mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-12 16:18:03 +00:00
7053 lines
216 KiB
C
7053 lines
216 KiB
C
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
/** \mainpage V8 API Reference Guide
|
||
|
*
|
||
|
* V8 is Google's open source JavaScript engine.
|
||
|
*
|
||
|
* This set of documents provides reference material generated from the
|
||
|
* V8 header file, include/v8.h.
|
||
|
*
|
||
|
* For other documentation see http://code.google.com/apis/v8/
|
||
|
*/
|
||
|
|
||
|
#ifndef V8_H_
|
||
|
#define V8_H_
|
||
|
|
||
|
#include "v8stdint.h"
|
||
|
|
||
|
// We reserve the V8_* prefix for macros defined in V8 public API and
|
||
|
// assume there are no name conflicts with the embedder's code.
|
||
|
|
||
|
#ifdef V8_OS_WIN
|
||
|
|
||
|
// Setup for Windows DLL export/import. When building the V8 DLL the
|
||
|
// BUILDING_V8_SHARED needs to be defined. When building a program which uses
|
||
|
// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
|
||
|
// static library or building a program which uses the V8 static library neither
|
||
|
// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
|
||
|
#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
|
||
|
#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
|
||
|
build configuration to ensure that at most one of these is set
|
||
|
#endif
|
||
|
|
||
|
#ifdef BUILDING_V8_SHARED
|
||
|
# define V8_EXPORT __declspec(dllexport)
|
||
|
#elif USING_V8_SHARED
|
||
|
# define V8_EXPORT __declspec(dllimport)
|
||
|
#else
|
||
|
# define V8_EXPORT
|
||
|
#endif // BUILDING_V8_SHARED
|
||
|
|
||
|
#else // V8_OS_WIN
|
||
|
|
||
|
// Setup for Linux shared library export.
|
||
|
# ifdef V8_SHARED
|
||
|
# define V8_EXPORT __attribute__ ((visibility("default")))
|
||
|
# else
|
||
|
# define V8_EXPORT
|
||
|
# endif
|
||
|
|
||
|
#endif // V8_OS_WIN
|
||
|
|
||
|
/**
|
||
|
* The v8 JavaScript engine.
|
||
|
*/
|
||
|
namespace v8 {
|
||
|
|
||
|
class AccessorSignature;
|
||
|
class Array;
|
||
|
class Boolean;
|
||
|
class BooleanObject;
|
||
|
class Context;
|
||
|
class CpuProfiler;
|
||
|
class Data;
|
||
|
class Date;
|
||
|
class DeclaredAccessorDescriptor;
|
||
|
class External;
|
||
|
class Function;
|
||
|
class FunctionTemplate;
|
||
|
class HeapProfiler;
|
||
|
class ImplementationUtilities;
|
||
|
class Int32;
|
||
|
class Integer;
|
||
|
class Isolate;
|
||
|
class Name;
|
||
|
class Number;
|
||
|
class NumberObject;
|
||
|
class Object;
|
||
|
class ObjectOperationDescriptor;
|
||
|
class ObjectTemplate;
|
||
|
class Platform;
|
||
|
class Primitive;
|
||
|
class Promise;
|
||
|
class RawOperationDescriptor;
|
||
|
class Script;
|
||
|
class Signature;
|
||
|
class StackFrame;
|
||
|
class StackTrace;
|
||
|
class String;
|
||
|
class StringObject;
|
||
|
class Symbol;
|
||
|
class SymbolObject;
|
||
|
class Private;
|
||
|
class Uint32;
|
||
|
class Utils;
|
||
|
class Value;
|
||
|
template <class T> class Handle;
|
||
|
template <class T> class Local;
|
||
|
template <class T> class Eternal;
|
||
|
template<class T> class NonCopyablePersistentTraits;
|
||
|
template<class T> class PersistentBase;
|
||
|
template<class T,
|
||
|
class M = NonCopyablePersistentTraits<T> > class Persistent;
|
||
|
template<class T> class UniquePersistent;
|
||
|
template<class K, class V, class T> class PersistentValueMap;
|
||
|
template<class V, class T> class PersistentValueVector;
|
||
|
template<class T, class P> class WeakCallbackObject;
|
||
|
class FunctionTemplate;
|
||
|
class ObjectTemplate;
|
||
|
class Data;
|
||
|
template<typename T> class FunctionCallbackInfo;
|
||
|
template<typename T> class PropertyCallbackInfo;
|
||
|
class StackTrace;
|
||
|
class StackFrame;
|
||
|
class Isolate;
|
||
|
class DeclaredAccessorDescriptor;
|
||
|
class ObjectOperationDescriptor;
|
||
|
class RawOperationDescriptor;
|
||
|
class CallHandlerHelper;
|
||
|
class EscapableHandleScope;
|
||
|
template<typename T> class ReturnValue;
|
||
|
|
||
|
namespace internal {
|
||
|
class Arguments;
|
||
|
class Heap;
|
||
|
class HeapObject;
|
||
|
class Isolate;
|
||
|
class Object;
|
||
|
struct StreamedSource;
|
||
|
template<typename T> class CustomArguments;
|
||
|
class PropertyCallbackArguments;
|
||
|
class FunctionCallbackArguments;
|
||
|
class GlobalHandles;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* General purpose unique identifier.
|
||
|
*/
|
||
|
class UniqueId {
|
||
|
public:
|
||
|
explicit UniqueId(intptr_t data)
|
||
|
: data_(data) {}
|
||
|
|
||
|
bool operator==(const UniqueId& other) const {
|
||
|
return data_ == other.data_;
|
||
|
}
|
||
|
|
||
|
bool operator!=(const UniqueId& other) const {
|
||
|
return data_ != other.data_;
|
||
|
}
|
||
|
|
||
|
bool operator<(const UniqueId& other) const {
|
||
|
return data_ < other.data_;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
intptr_t data_;
|
||
|
};
|
||
|
|
||
|
// --- Handles ---
|
||
|
|
||
|
#define TYPE_CHECK(T, S) \
|
||
|
while (false) { \
|
||
|
*(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An object reference managed by the v8 garbage collector.
|
||
|
*
|
||
|
* All objects returned from v8 have to be tracked by the garbage
|
||
|
* collector so that it knows that the objects are still alive. Also,
|
||
|
* because the garbage collector may move objects, it is unsafe to
|
||
|
* point directly to an object. Instead, all objects are stored in
|
||
|
* handles which are known by the garbage collector and updated
|
||
|
* whenever an object moves. Handles should always be passed by value
|
||
|
* (except in cases like out-parameters) and they should never be
|
||
|
* allocated on the heap.
|
||
|
*
|
||
|
* There are two types of handles: local and persistent handles.
|
||
|
* Local handles are light-weight and transient and typically used in
|
||
|
* local operations. They are managed by HandleScopes. Persistent
|
||
|
* handles can be used when storing objects across several independent
|
||
|
* operations and have to be explicitly deallocated when they're no
|
||
|
* longer used.
|
||
|
*
|
||
|
* It is safe to extract the object stored in the handle by
|
||
|
* dereferencing the handle (for instance, to extract the Object* from
|
||
|
* a Handle<Object>); the value will still be governed by a handle
|
||
|
* behind the scenes and the same rules apply to these values as to
|
||
|
* their handles.
|
||
|
*/
|
||
|
template <class T> class Handle {
|
||
|
public:
|
||
|
/**
|
||
|
* Creates an empty handle.
|
||
|
*/
|
||
|
V8_INLINE Handle() : val_(0) {}
|
||
|
|
||
|
/**
|
||
|
* Creates a handle for the contents of the specified handle. This
|
||
|
* constructor allows you to pass handles as arguments by value and
|
||
|
* to assign between handles. However, if you try to assign between
|
||
|
* incompatible handles, for instance from a Handle<String> to a
|
||
|
* Handle<Number> it will cause a compile-time error. Assigning
|
||
|
* between compatible handles, for instance assigning a
|
||
|
* Handle<String> to a variable declared as Handle<Value>, is legal
|
||
|
* because String is a subclass of Value.
|
||
|
*/
|
||
|
template <class S> V8_INLINE Handle(Handle<S> that)
|
||
|
: val_(reinterpret_cast<T*>(*that)) {
|
||
|
/**
|
||
|
* This check fails when trying to convert between incompatible
|
||
|
* handles. For example, converting from a Handle<String> to a
|
||
|
* Handle<Number>.
|
||
|
*/
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if the handle is empty.
|
||
|
*/
|
||
|
V8_INLINE bool IsEmpty() const { return val_ == 0; }
|
||
|
|
||
|
/**
|
||
|
* Sets the handle to be empty. IsEmpty() will then return true.
|
||
|
*/
|
||
|
V8_INLINE void Clear() { val_ = 0; }
|
||
|
|
||
|
V8_INLINE T* operator->() const { return val_; }
|
||
|
|
||
|
V8_INLINE T* operator*() const { return val_; }
|
||
|
|
||
|
/**
|
||
|
* Checks whether two handles are the same.
|
||
|
* Returns true if both are empty, or if the objects
|
||
|
* to which they refer are identical.
|
||
|
* The handles' references are not checked.
|
||
|
*/
|
||
|
template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
|
||
|
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
|
||
|
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
|
||
|
if (a == 0) return b == 0;
|
||
|
if (b == 0) return false;
|
||
|
return *a == *b;
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE bool operator==(
|
||
|
const PersistentBase<S>& that) const {
|
||
|
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
|
||
|
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
|
||
|
if (a == 0) return b == 0;
|
||
|
if (b == 0) return false;
|
||
|
return *a == *b;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks whether two handles are different.
|
||
|
* Returns true if only one of the handles is empty, or if
|
||
|
* the objects to which they refer are different.
|
||
|
* The handles' references are not checked.
|
||
|
*/
|
||
|
template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
|
||
|
return !operator==(that);
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE bool operator!=(
|
||
|
const Persistent<S>& that) const {
|
||
|
return !operator==(that);
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE static Handle<T> Cast(Handle<S> that) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
// If we're going to perform the type check then we have to check
|
||
|
// that the handle isn't empty before doing the checked cast.
|
||
|
if (that.IsEmpty()) return Handle<T>();
|
||
|
#endif
|
||
|
return Handle<T>(T::Cast(*that));
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE Handle<S> As() {
|
||
|
return Handle<S>::Cast(*this);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static Handle<T> New(Isolate* isolate, Handle<T> that) {
|
||
|
return New(isolate, that.val_);
|
||
|
}
|
||
|
V8_INLINE static Handle<T> New(Isolate* isolate,
|
||
|
const PersistentBase<T>& that) {
|
||
|
return New(isolate, that.val_);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
friend class Utils;
|
||
|
template<class F, class M> friend class Persistent;
|
||
|
template<class F> friend class PersistentBase;
|
||
|
template<class F> friend class Handle;
|
||
|
template<class F> friend class Local;
|
||
|
template<class F> friend class FunctionCallbackInfo;
|
||
|
template<class F> friend class PropertyCallbackInfo;
|
||
|
template<class F> friend class internal::CustomArguments;
|
||
|
friend Handle<Primitive> Undefined(Isolate* isolate);
|
||
|
friend Handle<Primitive> Null(Isolate* isolate);
|
||
|
friend Handle<Boolean> True(Isolate* isolate);
|
||
|
friend Handle<Boolean> False(Isolate* isolate);
|
||
|
friend class Context;
|
||
|
friend class HandleScope;
|
||
|
friend class Object;
|
||
|
friend class Private;
|
||
|
|
||
|
/**
|
||
|
* Creates a new handle for the specified value.
|
||
|
*/
|
||
|
V8_INLINE explicit Handle(T* val) : val_(val) {}
|
||
|
|
||
|
V8_INLINE static Handle<T> New(Isolate* isolate, T* that);
|
||
|
|
||
|
T* val_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A light-weight stack-allocated object handle. All operations
|
||
|
* that return objects from within v8 return them in local handles. They
|
||
|
* are created within HandleScopes, and all local handles allocated within a
|
||
|
* handle scope are destroyed when the handle scope is destroyed. Hence it
|
||
|
* is not necessary to explicitly deallocate local handles.
|
||
|
*/
|
||
|
template <class T> class Local : public Handle<T> {
|
||
|
public:
|
||
|
V8_INLINE Local();
|
||
|
template <class S> V8_INLINE Local(Local<S> that)
|
||
|
: Handle<T>(reinterpret_cast<T*>(*that)) {
|
||
|
/**
|
||
|
* This check fails when trying to convert between incompatible
|
||
|
* handles. For example, converting from a Handle<String> to a
|
||
|
* Handle<Number>.
|
||
|
*/
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
// If we're going to perform the type check then we have to check
|
||
|
// that the handle isn't empty before doing the checked cast.
|
||
|
if (that.IsEmpty()) return Local<T>();
|
||
|
#endif
|
||
|
return Local<T>(T::Cast(*that));
|
||
|
}
|
||
|
template <class S> V8_INLINE Local(Handle<S> that)
|
||
|
: Handle<T>(reinterpret_cast<T*>(*that)) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE Local<S> As() {
|
||
|
return Local<S>::Cast(*this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a local handle for the content of another handle.
|
||
|
* The referee is kept alive by the local handle even when
|
||
|
* the original handle is destroyed/disposed.
|
||
|
*/
|
||
|
V8_INLINE static Local<T> New(Isolate* isolate, Handle<T> that);
|
||
|
V8_INLINE static Local<T> New(Isolate* isolate,
|
||
|
const PersistentBase<T>& that);
|
||
|
|
||
|
private:
|
||
|
friend class Utils;
|
||
|
template<class F> friend class Eternal;
|
||
|
template<class F> friend class PersistentBase;
|
||
|
template<class F, class M> friend class Persistent;
|
||
|
template<class F> friend class Handle;
|
||
|
template<class F> friend class Local;
|
||
|
template<class F> friend class FunctionCallbackInfo;
|
||
|
template<class F> friend class PropertyCallbackInfo;
|
||
|
friend class String;
|
||
|
friend class Object;
|
||
|
friend class Context;
|
||
|
template<class F> friend class internal::CustomArguments;
|
||
|
friend class HandleScope;
|
||
|
friend class EscapableHandleScope;
|
||
|
template<class F1, class F2, class F3> friend class PersistentValueMap;
|
||
|
template<class F1, class F2> friend class PersistentValueVector;
|
||
|
|
||
|
template <class S> V8_INLINE Local(S* that) : Handle<T>(that) { }
|
||
|
V8_INLINE static Local<T> New(Isolate* isolate, T* that);
|
||
|
};
|
||
|
|
||
|
|
||
|
// Eternal handles are set-once handles that live for the life of the isolate.
|
||
|
template <class T> class Eternal {
|
||
|
public:
|
||
|
V8_INLINE Eternal() : index_(kInitialValue) { }
|
||
|
template<class S>
|
||
|
V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
|
||
|
Set(isolate, handle);
|
||
|
}
|
||
|
// Can only be safely called if already set.
|
||
|
V8_INLINE Local<T> Get(Isolate* isolate);
|
||
|
V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
|
||
|
template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
|
||
|
|
||
|
private:
|
||
|
static const int kInitialValue = -1;
|
||
|
int index_;
|
||
|
};
|
||
|
|
||
|
|
||
|
template<class T, class P>
|
||
|
class WeakCallbackData {
|
||
|
public:
|
||
|
typedef void (*Callback)(const WeakCallbackData<T, P>& data);
|
||
|
|
||
|
V8_INLINE Isolate* GetIsolate() const { return isolate_; }
|
||
|
V8_INLINE Local<T> GetValue() const { return handle_; }
|
||
|
V8_INLINE P* GetParameter() const { return parameter_; }
|
||
|
|
||
|
private:
|
||
|
friend class internal::GlobalHandles;
|
||
|
WeakCallbackData(Isolate* isolate, Local<T> handle, P* parameter)
|
||
|
: isolate_(isolate), handle_(handle), parameter_(parameter) { }
|
||
|
Isolate* isolate_;
|
||
|
Local<T> handle_;
|
||
|
P* parameter_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An object reference that is independent of any handle scope. Where
|
||
|
* a Local handle only lives as long as the HandleScope in which it was
|
||
|
* allocated, a PersistentBase handle remains valid until it is explicitly
|
||
|
* disposed.
|
||
|
*
|
||
|
* A persistent handle contains a reference to a storage cell within
|
||
|
* the v8 engine which holds an object value and which is updated by
|
||
|
* the garbage collector whenever the object is moved. A new storage
|
||
|
* cell can be created using the constructor or PersistentBase::Reset and
|
||
|
* existing handles can be disposed using PersistentBase::Reset.
|
||
|
*
|
||
|
*/
|
||
|
template <class T> class PersistentBase {
|
||
|
public:
|
||
|
/**
|
||
|
* If non-empty, destroy the underlying storage cell
|
||
|
* IsEmpty() will return true after this call.
|
||
|
*/
|
||
|
V8_INLINE void Reset();
|
||
|
/**
|
||
|
* If non-empty, destroy the underlying storage cell
|
||
|
* and create a new one with the contents of other if other is non empty
|
||
|
*/
|
||
|
template <class S>
|
||
|
V8_INLINE void Reset(Isolate* isolate, const Handle<S>& other);
|
||
|
|
||
|
/**
|
||
|
* If non-empty, destroy the underlying storage cell
|
||
|
* and create a new one with the contents of other if other is non empty
|
||
|
*/
|
||
|
template <class S>
|
||
|
V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
|
||
|
|
||
|
V8_INLINE bool IsEmpty() const { return val_ == 0; }
|
||
|
|
||
|
template <class S>
|
||
|
V8_INLINE bool operator==(const PersistentBase<S>& that) const {
|
||
|
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
|
||
|
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
|
||
|
if (a == 0) return b == 0;
|
||
|
if (b == 0) return false;
|
||
|
return *a == *b;
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
|
||
|
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
|
||
|
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
|
||
|
if (a == 0) return b == 0;
|
||
|
if (b == 0) return false;
|
||
|
return *a == *b;
|
||
|
}
|
||
|
|
||
|
template <class S>
|
||
|
V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
|
||
|
return !operator==(that);
|
||
|
}
|
||
|
|
||
|
template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
|
||
|
return !operator==(that);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Install a finalization callback on this object.
|
||
|
* NOTE: There is no guarantee as to *when* or even *if* the callback is
|
||
|
* invoked. The invocation is performed solely on a best effort basis.
|
||
|
* As always, GC-based finalization should *not* be relied upon for any
|
||
|
* critical form of resource management!
|
||
|
*/
|
||
|
template<typename P>
|
||
|
V8_INLINE void SetWeak(
|
||
|
P* parameter,
|
||
|
typename WeakCallbackData<T, P>::Callback callback);
|
||
|
|
||
|
template<typename S, typename P>
|
||
|
V8_INLINE void SetWeak(
|
||
|
P* parameter,
|
||
|
typename WeakCallbackData<S, P>::Callback callback);
|
||
|
|
||
|
template<typename P>
|
||
|
V8_INLINE P* ClearWeak();
|
||
|
|
||
|
// TODO(dcarney): remove this.
|
||
|
V8_INLINE void ClearWeak() { ClearWeak<void>(); }
|
||
|
|
||
|
/**
|
||
|
* Marks the reference to this object independent. Garbage collector is free
|
||
|
* to ignore any object groups containing this object. Weak callback for an
|
||
|
* independent handle should not assume that it will be preceded by a global
|
||
|
* GC prologue callback or followed by a global GC epilogue callback.
|
||
|
*/
|
||
|
V8_INLINE void MarkIndependent();
|
||
|
|
||
|
/**
|
||
|
* Marks the reference to this object partially dependent. Partially dependent
|
||
|
* handles only depend on other partially dependent handles and these
|
||
|
* dependencies are provided through object groups. It provides a way to build
|
||
|
* smaller object groups for young objects that represent only a subset of all
|
||
|
* external dependencies. This mark is automatically cleared after each
|
||
|
* garbage collection.
|
||
|
*/
|
||
|
V8_INLINE void MarkPartiallyDependent();
|
||
|
|
||
|
V8_INLINE bool IsIndependent() const;
|
||
|
|
||
|
/** Checks if the handle holds the only reference to an object. */
|
||
|
V8_INLINE bool IsNearDeath() const;
|
||
|
|
||
|
/** Returns true if the handle's reference is weak. */
|
||
|
V8_INLINE bool IsWeak() const;
|
||
|
|
||
|
/**
|
||
|
* Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
|
||
|
* description in v8-profiler.h for details.
|
||
|
*/
|
||
|
V8_INLINE void SetWrapperClassId(uint16_t class_id);
|
||
|
|
||
|
/**
|
||
|
* Returns the class ID previously assigned to this handle or 0 if no class ID
|
||
|
* was previously assigned.
|
||
|
*/
|
||
|
V8_INLINE uint16_t WrapperClassId() const;
|
||
|
|
||
|
private:
|
||
|
friend class Isolate;
|
||
|
friend class Utils;
|
||
|
template<class F> friend class Handle;
|
||
|
template<class F> friend class Local;
|
||
|
template<class F1, class F2> friend class Persistent;
|
||
|
template<class F> friend class UniquePersistent;
|
||
|
template<class F> friend class PersistentBase;
|
||
|
template<class F> friend class ReturnValue;
|
||
|
template<class F1, class F2, class F3> friend class PersistentValueMap;
|
||
|
template<class F1, class F2> friend class PersistentValueVector;
|
||
|
friend class Object;
|
||
|
|
||
|
explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
|
||
|
PersistentBase(PersistentBase& other); // NOLINT
|
||
|
void operator=(PersistentBase&);
|
||
|
V8_INLINE static T* New(Isolate* isolate, T* that);
|
||
|
|
||
|
T* val_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Default traits for Persistent. This class does not allow
|
||
|
* use of the copy constructor or assignment operator.
|
||
|
* At present kResetInDestructor is not set, but that will change in a future
|
||
|
* version.
|
||
|
*/
|
||
|
template<class T>
|
||
|
class NonCopyablePersistentTraits {
|
||
|
public:
|
||
|
typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
|
||
|
static const bool kResetInDestructor = false;
|
||
|
template<class S, class M>
|
||
|
V8_INLINE static void Copy(const Persistent<S, M>& source,
|
||
|
NonCopyablePersistent* dest) {
|
||
|
Uncompilable<Object>();
|
||
|
}
|
||
|
// TODO(dcarney): come up with a good compile error here.
|
||
|
template<class O> V8_INLINE static void Uncompilable() {
|
||
|
TYPE_CHECK(O, Primitive);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Helper class traits to allow copying and assignment of Persistent.
|
||
|
* This will clone the contents of storage cell, but not any of the flags, etc.
|
||
|
*/
|
||
|
template<class T>
|
||
|
struct CopyablePersistentTraits {
|
||
|
typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
|
||
|
static const bool kResetInDestructor = true;
|
||
|
template<class S, class M>
|
||
|
static V8_INLINE void Copy(const Persistent<S, M>& source,
|
||
|
CopyablePersistent* dest) {
|
||
|
// do nothing, just allow copy
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A PersistentBase which allows copy and assignment.
|
||
|
*
|
||
|
* Copy, assignment and destructor bevavior is controlled by the traits
|
||
|
* class M.
|
||
|
*
|
||
|
* Note: Persistent class hierarchy is subject to future changes.
|
||
|
*/
|
||
|
template <class T, class M> class Persistent : public PersistentBase<T> {
|
||
|
public:
|
||
|
/**
|
||
|
* A Persistent with no storage cell.
|
||
|
*/
|
||
|
V8_INLINE Persistent() : PersistentBase<T>(0) { }
|
||
|
/**
|
||
|
* Construct a Persistent from a Handle.
|
||
|
* When the Handle is non-empty, a new storage cell is created
|
||
|
* pointing to the same object, and no flags are set.
|
||
|
*/
|
||
|
template <class S> V8_INLINE Persistent(Isolate* isolate, Handle<S> that)
|
||
|
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
/**
|
||
|
* Construct a Persistent from a Persistent.
|
||
|
* When the Persistent is non-empty, a new storage cell is created
|
||
|
* pointing to the same object, and no flags are set.
|
||
|
*/
|
||
|
template <class S, class M2>
|
||
|
V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
|
||
|
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
/**
|
||
|
* The copy constructors and assignment operator create a Persistent
|
||
|
* exactly as the Persistent constructor, but the Copy function from the
|
||
|
* traits class is called, allowing the setting of flags based on the
|
||
|
* copied Persistent.
|
||
|
*/
|
||
|
V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
|
||
|
Copy(that);
|
||
|
}
|
||
|
template <class S, class M2>
|
||
|
V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
|
||
|
Copy(that);
|
||
|
}
|
||
|
V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
|
||
|
Copy(that);
|
||
|
return *this;
|
||
|
}
|
||
|
template <class S, class M2>
|
||
|
V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
|
||
|
Copy(that);
|
||
|
return *this;
|
||
|
}
|
||
|
/**
|
||
|
* The destructor will dispose the Persistent based on the
|
||
|
* kResetInDestructor flags in the traits class. Since not calling dispose
|
||
|
* can result in a memory leak, it is recommended to always set this flag.
|
||
|
*/
|
||
|
V8_INLINE ~Persistent() {
|
||
|
if (M::kResetInDestructor) this->Reset();
|
||
|
}
|
||
|
|
||
|
// TODO(dcarney): this is pretty useless, fix or remove
|
||
|
template <class S>
|
||
|
V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
// If we're going to perform the type check then we have to check
|
||
|
// that the handle isn't empty before doing the checked cast.
|
||
|
if (!that.IsEmpty()) T::Cast(*that);
|
||
|
#endif
|
||
|
return reinterpret_cast<Persistent<T>&>(that);
|
||
|
}
|
||
|
|
||
|
// TODO(dcarney): this is pretty useless, fix or remove
|
||
|
template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
|
||
|
return Persistent<S>::Cast(*this);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
friend class Isolate;
|
||
|
friend class Utils;
|
||
|
template<class F> friend class Handle;
|
||
|
template<class F> friend class Local;
|
||
|
template<class F1, class F2> friend class Persistent;
|
||
|
template<class F> friend class ReturnValue;
|
||
|
|
||
|
template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
|
||
|
V8_INLINE T* operator*() const { return this->val_; }
|
||
|
template<class S, class M2>
|
||
|
V8_INLINE void Copy(const Persistent<S, M2>& that);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A PersistentBase which has move semantics.
|
||
|
*
|
||
|
* Note: Persistent class hierarchy is subject to future changes.
|
||
|
*/
|
||
|
template<class T>
|
||
|
class UniquePersistent : public PersistentBase<T> {
|
||
|
struct RValue {
|
||
|
V8_INLINE explicit RValue(UniquePersistent* obj) : object(obj) {}
|
||
|
UniquePersistent* object;
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
/**
|
||
|
* A UniquePersistent with no storage cell.
|
||
|
*/
|
||
|
V8_INLINE UniquePersistent() : PersistentBase<T>(0) { }
|
||
|
/**
|
||
|
* Construct a UniquePersistent from a Handle.
|
||
|
* When the Handle is non-empty, a new storage cell is created
|
||
|
* pointing to the same object, and no flags are set.
|
||
|
*/
|
||
|
template <class S>
|
||
|
V8_INLINE UniquePersistent(Isolate* isolate, Handle<S> that)
|
||
|
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
/**
|
||
|
* Construct a UniquePersistent from a PersistentBase.
|
||
|
* When the Persistent is non-empty, a new storage cell is created
|
||
|
* pointing to the same object, and no flags are set.
|
||
|
*/
|
||
|
template <class S>
|
||
|
V8_INLINE UniquePersistent(Isolate* isolate, const PersistentBase<S>& that)
|
||
|
: PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
/**
|
||
|
* Move constructor.
|
||
|
*/
|
||
|
V8_INLINE UniquePersistent(RValue rvalue)
|
||
|
: PersistentBase<T>(rvalue.object->val_) {
|
||
|
rvalue.object->val_ = 0;
|
||
|
}
|
||
|
V8_INLINE ~UniquePersistent() { this->Reset(); }
|
||
|
/**
|
||
|
* Move via assignment.
|
||
|
*/
|
||
|
template<class S>
|
||
|
V8_INLINE UniquePersistent& operator=(UniquePersistent<S> rhs) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
this->Reset();
|
||
|
this->val_ = rhs.val_;
|
||
|
rhs.val_ = 0;
|
||
|
return *this;
|
||
|
}
|
||
|
/**
|
||
|
* Cast operator for moves.
|
||
|
*/
|
||
|
V8_INLINE operator RValue() { return RValue(this); }
|
||
|
/**
|
||
|
* Pass allows returning uniques from functions, etc.
|
||
|
*/
|
||
|
UniquePersistent Pass() { return UniquePersistent(RValue(this)); }
|
||
|
|
||
|
private:
|
||
|
UniquePersistent(UniquePersistent&);
|
||
|
void operator=(UniquePersistent&);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A stack-allocated class that governs a number of local handles.
|
||
|
* After a handle scope has been created, all local handles will be
|
||
|
* allocated within that handle scope until either the handle scope is
|
||
|
* deleted or another handle scope is created. If there is already a
|
||
|
* handle scope and a new one is created, all allocations will take
|
||
|
* place in the new handle scope until it is deleted. After that,
|
||
|
* new handles will again be allocated in the original handle scope.
