOut = vec_re( vec_add(vOut, _VEC_EPSILONF) );
vec_st(vOut,0,&vRet.vf);
float ret = vRet.f[0];
return ret;
#endif //!_PS3
}
#define InvRSquared(x) _VMX_InvRSquared(x)
#endif // _X360
#if !defined( _X360 ) && !defined( _PS3 )
// FIXME: Change this back to a #define once we get rid of the vec_t version
float VectorNormalize( Vector& v );
// FIXME: Obsolete version of VectorNormalize, once we remove all the friggin float*s
FORCEINLINE float VectorNormalize( float * v )
{
return VectorNormalize(*(reinterpret_cast<Vector *>(v)));
}
#else
#if !defined( _PS3 )
// modified version of Microsoft's XMVector3Length
// microsoft's version will return INF for very small vectors
// e.g. Vector vTest(7.98555446e-20,-6.85012984e-21,0); VectorNormalize( vTest );
// so we clamp to epsilon instead of checking for zero
XMFINLINE XMVECTOR XMVector3Length_Fixed
(
FXMVECTOR V
)
{
// Returns a QNaN on infinite vectors.
static CONST XMVECTOR g_fl4SmallVectorEpsilon = {1e-24f,1e-24f,1e-24f,1e-24f};
XMVECTOR D;
XMVECTOR Rsq;
XMVECTOR Rcp;
XMVECTOR Zero;
XMVECTOR RT;
XMVECTOR Result;
XMVECTOR Length;
XMVECTOR H;
H = __vspltisw(1);
D = __vmsum3fp(V, V);
H = __vcfsx(H, 1);
Rsq = __vrsqrtefp(D);
RT = __vmulfp(D, H);
Rcp = __vmulfp(Rsq, Rsq);
H = __vnmsubfp(RT, Rcp, H);
Rsq = __vmaddfp(Rsq, H, Rsq);
Zero = __vspltisw(0);
Result = __vcmpgefp( g_fl4SmallVectorEpsilon, D );
Length = __vmulfp(D, Rsq);
Result = __vsel(Length, Zero, Result);
return Result;
}
#endif
// call directly
FORCEINLINE float _VMX_VectorNormalize( Vector &vec )
{
#if !defined _PS3
float mag = XMVector3Length_Fixed( XMLoadVector3( vec.Base() ) ).x;
float den = 1.f / (mag + FLT_EPSILON );
vec.x *= den;
vec.y *= den;
vec.z *= den;
return mag;
#else // !_PS3
vec_float4 vIn;
vec_float4 v0, v1;
vector unsigned char permMask;
v0 = vec_ld( 0, vec.Base() );
permMask = vec_lvsl( 0, vec.Base() );
v1 = vec_ld( 11, vec.Base() );
vIn = vec_perm(v0, v1, permMask);
float mag = vmathV3Length((VmathVector3 *)&vIn);
float den = 1.f / (mag + FLT_EPSILON );
vec.x *= den;
vec.y *= den;
vec.z *= den;
return mag;
#endif // !_PS3
}
// FIXME: Change this back to a #define once we get rid of the vec_t version
FORCEINLINE float VectorNormalize( Vector& v )
{
return _VMX_VectorNormalize( v );
}
// FIXME: Obsolete version of VectorNormalize, once we remove all the friggin float*s
FORCEINLINE float VectorNormalize( float *pV )
{
return _VMX_VectorNormalize(*(reinterpret_cast<Vector*>(pV)));
}
#endif // _X360
#if !defined( _X360 ) && !defined( _PS3 )
FORCEINLINE void VectorNormalizeFast (Vector& vec)
{
float ool = FastRSqrt( FLT_EPSILON + vec.x * vec.x + vec.y * vec.y + vec.z * vec.z );
vec.x *= ool;
vec.y *= ool;
vec.z *= ool;
}
#else
// call directly
FORCEINLINE void VectorNormalizeFast( Vector &vec )
{
#if !defined (_PS3)
XMVECTOR xmV = XMVector3LengthEst( XMLoadVector3( vec.Base() ) );
float den = 1.f / (xmV.x + FLT_EPSILON);
vec.x *= den;
vec.y *= den;
vec.z *= den;
#else // !_PS3
vector_float_union vVec;
vec_float4 vIn, vOut, vOOLen, vDot;
// load
vec_float4 v0, v1;
vector unsigned char permMask;
v0 = vec_ld( 0, vec.Base() );
permMask = vec_lvsl( 0, vec.Base() );
v1 = vec_ld( 11, vec.Base() );
vIn = vec_perm(v0, v1, permMask);
// vec.vec
vOut = vec_madd( vIn, vIn, _VEC_ZEROF );
vec_float4 vTmp = vec_sld( vIn, vIn, 4 );
vec_float4 vTmp2 = vec_sld( vIn, vIn, 8 );
vOut = vec_madd( vTmp, vTmp, vOut );
vOut = vec_madd( vTmp2, vTmp2, vOut );
// splat dot to all
vDot = vec_splat( vOut, 0 );
vOOLen = vec_rsqrte( vec_add( vDot, _VEC_EPSILONF ) );
// vec * 1.0/sqrt(vec.vec)
vOut = vec_madd( vIn, vOOLen, _VEC_ZEROF );
// store
vec_st(vOut,0,&vVec.vf);
// store vec
vec.x = vVec.f[0];
vec.y = vVec.f[1];
vec.z = vVec.f[2];
#endif // !_PS3
}
#endif // _X360
inline vec_t Vector::NormalizeInPlace()
{
return VectorNormalize( *this );
}
inline Vector Vector::Normalized() const
{
Vector norm = *this;
VectorNormalize( norm );
return norm;
}
inline bool Vector::IsLengthGreaterThan( float val ) const
{
return LengthSqr() > val*val;
}
inline bool Vector::IsLengthLessThan( float val ) const
{
return LengthSqr() < val*val;
}
#endif