|
||
|
*
|
||
|
* After the handle scope of a local handle has been deleted the
|
||
|
* garbage collector will no longer track the object stored in the
|
||
|
* handle and may deallocate it. The behavior of accessing a handle
|
||
|
* for which the handle scope has been deleted is undefined.
|
||
|
*/
|
||
|
class V8_EXPORT HandleScope {
|
||
|
public:
|
||
|
HandleScope(Isolate* isolate);
|
||
|
|
||
|
~HandleScope();
|
||
|
|
||
|
/**
|
||
|
* Counts the number of allocated handles.
|
||
|
*/
|
||
|
static int NumberOfHandles(Isolate* isolate);
|
||
|
|
||
|
V8_INLINE Isolate* GetIsolate() const {
|
||
|
return reinterpret_cast<Isolate*>(isolate_);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
V8_INLINE HandleScope() {}
|
||
|
|
||
|
void Initialize(Isolate* isolate);
|
||
|
|
||
|
static internal::Object** CreateHandle(internal::Isolate* isolate,
|
||
|
internal::Object* value);
|
||
|
|
||
|
private:
|
||
|
// Uses heap_object to obtain the current Isolate.
|
||
|
static internal::Object** CreateHandle(internal::HeapObject* heap_object,
|
||
|
internal::Object* value);
|
||
|
|
||
|
// Make it hard to create heap-allocated or illegal handle scopes by
|
||
|
// disallowing certain operations.
|
||
|
HandleScope(const HandleScope&);
|
||
|
void operator=(const HandleScope&);
|
||
|
void* operator new(size_t size);
|
||
|
void operator delete(void*, size_t);
|
||
|
|
||
|
internal::Isolate* isolate_;
|
||
|
internal::Object** prev_next_;
|
||
|
internal::Object** prev_limit_;
|
||
|
|
||
|
// Local::New uses CreateHandle with an Isolate* parameter.
|
||
|
template<class F> friend class Local;
|
||
|
|
||
|
// Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
|
||
|
// a HeapObject* in their shortcuts.
|
||
|
friend class Object;
|
||
|
friend class Context;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A HandleScope which first allocates a handle in the current scope
|
||
|
* which will be later filled with the escape value.
|
||
|
*/
|
||
|
class V8_EXPORT EscapableHandleScope : public HandleScope {
|
||
|
public:
|
||
|
EscapableHandleScope(Isolate* isolate);
|
||
|
V8_INLINE ~EscapableHandleScope() {}
|
||
|
|
||
|
/**
|
||
|
* Pushes the value into the previous scope and returns a handle to it.
|
||
|
* Cannot be called twice.
|
||
|
*/
|
||
|
template <class T>
|
||
|
V8_INLINE Local<T> Escape(Local<T> value) {
|
||
|
internal::Object** slot =
|
||
|
Escape(reinterpret_cast<internal::Object**>(*value));
|
||
|
return Local<T>(reinterpret_cast<T*>(slot));
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
internal::Object** Escape(internal::Object** escape_value);
|
||
|
|
||
|
// Make it hard to create heap-allocated or illegal handle scopes by
|
||
|
// disallowing certain operations.
|
||
|
EscapableHandleScope(const EscapableHandleScope&);
|
||
|
void operator=(const EscapableHandleScope&);
|
||
|
void* operator new(size_t size);
|
||
|
void operator delete(void*, size_t);
|
||
|
|
||
|
internal::Object** escape_slot_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A simple Maybe type, representing an object which may or may not have a
|
||
|
* value.
|
||
|
*/
|
||
|
template<class T>
|
||
|
struct Maybe {
|
||
|
Maybe() : has_value(false) {}
|
||
|
explicit Maybe(T t) : has_value(true), value(t) {}
|
||
|
Maybe(bool has, T t) : has_value(has), value(t) {}
|
||
|
|
||
|
bool has_value;
|
||
|
T value;
|
||
|
};
|
||
|
|
||
|
|
||
|
// Convenience wrapper.
|
||
|
template <class T>
|
||
|
inline Maybe<T> maybe(T t) {
|
||
|
return Maybe<T>(t);
|
||
|
}
|
||
|
|
||
|
|
||
|
// --- Special objects ---
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The superclass of values and API object templates.
|
||
|
*/
|
||
|
class V8_EXPORT Data {
|
||
|
private:
|
||
|
Data();
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The origin, within a file, of a script.
|
||
|
*/
|
||
|
class ScriptOrigin {
|
||
|
public:
|
||
|
V8_INLINE ScriptOrigin(
|
||
|
Handle<Value> resource_name,
|
||
|
Handle<Integer> resource_line_offset = Handle<Integer>(),
|
||
|
Handle<Integer> resource_column_offset = Handle<Integer>(),
|
||
|
Handle<Boolean> resource_is_shared_cross_origin = Handle<Boolean>(),
|
||
|
Handle<Integer> script_id = Handle<Integer>())
|
||
|
: resource_name_(resource_name),
|
||
|
resource_line_offset_(resource_line_offset),
|
||
|
resource_column_offset_(resource_column_offset),
|
||
|
resource_is_shared_cross_origin_(resource_is_shared_cross_origin),
|
||
|
script_id_(script_id) { }
|
||
|
V8_INLINE Handle<Value> ResourceName() const;
|
||
|
V8_INLINE Handle<Integer> ResourceLineOffset() const;
|
||
|
V8_INLINE Handle<Integer> ResourceColumnOffset() const;
|
||
|
V8_INLINE Handle<Boolean> ResourceIsSharedCrossOrigin() const;
|
||
|
V8_INLINE Handle<Integer> ScriptID() const;
|
||
|
private:
|
||
|
Handle<Value> resource_name_;
|
||
|
Handle<Integer> resource_line_offset_;
|
||
|
Handle<Integer> resource_column_offset_;
|
||
|
Handle<Boolean> resource_is_shared_cross_origin_;
|
||
|
Handle<Integer> script_id_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A compiled JavaScript script, not yet tied to a Context.
|
||
|
*/
|
||
|
class V8_EXPORT UnboundScript {
|
||
|
public:
|
||
|
/**
|
||
|
* Binds the script to the currently entered context.
|
||
|
*/
|
||
|
Local<Script> BindToCurrentContext();
|
||
|
|
||
|
int GetId();
|
||
|
Handle<Value> GetScriptName();
|
||
|
|
||
|
/**
|
||
|
* Data read from magic sourceURL comments.
|
||
|
*/
|
||
|
Handle<Value> GetSourceURL();
|
||
|
/**
|
||
|
* Data read from magic sourceMappingURL comments.
|
||
|
*/
|
||
|
Handle<Value> GetSourceMappingURL();
|
||
|
|
||
|
/**
|
||
|
* Returns zero based line number of the code_pos location in the script.
|
||
|
* -1 will be returned if no information available.
|
||
|
*/
|
||
|
int GetLineNumber(int code_pos);
|
||
|
|
||
|
static const int kNoScriptId = 0;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A compiled JavaScript script, tied to a Context which was active when the
|
||
|
* script was compiled.
|
||
|
*/
|
||
|
class V8_EXPORT Script {
|
||
|
public:
|
||
|
/**
|
||
|
* A shorthand for ScriptCompiler::Compile().
|
||
|
*/
|
||
|
static Local<Script> Compile(Handle<String> source,
|
||
|
ScriptOrigin* origin = NULL);
|
||
|
|
||
|
// To be decprecated, use the Compile above.
|
||
|
static Local<Script> Compile(Handle<String> source,
|
||
|
Handle<String> file_name);
|
||
|
|
||
|
/**
|
||
|
* Runs the script returning the resulting value. It will be run in the
|
||
|
* context in which it was created (ScriptCompiler::CompileBound or
|
||
|
* UnboundScript::BindToGlobalContext()).
|
||
|
*/
|
||
|
Local<Value> Run();
|
||
|
|
||
|
/**
|
||
|
* Returns the corresponding context-unbound script.
|
||
|
*/
|
||
|
Local<UnboundScript> GetUnboundScript();
|
||
|
|
||
|
V8_DEPRECATED("Use GetUnboundScript()->GetId()",
|
||
|
int GetId()) {
|
||
|
return GetUnboundScript()->GetId();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* For compiling scripts.
|
||
|
*/
|
||
|
class V8_EXPORT ScriptCompiler {
|
||
|
public:
|
||
|
/**
|
||
|
* Compilation data that the embedder can cache and pass back to speed up
|
||
|
* future compilations. The data is produced if the CompilerOptions passed to
|
||
|
* the compilation functions in ScriptCompiler contains produce_data_to_cache
|
||
|
* = true. The data to cache can then can be retrieved from
|
||
|
* UnboundScript.
|
||
|
*/
|
||
|
struct V8_EXPORT CachedData {
|
||
|
enum BufferPolicy {
|
||
|
BufferNotOwned,
|
||
|
BufferOwned
|
||
|
};
|
||
|
|
||
|
CachedData() : data(NULL), length(0), buffer_policy(BufferNotOwned) {}
|
||
|
|
||
|
// If buffer_policy is BufferNotOwned, the caller keeps the ownership of
|
||
|
// data and guarantees that it stays alive until the CachedData object is
|
||
|
// destroyed. If the policy is BufferOwned, the given data will be deleted
|
||
|
// (with delete[]) when the CachedData object is destroyed.
|
||
|
CachedData(const uint8_t* data, int length,
|
||
|
BufferPolicy buffer_policy = BufferNotOwned);
|
||
|
~CachedData();
|
||
|
// TODO(marja): Async compilation; add constructors which take a callback
|
||
|
// which will be called when V8 no longer needs the data.
|
||
|
const uint8_t* data;
|
||
|
int length;
|
||
|
BufferPolicy buffer_policy;
|
||
|
|
||
|
private:
|
||
|
// Prevent copying. Not implemented.
|
||
|
CachedData(const CachedData&);
|
||
|
CachedData& operator=(const CachedData&);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Source code which can be then compiled to a UnboundScript or Script.
|
||
|
*/
|
||
|
class Source {
|
||
|
public:
|
||
|
// Source takes ownership of CachedData.
|
||
|
V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
|
||
|
CachedData* cached_data = NULL);
|
||
|
V8_INLINE Source(Local<String> source_string,
|
||
|
CachedData* cached_data = NULL);
|
||
|
V8_INLINE ~Source();
|
||
|
|
||
|
// Ownership of the CachedData or its buffers is *not* transferred to the
|
||
|
// caller. The CachedData object is alive as long as the Source object is
|
||
|
// alive.
|
||
|
V8_INLINE const CachedData* GetCachedData() const;
|
||
|
|
||
|
private:
|
||
|
friend class ScriptCompiler;
|
||
|
// Prevent copying. Not implemented.
|
||
|
Source(const Source&);
|
||
|
Source& operator=(const Source&);
|
||
|
|
||
|
Local<String> source_string;
|
||
|
|
||
|
// Origin information
|
||
|
Handle<Value> resource_name;
|
||
|
Handle<Integer> resource_line_offset;
|
||
|
Handle<Integer> resource_column_offset;
|
||
|
Handle<Boolean> resource_is_shared_cross_origin;
|
||
|
|
||
|
// Cached data from previous compilation (if a kConsume*Cache flag is
|
||
|
// set), or hold newly generated cache data (kProduce*Cache flags) are
|
||
|
// set when calling a compile method.
|
||
|
CachedData* cached_data;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* For streaming incomplete script data to V8. The embedder should implement a
|
||
|
* subclass of this class.
|
||
|
*/
|
||
|
class ExternalSourceStream {
|
||
|
public:
|
||
|
virtual ~ExternalSourceStream() {}
|
||
|
|
||
|
/**
|
||
|
* V8 calls this to request the next chunk of data from the embedder. This
|
||
|
* function will be called on a background thread, so it's OK to block and
|
||
|
* wait for the data, if the embedder doesn't have data yet. Returns the
|
||
|
* length of the data returned. When the data ends, GetMoreData should
|
||
|
* return 0. Caller takes ownership of the data.
|
||
|
*
|
||
|
* When streaming UTF-8 data, V8 handles multi-byte characters split between
|
||
|
* two data chunks, but doesn't handle multi-byte characters split between
|
||
|
* more than two data chunks. The embedder can avoid this problem by always
|
||
|
* returning at least 2 bytes of data.
|
||
|
*
|
||
|
* If the embedder wants to cancel the streaming, they should make the next
|
||
|
* GetMoreData call return 0. V8 will interpret it as end of data (and most
|
||
|
* probably, parsing will fail). The streaming task will return as soon as
|
||
|
* V8 has parsed the data it received so far.
|
||
|
*/
|
||
|
virtual size_t GetMoreData(const uint8_t** src) = 0;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Source code which can be streamed into V8 in pieces. It will be parsed
|
||
|
* while streaming. It can be compiled after the streaming is complete.
|
||
|
* StreamedSource must be kept alive while the streaming task is ran (see
|
||
|
* ScriptStreamingTask below).
|
||
|
*/
|
||
|
class V8_EXPORT StreamedSource {
|
||
|
public:
|
||
|
enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
|
||
|
|
||
|
StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
|
||
|
~StreamedSource();
|
||
|
|
||
|
// Ownership of the CachedData or its buffers is *not* transferred to the
|
||
|
// caller. The CachedData object is alive as long as the StreamedSource
|
||
|
// object is alive.
|
||
|
const CachedData* GetCachedData() const;
|
||
|
|
||
|
internal::StreamedSource* impl() const { return impl_; }
|
||
|
|
||
|
private:
|
||
|
// Prevent copying. Not implemented.
|
||
|
StreamedSource(const StreamedSource&);
|
||
|
StreamedSource& operator=(const StreamedSource&);
|
||
|
|
||
|
internal::StreamedSource* impl_;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* A streaming task which the embedder must run on a background thread to
|
||
|
* stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
|
||
|
*/
|
||
|
class ScriptStreamingTask {
|
||
|
public:
|
||
|
virtual ~ScriptStreamingTask() {}
|
||
|
virtual void Run() = 0;
|
||
|
};
|
||
|
|
||
|
enum CompileOptions {
|
||
|
kNoCompileOptions = 0,
|
||
|
kProduceParserCache,
|
||
|
kConsumeParserCache,
|
||
|
kProduceCodeCache,
|
||
|
kConsumeCodeCache,
|
||
|
|
||
|
// Support the previous API for a transition period.
|
||
|
kProduceDataToCache
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Compiles the specified script (context-independent).
|
||
|
* Cached data as part of the source object can be optionally produced to be
|
||
|
* consumed later to speed up compilation of identical source scripts.
|
||
|
*
|
||
|
* Note that when producing cached data, the source must point to NULL for
|
||
|
* cached data. When consuming cached data, the cached data must have been
|
||
|
* produced by the same version of V8.
|
||
|
*
|
||
|
* \param source Script source code.
|
||
|
* \return Compiled script object (context independent; for running it must be
|
||
|
* bound to a context).
|
||
|
*/
|
||
|
static Local<UnboundScript> CompileUnbound(
|
||
|
Isolate* isolate, Source* source,
|
||
|
CompileOptions options = kNoCompileOptions);
|
||
|
|
||
|
/**
|
||
|
* Compiles the specified script (bound to current context).
|
||
|
*
|
||
|
* \param source Script source code.
|
||
|
* \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
|
||
|
* using pre_data speeds compilation if it's done multiple times.
|
||
|
* Owned by caller, no references are kept when this function returns.
|
||
|
* \return Compiled script object, bound to the context that was active
|
||
|
* when this function was called. When run it will always use this
|
||
|
* context.
|
||
|
*/
|
||
|
static Local<Script> Compile(
|
||
|
Isolate* isolate, Source* source,
|
||
|
CompileOptions options = kNoCompileOptions);
|
||
|
|
||
|
/**
|
||
|
* Returns a task which streams script data into V8, or NULL if the script
|
||
|
* cannot be streamed. The user is responsible for running the task on a
|
||
|
* background thread and deleting it. When ran, the task starts parsing the
|
||
|
* script, and it will request data from the StreamedSource as needed. When
|
||
|
* ScriptStreamingTask::Run exits, all data has been streamed and the script
|
||
|
* can be compiled (see Compile below).
|
||
|
*
|
||
|
* This API allows to start the streaming with as little data as possible, and
|
||
|
* the remaining data (for example, the ScriptOrigin) is passed to Compile.
|
||
|
*/
|
||
|
static ScriptStreamingTask* StartStreamingScript(
|
||
|
Isolate* isolate, StreamedSource* source,
|
||
|
CompileOptions options = kNoCompileOptions);
|
||
|
|
||
|
/**
|
||
|
* Compiles a streamed script (bound to current context).
|
||
|
*
|
||
|
* This can only be called after the streaming has finished
|
||
|
* (ScriptStreamingTask has been run). V8 doesn't construct the source string
|
||
|
* during streaming, so the embedder needs to pass the full source here.
|
||
|
*/
|
||
|
static Local<Script> Compile(Isolate* isolate, StreamedSource* source,
|
||
|
Handle<String> full_source_string,
|
||
|
const ScriptOrigin& origin);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An error message.
|
||
|
*/
|
||
|
class V8_EXPORT Message {
|
||
|
public:
|
||
|
Local<String> Get() const;
|
||
|
Local<String> GetSourceLine() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the origin for the script from where the function causing the
|
||
|
* error originates.
|
||
|
*/
|
||
|
ScriptOrigin GetScriptOrigin() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the resource name for the script from where the function causing
|
||
|
* the error originates.
|
||
|
*/
|
||
|
Handle<Value> GetScriptResourceName() const;
|
||
|
|
||
|
/**
|
||
|
* Exception stack trace. By default stack traces are not captured for
|
||
|
* uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
|
||
|
* to change this option.
|
||
|
*/
|
||
|
Handle<StackTrace> GetStackTrace() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the number, 1-based, of the line where the error occurred.
|
||
|
*/
|
||
|
int GetLineNumber() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the index within the script of the first character where
|
||
|
* the error occurred.
|
||
|
*/
|
||
|
int GetStartPosition() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the index within the script of the last character where
|
||
|
* the error occurred.
|
||
|
*/
|
||
|
int GetEndPosition() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the index within the line of the first character where
|
||
|
* the error occurred.
|
||
|
*/
|
||
|
int GetStartColumn() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the index within the line of the last character where
|
||
|
* the error occurred.
|
||
|
*/
|
||
|
int GetEndColumn() const;
|
||
|
|
||
|
/**
|
||
|
* Passes on the value set by the embedder when it fed the script from which
|
||
|
* this Message was generated to V8.
|
||
|
*/
|
||
|
bool IsSharedCrossOrigin() const;
|
||
|
|
||
|
// TODO(1245381): Print to a string instead of on a FILE.
|
||
|
static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
|
||
|
|
||
|
static const int kNoLineNumberInfo = 0;
|
||
|
static const int kNoColumnInfo = 0;
|
||
|
static const int kNoScriptIdInfo = 0;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Representation of a JavaScript stack trace. The information collected is a
|
||
|
* snapshot of the execution stack and the information remains valid after
|
||
|
* execution continues.
|
||
|
*/
|
||
|
class V8_EXPORT StackTrace {
|
||
|
public:
|
||
|
/**
|
||
|
* Flags that determine what information is placed captured for each
|
||
|
* StackFrame when grabbing the current stack trace.
|
||
|
*/
|
||
|
enum StackTraceOptions {
|
||
|
kLineNumber = 1,
|
||
|
kColumnOffset = 1 << 1 | kLineNumber,
|
||
|
kScriptName = 1 << 2,
|
||
|
kFunctionName = 1 << 3,
|
||
|
kIsEval = 1 << 4,
|
||
|
kIsConstructor = 1 << 5,
|
||
|
kScriptNameOrSourceURL = 1 << 6,
|
||
|
kScriptId = 1 << 7,
|
||
|
kExposeFramesAcrossSecurityOrigins = 1 << 8,
|
||
|
kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
|
||
|
kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Returns a StackFrame at a particular index.
|
||
|
*/
|
||
|
Local<StackFrame> GetFrame(uint32_t index) const;
|
||
|
|
||
|
/**
|
||
|
* Returns the number of StackFrames.
|
||
|
*/
|
||
|
int GetFrameCount() const;
|
||
|
|
||
|
/**
|
||
|
* Returns StackTrace as a v8::Array that contains StackFrame objects.
|
||
|
*/
|
||
|
Local<Array> AsArray();
|
||
|
|
||
|
/**
|
||
|
* Grab a snapshot of the current JavaScript execution stack.
|
||
|
*
|
||
|
* \param frame_limit The maximum number of stack frames we want to capture.
|
||
|
* \param options Enumerates the set of things we will capture for each
|
||
|
* StackFrame.
|
||
|
*/
|
||
|
static Local<StackTrace> CurrentStackTrace(
|
||
|
Isolate* isolate,
|
||
|
int frame_limit,
|
||
|
StackTraceOptions options = kOverview);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A single JavaScript stack frame.
|
||
|
*/
|
||
|
class V8_EXPORT StackFrame {
|
||
|
public:
|
||
|
/**
|
||
|
* Returns the number, 1-based, of the line for the associate function call.
|
||
|
* This method will return Message::kNoLineNumberInfo if it is unable to
|
||
|
* retrieve the line number, or if kLineNumber was not passed as an option
|
||
|
* when capturing the StackTrace.
|
||
|
*/
|
||
|
int GetLineNumber() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the 1-based column offset on the line for the associated function
|
||
|
* call.
|
||
|
* This method will return Message::kNoColumnInfo if it is unable to retrieve
|
||
|
* the column number, or if kColumnOffset was not passed as an option when
|
||
|
* capturing the StackTrace.
|
||
|
*/
|
||
|
int GetColumn() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the id of the script for the function for this StackFrame.
|
||
|
* This method will return Message::kNoScriptIdInfo if it is unable to
|
||
|
* retrieve the script id, or if kScriptId was not passed as an option when
|
||
|
* capturing the StackTrace.
|
||
|
*/
|
||
|
int GetScriptId() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the name of the resource that contains the script for the
|
||
|
* function for this StackFrame.
|
||
|
*/
|
||
|
Local<String> GetScriptName() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the name of the resource that contains the script for the
|
||
|
* function for this StackFrame or sourceURL value if the script name
|
||
|
* is undefined and its source ends with //# sourceURL=... string or
|
||
|
* deprecated //@ sourceURL=... string.
|
||
|
*/
|
||
|
Local<String> GetScriptNameOrSourceURL() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the name of the function associated with this stack frame.
|
||
|
*/
|
||
|
Local<String> GetFunctionName() const;
|
||
|
|
||
|
/**
|
||
|
* Returns whether or not the associated function is compiled via a call to
|
||
|
* eval().
|
||
|
*/
|
||
|
bool IsEval() const;
|
||
|
|
||
|
/**
|
||
|
* Returns whether or not the associated function is called as a
|
||
|
* constructor via "new".
|
||
|
*/
|
||
|
bool IsConstructor() const;
|
||
|
};
|
||
|
|
||
|
|
||
|
// A StateTag represents a possible state of the VM.
|
||
|
enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
|
||
|
|
||
|
|
||
|
// A RegisterState represents the current state of registers used
|
||
|
// by the sampling profiler API.
|
||
|
struct RegisterState {
|
||
|
RegisterState() : pc(NULL), sp(NULL), fp(NULL) {}
|
||
|
void* pc; // Instruction pointer.
|
||
|
void* sp; // Stack pointer.
|
||
|
void* fp; // Frame pointer.
|
||
|
};
|
||
|
|
||
|
|
||
|
// The output structure filled up by GetStackSample API function.
|
||
|
struct SampleInfo {
|
||
|
size_t frames_count;
|
||
|
StateTag vm_state;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JSON Parser.
|
||
|
*/
|
||
|
class V8_EXPORT JSON {
|
||
|
public:
|
||
|
/**
|
||
|
* Tries to parse the string |json_string| and returns it as value if
|
||
|
* successful.
|
||
|
*
|
||
|
* \param json_string The string to parse.
|
||
|
* \return The corresponding value if successfully parsed.
|
||
|
*/
|
||
|
static Local<Value> Parse(Local<String> json_string);
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Value ---
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The superclass of all JavaScript values and objects.
|
||
|
*/
|
||
|
class V8_EXPORT Value : public Data {
|
||
|
public:
|
||
|
/**
|
||
|
* Returns true if this value is the undefined value. See ECMA-262
|
||
|
* 4.3.10.
|
||
|
*/
|
||
|
V8_INLINE bool IsUndefined() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is the null value. See ECMA-262
|
||
|
* 4.3.11.
|
||
|
*/
|
||
|
V8_INLINE bool IsNull() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is true.
|
||
|
*/
|
||
|
bool IsTrue() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is false.
|
||
|
*/
|
||
|
bool IsFalse() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a symbol or a string.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsName() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an instance of the String type.
|
||
|
* See ECMA-262 8.4.
|
||
|
*/
|
||
|
V8_INLINE bool IsString() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a symbol.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsSymbol() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a function.
|
||
|
*/
|
||
|
bool IsFunction() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an array.
|
||
|
*/
|
||
|
bool IsArray() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an object.
|
||
|
*/
|
||
|
bool IsObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is boolean.
|
||
|
*/
|
||
|
bool IsBoolean() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a number.
|
||
|
*/
|
||
|
bool IsNumber() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is external.
|
||
|
*/
|
||
|
bool IsExternal() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a 32-bit signed integer.
|
||
|
*/
|
||
|
bool IsInt32() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a 32-bit unsigned integer.
|
||
|
*/
|
||
|
bool IsUint32() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Date.
|
||
|
*/
|
||
|
bool IsDate() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Arguments object.
|
||
|
*/
|
||
|
bool IsArgumentsObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Boolean object.
|
||
|
*/
|
||
|
bool IsBooleanObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Number object.
|
||
|
*/
|
||
|
bool IsNumberObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a String object.
|
||
|
*/
|
||
|
bool IsStringObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Symbol object.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsSymbolObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a NativeError.
|
||
|
*/
|
||
|
bool IsNativeError() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a RegExp.
|
||
|
*/
|
||
|
bool IsRegExp() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Generator function.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsGeneratorFunction() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Generator object (iterator).
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsGeneratorObject() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Promise.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsPromise() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Map.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsMap() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Set.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsSet() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a WeakMap.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsWeakMap() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a WeakSet.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsWeakSet() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an ArrayBuffer.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsArrayBuffer() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an ArrayBufferView.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsArrayBufferView() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is one of TypedArrays.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsTypedArray() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Uint8Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsUint8Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Uint8ClampedArray.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsUint8ClampedArray() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Int8Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsInt8Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Uint16Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsUint16Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Int16Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsInt16Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Uint32Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsUint32Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is an Int32Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsInt32Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Float32Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsFloat32Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a Float64Array.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsFloat64Array() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if this value is a DataView.
|
||
|
* This is an experimental feature.
|
||
|
*/
|
||
|
bool IsDataView() const;
|
||
|
|
||
|
Local<Boolean> ToBoolean() const;
|
||
|
Local<Number> ToNumber() const;
|
||
|
Local<String> ToString() const;
|
||
|
Local<String> ToDetailString() const;
|
||
|
Local<Object> ToObject() const;
|
||
|
Local<Integer> ToInteger() const;
|
||
|
Local<Uint32> ToUint32() const;
|
||
|
Local<Int32> ToInt32() const;
|
||
|
|
||
|
/**
|
||
|
* Attempts to convert a string to an array index.
|
||
|
* Returns an empty handle if the conversion fails.
|
||
|
*/
|
||
|
Local<Uint32> ToArrayIndex() const;
|
||
|
|
||
|
bool BooleanValue() const;
|
||
|
double NumberValue() const;
|
||
|
int64_t IntegerValue() const;
|
||
|
uint32_t Uint32Value() const;
|
||
|
int32_t Int32Value() const;
|
||
|
|
||
|
/** JS == */
|
||
|
bool Equals(Handle<Value> that) const;
|
||
|
bool StrictEquals(Handle<Value> that) const;
|
||
|
bool SameValue(Handle<Value> that) const;
|
||
|
|
||
|
template <class T> V8_INLINE static Value* Cast(T* value);
|
||
|
|
||
|
private:
|
||
|
V8_INLINE bool QuickIsUndefined() const;
|
||
|
V8_INLINE bool QuickIsNull() const;
|
||
|
V8_INLINE bool QuickIsString() const;
|
||
|
bool FullIsUndefined() const;
|
||
|
bool FullIsNull() const;
|
||
|
bool FullIsString() const;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The superclass of primitive values. See ECMA-262 4.3.2.
|
||
|
*/
|
||
|
class V8_EXPORT Primitive : public Value { };
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A primitive boolean value (ECMA-262, 4.3.14). Either the true
|
||
|
* or false value.
|
||
|
*/
|
||
|
class V8_EXPORT Boolean : public Primitive {
|
||
|
public:
|
||
|
bool Value() const;
|
||
|
V8_INLINE static Handle<Boolean> New(Isolate* isolate, bool value);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A superclass for symbols and strings.
|
||
|
*/
|
||
|
class V8_EXPORT Name : public Primitive {
|
||
|
public:
|
||
|
V8_INLINE static Name* Cast(v8::Value* obj);
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript string value (ECMA-262, 4.3.17).
|
||
|
*/
|
||
|
class V8_EXPORT String : public Name {
|
||
|
public:
|
||
|
enum Encoding {
|
||
|
UNKNOWN_ENCODING = 0x1,
|
||
|
TWO_BYTE_ENCODING = 0x0,
|
||
|
ASCII_ENCODING = 0x4, // TODO(yangguo): deprecate this.
|
||
|
ONE_BYTE_ENCODING = 0x4
|
||
|
};
|
||
|
/**
|
||
|
* Returns the number of characters in this string.
|
||
|
*/
|
||
|
int Length() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the number of bytes in the UTF-8 encoded
|
||
|
* representation of this string.
|
||
|
*/
|
||
|
int Utf8Length() const;
|
||
|
|
||
|
/**
|
||
|
* Returns whether this string is known to contain only one byte data.
|
||
|
* Does not read the string.
|
||
|
* False negatives are possible.
|
||
|
*/
|
||
|
bool IsOneByte() const;
|
||
|
|
||
|
/**
|
||
|
* Returns whether this string contain only one byte data.
|
||
|
* Will read the entire string in some cases.
|
||
|
*/
|
||
|
bool ContainsOnlyOneByte() const;
|
||
|
|
||
|
/**
|
||
|
* Write the contents of the string to an external buffer.
|
||
|
* If no arguments are given, expects the buffer to be large
|
||
|
* enough to hold the entire string and NULL terminator. Copies
|
||
|
* the contents of the string and the NULL terminator into the
|
||
|
* buffer.
|
||
|
*
|
||
|
* WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
|
||
|
* before the end of the buffer.
|
||
|
*
|
||
|
* Copies up to length characters into the output buffer.
|
||
|
* Only null-terminates if there is enough space in the buffer.
|
||
|
*
|
||
|
* \param buffer The buffer into which the string will be copied.
|
||
|
* \param start The starting position within the string at which
|
||
|
* copying begins.
|
||
|
* \param length The number of characters to copy from the string. For
|
||
|
* WriteUtf8 the number of bytes in the buffer.
|
||
|
* \param nchars_ref The number of characters written, can be NULL.
|
||
|
* \param options Various options that might affect performance of this or
|
||
|
* subsequent operations.
|
||
|
* \return The number of characters copied to the buffer excluding the null
|
||
|
* terminator. For WriteUtf8: The number of bytes copied to the buffer
|
||
|
* including the null terminator (if written).
|
||
|
*/
|
||
|
enum WriteOptions {
|
||
|
NO_OPTIONS = 0,
|
||
|
HINT_MANY_WRITES_EXPECTED = 1,
|
||
|
NO_NULL_TERMINATION = 2,
|
||
|
PRESERVE_ASCII_NULL = 4, // TODO(yangguo): deprecate this.
|
||
|
PRESERVE_ONE_BYTE_NULL = 4,
|
||
|
// Used by WriteUtf8 to replace orphan surrogate code units with the
|
||
|
// unicode replacement character. Needs to be set to guarantee valid UTF-8
|
||
|
// output.
|
||
|
REPLACE_INVALID_UTF8 = 8
|
||
|
};
|
||
|
|
||
|
// 16-bit character codes.
|
||
|
int Write(uint16_t* buffer,
|
||
|
int start = 0,
|
||
|
int length = -1,
|
||
|
int options = NO_OPTIONS) const;
|
||
|
// One byte characters.
|
||
|
int WriteOneByte(uint8_t* buffer,
|
||
|
int start = 0,
|
||
|
int length = -1,
|
||
|
int options = NO_OPTIONS) const;
|
||
|
// UTF-8 encoded characters.
|
||
|
int WriteUtf8(char* buffer,
|
||
|
int length = -1,
|
||
|
int* nchars_ref = NULL,
|
||
|
int options = NO_OPTIONS) const;
|
||
|
|
||
|
/**
|
||
|
* A zero length string.
|
||
|
*/
|
||
|
V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
|
||
|
|
||
|
/**
|
||
|
* Returns true if the string is external
|
||
|
*/
|
||
|
bool IsExternal() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if the string is both external and one-byte.
|
||
|
*/
|
||
|
bool IsExternalOneByte() const;
|
||
|
|
||
|
// TODO(yangguo): deprecate this.
|
||
|
bool IsExternalAscii() const { return IsExternalOneByte(); }
|
||
|
|
||
|
class V8_EXPORT ExternalStringResourceBase { // NOLINT
|
||
|
public:
|
||
|
virtual ~ExternalStringResourceBase() {}
|
||
|
|
||
|
protected:
|
||
|
ExternalStringResourceBase() {}
|
||
|
|
||
|
/**
|
||
|
* Internally V8 will call this Dispose method when the external string
|
||
|
* resource is no longer needed. The default implementation will use the
|
||
|
* delete operator. This method can be overridden in subclasses to
|
||
|
* control how allocated external string resources are disposed.
|
||
|
*/
|
||
|
virtual void Dispose() { delete this; }
|
||
|
|
||
|
private:
|
||
|
// Disallow copying and assigning.
|
||
|
ExternalStringResourceBase(const ExternalStringResourceBase&);
|
||
|
void operator=(const ExternalStringResourceBase&);
|
||
|
|
||
|
friend class v8::internal::Heap;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* An ExternalStringResource is a wrapper around a two-byte string
|
||
|
* buffer that resides outside V8's heap. Implement an
|
||
|
* ExternalStringResource to manage the life cycle of the underlying
|
||
|
* buffer. Note that the string data must be immutable.
|
||
|
*/
|
||
|
class V8_EXPORT ExternalStringResource
|
||
|
: public ExternalStringResourceBase {
|
||
|
public:
|
||
|
/**
|
||
|
* Override the destructor to manage the life cycle of the underlying
|
||
|
* buffer.
|
||
|
*/
|
||
|
virtual ~ExternalStringResource() {}
|
||
|
|
||
|
/**
|
||
|
* The string data from the underlying buffer.
|
||
|
*/
|
||
|
virtual const uint16_t* data() const = 0;
|
||
|
|
||
|
/**
|
||
|
* The length of the string. That is, the number of two-byte characters.
|
||
|
*/
|
||
|
virtual size_t length() const = 0;
|
||
|
|
||
|
protected:
|
||
|
ExternalStringResource() {}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* An ExternalOneByteStringResource is a wrapper around an one-byte
|
||
|
* string buffer that resides outside V8's heap. Implement an
|
||
|
* ExternalOneByteStringResource to manage the life cycle of the
|
||
|
* underlying buffer. Note that the string data must be immutable
|
||
|
* and that the data must be Latin-1 and not UTF-8, which would require
|
||
|
* special treatment internally in the engine and do not allow efficient
|
||
|
* indexing. Use String::New or convert to 16 bit data for non-Latin1.
|
||
|
*/
|
||
|
|
||
|
class V8_EXPORT ExternalOneByteStringResource
|
||
|
: public ExternalStringResourceBase {
|
||
|
public:
|
||
|
/**
|
||
|
* Override the destructor to manage the life cycle of the underlying
|
||
|
* buffer.
|
||
|
*/
|
||
|
virtual ~ExternalOneByteStringResource() {}
|
||
|
/** The string data from the underlying buffer.*/
|
||
|
virtual const char* data() const = 0;
|
||
|
/** The number of Latin-1 characters in the string.*/
|
||
|
virtual size_t length() const = 0;
|
||
|
protected:
|
||
|
ExternalOneByteStringResource() {}
|
||
|
};
|
||
|
|
||
|
typedef ExternalOneByteStringResource ExternalAsciiStringResource;
|
||
|
|
||
|
/**
|
||
|
* If the string is an external string, return the ExternalStringResourceBase
|
||
|
* regardless of the encoding, otherwise return NULL. The encoding of the
|
||
|
* string is returned in encoding_out.
|
||
|
*/
|
||
|
V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
|
||
|
Encoding* encoding_out) const;
|
||
|
|
||
|
/**
|
||
|
* Get the ExternalStringResource for an external string. Returns
|
||
|
* NULL if IsExternal() doesn't return true.
|
||
|
*/
|
||
|
V8_INLINE ExternalStringResource* GetExternalStringResource() const;
|
||
|
|
||
|
/**
|
||
|
* Get the ExternalOneByteStringResource for an external one-byte string.
|
||
|
* Returns NULL if IsExternalOneByte() doesn't return true.
|
||
|
*/
|
||
|
const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
|
||
|
|
||
|
// TODO(yangguo): deprecate this.
|
||
|
const ExternalAsciiStringResource* GetExternalAsciiStringResource() const {
|
||
|
return GetExternalOneByteStringResource();
|
||
|
}
|
||
|
|
||
|
V8_INLINE static String* Cast(v8::Value* obj);
|
||
|
|
||
|
enum NewStringType {
|
||
|
kNormalString, kInternalizedString, kUndetectableString
|
||
|
};
|
||
|
|
||
|
/** Allocates a new string from UTF-8 data.*/
|
||
|
static Local<String> NewFromUtf8(Isolate* isolate,
|
||
|
const char* data,
|
||
|
NewStringType type = kNormalString,
|
||
|
int length = -1);
|
||
|
|
||
|
/** Allocates a new string from Latin-1 data.*/
|
||
|
static Local<String> NewFromOneByte(
|
||
|
Isolate* isolate,
|
||
|
const uint8_t* data,
|
||
|
NewStringType type = kNormalString,
|
||
|
int length = -1);
|
||
|
|
||
|
/** Allocates a new string from UTF-16 data.*/
|
||
|
static Local<String> NewFromTwoByte(
|
||
|
Isolate* isolate,
|
||
|
const uint16_t* data,
|
||
|
NewStringType type = kNormalString,
|
||
|
int length = -1);
|
||
|
|
||
|
/**
|
||
|
* Creates a new string by concatenating the left and the right strings
|
||
|
* passed in as parameters.
|
||
|
*/
|
||
|
static Local<String> Concat(Handle<String> left, Handle<String> right);
|
||
|
|
||
|
/**
|
||
|
* Creates a new external string using the data defined in the given
|
||
|
* resource. When the external string is no longer live on V8's heap the
|
||
|
* resource will be disposed by calling its Dispose method. The caller of
|
||
|
* this function should not otherwise delete or modify the resource. Neither
|
||
|
* should the underlying buffer be deallocated or modified except through the
|
||
|
* destructor of the external string resource.
|
||
|
*/
|
||
|
static Local<String> NewExternal(Isolate* isolate,
|
||
|
ExternalStringResource* resource);
|
||
|
|
||
|
/**
|
||
|
* Associate an external string resource with this string by transforming it
|
||
|
* in place so that existing references to this string in the JavaScript heap
|
||
|
* will use the external string resource. The external string resource's
|
||
|
* character contents need to be equivalent to this string.
|
||
|
* Returns true if the string has been changed to be an external string.
|
||
|
* The string is not modified if the operation fails. See NewExternal for
|
||
|
* information on the lifetime of the resource.
|
||
|
*/
|
||
|
bool MakeExternal(ExternalStringResource* resource);
|
||
|
|
||
|
/**
|
||
|
* Creates a new external string using the one-byte data defined in the given
|
||
|
* resource. When the external string is no longer live on V8's heap the
|
||
|
* resource will be disposed by calling its Dispose method. The caller of
|
||
|
* this function should not otherwise delete or modify the resource. Neither
|
||
|
* should the underlying buffer be deallocated or modified except through the
|
||
|
* destructor of the external string resource.
|
||
|
*/
|
||
|
static Local<String> NewExternal(Isolate* isolate,
|
||
|
ExternalOneByteStringResource* resource);
|
||
|
|
||
|
/**
|
||
|
* Associate an external string resource with this string by transforming it
|
||
|
* in place so that existing references to this string in the JavaScript heap
|
||
|
* will use the external string resource. The external string resource's
|
||
|
* character contents need to be equivalent to this string.
|
||
|
* Returns true if the string has been changed to be an external string.
|
||
|
* The string is not modified if the operation fails. See NewExternal for
|
||
|
* information on the lifetime of the resource.
|
||
|
*/
|
||
|
bool MakeExternal(ExternalOneByteStringResource* resource);
|
||
|
|
||
|
/**
|
||
|
* Returns true if this string can be made external.
|
||
|
*/
|
||
|
bool CanMakeExternal();
|
||
|
|
||
|
/**
|
||
|
* Converts an object to a UTF-8-encoded character array. Useful if
|
||
|
* you want to print the object. If conversion to a string fails
|
||
|
* (e.g. due to an exception in the toString() method of the object)
|
||
|
* then the length() method returns 0 and the * operator returns
|
||
|
* NULL.
|
||
|
*/
|
||
|
class V8_EXPORT Utf8Value {
|
||
|
public:
|
||
|
explicit Utf8Value(Handle<v8::Value> obj);
|
||
|
~Utf8Value();
|
||
|
char* operator*() { return str_; }
|
||
|
const char* operator*() const { return str_; }
|
||
|
int length() const { return length_; }
|
||
|
private:
|
||
|
char* str_;
|
||
|
int length_;
|
||
|
|
||
|
// Disallow copying and assigning.
|
||
|
Utf8Value(const Utf8Value&);
|
||
|
void operator=(const Utf8Value&);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Converts an object to a two-byte string.
|
||
|
* If conversion to a string fails (eg. due to an exception in the toString()
|
||
|
* method of the object) then the length() method returns 0 and the * operator
|
||
|
* returns NULL.
|
||
|
*/
|
||
|
class V8_EXPORT Value {
|
||
|
public:
|
||
|
explicit Value(Handle<v8::Value> obj);
|
||
|
~Value();
|
||
|
uint16_t* operator*() { return str_; }
|
||
|
const uint16_t* operator*() const { return str_; }
|
||
|
int length() const { return length_; }
|
||
|
private:
|
||
|
uint16_t* str_;
|
||
|
int length_;
|
||
|
|
||
|
// Disallow copying and assigning.
|
||
|
Value(const Value&);
|
||
|
void operator=(const Value&);
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
|
||
|
Encoding encoding) const;
|
||
|
void VerifyExternalStringResource(ExternalStringResource* val) const;
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript symbol (ECMA-262 edition 6)
|
||
|
*
|
||
|
* This is an experimental feature. Use at your own risk.
|
||
|
*/
|
||
|
class V8_EXPORT Symbol : public Name {
|
||
|
public:
|
||
|
// Returns the print name string of the symbol, or undefined if none.
|
||
|
Local<Value> Name() const;
|
||
|
|
||
|
// Create a symbol. If name is not empty, it will be used as the description.
|
||
|
static Local<Symbol> New(
|
||
|
Isolate *isolate, Local<String> name = Local<String>());
|
||
|
|
||
|
// Access global symbol registry.
|
||
|
// Note that symbols created this way are never collected, so
|
||
|
// they should only be used for statically fixed properties.
|
||
|
// Also, there is only one global name space for the names used as keys.
|
||
|
// To minimize the potential for clashes, use qualified names as keys.
|
||
|
static Local<Symbol> For(Isolate *isolate, Local<String> name);
|
||
|
|
||
|
// Retrieve a global symbol. Similar to |For|, but using a separate
|
||
|
// registry that is not accessible by (and cannot clash with) JavaScript code.
|
||
|
static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
|
||
|
|
||
|
// Well-known symbols
|
||
|
static Local<Symbol> GetIterator(Isolate* isolate);
|
||
|
static Local<Symbol> GetUnscopables(Isolate* isolate);
|
||
|
|
||
|
V8_INLINE static Symbol* Cast(v8::Value* obj);
|
||
|
|
||
|
private:
|
||
|
Symbol();
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A private symbol
|
||
|
*
|
||
|
* This is an experimental feature. Use at your own risk.
|
||
|
*/
|
||
|
class V8_EXPORT Private : public Data {
|
||
|
public:
|
||
|
// Returns the print name string of the private symbol, or undefined if none.
|
||
|
Local<Value> Name() const;
|
||
|
|
||
|
// Create a private symbol. If name is not empty, it will be the description.
|
||
|
static Local<Private> New(
|
||
|
Isolate *isolate, Local<String> name = Local<String>());
|
||
|
|
||
|
// Retrieve a global private symbol. If a symbol with this name has not
|
||
|
// been retrieved in the same isolate before, it is created.
|
||
|
// Note that private symbols created this way are never collected, so
|
||
|
// they should only be used for statically fixed properties.
|
||
|
// Also, there is only one global name space for the names used as keys.
|
||
|
// To minimize the potential for clashes, use qualified names as keys,
|
||
|
// e.g., "Class#property".
|
||
|
static Local<Private> ForApi(Isolate *isolate, Local<String> name);
|
||
|
|
||
|
private:
|
||
|
Private();
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript number value (ECMA-262, 4.3.20)
|
||
|
*/
|
||
|
class V8_EXPORT Number : public Primitive {
|
||
|
public:
|
||
|
double Value() const;
|
||
|
static Local<Number> New(Isolate* isolate, double value);
|
||
|
V8_INLINE static Number* Cast(v8::Value* obj);
|
||
|
private:
|
||
|
Number();
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript value representing a signed integer.
|
||
|
*/
|
||
|
class V8_EXPORT Integer : public Number {
|
||
|
public:
|
||
|
static Local<Integer> New(Isolate* isolate, int32_t value);
|
||
|
static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
|
||
|
int64_t Value() const;
|
||
|
V8_INLINE static Integer* Cast(v8::Value* obj);
|
||
|
private:
|
||
|
Integer();
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript value representing a 32-bit signed integer.
|
||
|
*/
|
||
|
class V8_EXPORT Int32 : public Integer {
|
||
|
public:
|
||
|
int32_t Value() const;
|
||
|
private:
|
||
|
Int32();
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript value representing a 32-bit unsigned integer.
|
||
|
*/
|
||
|
class V8_EXPORT Uint32 : public Integer {
|
||
|
public:
|
||
|
uint32_t Value() const;
|
||
|
private:
|
||
|
Uint32();
|
||
|
};
|
||
|
|
||
|
|
||
|
enum PropertyAttribute {
|
||
|
None = 0,
|
||
|
ReadOnly = 1 << 0,
|
||
|
DontEnum = 1 << 1,
|
||
|
DontDelete = 1 << 2
|
||
|
};
|
||
|
|
||
|
enum ExternalArrayType {
|
||
|
kExternalInt8Array = 1,
|
||
|
kExternalUint8Array,
|
||
|
kExternalInt16Array,
|
||
|
kExternalUint16Array,
|
||
|
kExternalInt32Array,
|
||
|
kExternalUint32Array,
|
||
|
kExternalFloat32Array,
|
||
|
kExternalFloat64Array,
|
||
|
kExternalUint8ClampedArray,
|
||
|
|
||
|
// Legacy constant names
|
||
|
kExternalByteArray = kExternalInt8Array,
|
||
|
kExternalUnsignedByteArray = kExternalUint8Array,
|
||
|
kExternalShortArray = kExternalInt16Array,
|
||
|
kExternalUnsignedShortArray = kExternalUint16Array,
|
||
|
kExternalIntArray = kExternalInt32Array,
|
||
|
kExternalUnsignedIntArray = kExternalUint32Array,
|
||
|
kExternalFloatArray = kExternalFloat32Array,
|
||
|
kExternalDoubleArray = kExternalFloat64Array,
|
||
|
kExternalPixelArray = kExternalUint8ClampedArray
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Accessor[Getter|Setter] are used as callback functions when
|
||
|
* setting|getting a particular property. See Object and ObjectTemplate's
|
||
|
* method SetAccessor.
|
||
|
*/
|
||
|
typedef void (*AccessorGetterCallback)(
|
||
|
Local<String> property,
|
||
|
const PropertyCallbackInfo<Value>& info);
|
||
|
typedef void (*AccessorNameGetterCallback)(
|
||
|
Local<Name> property,
|
||
|
const PropertyCallbackInfo<Value>& info);
|
||
|
|
||
|
|
||
|
typedef void (*AccessorSetterCallback)(
|
||
|
Local<String> property,
|
||
|
Local<Value> value,
|
||
|
const PropertyCallbackInfo<void>& info);
|
||
|
typedef void (*AccessorNameSetterCallback)(
|
||
|
Local<Name> property,
|
||
|
Local<Value> value,
|
||
|
const PropertyCallbackInfo<void>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Access control specifications.
|
||
|
*
|
||
|
* Some accessors should be accessible across contexts. These
|
||
|
* accessors have an explicit access control parameter which specifies
|
||
|
* the kind of cross-context access that should be allowed.
|
||
|
*
|
||
|
* TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
|
||
|
*/
|
||
|
enum AccessControl {
|
||
|
DEFAULT = 0,
|
||
|
ALL_CAN_READ = 1,
|
||
|
ALL_CAN_WRITE = 1 << 1,
|
||
|
PROHIBITS_OVERWRITING = 1 << 2
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript object (ECMA-262, 4.3.3)
|
||
|
*/
|
||
|
class V8_EXPORT Object : public Value {
|
||
|
public:
|
||
|
bool Set(Handle<Value> key, Handle<Value> value);
|
||
|
|
||
|
bool Set(uint32_t index, Handle<Value> value);
|
||
|
|
||
|
// Sets an own property on this object bypassing interceptors and
|
||
|
// overriding accessors or read-only properties.
|
||
|
//
|
||
|
// Note that if the object has an interceptor the property will be set
|
||
|
// locally, but since the interceptor takes precedence the local property
|
||
|
// will only be returned if the interceptor doesn't return a value.
|
||
|
//
|
||
|
// Note also that this only works for named properties.
|
||
|
bool ForceSet(Handle<Value> key,
|
||
|
Handle<Value> value,
|
||
|
PropertyAttribute attribs = None);
|
||
|
|
||
|
Local<Value> Get(Handle<Value> key);
|
||
|
|
||
|
Local<Value> Get(uint32_t index);
|
||
|
|
||
|
/**
|
||
|
* Gets the property attributes of a property which can be None or
|
||
|
* any combination of ReadOnly, DontEnum and DontDelete. Returns
|
||
|
* None when the property doesn't exist.
|
||
|
*/
|
||
|
PropertyAttribute GetPropertyAttributes(Handle<Value> key);
|
||
|
|
||
|
/**
|
||
|
* Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
|
||
|
*/
|
||
|
Local<Value> GetOwnPropertyDescriptor(Local<String> key);
|
||
|
|
||
|
bool Has(Handle<Value> key);
|
||
|
|
||
|
bool Delete(Handle<Value> key);
|
||
|
|
||
|
// Delete a property on this object bypassing interceptors and
|
||
|
// ignoring dont-delete attributes.
|
||
|
bool ForceDelete(Handle<Value> key);
|
||
|
|
||
|
bool Has(uint32_t index);
|
||
|
|
||
|
bool Delete(uint32_t index);
|
||
|
|
||
|
bool SetAccessor(Handle<String> name,
|
||
|
AccessorGetterCallback getter,
|
||
|
AccessorSetterCallback setter = 0,
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
AccessControl settings = DEFAULT,
|
||
|
PropertyAttribute attribute = None);
|
||
|
bool SetAccessor(Handle<Name> name,
|
||
|
AccessorNameGetterCallback getter,
|
||
|
AccessorNameSetterCallback setter = 0,
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
AccessControl settings = DEFAULT,
|
||
|
PropertyAttribute attribute = None);
|
||
|
|
||
|
// This function is not yet stable and should not be used at this time.
|
||
|
bool SetDeclaredAccessor(Local<Name> name,
|
||
|
Local<DeclaredAccessorDescriptor> descriptor,
|
||
|
PropertyAttribute attribute = None,
|
||
|
AccessControl settings = DEFAULT);
|
||
|
|
||
|
void SetAccessorProperty(Local<Name> name,
|
||
|
Local<Function> getter,
|
||
|
Handle<Function> setter = Handle<Function>(),
|
||
|
PropertyAttribute attribute = None,
|
||
|
AccessControl settings = DEFAULT);
|
||
|
|
||
|
/**
|
||
|
* Functionality for private properties.
|
||
|
* This is an experimental feature, use at your own risk.
|
||
|
* Note: Private properties are inherited. Do not rely on this, since it may
|
||
|
* change.
|
||
|
*/
|
||
|
bool HasPrivate(Handle<Private> key);
|
||
|
bool SetPrivate(Handle<Private> key, Handle<Value> value);
|
||
|
bool DeletePrivate(Handle<Private> key);
|
||
|
Local<Value> GetPrivate(Handle<Private> key);
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing the names of the enumerable properties
|
||
|
* of this object, including properties from prototype objects. The
|
||
|
* array returned by this method contains the same values as would
|
||
|
* be enumerated by a for-in statement over this object.
|
||
|
*/
|
||
|
Local<Array> GetPropertyNames();
|
||
|
|
||
|
/**
|
||
|
* This function has the same functionality as GetPropertyNames but
|
||
|
* the returned array doesn't contain the names of properties from
|
||
|
* prototype objects.
|
||
|
*/
|
||
|
Local<Array> GetOwnPropertyNames();
|
||
|
|
||
|
/**
|
||
|
* Get the prototype object. This does not skip objects marked to
|
||
|
* be skipped by __proto__ and it does not consult the security
|
||
|
* handler.
|
||
|
*/
|
||
|
Local<Value> GetPrototype();
|
||
|
|
||
|
/**
|
||
|
* Set the prototype object. This does not skip objects marked to
|
||
|
* be skipped by __proto__ and it does not consult the security
|
||
|
* handler.
|
||
|
*/
|
||
|
bool SetPrototype(Handle<Value> prototype);
|
||
|
|
||
|
/**
|
||
|
* Finds an instance of the given function template in the prototype
|
||
|
* chain.
|
||
|
*/
|
||
|
Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
|
||
|
|
||
|
/**
|
||
|
* Call builtin Object.prototype.toString on this object.
|
||
|
* This is different from Value::ToString() that may call
|
||
|
* user-defined toString function. This one does not.
|
||
|
*/
|
||
|
Local<String> ObjectProtoToString();
|
||
|
|
||
|
/**
|
||
|
* Returns the name of the function invoked as a constructor for this object.
|
||
|
*/
|
||
|
Local<String> GetConstructorName();
|
||
|
|
||
|
/** Gets the number of internal fields for this Object. */
|
||
|
int InternalFieldCount();
|
||
|
|
||
|
/** Same as above, but works for Persistents */
|
||
|
V8_INLINE static int InternalFieldCount(
|
||
|
const PersistentBase<Object>& object) {
|
||
|
return object.val_->InternalFieldCount();
|
||
|
}
|
||
|
|
||
|
/** Gets the value from an internal field. */
|
||
|
V8_INLINE Local<Value> GetInternalField(int index);
|
||
|
|
||
|
/** Sets the value in an internal field. */
|
||
|
void SetInternalField(int index, Handle<Value> value);
|
||
|
|
||
|
/**
|
||
|
* Gets a 2-byte-aligned native pointer from an internal field. This field
|
||
|
* must have been set by SetAlignedPointerInInternalField, everything else
|
||
|
* leads to undefined behavior.
|
||
|
*/
|
||
|
V8_INLINE void* GetAlignedPointerFromInternalField(int index);
|
||
|
|
||
|
/** Same as above, but works for Persistents */
|
||
|
V8_INLINE static void* GetAlignedPointerFromInternalField(
|
||
|
const PersistentBase<Object>& object, int index) {
|
||
|
return object.val_->GetAlignedPointerFromInternalField(index);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
|
||
|
* a field, GetAlignedPointerFromInternalField must be used, everything else
|
||
|
* leads to undefined behavior.
|
||
|
*/
|
||
|
void SetAlignedPointerInInternalField(int index, void* value);
|
||
|
|
||
|
// Testers for local properties.
|
||
|
bool HasOwnProperty(Handle<String> key);
|
||
|
bool HasRealNamedProperty(Handle<String> key);
|
||
|
bool HasRealIndexedProperty(uint32_t index);
|
||
|
bool HasRealNamedCallbackProperty(Handle<String> key);
|
||
|
|
||
|
/**
|
||
|
* If result.IsEmpty() no real property was located in the prototype chain.
|
||
|
* This means interceptors in the prototype chain are not called.
|
||
|
*/
|
||
|
Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
|
||
|
|
||
|
/**
|
||
|
* If result.IsEmpty() no real property was located on the object or
|
||
|
* in the prototype chain.
|
||
|
* This means interceptors in the prototype chain are not called.
|
||
|
*/
|
||
|
Local<Value> GetRealNamedProperty(Handle<String> key);
|
||
|
|
||
|
/** Tests for a named lookup interceptor.*/
|
||
|
bool HasNamedLookupInterceptor();
|
||
|
|
||
|
/** Tests for an index lookup interceptor.*/
|
||
|
bool HasIndexedLookupInterceptor();
|
||
|
|
||
|
/**
|
||
|
* Turns on access check on the object if the object is an instance of
|
||
|
* a template that has access check callbacks. If an object has no
|
||
|
* access check info, the object cannot be accessed by anyone.
|
||
|
*/
|
||
|
void TurnOnAccessCheck();
|
||
|
|
||
|
/**
|
||
|
* Returns the identity hash for this object. The current implementation
|
||
|
* uses a hidden property on the object to store the identity hash.
|
||
|
*
|
||
|
* The return value will never be 0. Also, it is not guaranteed to be
|
||
|
* unique.
|
||
|
*/
|
||
|
int GetIdentityHash();
|
||
|
|
||
|
/**
|
||
|
* Access hidden properties on JavaScript objects. These properties are
|
||
|
* hidden from the executing JavaScript and only accessible through the V8
|
||
|
* C++ API. Hidden properties introduced by V8 internally (for example the
|
||
|
* identity hash) are prefixed with "v8::".
|
||
|
*/
|
||
|
bool SetHiddenValue(Handle<String> key, Handle<Value> value);
|
||
|
Local<Value> GetHiddenValue(Handle<String> key);
|
||
|
bool DeleteHiddenValue(Handle<String> key);
|
||
|
|
||
|
/**
|
||
|
* Returns true if this is an instance of an api function (one
|
||
|
* created from a function created from a function template) and has
|
||
|
* been modified since it was created. Note that this method is
|
||
|
* conservative and may return true for objects that haven't actually
|
||
|
* been modified.
|
||
|
*/
|
||
|
bool IsDirty();
|
||
|
|
||
|
/**
|
||
|
* Clone this object with a fast but shallow copy. Values will point
|
||
|
* to the same values as the original object.
|
||
|
*/
|
||
|
Local<Object> Clone();
|
||
|
|
||
|
/**
|
||
|
* Returns the context in which the object was created.
|
||
|
*/
|
||
|
Local<Context> CreationContext();
|
||
|
|
||
|
/**
|
||
|
* Set the backing store of the indexed properties to be managed by the
|
||
|
* embedding layer. Access to the indexed properties will follow the rules
|
||
|
* spelled out in CanvasPixelArray.
|
||
|
* Note: The embedding program still owns the data and needs to ensure that
|
||
|
* the backing store is preserved while V8 has a reference.
|
||
|
*/
|
||
|
void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
|
||
|
bool HasIndexedPropertiesInPixelData();
|
||
|
uint8_t* GetIndexedPropertiesPixelData();
|
||
|
int GetIndexedPropertiesPixelDataLength();
|
||
|
|
||
|
/**
|
||
|
* Set the backing store of the indexed properties to be managed by the
|
||
|
* embedding layer. Access to the indexed properties will follow the rules
|
||
|
* spelled out for the CanvasArray subtypes in the WebGL specification.
|
||
|
* Note: The embedding program still owns the data and needs to ensure that
|
||
|
* the backing store is preserved while V8 has a reference.
|
||
|
*/
|
||
|
void SetIndexedPropertiesToExternalArrayData(void* data,
|
||
|
ExternalArrayType array_type,
|
||
|
int number_of_elements);
|
||
|
bool HasIndexedPropertiesInExternalArrayData();
|
||
|
void* GetIndexedPropertiesExternalArrayData();
|
||
|
ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
|
||
|
int GetIndexedPropertiesExternalArrayDataLength();
|
||
|
|
||
|
/**
|
||
|
* Checks whether a callback is set by the
|
||
|
* ObjectTemplate::SetCallAsFunctionHandler method.
|
||
|
* When an Object is callable this method returns true.
|
||
|
*/
|
||
|
bool IsCallable();
|
||
|
|
||
|
/**
|
||
|
* Call an Object as a function if a callback is set by the
|
||
|
* ObjectTemplate::SetCallAsFunctionHandler method.
|
||
|
*/
|
||
|
Local<Value> CallAsFunction(Handle<Value> recv,
|
||
|
int argc,
|
||
|
Handle<Value> argv[]);
|
||
|
|
||
|
/**
|
||
|
* Call an Object as a constructor if a callback is set by the
|
||
|
* ObjectTemplate::SetCallAsFunctionHandler method.
|
||
|
* Note: This method behaves like the Function::NewInstance method.
|
||
|
*/
|
||
|
Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
|
||
|
|
||
|
/**
|
||
|
* Return the isolate to which the Object belongs to.
|
||
|
*/
|
||
|
Isolate* GetIsolate();
|
||
|
|
||
|
static Local<Object> New(Isolate* isolate);
|
||
|
|
||
|
V8_INLINE static Object* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Object();
|
||
|
static void CheckCast(Value* obj);
|
||
|
Local<Value> SlowGetInternalField(int index);
|
||
|
void* SlowGetAlignedPointerFromInternalField(int index);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of the built-in array constructor (ECMA-262, 15.4.2).
|
||
|
*/
|
||
|
class V8_EXPORT Array : public Object {
|
||
|
public:
|
||
|
uint32_t Length() const;
|
||
|
|
||
|
/**
|
||
|
* Clones an element at index |index|. Returns an empty
|
||
|
* handle if cloning fails (for any reason).
|
||
|
*/
|
||
|
Local<Object> CloneElementAt(uint32_t index);
|
||
|
|
||
|
/**
|
||
|
* Creates a JavaScript array with the given length. If the length
|
||
|
* is negative the returned array will have length 0.
|
||
|
*/
|
||
|
static Local<Array> New(Isolate* isolate, int length = 0);
|
||
|
|
||
|
V8_INLINE static Array* Cast(Value* obj);
|
||
|
private:
|
||
|
Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
class ReturnValue {
|
||
|
public:
|
||
|
template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
|
||
|
: value_(that.value_) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
}
|
||
|
// Handle setters
|
||
|
template <typename S> V8_INLINE void Set(const Persistent<S>& handle);
|
||
|
template <typename S> V8_INLINE void Set(const Handle<S> handle);
|
||
|
// Fast primitive setters
|
||
|
V8_INLINE void Set(bool value);
|
||
|
V8_INLINE void Set(double i);
|
||
|
V8_INLINE void Set(int32_t i);
|
||
|
V8_INLINE void Set(uint32_t i);
|
||
|
// Fast JS primitive setters
|
||
|
V8_INLINE void SetNull();
|
||
|
V8_INLINE void SetUndefined();
|
||
|
V8_INLINE void SetEmptyString();
|
||
|
// Convenience getter for Isolate
|
||
|
V8_INLINE Isolate* GetIsolate();
|
||
|
|
||
|
// Pointer setter: Uncompilable to prevent inadvertent misuse.
|
||
|
template <typename S>
|
||
|
V8_INLINE void Set(S* whatever);
|
||
|
|
||
|
private:
|
||
|
template<class F> friend class ReturnValue;
|
||
|
template<class F> friend class FunctionCallbackInfo;
|
||
|
template<class F> friend class PropertyCallbackInfo;
|
||
|
template<class F, class G, class H> friend class PersistentValueMap;
|
||
|
V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
|
||
|
V8_INLINE internal::Object* GetDefaultValue();
|
||
|
V8_INLINE explicit ReturnValue(internal::Object** slot);
|
||
|
internal::Object** value_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The argument information given to function call callbacks. This
|
||
|
* class provides access to information about the context of the call,
|
||
|
* including the receiver, the number and values of arguments, and
|
||
|
* the holder of the function.
|
||
|
*/
|
||
|
template<typename T>
|
||
|
class FunctionCallbackInfo {
|
||
|
public:
|
||
|
V8_INLINE int Length() const;
|
||
|
V8_INLINE Local<Value> operator[](int i) const;
|
||
|
V8_INLINE Local<Function> Callee() const;
|
||
|
V8_INLINE Local<Object> This() const;
|
||
|
V8_INLINE Local<Object> Holder() const;
|
||
|
V8_INLINE bool IsConstructCall() const;
|
||
|
V8_INLINE Local<Value> Data() const;
|
||
|
V8_INLINE Isolate* GetIsolate() const;
|
||
|
V8_INLINE ReturnValue<T> GetReturnValue() const;
|
||
|
// This shouldn't be public, but the arm compiler needs it.
|
||
|
static const int kArgsLength = 7;
|
||
|
|
||
|
protected:
|
||
|
friend class internal::FunctionCallbackArguments;
|
||
|
friend class internal::CustomArguments<FunctionCallbackInfo>;
|
||
|
static const int kHolderIndex = 0;
|
||
|
static const int kIsolateIndex = 1;
|
||
|
static const int kReturnValueDefaultValueIndex = 2;
|
||
|
static const int kReturnValueIndex = 3;
|
||
|
static const int kDataIndex = 4;
|
||
|
static const int kCalleeIndex = 5;
|
||
|
static const int kContextSaveIndex = 6;
|
||
|
|
||
|
V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
|
||
|
internal::Object** values,
|
||
|
int length,
|
||
|
bool is_construct_call);
|
||
|
internal::Object** implicit_args_;
|
||
|
internal::Object** values_;
|
||
|
int length_;
|
||
|
bool is_construct_call_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The information passed to a property callback about the context
|
||
|
* of the property access.
|
||
|
*/
|
||
|
template<typename T>
|
||
|
class PropertyCallbackInfo {
|
||
|
public:
|
||
|
V8_INLINE Isolate* GetIsolate() const;
|
||
|
V8_INLINE Local<Value> Data() const;
|
||
|
V8_INLINE Local<Object> This() const;
|
||
|
V8_INLINE Local<Object> Holder() const;
|
||
|
V8_INLINE ReturnValue<T> GetReturnValue() const;
|
||
|
// This shouldn't be public, but the arm compiler needs it.
|
||
|
static const int kArgsLength = 6;
|
||
|
|
||
|
protected:
|
||
|
friend class MacroAssembler;
|
||
|
friend class internal::PropertyCallbackArguments;
|
||
|
friend class internal::CustomArguments<PropertyCallbackInfo>;
|
||
|
static const int kHolderIndex = 0;
|
||
|
static const int kIsolateIndex = 1;
|
||
|
static const int kReturnValueDefaultValueIndex = 2;
|
||
|
static const int kReturnValueIndex = 3;
|
||
|
static const int kDataIndex = 4;
|
||
|
static const int kThisIndex = 5;
|
||
|
|
||
|
V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
|
||
|
internal::Object** args_;
|
||
|
};
|
||
|
|
||
|
|
||
|
typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript function object (ECMA-262, 15.3).
|
||
|
*/
|
||
|
class V8_EXPORT Function : public Object {
|
||
|
public:
|
||
|
/**
|
||
|
* Create a function in the current execution context
|
||
|
* for a given FunctionCallback.
|
||
|
*/
|
||
|
static Local<Function> New(Isolate* isolate,
|
||
|
FunctionCallback callback,
|
||
|
Local<Value> data = Local<Value>(),
|
||
|
int length = 0);
|
||
|
|
||
|
Local<Object> NewInstance() const;
|
||
|
Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
|
||
|
Local<Value> Call(Handle<Value> recv, int argc, Handle<Value> argv[]);
|
||
|
void SetName(Handle<String> name);
|
||
|
Handle<Value> GetName() const;
|
||
|
|
||
|
/**
|
||
|
* Name inferred from variable or property assignment of this function.
|
||
|
* Used to facilitate debugging and profiling of JavaScript code written
|
||
|
* in an OO style, where many functions are anonymous but are assigned
|
||
|
* to object properties.
|
||
|
*/
|
||
|
Handle<Value> GetInferredName() const;
|
||
|
|
||
|
/**
|
||
|
* User-defined name assigned to the "displayName" property of this function.
|
||
|
* Used to facilitate debugging and profiling of JavaScript code.
|
||
|
*/
|
||
|
Handle<Value> GetDisplayName() const;
|
||
|
|
||
|
/**
|
||
|
* Returns zero based line number of function body and
|
||
|
* kLineOffsetNotFound if no information available.
|
||
|
*/
|
||
|
int GetScriptLineNumber() const;
|
||
|
/**
|
||
|
* Returns zero based column number of function body and
|
||
|
* kLineOffsetNotFound if no information available.
|
||
|
*/
|
||
|
int GetScriptColumnNumber() const;
|
||
|
|
||
|
/**
|
||
|
* Tells whether this function is builtin.
|
||
|
*/
|
||
|
bool IsBuiltin() const;
|
||
|
|
||
|
/**
|
||
|
* Returns scriptId.
|
||
|
*/
|
||
|
int ScriptId() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the original function if this function is bound, else returns
|
||
|
* v8::Undefined.
|
||
|
*/
|
||
|
Local<Value> GetBoundFunction() const;
|
||
|
|
||
|
ScriptOrigin GetScriptOrigin() const;
|
||
|
V8_INLINE static Function* Cast(Value* obj);
|
||
|
static const int kLineOffsetNotFound;
|
||
|
|
||
|
private:
|
||
|
Function();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of the built-in Promise constructor (ES6 draft).
|
||
|
* This API is experimental. Only works with --harmony flag.
|
||
|
*/
|
||
|
class V8_EXPORT Promise : public Object {
|
||
|
public:
|
||
|
class V8_EXPORT Resolver : public Object {
|
||
|
public:
|
||
|
/**
|
||
|
* Create a new resolver, along with an associated promise in pending state.
|
||
|
*/
|
||
|
static Local<Resolver> New(Isolate* isolate);
|
||
|
|
||
|
/**
|
||
|
* Extract the associated promise.
|
||
|
*/
|
||
|
Local<Promise> GetPromise();
|
||
|
|
||
|
/**
|
||
|
* Resolve/reject the associated promise with a given value.
|
||
|
* Ignored if the promise is no longer pending.
|
||
|
*/
|
||
|
void Resolve(Handle<Value> value);
|
||
|
void Reject(Handle<Value> value);
|
||
|
|
||
|
V8_INLINE static Resolver* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Resolver();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Register a resolution/rejection handler with a promise.
|
||
|
* The handler is given the respective resolution/rejection value as
|
||
|
* an argument. If the promise is already resolved/rejected, the handler is
|
||
|
* invoked at the end of turn.
|
||
|
*/
|
||
|
Local<Promise> Chain(Handle<Function> handler);
|
||
|
Local<Promise> Catch(Handle<Function> handler);
|
||
|
Local<Promise> Then(Handle<Function> handler);
|
||
|
|
||
|
/**
|
||
|
* Returns true if the promise has at least one derived promise, and
|
||
|
* therefore resolve/reject handlers (including default handler).
|
||
|
*/
|
||
|
bool HasHandler();
|
||
|
|
||
|
V8_INLINE static Promise* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Promise();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
|
||
|
// The number of required internal fields can be defined by embedder.
|
||
|
#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT ArrayBuffer : public Object {
|
||
|
public:
|
||
|
/**
|
||
|
* Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
|
||
|
* The allocator is a global V8 setting. It should be set with
|
||
|
* V8::SetArrayBufferAllocator prior to creation of a first ArrayBuffer.
|
||
|
*
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Allocator { // NOLINT
|
||
|
public:
|
||
|
virtual ~Allocator() {}
|
||
|
|
||
|
/**
|
||
|
* Allocate |length| bytes. Return NULL if allocation is not successful.
|
||
|
* Memory should be initialized to zeroes.
|
||
|
*/
|
||
|
virtual void* Allocate(size_t length) = 0;
|
||
|
|
||
|
/**
|
||
|
* Allocate |length| bytes. Return NULL if allocation is not successful.
|
||
|
* Memory does not have to be initialized.
|
||
|
*/
|
||
|
virtual void* AllocateUninitialized(size_t length) = 0;
|
||
|
/**
|
||
|
* Free the memory block of size |length|, pointed to by |data|.
|
||
|
* That memory is guaranteed to be previously allocated by |Allocate|.
|
||
|
*/
|
||
|
virtual void Free(void* data, size_t length) = 0;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
|
||
|
* returns an instance of this class, populated, with a pointer to data
|
||
|
* and byte length.
|
||
|
*
|
||
|
* The Data pointer of ArrayBuffer::Contents is always allocated with
|
||
|
* Allocator::Allocate that is set with V8::SetArrayBufferAllocator.
|
||
|
*
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Contents { // NOLINT
|
||
|
public:
|
||
|
Contents() : data_(NULL), byte_length_(0) {}
|
||
|
|
||
|
void* Data() const { return data_; }
|
||
|
size_t ByteLength() const { return byte_length_; }
|
||
|
|
||
|
private:
|
||
|
void* data_;
|
||
|
size_t byte_length_;
|
||
|
|
||
|
friend class ArrayBuffer;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Data length in bytes.
|
||
|
*/
|
||
|
size_t ByteLength() const;
|
||
|
|
||
|
/**
|
||
|
* Create a new ArrayBuffer. Allocate |byte_length| bytes.
|
||
|
* Allocated memory will be owned by a created ArrayBuffer and
|
||
|
* will be deallocated when it is garbage-collected,
|
||
|
* unless the object is externalized.
|
||
|
*/
|
||
|
static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
|
||
|
|
||
|
/**
|
||
|
* Create a new ArrayBuffer over an existing memory block.
|
||
|
* The created array buffer is immediately in externalized state.
|
||
|
* The memory block will not be reclaimed when a created ArrayBuffer
|
||
|
* is garbage-collected.
|
||
|
*/
|
||
|
static Local<ArrayBuffer> New(Isolate* isolate, void* data,
|
||
|
size_t byte_length);
|
||
|
|
||
|
/**
|
||
|
* Returns true if ArrayBuffer is extrenalized, that is, does not
|
||
|
* own its memory block.
|
||
|
*/
|
||
|
bool IsExternal() const;
|
||
|
|
||
|
/**
|
||
|
* Neuters this ArrayBuffer and all its views (typed arrays).
|
||
|
* Neutering sets the byte length of the buffer and all typed arrays to zero,
|
||
|
* preventing JavaScript from ever accessing underlying backing store.
|
||
|
* ArrayBuffer should have been externalized.
|
||
|
*/
|
||
|
void Neuter();
|
||
|
|
||
|
/**
|
||
|
* Make this ArrayBuffer external. The pointer to underlying memory block
|
||
|
* and byte length are returned as |Contents| structure. After ArrayBuffer
|
||
|
* had been etxrenalized, it does no longer owns the memory block. The caller
|
||
|
* should take steps to free memory when it is no longer needed.
|
||
|
*
|
||
|
* The memory block is guaranteed to be allocated with |Allocator::Allocate|
|
||
|
* that has been set with V8::SetArrayBufferAllocator.
|
||
|
*/
|
||
|
Contents Externalize();
|
||
|
|
||
|
V8_INLINE static ArrayBuffer* Cast(Value* obj);
|
||
|
|
||
|
static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
|
||
|
|
||
|
private:
|
||
|
ArrayBuffer();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
|
||
|
// The number of required internal fields can be defined by embedder.
|
||
|
#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A base class for an instance of one of "views" over ArrayBuffer,
|
||
|
* including TypedArrays and DataView (ES6 draft 15.13).
|
||
|
*
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT ArrayBufferView : public Object {
|
||
|
public:
|
||
|
/**
|
||
|
* Returns underlying ArrayBuffer.
|
||
|
*/
|
||
|
Local<ArrayBuffer> Buffer();
|
||
|
/**
|
||
|
* Byte offset in |Buffer|.
|
||
|
*/
|
||
|
size_t ByteOffset();
|
||
|
/**
|
||
|
* Size of a view in bytes.
|
||
|
*/
|
||
|
size_t ByteLength();
|
||
|
|
||
|
V8_INLINE static ArrayBufferView* Cast(Value* obj);
|
||
|
|
||
|
static const int kInternalFieldCount =
|
||
|
V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
|
||
|
|
||
|
private:
|
||
|
ArrayBufferView();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A base class for an instance of TypedArray series of constructors
|
||
|
* (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT TypedArray : public ArrayBufferView {
|
||
|
public:
|
||
|
/**
|
||
|
* Number of elements in this typed array
|
||
|
* (e.g. for Int16Array, |ByteLength|/2).
|
||
|
*/
|
||
|
size_t Length();
|
||
|
|
||
|
V8_INLINE static TypedArray* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
TypedArray();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Uint8Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Uint8Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Uint8Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Uint8Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Uint8ClampedArray : public TypedArray {
|
||
|
public:
|
||
|
static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Uint8ClampedArray();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* An instance of Int8Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Int8Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Int8Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Int8Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Uint16Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Uint16Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Uint16Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Uint16Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Int16Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Int16Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Int16Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Int16Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Uint32Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Uint32Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Uint32Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Uint32Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Int32Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Int32Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Int32Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Int32Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Float32Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Float32Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Float32Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Float32Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of Float64Array constructor (ES6 draft 15.13.6).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT Float64Array : public TypedArray {
|
||
|
public:
|
||
|
static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static Float64Array* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
Float64Array();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of DataView constructor (ES6 draft 15.13.7).
|
||
|
* This API is experimental and may change significantly.
|
||
|
*/
|
||
|
class V8_EXPORT DataView : public ArrayBufferView {
|
||
|
public:
|
||
|
static Local<DataView> New(Handle<ArrayBuffer> array_buffer,
|
||
|
size_t byte_offset, size_t length);
|
||
|
V8_INLINE static DataView* Cast(Value* obj);
|
||
|
|
||
|
private:
|
||
|
DataView();
|
||
|
static void CheckCast(Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of the built-in Date constructor (ECMA-262, 15.9).
|
||
|
*/
|
||
|
class V8_EXPORT Date : public Object {
|
||
|
public:
|
||
|
static Local<Value> New(Isolate* isolate, double time);
|
||
|
|
||
|
/**
|
||
|
* A specialization of Value::NumberValue that is more efficient
|
||
|
* because we know the structure of this object.
|
||
|
*/
|
||
|
double ValueOf() const;
|
||
|
|
||
|
V8_INLINE static Date* Cast(v8::Value* obj);
|
||
|
|
||
|
/**
|
||
|
* Notification that the embedder has changed the time zone,
|
||
|
* daylight savings time, or other date / time configuration
|
||
|
* parameters. V8 keeps a cache of various values used for
|
||
|
* date / time computation. This notification will reset
|
||
|
* those cached values for the current context so that date /
|
||
|
* time configuration changes would be reflected in the Date
|
||
|
* object.
|
||
|
*
|
||
|
* This API should not be called more than needed as it will
|
||
|
* negatively impact the performance of date operations.
|
||
|
*/
|
||
|
static void DateTimeConfigurationChangeNotification(Isolate* isolate);
|
||
|
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A Number object (ECMA-262, 4.3.21).
|
||
|
*/
|
||
|
class V8_EXPORT NumberObject : public Object {
|
||
|
public:
|
||
|
static Local<Value> New(Isolate* isolate, double value);
|
||
|
|
||
|
double ValueOf() const;
|
||
|
|
||
|
V8_INLINE static NumberObject* Cast(v8::Value* obj);
|
||
|
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A Boolean object (ECMA-262, 4.3.15).
|
||
|
*/
|
||
|
class V8_EXPORT BooleanObject : public Object {
|
||
|
public:
|
||
|
static Local<Value> New(bool value);
|
||
|
|
||
|
bool ValueOf() const;
|
||
|
|
||
|
V8_INLINE static BooleanObject* Cast(v8::Value* obj);
|
||
|
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A String object (ECMA-262, 4.3.18).
|
||
|
*/
|
||
|
class V8_EXPORT StringObject : public Object {
|
||
|
public:
|
||
|
static Local<Value> New(Handle<String> value);
|
||
|
|
||
|
Local<String> ValueOf() const;
|
||
|
|
||
|
V8_INLINE static StringObject* Cast(v8::Value* obj);
|
||
|
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A Symbol object (ECMA-262 edition 6).
|
||
|
*
|
||
|
* This is an experimental feature. Use at your own risk.
|
||
|
*/
|
||
|
class V8_EXPORT SymbolObject : public Object {
|
||
|
public:
|
||
|
static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
|
||
|
|
||
|
Local<Symbol> ValueOf() const;
|
||
|
|
||
|
V8_INLINE static SymbolObject* Cast(v8::Value* obj);
|
||
|
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An instance of the built-in RegExp constructor (ECMA-262, 15.10).
|
||
|
*/
|
||
|
class V8_EXPORT RegExp : public Object {
|
||
|
public:
|
||
|
/**
|
||
|
* Regular expression flag bits. They can be or'ed to enable a set
|
||
|
* of flags.
|
||
|
*/
|
||
|
enum Flags {
|
||
|
kNone = 0,
|
||
|
kGlobal = 1,
|
||
|
kIgnoreCase = 2,
|
||
|
kMultiline = 4
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Creates a regular expression from the given pattern string and
|
||
|
* the flags bit field. May throw a JavaScript exception as
|
||
|
* described in ECMA-262, 15.10.4.1.
|
||
|
*
|
||
|
* For example,
|
||
|
* RegExp::New(v8::String::New("foo"),
|
||
|
* static_cast<RegExp::Flags>(kGlobal | kMultiline))
|
||
|
* is equivalent to evaluating "/foo/gm".
|
||
|
*/
|
||
|
static Local<RegExp> New(Handle<String> pattern, Flags flags);
|
||
|
|
||
|
/**
|
||
|
* Returns the value of the source property: a string representing
|
||
|
* the regular expression.
|
||
|
*/
|
||
|
Local<String> GetSource() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the flags bit field.
|
||
|
*/
|
||
|
Flags GetFlags() const;
|
||
|
|
||
|
V8_INLINE static RegExp* Cast(v8::Value* obj);
|
||
|
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A JavaScript value that wraps a C++ void*. This type of value is mainly used
|
||
|
* to associate C++ data structures with JavaScript objects.
|
||
|
*/
|
||
|
class V8_EXPORT External : public Value {
|
||
|
public:
|
||
|
static Local<External> New(Isolate* isolate, void* value);
|
||
|
V8_INLINE static External* Cast(Value* obj);
|
||
|
void* Value() const;
|
||
|
private:
|
||
|
static void CheckCast(v8::Value* obj);
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Templates ---
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The superclass of object and function templates.
|
||
|
*/
|
||
|
class V8_EXPORT Template : public Data {
|
||
|
public:
|
||
|
/** Adds a property to each instance created by this template.*/
|
||
|
void Set(Handle<Name> name, Handle<Data> value,
|
||
|
PropertyAttribute attributes = None);
|
||
|
V8_INLINE void Set(Isolate* isolate, const char* name, Handle<Data> value);
|
||
|
|
||
|
void SetAccessorProperty(
|
||
|
Local<Name> name,
|
||
|
Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
|
||
|
Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
|
||
|
PropertyAttribute attribute = None,
|
||
|
AccessControl settings = DEFAULT);
|
||
|
|
||
|
/**
|
||
|
* Whenever the property with the given name is accessed on objects
|
||
|
* created from this Template the getter and setter callbacks
|
||
|
* are called instead of getting and setting the property directly
|
||
|
* on the JavaScript object.
|
||
|
*
|
||
|
* \param name The name of the property for which an accessor is added.
|
||
|
* \param getter The callback to invoke when getting the property.
|
||
|
* \param setter The callback to invoke when setting the property.
|
||
|
* \param data A piece of data that will be passed to the getter and setter
|
||
|
* callbacks whenever they are invoked.
|
||
|
* \param settings Access control settings for the accessor. This is a bit
|
||
|
* field consisting of one of more of
|
||
|
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
|
||
|
* The default is to not allow cross-context access.
|
||
|
* ALL_CAN_READ means that all cross-context reads are allowed.
|
||
|
* ALL_CAN_WRITE means that all cross-context writes are allowed.
|
||
|
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
|
||
|
* cross-context access.
|
||
|
* \param attribute The attributes of the property for which an accessor
|
||
|
* is added.
|
||
|
* \param signature The signature describes valid receivers for the accessor
|
||
|
* and is used to perform implicit instance checks against them. If the
|
||
|
* receiver is incompatible (i.e. is not an instance of the constructor as
|
||
|
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
|
||
|
* thrown and no callback is invoked.
|
||
|
*/
|
||
|
void SetNativeDataProperty(Local<String> name,
|
||
|
AccessorGetterCallback getter,
|
||
|
AccessorSetterCallback setter = 0,
|
||
|
// TODO(dcarney): gcc can't handle Local below
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
PropertyAttribute attribute = None,
|
||
|
Local<AccessorSignature> signature =
|
||
|
Local<AccessorSignature>(),
|
||
|
AccessControl settings = DEFAULT);
|
||
|
void SetNativeDataProperty(Local<Name> name,
|
||
|
AccessorNameGetterCallback getter,
|
||
|
AccessorNameSetterCallback setter = 0,
|
||
|
// TODO(dcarney): gcc can't handle Local below
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
PropertyAttribute attribute = None,
|
||
|
Local<AccessorSignature> signature =
|
||
|
Local<AccessorSignature>(),
|
||
|
AccessControl settings = DEFAULT);
|
||
|
|
||
|
// This function is not yet stable and should not be used at this time.
|
||
|
bool SetDeclaredAccessor(Local<Name> name,
|
||
|
Local<DeclaredAccessorDescriptor> descriptor,
|
||
|
PropertyAttribute attribute = None,
|
||
|
Local<AccessorSignature> signature =
|
||
|
Local<AccessorSignature>(),
|
||
|
AccessControl settings = DEFAULT);
|
||
|
|
||
|
private:
|
||
|
Template();
|
||
|
|
||
|
friend class ObjectTemplate;
|
||
|
friend class FunctionTemplate;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* NamedProperty[Getter|Setter] are used as interceptors on object.
|
||
|
* See ObjectTemplate::SetNamedPropertyHandler.
|
||
|
*/
|
||
|
typedef void (*NamedPropertyGetterCallback)(
|
||
|
Local<String> property,
|
||
|
const PropertyCallbackInfo<Value>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns the value if the setter intercepts the request.
|
||
|
* Otherwise, returns an empty handle.
|
||
|
*/
|
||
|
typedef void (*NamedPropertySetterCallback)(
|
||
|
Local<String> property,
|
||
|
Local<Value> value,
|
||
|
const PropertyCallbackInfo<Value>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns a non-empty handle if the interceptor intercepts the request.
|
||
|
* The result is an integer encoding property attributes (like v8::None,
|
||
|
* v8::DontEnum, etc.)
|
||
|
*/
|
||
|
typedef void (*NamedPropertyQueryCallback)(
|
||
|
Local<String> property,
|
||
|
const PropertyCallbackInfo<Integer>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns a non-empty handle if the deleter intercepts the request.
|
||
|
* The return value is true if the property could be deleted and false
|
||
|
* otherwise.
|
||
|
*/
|
||
|
typedef void (*NamedPropertyDeleterCallback)(
|
||
|
Local<String> property,
|
||
|
const PropertyCallbackInfo<Boolean>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing the names of the properties the named
|
||
|
* property getter intercepts.
|
||
|
*/
|
||
|
typedef void (*NamedPropertyEnumeratorCallback)(
|
||
|
const PropertyCallbackInfo<Array>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns the value of the property if the getter intercepts the
|
||
|
* request. Otherwise, returns an empty handle.
|
||
|
*/
|
||
|
typedef void (*IndexedPropertyGetterCallback)(
|
||
|
uint32_t index,
|
||
|
const PropertyCallbackInfo<Value>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns the value if the setter intercepts the request.
|
||
|
* Otherwise, returns an empty handle.
|
||
|
*/
|
||
|
typedef void (*IndexedPropertySetterCallback)(
|
||
|
uint32_t index,
|
||
|
Local<Value> value,
|
||
|
const PropertyCallbackInfo<Value>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns a non-empty handle if the interceptor intercepts the request.
|
||
|
* The result is an integer encoding property attributes.
|
||
|
*/
|
||
|
typedef void (*IndexedPropertyQueryCallback)(
|
||
|
uint32_t index,
|
||
|
const PropertyCallbackInfo<Integer>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns a non-empty handle if the deleter intercepts the request.
|
||
|
* The return value is true if the property could be deleted and false
|
||
|
* otherwise.
|
||
|
*/
|
||
|
typedef void (*IndexedPropertyDeleterCallback)(
|
||
|
uint32_t index,
|
||
|
const PropertyCallbackInfo<Boolean>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing the indices of the properties the
|
||
|
* indexed property getter intercepts.
|
||
|
*/
|
||
|
typedef void (*IndexedPropertyEnumeratorCallback)(
|
||
|
const PropertyCallbackInfo<Array>& info);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Access type specification.
|
||
|
*/
|
||
|
enum AccessType {
|
||
|
ACCESS_GET,
|
||
|
ACCESS_SET,
|
||
|
ACCESS_HAS,
|
||
|
ACCESS_DELETE,
|
||
|
ACCESS_KEYS
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns true if cross-context access should be allowed to the named
|
||
|
* property with the given key on the host object.
|
||
|
*/
|
||
|
typedef bool (*NamedSecurityCallback)(Local<Object> host,
|
||
|
Local<Value> key,
|
||
|
AccessType type,
|
||
|
Local<Value> data);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns true if cross-context access should be allowed to the indexed
|
||
|
* property with the given index on the host object.
|
||
|
*/
|
||
|
typedef bool (*IndexedSecurityCallback)(Local<Object> host,
|
||
|
uint32_t index,
|
||
|
AccessType type,
|
||
|
Local<Value> data);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A FunctionTemplate is used to create functions at runtime. There
|
||
|
* can only be one function created from a FunctionTemplate in a
|
||
|
* context. The lifetime of the created function is equal to the
|
||
|
* lifetime of the context. So in case the embedder needs to create
|
||
|
* temporary functions that can be collected using Scripts is
|
||
|
* preferred.
|
||
|
*
|
||
|
* A FunctionTemplate can have properties, these properties are added to the
|
||
|
* function object when it is created.
|
||
|
*
|
||
|
* A FunctionTemplate has a corresponding instance template which is
|
||
|
* used to create object instances when the function is used as a
|
||
|
* constructor. Properties added to the instance template are added to
|
||
|
* each object instance.
|
||
|
*
|
||
|
* A FunctionTemplate can have a prototype template. The prototype template
|
||
|
* is used to create the prototype object of the function.
|
||
|
*
|
||
|
* The following example shows how to use a FunctionTemplate:
|
||
|
*
|
||
|
* \code
|
||
|
* v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
|
||
|
* t->Set("func_property", v8::Number::New(1));
|
||
|
*
|
||
|
* v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
|
||
|
* proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
|
||
|
* proto_t->Set("proto_const", v8::Number::New(2));
|
||
|
*
|
||
|
* v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
|
||
|
* instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
|
||
|
* instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
|
||
|
* instance_t->Set("instance_property", Number::New(3));
|
||
|
*
|
||
|
* v8::Local<v8::Function> function = t->GetFunction();
|
||
|
* v8::Local<v8::Object> instance = function->NewInstance();
|
||
|
* \endcode
|
||
|
*
|
||
|
* Let's use "function" as the JS variable name of the function object
|
||
|
* and "instance" for the instance object created above. The function
|
||
|
* and the instance will have the following properties:
|
||
|
*
|
||
|
* \code
|
||
|
* func_property in function == true;
|
||
|
* function.func_property == 1;
|
||
|
*
|
||
|
* function.prototype.proto_method() invokes 'InvokeCallback'
|
||
|
* function.prototype.proto_const == 2;
|
||
|
*
|
||
|
* instance instanceof function == true;
|
||
|
* instance.instance_accessor calls 'InstanceAccessorCallback'
|
||
|
* instance.instance_property == 3;
|
||
|
* \endcode
|
||
|
*
|
||
|
* A FunctionTemplate can inherit from another one by calling the
|
||
|
* FunctionTemplate::Inherit method. The following graph illustrates
|
||
|
* the semantics of inheritance:
|
||
|
*
|
||
|
* \code
|
||
|
* FunctionTemplate Parent -> Parent() . prototype -> { }
|
||
|
* ^ ^
|
||
|
* | Inherit(Parent) | .__proto__
|
||
|
* | |
|
||
|
* FunctionTemplate Child -> Child() . prototype -> { }
|
||
|
* \endcode
|
||
|
*
|
||
|
* A FunctionTemplate 'Child' inherits from 'Parent', the prototype
|
||
|
* object of the Child() function has __proto__ pointing to the
|
||
|
* Parent() function's prototype object. An instance of the Child
|
||
|
* function has all properties on Parent's instance templates.
|
||
|
*
|
||
|
* Let Parent be the FunctionTemplate initialized in the previous
|
||
|
* section and create a Child FunctionTemplate by:
|
||
|
*
|
||
|
* \code
|
||
|
* Local<FunctionTemplate> parent = t;
|
||
|
* Local<FunctionTemplate> child = FunctionTemplate::New();
|
||
|
* child->Inherit(parent);
|
||
|
*
|
||
|
* Local<Function> child_function = child->GetFunction();
|
||
|
* Local<Object> child_instance = child_function->NewInstance();
|
||
|
* \endcode
|
||
|
*
|
||
|
* The Child function and Child instance will have the following
|
||
|
* properties:
|
||
|
*
|
||
|
* \code
|
||
|
* child_func.prototype.__proto__ == function.prototype;
|
||
|
* child_instance.instance_accessor calls 'InstanceAccessorCallback'
|
||
|
* child_instance.instance_property == 3;
|
||
|
* \endcode
|
||
|
*/
|
||
|
class V8_EXPORT FunctionTemplate : public Template {
|
||
|
public:
|
||
|
/** Creates a function template.*/
|
||
|
static Local<FunctionTemplate> New(
|
||
|
Isolate* isolate,
|
||
|
FunctionCallback callback = 0,
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
Handle<Signature> signature = Handle<Signature>(),
|
||
|
int length = 0);
|
||
|
|
||
|
/** Returns the unique function instance in the current execution context.*/
|
||
|
Local<Function> GetFunction();
|
||
|
|
||
|
/**
|
||
|
* Set the call-handler callback for a FunctionTemplate. This
|
||
|
* callback is called whenever the function created from this
|
||
|
* FunctionTemplate is called.
|
||
|
*/
|
||
|
void SetCallHandler(FunctionCallback callback,
|
||
|
Handle<Value> data = Handle<Value>());
|
||
|
|
||
|
/** Set the predefined length property for the FunctionTemplate. */
|
||
|
void SetLength(int length);
|
||
|
|
||
|
/** Get the InstanceTemplate. */
|
||
|
Local<ObjectTemplate> InstanceTemplate();
|
||
|
|
||
|
/** Causes the function template to inherit from a parent function template.*/
|
||
|
void Inherit(Handle<FunctionTemplate> parent);
|
||
|
|
||
|
/**
|
||
|
* A PrototypeTemplate is the template used to create the prototype object
|
||
|
* of the function created by this template.
|
||
|
*/
|
||
|
Local<ObjectTemplate> PrototypeTemplate();
|
||
|
|
||
|
/**
|
||
|
* Set the class name of the FunctionTemplate. This is used for
|
||
|
* printing objects created with the function created from the
|
||
|
* FunctionTemplate as its constructor.
|
||
|
*/
|
||
|
void SetClassName(Handle<String> name);
|
||
|
|
||
|
/**
|
||
|
* Determines whether the __proto__ accessor ignores instances of
|
||
|
* the function template. If instances of the function template are
|
||
|
* ignored, __proto__ skips all instances and instead returns the
|
||
|
* next object in the prototype chain.
|
||
|
*
|
||
|
* Call with a value of true to make the __proto__ accessor ignore
|
||
|
* instances of the function template. Call with a value of false
|
||
|
* to make the __proto__ accessor not ignore instances of the
|
||
|
* function template. By default, instances of a function template
|
||
|
* are not ignored.
|
||
|
*/
|
||
|
void SetHiddenPrototype(bool value);
|
||
|
|
||
|
/**
|
||
|
* Sets the ReadOnly flag in the attributes of the 'prototype' property
|
||
|
* of functions created from this FunctionTemplate to true.
|
||
|
*/
|
||
|
void ReadOnlyPrototype();
|
||
|
|
||
|
/**
|
||
|
* Removes the prototype property from functions created from this
|
||
|
* FunctionTemplate.
|
||
|
*/
|
||
|
void RemovePrototype();
|
||
|
|
||
|
/**
|
||
|
* Returns true if the given object is an instance of this function
|
||
|
* template.
|
||
|
*/
|
||
|
bool HasInstance(Handle<Value> object);
|
||
|
|
||
|
private:
|
||
|
FunctionTemplate();
|
||
|
friend class Context;
|
||
|
friend class ObjectTemplate;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An ObjectTemplate is used to create objects at runtime.
|
||
|
*
|
||
|
* Properties added to an ObjectTemplate are added to each object
|
||
|
* created from the ObjectTemplate.
|
||
|
*/
|
||
|
class V8_EXPORT ObjectTemplate : public Template {
|
||
|
public:
|
||
|
/** Creates an ObjectTemplate. */
|
||
|
static Local<ObjectTemplate> New(Isolate* isolate);
|
||
|
// Will be deprecated soon.
|
||
|
static Local<ObjectTemplate> New();
|
||
|
|
||
|
/** Creates a new instance of this template.*/
|
||
|
Local<Object> NewInstance();
|
||
|
|
||
|
/**
|
||
|
* Sets an accessor on the object template.
|
||
|
*
|
||
|
* Whenever the property with the given name is accessed on objects
|
||
|
* created from this ObjectTemplate the getter and setter callbacks
|
||
|
* are called instead of getting and setting the property directly
|
||
|
* on the JavaScript object.
|
||
|
*
|
||
|
* \param name The name of the property for which an accessor is added.
|
||
|
* \param getter The callback to invoke when getting the property.
|
||
|
* \param setter The callback to invoke when setting the property.
|
||
|
* \param data A piece of data that will be passed to the getter and setter
|
||
|
* callbacks whenever they are invoked.
|
||
|
* \param settings Access control settings for the accessor. This is a bit
|
||
|
* field consisting of one of more of
|
||
|
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
|
||
|
* The default is to not allow cross-context access.
|
||
|
* ALL_CAN_READ means that all cross-context reads are allowed.
|
||
|
* ALL_CAN_WRITE means that all cross-context writes are allowed.
|
||
|
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
|
||
|
* cross-context access.
|
||
|
* \param attribute The attributes of the property for which an accessor
|
||
|
* is added.
|
||
|
* \param signature The signature describes valid receivers for the accessor
|
||
|
* and is used to perform implicit instance checks against them. If the
|
||
|
* receiver is incompatible (i.e. is not an instance of the constructor as
|
||
|
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
|
||
|
* thrown and no callback is invoked.
|
||
|
*/
|
||
|
void SetAccessor(Handle<String> name,
|
||
|
AccessorGetterCallback getter,
|
||
|
AccessorSetterCallback setter = 0,
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
AccessControl settings = DEFAULT,
|
||
|
PropertyAttribute attribute = None,
|
||
|
Handle<AccessorSignature> signature =
|
||
|
Handle<AccessorSignature>());
|
||
|
void SetAccessor(Handle<Name> name,
|
||
|
AccessorNameGetterCallback getter,
|
||
|
AccessorNameSetterCallback setter = 0,
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
AccessControl settings = DEFAULT,
|
||
|
PropertyAttribute attribute = None,
|
||
|
Handle<AccessorSignature> signature =
|
||
|
Handle<AccessorSignature>());
|
||
|
|
||
|
/**
|
||
|
* Sets a named property handler on the object template.
|
||
|
*
|
||
|
* Whenever a property whose name is a string is accessed on objects created
|
||
|
* from this object template, the provided callback is invoked instead of
|
||
|
* accessing the property directly on the JavaScript object.
|
||
|
*
|
||
|
* \param getter The callback to invoke when getting a property.
|
||
|
* \param setter The callback to invoke when setting a property.
|
||
|
* \param query The callback to invoke to check if a property is present,
|
||
|
* and if present, get its attributes.
|
||
|
* \param deleter The callback to invoke when deleting a property.
|
||
|
* \param enumerator The callback to invoke to enumerate all the named
|
||
|
* properties of an object.
|
||
|
* \param data A piece of data that will be passed to the callbacks
|
||
|
* whenever they are invoked.
|
||
|
*/
|
||
|
void SetNamedPropertyHandler(
|
||
|
NamedPropertyGetterCallback getter,
|
||
|
NamedPropertySetterCallback setter = 0,
|
||
|
NamedPropertyQueryCallback query = 0,
|
||
|
NamedPropertyDeleterCallback deleter = 0,
|
||
|
NamedPropertyEnumeratorCallback enumerator = 0,
|
||
|
Handle<Value> data = Handle<Value>());
|
||
|
|
||
|
/**
|
||
|
* Sets an indexed property handler on the object template.
|
||
|
*
|
||
|
* Whenever an indexed property is accessed on objects created from
|
||
|
* this object template, the provided callback is invoked instead of
|
||
|
* accessing the property directly on the JavaScript object.
|
||
|
*
|
||
|
* \param getter The callback to invoke when getting a property.
|
||
|
* \param setter The callback to invoke when setting a property.
|
||
|
* \param query The callback to invoke to check if an object has a property.
|
||
|
* \param deleter The callback to invoke when deleting a property.
|
||
|
* \param enumerator The callback to invoke to enumerate all the indexed
|
||
|
* properties of an object.
|
||
|
* \param data A piece of data that will be passed to the callbacks
|
||
|
* whenever they are invoked.
|
||
|
*/
|
||
|
void SetIndexedPropertyHandler(
|
||
|
IndexedPropertyGetterCallback getter,
|
||
|
IndexedPropertySetterCallback setter = 0,
|
||
|
IndexedPropertyQueryCallback query = 0,
|
||
|
IndexedPropertyDeleterCallback deleter = 0,
|
||
|
IndexedPropertyEnumeratorCallback enumerator = 0,
|
||
|
Handle<Value> data = Handle<Value>());
|
||
|
|
||
|
/**
|
||
|
* Sets the callback to be used when calling instances created from
|
||
|
* this template as a function. If no callback is set, instances
|
||
|
* behave like normal JavaScript objects that cannot be called as a
|
||
|
* function.
|
||
|
*/
|
||
|
void SetCallAsFunctionHandler(FunctionCallback callback,
|
||
|
Handle<Value> data = Handle<Value>());
|
||
|
|
||
|
/**
|
||
|
* Mark object instances of the template as undetectable.
|
||
|
*
|
||
|
* In many ways, undetectable objects behave as though they are not
|
||
|
* there. They behave like 'undefined' in conditionals and when
|
||
|
* printed. However, properties can be accessed and called as on
|
||
|
* normal objects.
|
||
|
*/
|
||
|
void MarkAsUndetectable();
|
||
|
|
||
|
/**
|
||
|
* Sets access check callbacks on the object template.
|
||
|
*
|
||
|
* When accessing properties on instances of this object template,
|
||
|
* the access check callback will be called to determine whether or
|
||
|
* not to allow cross-context access to the properties.
|
||
|
* The last parameter specifies whether access checks are turned
|
||
|
* on by default on instances. If access checks are off by default,
|
||
|
* they can be turned on on individual instances by calling
|
||
|
* Object::TurnOnAccessCheck().
|
||
|
*/
|
||
|
void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
|
||
|
IndexedSecurityCallback indexed_handler,
|
||
|
Handle<Value> data = Handle<Value>(),
|
||
|
bool turned_on_by_default = true);
|
||
|
|
||
|
/**
|
||
|
* Gets the number of internal fields for objects generated from
|
||
|
* this template.
|
||
|
*/
|
||
|
int InternalFieldCount();
|
||
|
|
||
|
/**
|
||
|
* Sets the number of internal fields for objects generated from
|
||
|
* this template.
|
||
|
*/
|
||
|
void SetInternalFieldCount(int value);
|
||
|
|
||
|
private:
|
||
|
ObjectTemplate();
|
||
|
static Local<ObjectTemplate> New(internal::Isolate* isolate,
|
||
|
Handle<FunctionTemplate> constructor);
|
||
|
friend class FunctionTemplate;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A Signature specifies which receivers and arguments are valid
|
||
|
* parameters to a function.
|
||
|
*/
|
||
|
class V8_EXPORT Signature : public Data {
|
||
|
public:
|
||
|
static Local<Signature> New(Isolate* isolate,
|
||
|
Handle<FunctionTemplate> receiver =
|
||
|
Handle<FunctionTemplate>(),
|
||
|
int argc = 0,
|
||
|
Handle<FunctionTemplate> argv[] = 0);
|
||
|
|
||
|
private:
|
||
|
Signature();
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An AccessorSignature specifies which receivers are valid parameters
|
||
|
* to an accessor callback.
|
||
|
*/
|
||
|
class V8_EXPORT AccessorSignature : public Data {
|
||
|
public:
|
||
|
static Local<AccessorSignature> New(Isolate* isolate,
|
||
|
Handle<FunctionTemplate> receiver =
|
||
|
Handle<FunctionTemplate>());
|
||
|
|
||
|
private:
|
||
|
AccessorSignature();
|
||
|
};
|
||
|
|
||
|
|
||
|
class V8_EXPORT DeclaredAccessorDescriptor : public Data {
|
||
|
private:
|
||
|
DeclaredAccessorDescriptor();
|
||
|
};
|
||
|
|
||
|
|
||
|
class V8_EXPORT ObjectOperationDescriptor : public Data {
|
||
|
public:
|
||
|
// This function is not yet stable and should not be used at this time.
|
||
|
static Local<RawOperationDescriptor> NewInternalFieldDereference(
|
||
|
Isolate* isolate,
|
||
|
int internal_field);
|
||
|
private:
|
||
|
ObjectOperationDescriptor();
|
||
|
};
|
||
|
|
||
|
|
||
|
enum DeclaredAccessorDescriptorDataType {
|
||
|
kDescriptorBoolType,
|
||
|
kDescriptorInt8Type, kDescriptorUint8Type,
|
||
|
kDescriptorInt16Type, kDescriptorUint16Type,
|
||
|
kDescriptorInt32Type, kDescriptorUint32Type,
|
||
|
kDescriptorFloatType, kDescriptorDoubleType
|
||
|
};
|
||
|
|
||
|
|
||
|
class V8_EXPORT RawOperationDescriptor : public Data {
|
||
|
public:
|
||
|
Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate);
|
||
|
Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate);
|
||
|
Local<RawOperationDescriptor> NewRawShift(Isolate* isolate,
|
||
|
int16_t byte_offset);
|
||
|
Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate,
|
||
|
void* compare_value);
|
||
|
Local<DeclaredAccessorDescriptor> NewPrimitiveValue(
|
||
|
Isolate* isolate,
|
||
|
DeclaredAccessorDescriptorDataType data_type,
|
||
|
uint8_t bool_offset = 0);
|
||
|
Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate,
|
||
|
uint8_t bitmask,
|
||
|
uint8_t compare_value);
|
||
|
Local<DeclaredAccessorDescriptor> NewBitmaskCompare16(
|
||
|
Isolate* isolate,
|
||
|
uint16_t bitmask,
|
||
|
uint16_t compare_value);
|
||
|
Local<DeclaredAccessorDescriptor> NewBitmaskCompare32(
|
||
|
Isolate* isolate,
|
||
|
uint32_t bitmask,
|
||
|
uint32_t compare_value);
|
||
|
|
||
|
private:
|
||
|
RawOperationDescriptor();
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A utility for determining the type of objects based on the template
|
||
|
* they were constructed from.
|
||
|
*/
|
||
|
class V8_EXPORT TypeSwitch : public Data {
|
||
|
public:
|
||
|
static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
|
||
|
static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
|
||
|
int match(Handle<Value> value);
|
||
|
private:
|
||
|
TypeSwitch();
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Extensions ---
|
||
|
|
||
|
class V8_EXPORT ExternalOneByteStringResourceImpl
|
||
|
: public String::ExternalOneByteStringResource {
|
||
|
public:
|
||
|
ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
|
||
|
ExternalOneByteStringResourceImpl(const char* data, size_t length)
|
||
|
: data_(data), length_(length) {}
|
||
|
const char* data() const { return data_; }
|
||
|
size_t length() const { return length_; }
|
||
|
|
||
|
private:
|
||
|
const char* data_;
|
||
|
size_t length_;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Ignore
|
||
|
*/
|
||
|
class V8_EXPORT Extension { // NOLINT
|
||
|
public:
|
||
|
// Note that the strings passed into this constructor must live as long
|
||
|
// as the Extension itself.
|
||
|
Extension(const char* name,
|
||
|
const char* source = 0,
|
||
|
int dep_count = 0,
|
||
|
const char** deps = 0,
|
||
|
int source_length = -1);
|
||
|
virtual ~Extension() { }
|
||
|
virtual v8::Handle<v8::FunctionTemplate> GetNativeFunctionTemplate(
|
||
|
v8::Isolate* isolate, v8::Handle<v8::String> name) {
|
||
|
return v8::Handle<v8::FunctionTemplate>();
|
||
|
}
|
||
|
|
||
|
const char* name() const { return name_; }
|
||
|
size_t source_length() const { return source_length_; }
|
||
|
const String::ExternalOneByteStringResource* source() const {
|
||
|
return &source_; }
|
||
|
int dependency_count() { return dep_count_; }
|
||
|
const char** dependencies() { return deps_; }
|
||
|
void set_auto_enable(bool value) { auto_enable_ = value; }
|
||
|
bool auto_enable() { return auto_enable_; }
|
||
|
|
||
|
private:
|
||
|
const char* name_;
|
||
|
size_t source_length_; // expected to initialize before source_
|
||
|
ExternalOneByteStringResourceImpl source_;
|
||
|
int dep_count_;
|
||
|
const char** deps_;
|
||
|
bool auto_enable_;
|
||
|
|
||
|
// Disallow copying and assigning.
|
||
|
Extension(const Extension&);
|
||
|
void operator=(const Extension&);
|
||
|
};
|
||
|
|
||
|
|
||
|
void V8_EXPORT RegisterExtension(Extension* extension);
|
||
|
|
||
|
|
||
|
// --- Statics ---
|
||
|
|
||
|
V8_INLINE Handle<Primitive> Undefined(Isolate* isolate);
|
||
|
V8_INLINE Handle<Primitive> Null(Isolate* isolate);
|
||
|
V8_INLINE Handle<Boolean> True(Isolate* isolate);
|
||
|
V8_INLINE Handle<Boolean> False(Isolate* isolate);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A set of constraints that specifies the limits of the runtime's memory use.
|
||
|
* You must set the heap size before initializing the VM - the size cannot be
|
||
|
* adjusted after the VM is initialized.
|
||
|
*
|
||
|
* If you are using threads then you should hold the V8::Locker lock while
|
||
|
* setting the stack limit and you must set a non-default stack limit separately
|
||
|
* for each thread.
|
||
|
*/
|
||
|
class V8_EXPORT ResourceConstraints {
|
||
|
public:
|
||
|
ResourceConstraints();
|
||
|
|
||
|
/**
|
||
|
* Configures the constraints with reasonable default values based on the
|
||
|
* capabilities of the current device the VM is running on.
|
||
|
*
|
||
|
* \param physical_memory The total amount of physical memory on the current
|
||
|
* device, in bytes.
|
||
|
* \param virtual_memory_limit The amount of virtual memory on the current
|
||
|
* device, in bytes, or zero, if there is no limit.
|
||
|
* \param number_of_processors The number of CPUs available on the current
|
||
|
* device.
|
||
|
*/
|
||
|
void ConfigureDefaults(uint64_t physical_memory,
|
||
|
uint64_t virtual_memory_limit,
|
||
|
uint32_t number_of_processors);
|
||
|
|
||
|
int max_semi_space_size() const { return max_semi_space_size_; }
|
||
|
void set_max_semi_space_size(int value) { max_semi_space_size_ = value; }
|
||
|
int max_old_space_size() const { return max_old_space_size_; }
|
||
|
void set_max_old_space_size(int value) { max_old_space_size_ = value; }
|
||
|
int max_executable_size() const { return max_executable_size_; }
|
||
|
void set_max_executable_size(int value) { max_executable_size_ = value; }
|
||
|
uint32_t* stack_limit() const { return stack_limit_; }
|
||
|
// Sets an address beyond which the VM's stack may not grow.
|
||
|
void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
|
||
|
int max_available_threads() const { return max_available_threads_; }
|
||
|
// Set the number of threads available to V8, assuming at least 1.
|
||
|
void set_max_available_threads(int value) {
|
||
|
max_available_threads_ = value;
|
||
|
}
|
||
|
size_t code_range_size() const { return code_range_size_; }
|
||
|
void set_code_range_size(size_t value) {
|
||
|
code_range_size_ = value;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
int max_semi_space_size_;
|
||
|
int max_old_space_size_;
|
||
|
int max_executable_size_;
|
||
|
uint32_t* stack_limit_;
|
||
|
int max_available_threads_;
|
||
|
size_t code_range_size_;
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Exceptions ---
|
||
|
|
||
|
|
||
|
typedef void (*FatalErrorCallback)(const char* location, const char* message);
|
||
|
|
||
|
|
||
|
typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
|
||
|
|
||
|
// --- Tracing ---
|
||
|
|
||
|
typedef void (*LogEventCallback)(const char* name, int event);
|
||
|
|
||
|
/**
|
||
|
* Create new error objects by calling the corresponding error object
|
||
|
* constructor with the message.
|
||
|
*/
|
||
|
class V8_EXPORT Exception {
|
||
|
public:
|
||
|
static Local<Value> RangeError(Handle<String> message);
|
||
|
static Local<Value> ReferenceError(Handle<String> message);
|
||
|
static Local<Value> SyntaxError(Handle<String> message);
|
||
|
static Local<Value> TypeError(Handle<String> message);
|
||
|
static Local<Value> Error(Handle<String> message);
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Counters Callbacks ---
|
||
|
|
||
|
typedef int* (*CounterLookupCallback)(const char* name);
|
||
|
|
||
|
typedef void* (*CreateHistogramCallback)(const char* name,
|
||
|
int min,
|
||
|
int max,
|
||
|
size_t buckets);
|
||
|
|
||
|
typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
|
||
|
|
||
|
// --- Memory Allocation Callback ---
|
||
|
enum ObjectSpace {
|
||
|
kObjectSpaceNewSpace = 1 << 0,
|
||
|
kObjectSpaceOldPointerSpace = 1 << 1,
|
||
|
kObjectSpaceOldDataSpace = 1 << 2,
|
||
|
kObjectSpaceCodeSpace = 1 << 3,
|
||
|
kObjectSpaceMapSpace = 1 << 4,
|
||
|
kObjectSpaceLoSpace = 1 << 5,
|
||
|
|
||
|
kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
|
||
|
kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
|
||
|
kObjectSpaceLoSpace
|
||
|
};
|
||
|
|
||
|
enum AllocationAction {
|
||
|
kAllocationActionAllocate = 1 << 0,
|
||
|
kAllocationActionFree = 1 << 1,
|
||
|
kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
|
||
|
};
|
||
|
|
||
|
typedef void (*MemoryAllocationCallback)(ObjectSpace space,
|
||
|
AllocationAction action,
|
||
|
int size);
|
||
|
|
||
|
// --- Leave Script Callback ---
|
||
|
typedef void (*CallCompletedCallback)();
|
||
|
|
||
|
// --- Promise Reject Callback ---
|
||
|
enum PromiseRejectEvent {
|
||
|
kPromiseRejectWithNoHandler = 0,
|
||
|
kPromiseHandlerAddedAfterReject = 1
|
||
|
};
|
||
|
|
||
|
class PromiseRejectMessage {
|
||
|
public:
|
||
|
PromiseRejectMessage(Handle<Promise> promise, PromiseRejectEvent event,
|
||
|
Handle<Value> value, Handle<StackTrace> stack_trace)
|
||
|
: promise_(promise),
|
||
|
event_(event),
|
||
|
value_(value),
|
||
|
stack_trace_(stack_trace) {}
|
||
|
|
||
|
V8_INLINE Handle<Promise> GetPromise() const { return promise_; }
|
||
|
V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
|
||
|
V8_INLINE Handle<Value> GetValue() const { return value_; }
|
||
|
V8_INLINE Handle<StackTrace> GetStackTrace() const { return stack_trace_; }
|
||
|
|
||
|
private:
|
||
|
Handle<Promise> promise_;
|
||
|
PromiseRejectEvent event_;
|
||
|
Handle<Value> value_;
|
||
|
Handle<StackTrace> stack_trace_;
|
||
|
};
|
||
|
|
||
|
typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
|
||
|
|
||
|
// --- Microtask Callback ---
|
||
|
typedef void (*MicrotaskCallback)(void* data);
|
||
|
|
||
|
// --- Failed Access Check Callback ---
|
||
|
typedef void (*FailedAccessCheckCallback)(Local<Object> target,
|
||
|
AccessType type,
|
||
|
Local<Value> data);
|
||
|
|
||
|
// --- AllowCodeGenerationFromStrings callbacks ---
|
||
|
|
||
|
/**
|
||
|
* Callback to check if code generation from strings is allowed. See
|
||
|
* Context::AllowCodeGenerationFromStrings.
|
||
|
*/
|
||
|
typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
|
||
|
|
||
|
// --- Garbage Collection Callbacks ---
|
||
|
|
||
|
/**
|
||
|
* Applications can register callback functions which will be called
|
||
|
* before and after a garbage collection. Allocations are not
|
||
|
* allowed in the callback functions, you therefore cannot manipulate
|
||
|
* objects (set or delete properties for example) since it is possible
|
||
|
* such operations will result in the allocation of objects.
|
||
|
*/
|
||
|
enum GCType {
|
||
|
kGCTypeScavenge = 1 << 0,
|
||
|
kGCTypeMarkSweepCompact = 1 << 1,
|
||
|
kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
|
||
|
};
|
||
|
|
||
|
enum GCCallbackFlags {
|
||
|
kNoGCCallbackFlags = 0,
|
||
|
kGCCallbackFlagCompacted = 1 << 0,
|
||
|
kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
|
||
|
kGCCallbackFlagForced = 1 << 2
|
||
|
};
|
||
|
|
||
|
typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
|
||
|
typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
|
||
|
|
||
|
typedef void (*InterruptCallback)(Isolate* isolate, void* data);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Collection of V8 heap information.
|
||
|
*
|
||
|
* Instances of this class can be passed to v8::V8::HeapStatistics to
|
||
|
* get heap statistics from V8.
|
||
|
*/
|
||
|
class V8_EXPORT HeapStatistics {
|
||
|
public:
|
||
|
HeapStatistics();
|
||
|
size_t total_heap_size() { return total_heap_size_; }
|
||
|
size_t total_heap_size_executable() { return total_heap_size_executable_; }
|
||
|
size_t total_physical_size() { return total_physical_size_; }
|
||
|
size_t used_heap_size() { return used_heap_size_; }
|
||
|
size_t heap_size_limit() { return heap_size_limit_; }
|
||
|
|
||
|
private:
|
||
|
size_t total_heap_size_;
|
||
|
size_t total_heap_size_executable_;
|
||
|
size_t total_physical_size_;
|
||
|
size_t used_heap_size_;
|
||
|
size_t heap_size_limit_;
|
||
|
|
||
|
friend class V8;
|
||
|
friend class Isolate;
|
||
|
};
|
||
|
|
||
|
|
||
|
class RetainedObjectInfo;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* FunctionEntryHook is the type of the profile entry hook called at entry to
|
||
|
* any generated function when function-level profiling is enabled.
|
||
|
*
|
||
|
* \param function the address of the function that's being entered.
|
||
|
* \param return_addr_location points to a location on stack where the machine
|
||
|
* return address resides. This can be used to identify the caller of
|
||
|
* \p function, and/or modified to divert execution when \p function exits.
|
||
|
*
|
||
|
* \note the entry hook must not cause garbage collection.
|
||
|
*/
|
||
|
typedef void (*FunctionEntryHook)(uintptr_t function,
|
||
|
uintptr_t return_addr_location);
|
||
|
|
||
|
/**
|
||
|
* A JIT code event is issued each time code is added, moved or removed.
|
||
|
*
|
||
|
* \note removal events are not currently issued.
|
||
|
*/
|
||
|
struct JitCodeEvent {
|
||
|
enum EventType {
|
||
|
CODE_ADDED,
|
||
|
CODE_MOVED,
|
||
|
CODE_REMOVED,
|
||
|
CODE_ADD_LINE_POS_INFO,
|
||
|
CODE_START_LINE_INFO_RECORDING,
|
||
|
CODE_END_LINE_INFO_RECORDING
|
||
|
};
|
||
|
// Definition of the code position type. The "POSITION" type means the place
|
||
|
// in the source code which are of interest when making stack traces to
|
||
|
// pin-point the source location of a stack frame as close as possible.
|
||
|
// The "STATEMENT_POSITION" means the place at the beginning of each
|
||
|
// statement, and is used to indicate possible break locations.
|
||
|
enum PositionType { POSITION, STATEMENT_POSITION };
|
||
|
|
||
|
// Type of event.
|
||
|
EventType type;
|
||
|
// Start of the instructions.
|
||
|
void* code_start;
|
||
|
// Size of the instructions.
|
||
|
size_t code_len;
|
||
|
// Script info for CODE_ADDED event.
|
||
|
Handle<UnboundScript> script;
|
||
|
// User-defined data for *_LINE_INFO_* event. It's used to hold the source
|
||
|
// code line information which is returned from the
|
||
|
// CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
|
||
|
// CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
|
||
|
void* user_data;
|
||
|
|
||
|
struct name_t {
|
||
|
// Name of the object associated with the code, note that the string is not
|
||
|
// zero-terminated.
|
||
|
const char* str;
|
||
|
// Number of chars in str.
|
||
|
size_t len;
|
||
|
};
|
||
|
|
||
|
struct line_info_t {
|
||
|
// PC offset
|
||
|
size_t offset;
|
||
|
// Code postion
|
||
|
size_t pos;
|
||
|
// The position type.
|
||
|
PositionType position_type;
|
||
|
};
|
||
|
|
||
|
union {
|
||
|
// Only valid for CODE_ADDED.
|
||
|
struct name_t name;
|
||
|
|
||
|
// Only valid for CODE_ADD_LINE_POS_INFO
|
||
|
struct line_info_t line_info;
|
||
|
|
||
|
// New location of instructions. Only valid for CODE_MOVED.
|
||
|
void* new_code_start;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Option flags passed to the SetJitCodeEventHandler function.
|
||
|
*/
|
||
|
enum JitCodeEventOptions {
|
||
|
kJitCodeEventDefault = 0,
|
||
|
// Generate callbacks for already existent code.
|
||
|
kJitCodeEventEnumExisting = 1
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Callback function passed to SetJitCodeEventHandler.
|
||
|
*
|
||
|
* \param event code add, move or removal event.
|
||
|
*/
|
||
|
typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Isolate represents an isolated instance of the V8 engine. V8 isolates have
|
||
|
* completely separate states. Objects from one isolate must not be used in
|
||
|
* other isolates. The embedder can create multiple isolates and use them in
|
||
|
* parallel in multiple threads. An isolate can be entered by at most one
|
||
|
* thread at any given time. The Locker/Unlocker API must be used to
|
||
|
* synchronize.
|
||
|
*/
|
||
|
class V8_EXPORT Isolate {
|
||
|
public:
|
||
|
/**
|
||
|
* Initial configuration parameters for a new Isolate.
|
||
|
*/
|
||
|
struct CreateParams {
|
||
|
CreateParams()
|
||
|
: entry_hook(NULL),
|
||
|
code_event_handler(NULL),
|
||
|
enable_serializer(false) {}
|
||
|
|
||
|
/**
|
||
|
* The optional entry_hook allows the host application to provide the
|
||
|
* address of a function that's invoked on entry to every V8-generated
|
||
|
* function. Note that entry_hook is invoked at the very start of each
|
||
|
* generated function. Furthermore, if an entry_hook is given, V8 will
|
||
|
* always run without a context snapshot.
|
||
|
*/
|
||
|
FunctionEntryHook entry_hook;
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to provide the address of a function that is
|
||
|
* notified each time code is added, moved or removed.
|
||
|
*/
|
||
|
JitCodeEventHandler code_event_handler;
|
||
|
|
||
|
/**
|
||
|
* ResourceConstraints to use for the new Isolate.
|
||
|
*/
|
||
|
ResourceConstraints constraints;
|
||
|
|
||
|
/**
|
||
|
* This flag currently renders the Isolate unusable.
|
||
|
*/
|
||
|
bool enable_serializer;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Stack-allocated class which sets the isolate for all operations
|
||
|
* executed within a local scope.
|
||
|
*/
|
||
|
class V8_EXPORT Scope {
|
||
|
public:
|
||
|
explicit Scope(Isolate* isolate) : isolate_(isolate) {
|
||
|
isolate->Enter();
|
||
|
}
|
||
|
|
||
|
~Scope() { isolate_->Exit(); }
|
||
|
|
||
|
private:
|
||
|
Isolate* const isolate_;
|
||
|
|
||
|
// Prevent copying of Scope objects.
|
||
|
Scope(const Scope&);
|
||
|
Scope& operator=(const Scope&);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Assert that no Javascript code is invoked.
|
||
|
*/
|
||
|
class V8_EXPORT DisallowJavascriptExecutionScope {
|
||
|
public:
|
||
|
enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
|
||
|
|
||
|
DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
|
||
|
~DisallowJavascriptExecutionScope();
|
||
|
|
||
|
private:
|
||
|
bool on_failure_;
|
||
|
void* internal_;
|
||
|
|
||
|
// Prevent copying of Scope objects.
|
||
|
DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&);
|
||
|
DisallowJavascriptExecutionScope& operator=(
|
||
|
const DisallowJavascriptExecutionScope&);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Introduce exception to DisallowJavascriptExecutionScope.
|
||
|
*/
|
||
|
class V8_EXPORT AllowJavascriptExecutionScope {
|
||
|
public:
|
||
|
explicit AllowJavascriptExecutionScope(Isolate* isolate);
|
||
|
~AllowJavascriptExecutionScope();
|
||
|
|
||
|
private:
|
||
|
void* internal_throws_;
|
||
|
void* internal_assert_;
|
||
|
|
||
|
// Prevent copying of Scope objects.
|
||
|
AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&);
|
||
|
AllowJavascriptExecutionScope& operator=(
|
||
|
const AllowJavascriptExecutionScope&);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Do not run microtasks while this scope is active, even if microtasks are
|
||
|
* automatically executed otherwise.
|
||
|
*/
|
||
|
class V8_EXPORT SuppressMicrotaskExecutionScope {
|
||
|
public:
|
||
|
explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
|
||
|
~SuppressMicrotaskExecutionScope();
|
||
|
|
||
|
private:
|
||
|
internal::Isolate* isolate_;
|
||
|
|
||
|
// Prevent copying of Scope objects.
|
||
|
SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&);
|
||
|
SuppressMicrotaskExecutionScope& operator=(
|
||
|
const SuppressMicrotaskExecutionScope&);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Types of garbage collections that can be requested via
|
||
|
* RequestGarbageCollectionForTesting.
|
||
|
*/
|
||
|
enum GarbageCollectionType {
|
||
|
kFullGarbageCollection,
|
||
|
kMinorGarbageCollection
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Features reported via the SetUseCounterCallback callback. Do not chang
|
||
|
* assigned numbers of existing items; add new features to the end of this
|
||
|
* list.
|
||
|
*/
|
||
|
enum UseCounterFeature {
|
||
|
kUseAsm = 0,
|
||
|
kBreakIterator = 1,
|
||
|
kUseCounterFeatureCount // This enum value must be last.
|
||
|
};
|
||
|
|
||
|
typedef void (*UseCounterCallback)(Isolate* isolate,
|
||
|
UseCounterFeature feature);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Creates a new isolate. Does not change the currently entered
|
||
|
* isolate.
|
||
|
*
|
||
|
* When an isolate is no longer used its resources should be freed
|
||
|
* by calling Dispose(). Using the delete operator is not allowed.
|
||
|
*
|
||
|
* V8::Initialize() must have run prior to this.
|
||
|
*/
|
||
|
static Isolate* New(const CreateParams& params = CreateParams());
|
||
|
|
||
|
/**
|
||
|
* Returns the entered isolate for the current thread or NULL in
|
||
|
* case there is no current isolate.
|
||
|
*/
|
||
|
static Isolate* GetCurrent();
|
||
|
|
||
|
/**
|
||
|
* Methods below this point require holding a lock (using Locker) in
|
||
|
* a multi-threaded environment.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Sets this isolate as the entered one for the current thread.
|
||
|
* Saves the previously entered one (if any), so that it can be
|
||
|
* restored when exiting. Re-entering an isolate is allowed.
|
||
|
*/
|
||
|
void Enter();
|
||
|
|
||
|
/**
|
||
|
* Exits this isolate by restoring the previously entered one in the
|
||
|
* current thread. The isolate may still stay the same, if it was
|
||
|
* entered more than once.
|
||
|
*
|
||
|
* Requires: this == Isolate::GetCurrent().
|
||
|
*/
|
||
|
void Exit();
|
||
|
|
||
|
/**
|
||
|
* Disposes the isolate. The isolate must not be entered by any
|
||
|
* thread to be disposable.
|
||
|
*/
|
||
|
void Dispose();
|
||
|
|
||
|
/**
|
||
|
* Associate embedder-specific data with the isolate. |slot| has to be
|
||
|
* between 0 and GetNumberOfDataSlots() - 1.
|
||
|
*/
|
||
|
V8_INLINE void SetData(uint32_t slot, void* data);
|
||
|
|
||
|
/**
|
||
|
* Retrieve embedder-specific data from the isolate.
|
||
|
* Returns NULL if SetData has never been called for the given |slot|.
|
||
|
*/
|
||
|
V8_INLINE void* GetData(uint32_t slot);
|
||
|
|
||
|
/**
|
||
|
* Returns the maximum number of available embedder data slots. Valid slots
|
||
|
* are in the range of 0 - GetNumberOfDataSlots() - 1.
|
||
|
*/
|
||
|
V8_INLINE static uint32_t GetNumberOfDataSlots();
|
||
|
|
||
|
/**
|
||
|
* Get statistics about the heap memory usage.
|
||
|
*/
|
||
|
void GetHeapStatistics(HeapStatistics* heap_statistics);
|
||
|
|
||
|
/**
|
||
|
* Get a call stack sample from the isolate.
|
||
|
* \param state Execution state.
|
||
|
* \param frames Caller allocated buffer to store stack frames.
|
||
|
* \param frames_limit Maximum number of frames to capture. The buffer must
|
||
|
* be large enough to hold the number of frames.
|
||
|
* \param sample_info The sample info is filled up by the function
|
||
|
* provides number of actual captured stack frames and
|
||
|
* the current VM state.
|
||
|
* \note GetStackSample should only be called when the JS thread is paused or
|
||
|
* interrupted. Otherwise the behavior is undefined.
|
||
|
*/
|
||
|
void GetStackSample(const RegisterState& state, void** frames,
|
||
|
size_t frames_limit, SampleInfo* sample_info);
|
||
|
|
||
|
/**
|
||
|
* Adjusts the amount of registered external memory. Used to give V8 an
|
||
|
* indication of the amount of externally allocated memory that is kept alive
|
||
|
* by JavaScript objects. V8 uses this to decide when to perform global
|
||
|
* garbage collections. Registering externally allocated memory will trigger
|
||
|
* global garbage collections more often than it would otherwise in an attempt
|
||
|
* to garbage collect the JavaScript objects that keep the externally
|
||
|
* allocated memory alive.
|
||
|
*
|
||
|
* \param change_in_bytes the change in externally allocated memory that is
|
||
|
* kept alive by JavaScript objects.
|
||
|
* \returns the adjusted value.
|
||
|
*/
|
||
|
V8_INLINE int64_t
|
||
|
AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
|
||
|
|
||
|
/**
|
||
|
* Returns heap profiler for this isolate. Will return NULL until the isolate
|
||
|
* is initialized.
|
||
|
*/
|
||
|
HeapProfiler* GetHeapProfiler();
|
||
|
|
||
|
/**
|
||
|
* Returns CPU profiler for this isolate. Will return NULL unless the isolate
|
||
|
* is initialized. It is the embedder's responsibility to stop all CPU
|
||
|
* profiling activities if it has started any.
|
||
|
*/
|
||
|
CpuProfiler* GetCpuProfiler();
|
||
|
|
||
|
/** Returns true if this isolate has a current context. */
|
||
|
bool InContext();
|
||
|
|
||
|
/** Returns the context that is on the top of the stack. */
|
||
|
Local<Context> GetCurrentContext();
|
||
|
|
||
|
/**
|
||
|
* Returns the context of the calling JavaScript code. That is the
|
||
|
* context of the top-most JavaScript frame. If there are no
|
||
|
* JavaScript frames an empty handle is returned.
|
||
|
*/
|
||
|
Local<Context> GetCallingContext();
|
||
|
|
||
|
/** Returns the last entered context. */
|
||
|
Local<Context> GetEnteredContext();
|
||
|
|
||
|
/**
|
||
|
* Schedules an exception to be thrown when returning to JavaScript. When an
|
||
|
* exception has been scheduled it is illegal to invoke any JavaScript
|
||
|
* operation; the caller must return immediately and only after the exception
|
||
|
* has been handled does it become legal to invoke JavaScript operations.
|
||
|
*/
|
||
|
Local<Value> ThrowException(Local<Value> exception);
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to group objects together. If one
|
||
|
* object in the group is alive, all objects in the group are alive.
|
||
|
* After each garbage collection, object groups are removed. It is
|
||
|
* intended to be used in the before-garbage-collection callback
|
||
|
* function, for instance to simulate DOM tree connections among JS
|
||
|
* wrapper objects. Object groups for all dependent handles need to
|
||
|
* be provided for kGCTypeMarkSweepCompact collections, for all other
|
||
|
* garbage collection types it is sufficient to provide object groups
|
||
|
* for partially dependent handles only.
|
||
|
*/
|
||
|
template<typename T> void SetObjectGroupId(const Persistent<T>& object,
|
||
|
UniqueId id);
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to declare implicit references from an object
|
||
|
* group to an object. If the objects of the object group are alive, the child
|
||
|
* object is alive too. After each garbage collection, all implicit references
|
||
|
* are removed. It is intended to be used in the before-garbage-collection
|
||
|
* callback function.
|
||
|
*/
|
||
|
template<typename T> void SetReferenceFromGroup(UniqueId id,
|
||
|
const Persistent<T>& child);
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to declare implicit references from an object
|
||
|
* to another object. If the parent object is alive, the child object is alive
|
||
|
* too. After each garbage collection, all implicit references are removed. It
|
||
|
* is intended to be used in the before-garbage-collection callback function.
|
||
|
*/
|
||
|
template<typename T, typename S>
|
||
|
void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
|
||
|
|
||
|
typedef void (*GCPrologueCallback)(Isolate* isolate,
|
||
|
GCType type,
|
||
|
GCCallbackFlags flags);
|
||
|
typedef void (*GCEpilogueCallback)(Isolate* isolate,
|
||
|
GCType type,
|
||
|
GCCallbackFlags flags);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to receive a notification before a
|
||
|
* garbage collection. Allocations are allowed in the callback function,
|
||
|
* but the callback is not re-entrant: if the allocation inside it will
|
||
|
* trigger the garbage collection, the callback won't be called again.
|
||
|
* It is possible to specify the GCType filter for your callback. But it is
|
||
|
* not possible to register the same callback function two times with
|
||
|
* different GCType filters.
|
||
|
*/
|
||
|
void AddGCPrologueCallback(
|
||
|
GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
|
||
|
|
||
|
/**
|
||
|
* This function removes callback which was installed by
|
||
|
* AddGCPrologueCallback function.
|
||
|
*/
|
||
|
void RemoveGCPrologueCallback(GCPrologueCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to receive a notification after a
|
||
|
* garbage collection. Allocations are allowed in the callback function,
|
||
|
* but the callback is not re-entrant: if the allocation inside it will
|
||
|
* trigger the garbage collection, the callback won't be called again.
|
||
|
* It is possible to specify the GCType filter for your callback. But it is
|
||
|
* not possible to register the same callback function two times with
|
||
|
* different GCType filters.
|
||
|
*/
|
||
|
void AddGCEpilogueCallback(
|
||
|
GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
|
||
|
|
||
|
/**
|
||
|
* This function removes callback which was installed by
|
||
|
* AddGCEpilogueCallback function.
|
||
|
*/
|
||
|
void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Request V8 to interrupt long running JavaScript code and invoke
|
||
|
* the given |callback| passing the given |data| to it. After |callback|
|
||
|
* returns control will be returned to the JavaScript code.
|
||
|
* At any given moment V8 can remember only a single callback for the very
|
||
|
* last interrupt request.
|
||
|
* Can be called from another thread without acquiring a |Locker|.
|
||
|
* Registered |callback| must not reenter interrupted Isolate.
|
||
|
*/
|
||
|
void RequestInterrupt(InterruptCallback callback, void* data);
|
||
|
|
||
|
/**
|
||
|
* Clear interrupt request created by |RequestInterrupt|.
|
||
|
* Can be called from another thread without acquiring a |Locker|.
|
||
|
*/
|
||
|
void ClearInterrupt();
|
||
|
|
||
|
/**
|
||
|
* Request garbage collection in this Isolate. It is only valid to call this
|
||
|
* function if --expose_gc was specified.
|
||
|
*
|
||
|
* This should only be used for testing purposes and not to enforce a garbage
|
||
|
* collection schedule. It has strong negative impact on the garbage
|
||
|
* collection performance. Use IdleNotification() or LowMemoryNotification()
|
||
|
* instead to influence the garbage collection schedule.
|
||
|
*/
|
||
|
void RequestGarbageCollectionForTesting(GarbageCollectionType type);
|
||
|
|
||
|
/**
|
||
|
* Set the callback to invoke for logging event.
|
||
|
*/
|
||
|
void SetEventLogger(LogEventCallback that);
|
||
|
|
||
|
/**
|
||
|
* Adds a callback to notify the host application when a script finished
|
||
|
* running. If a script re-enters the runtime during executing, the
|
||
|
* CallCompletedCallback is only invoked when the outer-most script
|
||
|
* execution ends. Executing scripts inside the callback do not trigger
|
||
|
* further callbacks.
|
||
|
*/
|
||
|
void AddCallCompletedCallback(CallCompletedCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Removes callback that was installed by AddCallCompletedCallback.
|
||
|
*/
|
||
|
void RemoveCallCompletedCallback(CallCompletedCallback callback);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Set callback to notify about promise reject with no handler, or
|
||
|
* revocation of such a previous notification once the handler is added.
|
||
|
*/
|
||
|
void SetPromiseRejectCallback(PromiseRejectCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Experimental: Runs the Microtask Work Queue until empty
|
||
|
* Any exceptions thrown by microtask callbacks are swallowed.
|
||
|
*/
|
||
|
void RunMicrotasks();
|
||
|
|
||
|
/**
|
||
|
* Experimental: Enqueues the callback to the Microtask Work Queue
|
||
|
*/
|
||
|
void EnqueueMicrotask(Handle<Function> microtask);
|
||
|
|
||
|
/**
|
||
|
* Experimental: Enqueues the callback to the Microtask Work Queue
|
||
|
*/
|
||
|
void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
|
||
|
|
||
|
/**
|
||
|
* Experimental: Controls whether the Microtask Work Queue is automatically
|
||
|
* run when the script call depth decrements to zero.
|
||
|
*/
|
||
|
void SetAutorunMicrotasks(bool autorun);
|
||
|
|
||
|
/**
|
||
|
* Experimental: Returns whether the Microtask Work Queue is automatically
|
||
|
* run when the script call depth decrements to zero.
|
||
|
*/
|
||
|
bool WillAutorunMicrotasks() const;
|
||
|
|
||
|
/**
|
||
|
* Sets a callback for counting the number of times a feature of V8 is used.
|
||
|
*/
|
||
|
void SetUseCounterCallback(UseCounterCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to provide a mechanism for recording
|
||
|
* statistics counters.
|
||
|
*/
|
||
|
void SetCounterFunction(CounterLookupCallback);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to provide a mechanism for recording
|
||
|
* histograms. The CreateHistogram function returns a
|
||
|
* histogram which will later be passed to the AddHistogramSample
|
||
|
* function.
|
||
|
*/
|
||
|
void SetCreateHistogramFunction(CreateHistogramCallback);
|
||
|
void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
|
||
|
|
||
|
/**
|
||
|
* Optional notification that the embedder is idle.
|
||
|
* V8 uses the notification to reduce memory footprint.
|
||
|
* This call can be used repeatedly if the embedder remains idle.
|
||
|
* Returns true if the embedder should stop calling IdleNotification
|
||
|
* until real work has been done. This indicates that V8 has done
|
||
|
* as much cleanup as it will be able to do.
|
||
|
*
|
||
|
* The idle_time_in_ms argument specifies the time V8 has to do reduce
|
||
|
* the memory footprint. There is no guarantee that the actual work will be
|
||
|
* done within the time limit.
|
||
|
*/
|
||
|
bool IdleNotification(int idle_time_in_ms);
|
||
|
|
||
|
/**
|
||
|
* Optional notification that the system is running low on memory.
|
||
|
* V8 uses these notifications to attempt to free memory.
|
||
|
*/
|
||
|
void LowMemoryNotification();
|
||
|
|
||
|
/**
|
||
|
* Optional notification that a context has been disposed. V8 uses
|
||
|
* these notifications to guide the GC heuristic. Returns the number
|
||
|
* of context disposals - including this one - since the last time
|
||
|
* V8 had a chance to clean up.
|
||
|
*/
|
||
|
int ContextDisposedNotification();
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to provide the address of a function that is
|
||
|
* notified each time code is added, moved or removed.
|
||
|
*
|
||
|
* \param options options for the JIT code event handler.
|
||
|
* \param event_handler the JIT code event handler, which will be invoked
|
||
|
* each time code is added, moved or removed.
|
||
|
* \note \p event_handler won't get notified of existent code.
|
||
|
* \note since code removal notifications are not currently issued, the
|
||
|
* \p event_handler may get notifications of code that overlaps earlier
|
||
|
* code notifications. This happens when code areas are reused, and the
|
||
|
* earlier overlapping code areas should therefore be discarded.
|
||
|
* \note the events passed to \p event_handler and the strings they point to
|
||
|
* are not guaranteed to live past each call. The \p event_handler must
|
||
|
* copy strings and other parameters it needs to keep around.
|
||
|
* \note the set of events declared in JitCodeEvent::EventType is expected to
|
||
|
* grow over time, and the JitCodeEvent structure is expected to accrue
|
||
|
* new members. The \p event_handler function must ignore event codes
|
||
|
* it does not recognize to maintain future compatibility.
|
||
|
* \note Use Isolate::CreateParams to get events for code executed during
|
||
|
* Isolate setup.
|
||
|
*/
|
||
|
void SetJitCodeEventHandler(JitCodeEventOptions options,
|
||
|
JitCodeEventHandler event_handler);
|
||
|
|
||
|
/**
|
||
|
* Modifies the stack limit for this Isolate.
|
||
|
*
|
||
|
* \param stack_limit An address beyond which the Vm's stack may not grow.
|
||
|
*
|
||
|
* \note If you are using threads then you should hold the V8::Locker lock
|
||
|
* while setting the stack limit and you must set a non-default stack
|
||
|
* limit separately for each thread.
|
||
|
*/
|
||
|
void SetStackLimit(uintptr_t stack_limit);
|
||
|
|
||
|
/**
|
||
|
* Returns a memory range that can potentially contain jitted code.
|
||
|
*
|
||
|
* On Win64, embedders are advised to install function table callbacks for
|
||
|
* these ranges, as default SEH won't be able to unwind through jitted code.
|
||
|
*
|
||
|
* The first page of the code range is reserved for the embedder and is
|
||
|
* committed, writable, and executable.
|
||
|
*
|
||
|
* Might be empty on other platforms.
|
||
|
*
|
||
|
* https://code.google.com/p/v8/issues/detail?id=3598
|
||
|
*/
|
||
|
void GetCodeRange(void** start, size_t* length_in_bytes);
|
||
|
|
||
|
private:
|
||
|
template<class K, class V, class Traits> friend class PersistentValueMap;
|
||
|
|
||
|
Isolate();
|
||
|
Isolate(const Isolate&);
|
||
|
~Isolate();
|
||
|
Isolate& operator=(const Isolate&);
|
||
|
void* operator new(size_t size);
|
||
|
void operator delete(void*, size_t);
|
||
|
|
||
|
void SetObjectGroupId(internal::Object** object, UniqueId id);
|
||
|
void SetReferenceFromGroup(UniqueId id, internal::Object** object);
|
||
|
void SetReference(internal::Object** parent, internal::Object** child);
|
||
|
void CollectAllGarbage(const char* gc_reason);
|
||
|
};
|
||
|
|
||
|
class V8_EXPORT StartupData {
|
||
|
public:
|
||
|
enum CompressionAlgorithm {
|
||
|
kUncompressed,
|
||
|
kBZip2
|
||
|
};
|
||
|
|
||
|
const char* data;
|
||
|
int compressed_size;
|
||
|
int raw_size;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A helper class for driving V8 startup data decompression. It is based on
|
||
|
* "CompressedStartupData" API functions from the V8 class. It isn't mandatory
|
||
|
* for an embedder to use this class, instead, API functions can be used
|
||
|
* directly.
|
||
|
*
|
||
|
* For an example of the class usage, see the "shell.cc" sample application.
|
||
|
*/
|
||
|
class V8_EXPORT StartupDataDecompressor { // NOLINT
|
||
|
public:
|
||
|
StartupDataDecompressor();
|
||
|
virtual ~StartupDataDecompressor();
|
||
|
int Decompress();
|
||
|
|
||
|
protected:
|
||
|
virtual int DecompressData(char* raw_data,
|
||
|
int* raw_data_size,
|
||
|
const char* compressed_data,
|
||
|
int compressed_data_size) = 0;
|
||
|
|
||
|
private:
|
||
|
char** raw_data;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* EntropySource is used as a callback function when v8 needs a source
|
||
|
* of entropy.
|
||
|
*/
|
||
|
typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* ReturnAddressLocationResolver is used as a callback function when v8 is
|
||
|
* resolving the location of a return address on the stack. Profilers that
|
||
|
* change the return address on the stack can use this to resolve the stack
|
||
|
* location to whereever the profiler stashed the original return address.
|
||
|
*
|
||
|
* \param return_addr_location points to a location on stack where a machine
|
||
|
* return address resides.
|
||
|
* \returns either return_addr_location, or else a pointer to the profiler's
|
||
|
* copy of the original return address.
|
||
|
*
|
||
|
* \note the resolver function must not cause garbage collection.
|
||
|
*/
|
||
|
typedef uintptr_t (*ReturnAddressLocationResolver)(
|
||
|
uintptr_t return_addr_location);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Interface for iterating through all external resources in the heap.
|
||
|
*/
|
||
|
class V8_EXPORT ExternalResourceVisitor { // NOLINT
|
||
|
public:
|
||
|
virtual ~ExternalResourceVisitor() {}
|
||
|
virtual void VisitExternalString(Handle<String> string) {}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Interface for iterating through all the persistent handles in the heap.
|
||
|
*/
|
||
|
class V8_EXPORT PersistentHandleVisitor { // NOLINT
|
||
|
public:
|
||
|
virtual ~PersistentHandleVisitor() {}
|
||
|
virtual void VisitPersistentHandle(Persistent<Value>* value,
|
||
|
uint16_t class_id) {}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Container class for static utility functions.
|
||
|
*/
|
||
|
class V8_EXPORT V8 {
|
||
|
public:
|
||
|
/** Set the callback to invoke in case of fatal errors. */
|
||
|
static void SetFatalErrorHandler(FatalErrorCallback that);
|
||
|
|
||
|
/**
|
||
|
* Set the callback to invoke to check if code generation from
|
||
|
* strings should be allowed.
|
||
|
*/
|
||
|
static void SetAllowCodeGenerationFromStringsCallback(
|
||
|
AllowCodeGenerationFromStringsCallback that);
|
||
|
|
||
|
/**
|
||
|
* Set allocator to use for ArrayBuffer memory.
|
||
|
* The allocator should be set only once. The allocator should be set
|
||
|
* before any code tha uses ArrayBuffers is executed.
|
||
|
* This allocator is used in all isolates.
|
||
|
*/
|
||
|
static void SetArrayBufferAllocator(ArrayBuffer::Allocator* allocator);
|
||
|
|
||
|
/**
|
||
|
* Check if V8 is dead and therefore unusable. This is the case after
|
||
|
* fatal errors such as out-of-memory situations.
|
||
|
*/
|
||
|
static bool IsDead();
|
||
|
|
||
|
/**
|
||
|
* The following 4 functions are to be used when V8 is built with
|
||
|
* the 'compress_startup_data' flag enabled. In this case, the
|
||
|
* embedder must decompress startup data prior to initializing V8.
|
||
|
*
|
||
|
* This is how interaction with V8 should look like:
|
||
|
* int compressed_data_count = v8::V8::GetCompressedStartupDataCount();
|
||
|
* v8::StartupData* compressed_data =
|
||
|
* new v8::StartupData[compressed_data_count];
|
||
|
* v8::V8::GetCompressedStartupData(compressed_data);
|
||
|
* ... decompress data (compressed_data can be updated in-place) ...
|
||
|
* v8::V8::SetDecompressedStartupData(compressed_data);
|
||
|
* ... now V8 can be initialized
|
||
|
* ... make sure the decompressed data stays valid until V8 shutdown
|
||
|
*
|
||
|
* A helper class StartupDataDecompressor is provided. It implements
|
||
|
* the protocol of the interaction described above, and can be used in
|
||
|
* most cases instead of calling these API functions directly.
|
||
|
*/
|
||
|
static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm();
|
||
|
static int GetCompressedStartupDataCount();
|
||
|
static void GetCompressedStartupData(StartupData* compressed_data);
|
||
|
static void SetDecompressedStartupData(StartupData* decompressed_data);
|
||
|
|
||
|
/**
|
||
|
* Hand startup data to V8, in case the embedder has chosen to build
|
||
|
* V8 with external startup data.
|
||
|
*
|
||
|
* Note:
|
||
|
* - By default the startup data is linked into the V8 library, in which
|
||
|
* case this function is not meaningful.
|
||
|
* - If this needs to be called, it needs to be called before V8
|
||
|
* tries to make use of its built-ins.
|
||
|
* - To avoid unnecessary copies of data, V8 will point directly into the
|
||
|
* given data blob, so pretty please keep it around until V8 exit.
|
||
|
* - Compression of the startup blob might be useful, but needs to
|
||
|
* handled entirely on the embedders' side.
|
||
|
* - The call will abort if the data is invalid.
|
||
|
*/
|
||
|
static void SetNativesDataBlob(StartupData* startup_blob);
|
||
|
static void SetSnapshotDataBlob(StartupData* startup_blob);
|
||
|
|
||
|
/**
|
||
|
* Adds a message listener.
|
||
|
*
|
||
|
* The same message listener can be added more than once and in that
|
||
|
* case it will be called more than once for each message.
|
||
|
*
|
||
|
* If data is specified, it will be passed to the callback when it is called.
|
||
|
* Otherwise, the exception object will be passed to the callback instead.
|
||
|
*/
|
||
|
static bool AddMessageListener(MessageCallback that,
|
||
|
Handle<Value> data = Handle<Value>());
|
||
|
|
||
|
/**
|
||
|
* Remove all message listeners from the specified callback function.
|
||
|
*/
|
||
|
static void RemoveMessageListeners(MessageCallback that);
|
||
|
|
||
|
/**
|
||
|
* Tells V8 to capture current stack trace when uncaught exception occurs
|
||
|
* and report it to the message listeners. The option is off by default.
|
||
|
*/
|
||
|
static void SetCaptureStackTraceForUncaughtExceptions(
|
||
|
bool capture,
|
||
|
int frame_limit = 10,
|
||
|
StackTrace::StackTraceOptions options = StackTrace::kOverview);
|
||
|
|
||
|
/**
|
||
|
* Sets V8 flags from a string.
|
||
|
*/
|
||
|
static void SetFlagsFromString(const char* str, int length);
|
||
|
|
||
|
/**
|
||
|
* Sets V8 flags from the command line.
|
||
|
*/
|
||
|
static void SetFlagsFromCommandLine(int* argc,
|
||
|
char** argv,
|
||
|
bool remove_flags);
|
||
|
|
||
|
/** Get the version string. */
|
||
|
static const char* GetVersion();
|
||
|
|
||
|
/** Callback function for reporting failed access checks.*/
|
||
|
static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to receive a notification before a
|
||
|
* garbage collection. Allocations are not allowed in the
|
||
|
* callback function, you therefore cannot manipulate objects (set
|
||
|
* or delete properties for example) since it is possible such
|
||
|
* operations will result in the allocation of objects. It is possible
|
||
|
* to specify the GCType filter for your callback. But it is not possible to
|
||
|
* register the same callback function two times with different
|
||
|
* GCType filters.
|
||
|
*/
|
||
|
static void AddGCPrologueCallback(
|
||
|
GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
|
||
|
|
||
|
/**
|
||
|
* This function removes callback which was installed by
|
||
|
* AddGCPrologueCallback function.
|
||
|
*/
|
||
|
static void RemoveGCPrologueCallback(GCPrologueCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to receive a notification after a
|
||
|
* garbage collection. Allocations are not allowed in the
|
||
|
* callback function, you therefore cannot manipulate objects (set
|
||
|
* or delete properties for example) since it is possible such
|
||
|
* operations will result in the allocation of objects. It is possible
|
||
|
* to specify the GCType filter for your callback. But it is not possible to
|
||
|
* register the same callback function two times with different
|
||
|
* GCType filters.
|
||
|
*/
|
||
|
static void AddGCEpilogueCallback(
|
||
|
GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
|
||
|
|
||
|
/**
|
||
|
* This function removes callback which was installed by
|
||
|
* AddGCEpilogueCallback function.
|
||
|
*/
|
||
|
static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Enables the host application to provide a mechanism to be notified
|
||
|
* and perform custom logging when V8 Allocates Executable Memory.
|
||
|
*/
|
||
|
static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
|
||
|
ObjectSpace space,
|
||
|
AllocationAction action);
|
||
|
|
||
|
/**
|
||
|
* Removes callback that was installed by AddMemoryAllocationCallback.
|
||
|
*/
|
||
|
static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
|
||
|
|
||
|
/**
|
||
|
* Initializes V8. This function needs to be called before the first Isolate
|
||
|
* is created. It always returns true.
|
||
|
*/
|
||
|
static bool Initialize();
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to provide a callback which can be used
|
||
|
* as a source of entropy for random number generators.
|
||
|
*/
|
||
|
static void SetEntropySource(EntropySource source);
|
||
|
|
||
|
/**
|
||
|
* Allows the host application to provide a callback that allows v8 to
|
||
|
* cooperate with a profiler that rewrites return addresses on stack.
|
||
|
*/
|
||
|
static void SetReturnAddressLocationResolver(
|
||
|
ReturnAddressLocationResolver return_address_resolver);
|
||
|
|
||
|
/**
|
||
|
* Forcefully terminate the current thread of JavaScript execution
|
||
|
* in the given isolate.
|
||
|
*
|
||
|
* This method can be used by any thread even if that thread has not
|
||
|
* acquired the V8 lock with a Locker object.
|
||
|
*
|
||
|
* \param isolate The isolate in which to terminate the current JS execution.
|
||
|
*/
|
||
|
static void TerminateExecution(Isolate* isolate);
|
||
|
|
||
|
/**
|
||
|
* Is V8 terminating JavaScript execution.
|
||
|
*
|
||
|
* Returns true if JavaScript execution is currently terminating
|
||
|
* because of a call to TerminateExecution. In that case there are
|
||
|
* still JavaScript frames on the stack and the termination
|
||
|
* exception is still active.
|
||
|
*
|
||
|
* \param isolate The isolate in which to check.
|
||
|
*/
|
||
|
static bool IsExecutionTerminating(Isolate* isolate = NULL);
|
||
|
|
||
|
/**
|
||
|
* Resume execution capability in the given isolate, whose execution
|
||
|
* was previously forcefully terminated using TerminateExecution().
|
||
|
*
|
||
|
* When execution is forcefully terminated using TerminateExecution(),
|
||
|
* the isolate can not resume execution until all JavaScript frames
|
||
|
* have propagated the uncatchable exception which is generated. This
|
||
|
* method allows the program embedding the engine to handle the
|
||
|
* termination event and resume execution capability, even if
|
||
|
* JavaScript frames remain on the stack.
|
||
|
*
|
||
|
* This method can be used by any thread even if that thread has not
|
||
|
* acquired the V8 lock with a Locker object.
|
||
|
*
|
||
|
* \param isolate The isolate in which to resume execution capability.
|
||
|
*/
|
||
|
static void CancelTerminateExecution(Isolate* isolate);
|
||
|
|
||
|
/**
|
||
|
* Releases any resources used by v8 and stops any utility threads
|
||
|
* that may be running. Note that disposing v8 is permanent, it
|
||
|
* cannot be reinitialized.
|
||
|
*
|
||
|
* It should generally not be necessary to dispose v8 before exiting
|
||
|
* a process, this should happen automatically. It is only necessary
|
||
|
* to use if the process needs the resources taken up by v8.
|
||
|
*/
|
||
|
static bool Dispose();
|
||
|
|
||
|
/**
|
||
|
* Iterates through all external resources referenced from current isolate
|
||
|
* heap. GC is not invoked prior to iterating, therefore there is no
|
||
|
* guarantee that visited objects are still alive.
|
||
|
*/
|
||
|
static void VisitExternalResources(ExternalResourceVisitor* visitor);
|
||
|
|
||
|
/**
|
||
|
* Iterates through all the persistent handles in the current isolate's heap
|
||
|
* that have class_ids.
|
||
|
*/
|
||
|
static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
|
||
|
|
||
|
/**
|
||
|
* Iterates through all the persistent handles in the current isolate's heap
|
||
|
* that have class_ids and are candidates to be marked as partially dependent
|
||
|
* handles. This will visit handles to young objects created since the last
|
||
|
* garbage collection but is free to visit an arbitrary superset of these
|
||
|
* objects.
|
||
|
*/
|
||
|
static void VisitHandlesForPartialDependence(
|
||
|
Isolate* isolate, PersistentHandleVisitor* visitor);
|
||
|
|
||
|
/**
|
||
|
* Initialize the ICU library bundled with V8. The embedder should only
|
||
|
* invoke this method when using the bundled ICU. Returns true on success.
|
||
|
*
|
||
|
* If V8 was compiled with the ICU data in an external file, the location
|
||
|
* of the data file has to be provided.
|
||
|
*/
|
||
|
static bool InitializeICU(const char* icu_data_file = NULL);
|
||
|
|
||
|
/**
|
||
|
* Sets the v8::Platform to use. This should be invoked before V8 is
|
||
|
* initialized.
|
||
|
*/
|
||
|
static void InitializePlatform(Platform* platform);
|
||
|
|
||
|
/**
|
||
|
* Clears all references to the v8::Platform. This should be invoked after
|
||
|
* V8 was disposed.
|
||
|
*/
|
||
|
static void ShutdownPlatform();
|
||
|
|
||
|
private:
|
||
|
V8();
|
||
|
|
||
|
static internal::Object** GlobalizeReference(internal::Isolate* isolate,
|
||
|
internal::Object** handle);
|
||
|
static internal::Object** CopyPersistent(internal::Object** handle);
|
||
|
static void DisposeGlobal(internal::Object** global_handle);
|
||
|
typedef WeakCallbackData<Value, void>::Callback WeakCallback;
|
||
|
static void MakeWeak(internal::Object** global_handle,
|
||
|
void* data,
|
||
|
WeakCallback weak_callback);
|
||
|
static void* ClearWeak(internal::Object** global_handle);
|
||
|
static void Eternalize(Isolate* isolate,
|
||
|
Value* handle,
|
||
|
int* index);
|
||
|
static Local<Value> GetEternal(Isolate* isolate, int index);
|
||
|
|
||
|
template <class T> friend class Handle;
|
||
|
template <class T> friend class Local;
|
||
|
template <class T> friend class Eternal;
|
||
|
template <class T> friend class PersistentBase;
|
||
|
template <class T, class M> friend class Persistent;
|
||
|
friend class Context;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* An external exception handler.
|
||
|
*/
|
||
|
class V8_EXPORT TryCatch {
|
||
|
public:
|
||
|
/**
|
||
|
* Creates a new try/catch block and registers it with v8. Note that
|
||
|
* all TryCatch blocks should be stack allocated because the memory
|
||
|
* location itself is compared against JavaScript try/catch blocks.
|
||
|
*/
|
||
|
TryCatch();
|
||
|
|
||
|
/**
|
||
|
* Unregisters and deletes this try/catch block.
|
||
|
*/
|
||
|
~TryCatch();
|
||
|
|
||
|
/**
|
||
|
* Returns true if an exception has been caught by this try/catch block.
|
||
|
*/
|
||
|
bool HasCaught() const;
|
||
|
|
||
|
/**
|
||
|
* For certain types of exceptions, it makes no sense to continue execution.
|
||
|
*
|
||
|
* If CanContinue returns false, the correct action is to perform any C++
|
||
|
* cleanup needed and then return. If CanContinue returns false and
|
||
|
* HasTerminated returns true, it is possible to call
|
||
|
* CancelTerminateExecution in order to continue calling into the engine.
|
||
|
*/
|
||
|
bool CanContinue() const;
|
||
|
|
||
|
/**
|
||
|
* Returns true if an exception has been caught due to script execution
|
||
|
* being terminated.
|
||
|
*
|
||
|
* There is no JavaScript representation of an execution termination
|
||
|
* exception. Such exceptions are thrown when the TerminateExecution
|
||
|
* methods are called to terminate a long-running script.
|
||
|
*
|
||
|
* If such an exception has been thrown, HasTerminated will return true,
|
||
|
* indicating that it is possible to call CancelTerminateExecution in order
|
||
|
* to continue calling into the engine.
|
||
|
*/
|
||
|
bool HasTerminated() const;
|
||
|
|
||
|
/**
|
||
|
* Throws the exception caught by this TryCatch in a way that avoids
|
||
|
* it being caught again by this same TryCatch. As with ThrowException
|
||
|
* it is illegal to execute any JavaScript operations after calling
|
||
|
* ReThrow; the caller must return immediately to where the exception
|
||
|
* is caught.
|
||
|
*/
|
||
|
Handle<Value> ReThrow();
|
||
|
|
||
|
/**
|
||
|
* Returns the exception caught by this try/catch block. If no exception has
|
||
|
* been caught an empty handle is returned.
|
||
|
*
|
||
|
* The returned handle is valid until this TryCatch block has been destroyed.
|
||
|
*/
|
||
|
Local<Value> Exception() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the .stack property of the thrown object. If no .stack
|
||
|
* property is present an empty handle is returned.
|
||
|
*/
|
||
|
Local<Value> StackTrace() const;
|
||
|
|
||
|
/**
|
||
|
* Returns the message associated with this exception. If there is
|
||
|
* no message associated an empty handle is returned.
|
||
|
*
|
||
|
* The returned handle is valid until this TryCatch block has been
|
||
|
* destroyed.
|
||
|
*/
|
||
|
Local<v8::Message> Message() const;
|
||
|
|
||
|
/**
|
||
|
* Clears any exceptions that may have been caught by this try/catch block.
|
||
|
* After this method has been called, HasCaught() will return false. Cancels
|
||
|
* the scheduled exception if it is caught and ReThrow() is not called before.
|
||
|
*
|
||
|
* It is not necessary to clear a try/catch block before using it again; if
|
||
|
* another exception is thrown the previously caught exception will just be
|
||
|
* overwritten. However, it is often a good idea since it makes it easier
|
||
|
* to determine which operation threw a given exception.
|
||
|
*/
|
||
|
void Reset();
|
||
|
|
||
|
/**
|
||
|
* Set verbosity of the external exception handler.
|
||
|
*
|
||
|
* By default, exceptions that are caught by an external exception
|
||
|
* handler are not reported. Call SetVerbose with true on an
|
||
|
* external exception handler to have exceptions caught by the
|
||
|
* handler reported as if they were not caught.
|
||
|
*/
|
||
|
void SetVerbose(bool value);
|
||
|
|
||
|
/**
|
||
|
* Set whether or not this TryCatch should capture a Message object
|
||
|
* which holds source information about where the exception
|
||
|
* occurred. True by default.
|
||
|
*/
|
||
|
void SetCaptureMessage(bool value);
|
||
|
|
||
|
/**
|
||
|
* There are cases when the raw address of C++ TryCatch object cannot be
|
||
|
* used for comparisons with addresses into the JS stack. The cases are:
|
||
|
* 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
|
||
|
* 2) Address sanitizer allocates local C++ object in the heap when
|
||
|
* UseAfterReturn mode is enabled.
|
||
|
* This method returns address that can be used for comparisons with
|
||
|
* addresses into the JS stack. When neither simulator nor ASAN's
|
||
|
* UseAfterReturn is enabled, then the address returned will be the address
|
||
|
* of the C++ try catch handler itself.
|
||
|
*/
|
||
|
static void* JSStackComparableAddress(v8::TryCatch* handler) {
|
||
|
if (handler == NULL) return NULL;
|
||
|
return handler->js_stack_comparable_address_;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void ResetInternal();
|
||
|
|
||
|
// Make it hard to create heap-allocated TryCatch blocks.
|
||
|
TryCatch(const TryCatch&);
|
||
|
void operator=(const TryCatch&);
|
||
|
void* operator new(size_t size);
|
||
|
void operator delete(void*, size_t);
|
||
|
|
||
|
v8::internal::Isolate* isolate_;
|
||
|
v8::TryCatch* next_;
|
||
|
void* exception_;
|
||
|
void* message_obj_;
|
||
|
void* message_script_;
|
||
|
void* js_stack_comparable_address_;
|
||
|
int message_start_pos_;
|
||
|
int message_end_pos_;
|
||
|
bool is_verbose_ : 1;
|
||
|
bool can_continue_ : 1;
|
||
|
bool capture_message_ : 1;
|
||
|
bool rethrow_ : 1;
|
||
|
bool has_terminated_ : 1;
|
||
|
|
||
|
friend class v8::internal::Isolate;
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Context ---
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A container for extension names.
|
||
|
*/
|
||
|
class V8_EXPORT ExtensionConfiguration {
|
||
|
public:
|
||
|
ExtensionConfiguration() : name_count_(0), names_(NULL) { }
|
||
|
ExtensionConfiguration(int name_count, const char* names[])
|
||
|
: name_count_(name_count), names_(names) { }
|
||
|
|
||
|
const char** begin() const { return &names_[0]; }
|
||
|
const char** end() const { return &names_[name_count_]; }
|
||
|
|
||
|
private:
|
||
|
const int name_count_;
|
||
|
const char** names_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* A sandboxed execution context with its own set of built-in objects
|
||
|
* and functions.
|
||
|
*/
|
||
|
class V8_EXPORT Context {
|
||
|
public:
|
||
|
/**
|
||
|
* Returns the global proxy object.
|
||
|
*
|
||
|
* Global proxy object is a thin wrapper whose prototype points to actual
|
||
|
* context's global object with the properties like Object, etc. This is done
|
||
|
* that way for security reasons (for more details see
|
||
|
* https://wiki.mozilla.org/Gecko:SplitWindow).
|
||
|
*
|
||
|
* Please note that changes to global proxy object prototype most probably
|
||
|
* would break VM---v8 expects only global object as a prototype of global
|
||
|
* proxy object.
|
||
|
*/
|
||
|
Local<Object> Global();
|
||
|
|
||
|
/**
|
||
|
* Detaches the global object from its context before
|
||
|
* the global object can be reused to create a new context.
|
||
|
*/
|
||
|
void DetachGlobal();
|
||
|
|
||
|
/**
|
||
|
* Creates a new context and returns a handle to the newly allocated
|
||
|
* context.
|
||
|
*
|
||
|
* \param isolate The isolate in which to create the context.
|
||
|
*
|
||
|
* \param extensions An optional extension configuration containing
|
||
|
* the extensions to be installed in the newly created context.
|
||
|
*
|
||
|
* \param global_template An optional object template from which the
|
||
|
* global object for the newly created context will be created.
|
||
|
*
|
||
|
* \param global_object An optional global object to be reused for
|
||
|
* the newly created context. This global object must have been
|
||
|
* created by a previous call to Context::New with the same global
|
||
|
* template. The state of the global object will be completely reset
|
||
|
* and only object identify will remain.
|
||
|
*/
|
||
|
static Local<Context> New(
|
||
|
Isolate* isolate,
|
||
|
ExtensionConfiguration* extensions = NULL,
|
||
|
Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
|
||
|
Handle<Value> global_object = Handle<Value>());
|
||
|
|
||
|
/**
|
||
|
* Sets the security token for the context. To access an object in
|
||
|
* another context, the security tokens must match.
|
||
|
*/
|
||
|
void SetSecurityToken(Handle<Value> token);
|
||
|
|
||
|
/** Restores the security token to the default value. */
|
||
|
void UseDefaultSecurityToken();
|
||
|
|
||
|
/** Returns the security token of this context.*/
|
||
|
Handle<Value> GetSecurityToken();
|
||
|
|
||
|
/**
|
||
|
* Enter this context. After entering a context, all code compiled
|
||
|
* and run is compiled and run in this context. If another context
|
||
|
* is already entered, this old context is saved so it can be
|
||
|
* restored when the new context is exited.
|
||
|
*/
|
||
|
void Enter();
|
||
|
|
||
|
/**
|
||
|
* Exit this context. Exiting the current context restores the
|
||
|
* context that was in place when entering the current context.
|
||
|
*/
|
||
|
void Exit();
|
||
|
|
||
|
/** Returns an isolate associated with a current context. */
|
||
|
v8::Isolate* GetIsolate();
|
||
|
|
||
|
/**
|
||
|
* Gets the embedder data with the given index, which must have been set by a
|
||
|
* previous call to SetEmbedderData with the same index. Note that index 0
|
||
|
* currently has a special meaning for Chrome's debugger.
|
||
|
*/
|
||
|
V8_INLINE Local<Value> GetEmbedderData(int index);
|
||
|
|
||
|
/**
|
||
|
* Sets the embedder data with the given index, growing the data as
|
||
|
* needed. Note that index 0 currently has a special meaning for Chrome's
|
||
|
* debugger.
|
||
|
*/
|
||
|
void SetEmbedderData(int index, Handle<Value> value);
|
||
|
|
||
|
/**
|
||
|
* Gets a 2-byte-aligned native pointer from the embedder data with the given
|
||
|
* index, which must have bees set by a previous call to
|
||
|
* SetAlignedPointerInEmbedderData with the same index. Note that index 0
|
||
|
* currently has a special meaning for Chrome's debugger.
|
||
|
*/
|
||
|
V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
|
||
|
|
||
|
/**
|
||
|
* Sets a 2-byte-aligned native pointer in the embedder data with the given
|
||
|
* index, growing the data as needed. Note that index 0 currently has a
|
||
|
* special meaning for Chrome's debugger.
|
||
|
*/
|
||
|
void SetAlignedPointerInEmbedderData(int index, void* value);
|
||
|
|
||
|
/**
|
||
|
* Control whether code generation from strings is allowed. Calling
|
||
|
* this method with false will disable 'eval' and the 'Function'
|
||
|
* constructor for code running in this context. If 'eval' or the
|
||
|
* 'Function' constructor are used an exception will be thrown.
|
||
|
*
|
||
|
* If code generation from strings is not allowed the
|
||
|
* V8::AllowCodeGenerationFromStrings callback will be invoked if
|
||
|
* set before blocking the call to 'eval' or the 'Function'
|
||
|
* constructor. If that callback returns true, the call will be
|
||
|
* allowed, otherwise an exception will be thrown. If no callback is
|
||
|
* set an exception will be thrown.
|
||
|
*/
|
||
|
void AllowCodeGenerationFromStrings(bool allow);
|
||
|
|
||
|
/**
|
||
|
* Returns true if code generation from strings is allowed for the context.
|
||
|
* For more details see AllowCodeGenerationFromStrings(bool) documentation.
|
||
|
*/
|
||
|
bool IsCodeGenerationFromStringsAllowed();
|
||
|
|
||
|
/**
|
||
|
* Sets the error description for the exception that is thrown when
|
||
|
* code generation from strings is not allowed and 'eval' or the 'Function'
|
||
|
* constructor are called.
|
||
|
*/
|
||
|
void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
|
||
|
|
||
|
/**
|
||
|
* Stack-allocated class which sets the execution context for all
|
||
|
* operations executed within a local scope.
|
||
|
*/
|
||
|
class Scope {
|
||
|
public:
|
||
|
explicit V8_INLINE Scope(Handle<Context> context) : context_(context) {
|
||
|
context_->Enter();
|
||
|
}
|
||
|
V8_INLINE ~Scope() { context_->Exit(); }
|
||
|
|
||
|
private:
|
||
|
Handle<Context> context_;
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
friend class Value;
|
||
|
friend class Script;
|
||
|
friend class Object;
|
||
|
friend class Function;
|
||
|
|
||
|
Local<Value> SlowGetEmbedderData(int index);
|
||
|
void* SlowGetAlignedPointerFromEmbedderData(int index);
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Multiple threads in V8 are allowed, but only one thread at a time is allowed
|
||
|
* to use any given V8 isolate, see the comments in the Isolate class. The
|
||
|
* definition of 'using a V8 isolate' includes accessing handles or holding onto
|
||
|
* object pointers obtained from V8 handles while in the particular V8 isolate.
|
||
|
* It is up to the user of V8 to ensure, perhaps with locking, that this
|
||
|
* constraint is not violated. In addition to any other synchronization
|
||
|
* mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
|
||
|
* used to signal thead switches to V8.
|
||
|
*
|
||
|
* v8::Locker is a scoped lock object. While it's active, i.e. between its
|
||
|
* construction and destruction, the current thread is allowed to use the locked
|
||
|
* isolate. V8 guarantees that an isolate can be locked by at most one thread at
|
||
|
* any time. In other words, the scope of a v8::Locker is a critical section.
|
||
|
*
|
||
|
* Sample usage:
|
||
|
* \code
|
||
|
* ...
|
||
|
* {
|
||
|
* v8::Locker locker(isolate);
|
||
|
* v8::Isolate::Scope isolate_scope(isolate);
|
||
|
* ...
|
||
|
* // Code using V8 and isolate goes here.
|
||
|
* ...
|
||
|
* } // Destructor called here
|
||
|
* \endcode
|
||
|
*
|
||
|
* If you wish to stop using V8 in a thread A you can do this either by
|
||
|
* destroying the v8::Locker object as above or by constructing a v8::Unlocker
|
||
|
* object:
|
||
|
*
|
||
|
* \code
|
||
|
* {
|
||
|
* isolate->Exit();
|
||
|
* v8::Unlocker unlocker(isolate);
|
||
|
* ...
|
||
|
* // Code not using V8 goes here while V8 can run in another thread.
|
||
|
* ...
|
||
|
* } // Destructor called here.
|
||
|
* isolate->Enter();
|
||
|
* \endcode
|
||
|
*
|
||
|
* The Unlocker object is intended for use in a long-running callback from V8,
|
||
|
* where you want to release the V8 lock for other threads to use.
|
||
|
*
|
||
|
* The v8::Locker is a recursive lock, i.e. you can lock more than once in a
|
||
|
* given thread. This can be useful if you have code that can be called either
|
||
|
* from code that holds the lock or from code that does not. The Unlocker is
|
||
|
* not recursive so you can not have several Unlockers on the stack at once, and
|
||
|
* you can not use an Unlocker in a thread that is not inside a Locker's scope.
|
||
|
*
|
||
|
* An unlocker will unlock several lockers if it has to and reinstate the
|
||
|
* correct depth of locking on its destruction, e.g.:
|
||
|
*
|
||
|
* \code
|
||
|
* // V8 not locked.
|
||
|
* {
|
||
|
* v8::Locker locker(isolate);
|
||
|
* Isolate::Scope isolate_scope(isolate);
|
||
|
* // V8 locked.
|
||
|
* {
|
||
|
* v8::Locker another_locker(isolate);
|
||
|
* // V8 still locked (2 levels).
|
||
|
* {
|
||
|
* isolate->Exit();
|
||
|
* v8::Unlocker unlocker(isolate);
|
||
|
* // V8 not locked.
|
||
|
* }
|
||
|
* isolate->Enter();
|
||
|
* // V8 locked again (2 levels).
|
||
|
* }
|
||
|
* // V8 still locked (1 level).
|
||
|
* }
|
||
|
* // V8 Now no longer locked.
|
||
|
* \endcode
|
||
|
*/
|
||
|
class V8_EXPORT Unlocker {
|
||
|
public:
|
||
|
/**
|
||
|
* Initialize Unlocker for a given Isolate.
|
||
|
*/
|
||
|
V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
|
||
|
|
||
|
~Unlocker();
|
||
|
private:
|
||
|
void Initialize(Isolate* isolate);
|
||
|
|
||
|
internal::Isolate* isolate_;
|
||
|
};
|
||
|
|
||
|
|
||
|
class V8_EXPORT Locker {
|
||
|
public:
|
||
|
/**
|
||
|
* Initialize Locker for a given Isolate.
|
||
|
*/
|
||
|
V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
|
||
|
|
||
|
~Locker();
|
||
|
|
||
|
/**
|
||
|
* Returns whether or not the locker for a given isolate, is locked by the
|
||
|
* current thread.
|
||
|
*/
|
||
|
static bool IsLocked(Isolate* isolate);
|
||
|
|
||
|
/**
|
||
|
* Returns whether v8::Locker is being used by this V8 instance.
|
||
|
*/
|
||
|
static bool IsActive();
|
||
|
|
||
|
private:
|
||
|
void Initialize(Isolate* isolate);
|
||
|
|
||
|
bool has_lock_;
|
||
|
bool top_level_;
|
||
|
internal::Isolate* isolate_;
|
||
|
|
||
|
// Disallow copying and assigning.
|
||
|
Locker(const Locker&);
|
||
|
void operator=(const Locker&);
|
||
|
};
|
||
|
|
||
|
|
||
|
// --- Implementation ---
|
||
|
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
const int kApiPointerSize = sizeof(void*); // NOLINT
|
||
|
const int kApiIntSize = sizeof(int); // NOLINT
|
||
|
const int kApiInt64Size = sizeof(int64_t); // NOLINT
|
||
|
|
||
|
// Tag information for HeapObject.
|
||
|
const int kHeapObjectTag = 1;
|
||
|
const int kHeapObjectTagSize = 2;
|
||
|
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
|
||
|
|
||
|
// Tag information for Smi.
|
||
|
const int kSmiTag = 0;
|
||
|
const int kSmiTagSize = 1;
|
||
|
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
|
||
|
|
||
|
template <size_t ptr_size> struct SmiTagging;
|
||
|
|
||
|
template<int kSmiShiftSize>
|
||
|
V8_INLINE internal::Object* IntToSmi(int value) {
|
||
|
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
|
||
|
uintptr_t tagged_value =
|
||
|
(static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
|
||
|
return reinterpret_cast<internal::Object*>(tagged_value);
|
||
|
}
|
||
|
|
||
|
// Smi constants for 32-bit systems.
|
||
|
template <> struct SmiTagging<4> {
|
||
|
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
|
||
|
static int SmiShiftSize() { return kSmiShiftSize; }
|
||
|
static int SmiValueSize() { return kSmiValueSize; }
|
||
|
V8_INLINE static int SmiToInt(const internal::Object* value) {
|
||
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
||
|
// Throw away top 32 bits and shift down (requires >> to be sign extending).
|
||
|
return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
|
||
|
}
|
||
|
V8_INLINE static internal::Object* IntToSmi(int value) {
|
||
|
return internal::IntToSmi<kSmiShiftSize>(value);
|
||
|
}
|
||
|
V8_INLINE static bool IsValidSmi(intptr_t value) {
|
||
|
// To be representable as an tagged small integer, the two
|
||
|
// most-significant bits of 'value' must be either 00 or 11 due to
|
||
|
// sign-extension. To check this we add 01 to the two
|
||
|
// most-significant bits, and check if the most-significant bit is 0
|
||
|
//
|
||
|
// CAUTION: The original code below:
|
||
|
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
|
||
|
// may lead to incorrect results according to the C language spec, and
|
||
|
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
|
||
|
// compiler may produce undefined results in case of signed integer
|
||
|
// overflow. The computation must be done w/ unsigned ints.
|
||
|
return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Smi constants for 64-bit systems.
|
||
|
template <> struct SmiTagging<8> {
|
||
|
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
|
||
|
static int SmiShiftSize() { return kSmiShiftSize; }
|
||
|
static int SmiValueSize() { return kSmiValueSize; }
|
||
|
V8_INLINE static int SmiToInt(const internal::Object* value) {
|
||
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
||
|
// Shift down and throw away top 32 bits.
|
||
|
return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
|
||
|
}
|
||
|
V8_INLINE static internal::Object* IntToSmi(int value) {
|
||
|
return internal::IntToSmi<kSmiShiftSize>(value);
|
||
|
}
|
||
|
V8_INLINE static bool IsValidSmi(intptr_t value) {
|
||
|
// To be representable as a long smi, the value must be a 32-bit integer.
|
||
|
return (value == static_cast<int32_t>(value));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
|
||
|
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
|
||
|
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
|
||
|
V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
|
||
|
V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
|
||
|
|
||
|
/**
|
||
|
* This class exports constants and functionality from within v8 that
|
||
|
* is necessary to implement inline functions in the v8 api. Don't
|
||
|
* depend on functions and constants defined here.
|
||
|
*/
|
||
|
class Internals {
|
||
|
public:
|
||
|
// These values match non-compiler-dependent values defined within
|
||
|
// the implementation of v8.
|
||
|
static const int kHeapObjectMapOffset = 0;
|
||
|
static const int kMapInstanceTypeAndBitFieldOffset =
|
||
|
1 * kApiPointerSize + kApiIntSize;
|
||
|
static const int kStringResourceOffset = 3 * kApiPointerSize;
|
||
|
|
||
|
static const int kOddballKindOffset = 3 * kApiPointerSize;
|
||
|
static const int kForeignAddressOffset = kApiPointerSize;
|
||
|
static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
|
||
|
static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
|
||
|
static const int kContextHeaderSize = 2 * kApiPointerSize;
|
||
|
static const int kContextEmbedderDataIndex = 76;
|
||
|
static const int kFullStringRepresentationMask = 0x07;
|
||
|
static const int kStringEncodingMask = 0x4;
|
||
|
static const int kExternalTwoByteRepresentationTag = 0x02;
|
||
|
static const int kExternalOneByteRepresentationTag = 0x06;
|
||
|
|
||
|
static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
|
||
|
static const int kAmountOfExternalAllocatedMemoryOffset =
|
||
|
4 * kApiPointerSize;
|
||
|
static const int kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset =
|
||
|
kAmountOfExternalAllocatedMemoryOffset + kApiInt64Size;
|
||
|
static const int kIsolateRootsOffset =
|
||
|
kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset + kApiInt64Size +
|
||
|
kApiPointerSize;
|
||
|
static const int kUndefinedValueRootIndex = 5;
|
||
|
static const int kNullValueRootIndex = 7;
|
||
|
static const int kTrueValueRootIndex = 8;
|
||
|
static const int kFalseValueRootIndex = 9;
|
||
|
static const int kEmptyStringRootIndex = 154;
|
||
|
|
||
|
// The external allocation limit should be below 256 MB on all architectures
|
||
|
// to avoid that resource-constrained embedders run low on memory.
|
||
|
static const int kExternalAllocationLimit = 192 * 1024 * 1024;
|
||
|
|
||
|
static const int kNodeClassIdOffset = 1 * kApiPointerSize;
|
||
|
static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
|
||
|
static const int kNodeStateMask = 0xf;
|
||
|
static const int kNodeStateIsWeakValue = 2;
|
||
|
static const int kNodeStateIsPendingValue = 3;
|
||
|
static const int kNodeStateIsNearDeathValue = 4;
|
||
|
static const int kNodeIsIndependentShift = 4;
|
||
|
static const int kNodeIsPartiallyDependentShift = 5;
|
||
|
|
||
|
static const int kJSObjectType = 0xbd;
|
||
|
static const int kFirstNonstringType = 0x80;
|
||
|
static const int kOddballType = 0x83;
|
||
|
static const int kForeignType = 0x88;
|
||
|
|
||
|
static const int kUndefinedOddballKind = 5;
|
||
|
static const int kNullOddballKind = 3;
|
||
|
|
||
|
static const uint32_t kNumIsolateDataSlots = 4;
|
||
|
|
||
|
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
|
||
|
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckInitializedImpl(isolate);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
|
||
|
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
|
||
|
kHeapObjectTag);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static int SmiValue(const internal::Object* value) {
|
||
|
return PlatformSmiTagging::SmiToInt(value);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static internal::Object* IntToSmi(int value) {
|
||
|
return PlatformSmiTagging::IntToSmi(value);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static bool IsValidSmi(intptr_t value) {
|
||
|
return PlatformSmiTagging::IsValidSmi(value);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static int GetInstanceType(const internal::Object* obj) {
|
||
|
typedef internal::Object O;
|
||
|
O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
|
||
|
// Map::InstanceType is defined so that it will always be loaded into
|
||
|
// the LS 8 bits of one 16-bit word, regardless of endianess.
|
||
|
return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
|
||
|
}
|
||
|
|
||
|
V8_INLINE static int GetOddballKind(const internal::Object* obj) {
|
||
|
typedef internal::Object O;
|
||
|
return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
|
||
|
}
|
||
|
|
||
|
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
|
||
|
int representation = (instance_type & kFullStringRepresentationMask);
|
||
|
return representation == kExternalTwoByteRepresentationTag;
|
||
|
}
|
||
|
|
||
|
V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
||
|
return *addr & static_cast<uint8_t>(1U << shift);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
|
||
|
bool value, int shift) {
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
||
|
uint8_t mask = static_cast<uint8_t>(1U << shift);
|
||
|
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
|
||
|
}
|
||
|
|
||
|
V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
||
|
return *addr & kNodeStateMask;
|
||
|
}
|
||
|
|
||
|
V8_INLINE static void UpdateNodeState(internal::Object** obj,
|
||
|
uint8_t value) {
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
||
|
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
|
||
|
uint32_t slot,
|
||
|
void* data) {
|
||
|
uint8_t *addr = reinterpret_cast<uint8_t *>(isolate) +
|
||
|
kIsolateEmbedderDataOffset + slot * kApiPointerSize;
|
||
|
*reinterpret_cast<void**>(addr) = data;
|
||
|
}
|
||
|
|
||
|
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
|
||
|
uint32_t slot) {
|
||
|
const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
|
||
|
kIsolateEmbedderDataOffset + slot * kApiPointerSize;
|
||
|
return *reinterpret_cast<void* const*>(addr);
|
||
|
}
|
||
|
|
||
|
V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
|
||
|
int index) {
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
|
||
|
return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
|
||
|
const uint8_t* addr =
|
||
|
reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
|
||
|
return *reinterpret_cast<const T*>(addr);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* ctx = *reinterpret_cast<O* const*>(context);
|
||
|
int embedder_data_offset = I::kContextHeaderSize +
|
||
|
(internal::kApiPointerSize * I::kContextEmbedderDataIndex);
|
||
|
O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
|
||
|
int value_offset =
|
||
|
I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
|
||
|
return I::ReadField<T>(embedder_data, value_offset);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
Local<T>::Local() : Handle<T>() { }
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) {
|
||
|
return New(isolate, that.val_);
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
|
||
|
return New(isolate, that.val_);
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
Handle<T> Handle<T>::New(Isolate* isolate, T* that) {
|
||
|
if (that == NULL) return Handle<T>();
|
||
|
T* that_ptr = that;
|
||
|
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
|
||
|
return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
|
||
|
reinterpret_cast<internal::Isolate*>(isolate), *p)));
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
Local<T> Local<T>::New(Isolate* isolate, T* that) {
|
||
|
if (that == NULL) return Local<T>();
|
||
|
T* that_ptr = that;
|
||
|
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
|
||
|
return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
|
||
|
reinterpret_cast<internal::Isolate*>(isolate), *p)));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<class T>
|
||
|
template<class S>
|
||
|
void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<class T>
|
||
|
Local<T> Eternal<T>::Get(Isolate* isolate) {
|
||
|
return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
T* PersistentBase<T>::New(Isolate* isolate, T* that) {
|
||
|
if (that == NULL) return NULL;
|
||
|
internal::Object** p = reinterpret_cast<internal::Object**>(that);
|
||
|
return reinterpret_cast<T*>(
|
||
|
V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
|
||
|
p));
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T, class M>
|
||
|
template <class S, class M2>
|
||
|
void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
this->Reset();
|
||
|
if (that.IsEmpty()) return;
|
||
|
internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
|
||
|
this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
|
||
|
M::Copy(that, this);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
bool PersistentBase<T>::IsIndependent() const {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return false;
|
||
|
return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
|
||
|
I::kNodeIsIndependentShift);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
bool PersistentBase<T>::IsNearDeath() const {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return false;
|
||
|
uint8_t node_state =
|
||
|
I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
|
||
|
return node_state == I::kNodeStateIsNearDeathValue ||
|
||
|
node_state == I::kNodeStateIsPendingValue;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
bool PersistentBase<T>::IsWeak() const {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return false;
|
||
|
return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
|
||
|
I::kNodeStateIsWeakValue;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
void PersistentBase<T>::Reset() {
|
||
|
if (this->IsEmpty()) return;
|
||
|
V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
|
||
|
val_ = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
template <class S>
|
||
|
void PersistentBase<T>::Reset(Isolate* isolate, const Handle<S>& other) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
Reset();
|
||
|
if (other.IsEmpty()) return;
|
||
|
this->val_ = New(isolate, other.val_);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
template <class S>
|
||
|
void PersistentBase<T>::Reset(Isolate* isolate,
|
||
|
const PersistentBase<S>& other) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
Reset();
|
||
|
if (other.IsEmpty()) return;
|
||
|
this->val_ = New(isolate, other.val_);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
template <typename S, typename P>
|
||
|
void PersistentBase<T>::SetWeak(
|
||
|
P* parameter,
|
||
|
typename WeakCallbackData<S, P>::Callback callback) {
|
||
|
TYPE_CHECK(S, T);
|
||
|
typedef typename WeakCallbackData<Value, void>::Callback Callback;
|
||
|
V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
|
||
|
parameter,
|
||
|
reinterpret_cast<Callback>(callback));
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
template <typename P>
|
||
|
void PersistentBase<T>::SetWeak(
|
||
|
P* parameter,
|
||
|
typename WeakCallbackData<T, P>::Callback callback) {
|
||
|
SetWeak<T, P>(parameter, callback);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
template<typename P>
|
||
|
P* PersistentBase<T>::ClearWeak() {
|
||
|
return reinterpret_cast<P*>(
|
||
|
V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
void PersistentBase<T>::MarkIndependent() {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return;
|
||
|
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
|
||
|
true,
|
||
|
I::kNodeIsIndependentShift);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
void PersistentBase<T>::MarkPartiallyDependent() {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return;
|
||
|
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
|
||
|
true,
|
||
|
I::kNodeIsPartiallyDependentShift);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return;
|
||
|
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
|
||
|
*reinterpret_cast<uint16_t*>(addr) = class_id;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T>
|
||
|
uint16_t PersistentBase<T>::WrapperClassId() const {
|
||
|
typedef internal::Internals I;
|
||
|
if (this->IsEmpty()) return 0;
|
||
|
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
|
||
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
|
||
|
return *reinterpret_cast<uint16_t*>(addr);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
|
||
|
|
||
|
template<typename T>
|
||
|
template<typename S>
|
||
|
void ReturnValue<T>::Set(const Persistent<S>& handle) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
if (V8_UNLIKELY(handle.IsEmpty())) {
|
||
|
*value_ = GetDefaultValue();
|
||
|
} else {
|
||
|
*value_ = *reinterpret_cast<internal::Object**>(*handle);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
template<typename S>
|
||
|
void ReturnValue<T>::Set(const Handle<S> handle) {
|
||
|
TYPE_CHECK(T, S);
|
||
|
if (V8_UNLIKELY(handle.IsEmpty())) {
|
||
|
*value_ = GetDefaultValue();
|
||
|
} else {
|
||
|
*value_ = *reinterpret_cast<internal::Object**>(*handle);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::Set(double i) {
|
||
|
TYPE_CHECK(T, Number);
|
||
|
Set(Number::New(GetIsolate(), i));
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::Set(int32_t i) {
|
||
|
TYPE_CHECK(T, Integer);
|
||
|
typedef internal::Internals I;
|
||
|
if (V8_LIKELY(I::IsValidSmi(i))) {
|
||
|
*value_ = I::IntToSmi(i);
|
||
|
return;
|
||
|
}
|
||
|
Set(Integer::New(GetIsolate(), i));
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::Set(uint32_t i) {
|
||
|
TYPE_CHECK(T, Integer);
|
||
|
// Can't simply use INT32_MAX here for whatever reason.
|
||
|
bool fits_into_int32_t = (i & (1U << 31)) == 0;
|
||
|
if (V8_LIKELY(fits_into_int32_t)) {
|
||
|
Set(static_cast<int32_t>(i));
|
||
|
return;
|
||
|
}
|
||
|
Set(Integer::NewFromUnsigned(GetIsolate(), i));
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::Set(bool value) {
|
||
|
TYPE_CHECK(T, Boolean);
|
||
|
typedef internal::Internals I;
|
||
|
int root_index;
|
||
|
if (value) {
|
||
|
root_index = I::kTrueValueRootIndex;
|
||
|
} else {
|
||
|
root_index = I::kFalseValueRootIndex;
|
||
|
}
|
||
|
*value_ = *I::GetRoot(GetIsolate(), root_index);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::SetNull() {
|
||
|
TYPE_CHECK(T, Primitive);
|
||
|
typedef internal::Internals I;
|
||
|
*value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::SetUndefined() {
|
||
|
TYPE_CHECK(T, Primitive);
|
||
|
typedef internal::Internals I;
|
||
|
*value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
void ReturnValue<T>::SetEmptyString() {
|
||
|
TYPE_CHECK(T, String);
|
||
|
typedef internal::Internals I;
|
||
|
*value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
Isolate* ReturnValue<T>::GetIsolate() {
|
||
|
// Isolate is always the pointer below the default value on the stack.
|
||
|
return *reinterpret_cast<Isolate**>(&value_[-2]);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
template<typename S>
|
||
|
void ReturnValue<T>::Set(S* whatever) {
|
||
|
// Uncompilable to prevent inadvertent misuse.
|
||
|
TYPE_CHECK(S*, Primitive);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
internal::Object* ReturnValue<T>::GetDefaultValue() {
|
||
|
// Default value is always the pointer below value_ on the stack.
|
||
|
return value_[-1];
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
|
||
|
internal::Object** values,
|
||
|
int length,
|
||
|
bool is_construct_call)
|
||
|
: implicit_args_(implicit_args),
|
||
|
values_(values),
|
||
|
length_(length),
|
||
|
is_construct_call_(is_construct_call) { }
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
|
||
|
if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
|
||
|
return Local<Value>(reinterpret_cast<Value*>(values_ - i));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Function> FunctionCallbackInfo<T>::Callee() const {
|
||
|
return Local<Function>(reinterpret_cast<Function*>(
|
||
|
&implicit_args_[kCalleeIndex]));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Object> FunctionCallbackInfo<T>::This() const {
|
||
|
return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Object> FunctionCallbackInfo<T>::Holder() const {
|
||
|
return Local<Object>(reinterpret_cast<Object*>(
|
||
|
&implicit_args_[kHolderIndex]));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Value> FunctionCallbackInfo<T>::Data() const {
|
||
|
return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
|
||
|
return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
|
||
|
return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
bool FunctionCallbackInfo<T>::IsConstructCall() const {
|
||
|
return is_construct_call_;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
int FunctionCallbackInfo<T>::Length() const {
|
||
|
return length_;
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Value> ScriptOrigin::ResourceName() const {
|
||
|
return resource_name_;
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
|
||
|
return resource_line_offset_;
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
|
||
|
return resource_column_offset_;
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Boolean> ScriptOrigin::ResourceIsSharedCrossOrigin() const {
|
||
|
return resource_is_shared_cross_origin_;
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Integer> ScriptOrigin::ScriptID() const {
|
||
|
return script_id_;
|
||
|
}
|
||
|
|
||
|
|
||
|
ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
|
||
|
CachedData* data)
|
||
|
: source_string(string),
|
||
|
resource_name(origin.ResourceName()),
|
||
|
resource_line_offset(origin.ResourceLineOffset()),
|
||
|
resource_column_offset(origin.ResourceColumnOffset()),
|
||
|
resource_is_shared_cross_origin(origin.ResourceIsSharedCrossOrigin()),
|
||
|
cached_data(data) {}
|
||
|
|
||
|
|
||
|
ScriptCompiler::Source::Source(Local<String> string,
|
||
|
CachedData* data)
|
||
|
: source_string(string), cached_data(data) {}
|
||
|
|
||
|
|
||
|
ScriptCompiler::Source::~Source() {
|
||
|
delete cached_data;
|
||
|
}
|
||
|
|
||
|
|
||
|
const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
|
||
|
const {
|
||
|
return cached_data;
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Boolean> Boolean::New(Isolate* isolate, bool value) {
|
||
|
return value ? True(isolate) : False(isolate);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Template::Set(Isolate* isolate, const char* name, v8::Handle<Data> value) {
|
||
|
Set(v8::String::NewFromUtf8(isolate, name), value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Local<Value> Object::GetInternalField(int index) {
|
||
|
#ifndef V8_ENABLE_CHECKS
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::HeapObject HO;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O**>(this);
|
||
|
// Fast path: If the object is a plain JSObject, which is the common case, we
|
||
|
// know where to find the internal fields and can return the value directly.
|
||
|
if (I::GetInstanceType(obj) == I::kJSObjectType) {
|
||
|
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
|
||
|
O* value = I::ReadField<O*>(obj, offset);
|
||
|
O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
|
||
|
return Local<Value>(reinterpret_cast<Value*>(result));
|
||
|
}
|
||
|
#endif
|
||
|
return SlowGetInternalField(index);
|
||
|
}
|
||
|
|
||
|
|
||
|
void* Object::GetAlignedPointerFromInternalField(int index) {
|
||
|
#ifndef V8_ENABLE_CHECKS
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O**>(this);
|
||
|
// Fast path: If the object is a plain JSObject, which is the common case, we
|
||
|
// know where to find the internal fields and can return the value directly.
|
||
|
if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
|
||
|
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
|
||
|
return I::ReadField<void*>(obj, offset);
|
||
|
}
|
||
|
#endif
|
||
|
return SlowGetAlignedPointerFromInternalField(index);
|
||
|
}
|
||
|
|
||
|
|
||
|
String* String::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<String*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Local<String> String::Empty(Isolate* isolate) {
|
||
|
typedef internal::Object* S;
|
||
|
typedef internal::Internals I;
|
||
|
I::CheckInitialized(isolate);
|
||
|
S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
|
||
|
return Local<String>(reinterpret_cast<String*>(slot));
|
||
|
}
|
||
|
|
||
|
|
||
|
String::ExternalStringResource* String::GetExternalStringResource() const {
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O* const*>(this);
|
||
|
String::ExternalStringResource* result;
|
||
|
if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
|
||
|
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
|
||
|
result = reinterpret_cast<String::ExternalStringResource*>(value);
|
||
|
} else {
|
||
|
result = NULL;
|
||
|
}
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
VerifyExternalStringResource(result);
|
||
|
#endif
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
|
||
|
String::Encoding* encoding_out) const {
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O* const*>(this);
|
||
|
int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
|
||
|
*encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
|
||
|
ExternalStringResourceBase* resource = NULL;
|
||
|
if (type == I::kExternalOneByteRepresentationTag ||
|
||
|
type == I::kExternalTwoByteRepresentationTag) {
|
||
|
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
|
||
|
resource = static_cast<ExternalStringResourceBase*>(value);
|
||
|
}
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
VerifyExternalStringResourceBase(resource, *encoding_out);
|
||
|
#endif
|
||
|
return resource;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool Value::IsUndefined() const {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
return FullIsUndefined();
|
||
|
#else
|
||
|
return QuickIsUndefined();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool Value::QuickIsUndefined() const {
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O* const*>(this);
|
||
|
if (!I::HasHeapObjectTag(obj)) return false;
|
||
|
if (I::GetInstanceType(obj) != I::kOddballType) return false;
|
||
|
return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
|
||
|
}
|
||
|
|
||
|
|
||
|
bool Value::IsNull() const {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
return FullIsNull();
|
||
|
#else
|
||
|
return QuickIsNull();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool Value::QuickIsNull() const {
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O* const*>(this);
|
||
|
if (!I::HasHeapObjectTag(obj)) return false;
|
||
|
if (I::GetInstanceType(obj) != I::kOddballType) return false;
|
||
|
return (I::GetOddballKind(obj) == I::kNullOddballKind);
|
||
|
}
|
||
|
|
||
|
|
||
|
bool Value::IsString() const {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
return FullIsString();
|
||
|
#else
|
||
|
return QuickIsString();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool Value::QuickIsString() const {
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::Internals I;
|
||
|
O* obj = *reinterpret_cast<O* const*>(this);
|
||
|
if (!I::HasHeapObjectTag(obj)) return false;
|
||
|
return (I::GetInstanceType(obj) < I::kFirstNonstringType);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class T> Value* Value::Cast(T* value) {
|
||
|
return static_cast<Value*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Name* Name::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Name*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Symbol* Symbol::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Symbol*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Number* Number::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Number*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Integer* Integer::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Integer*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Date* Date::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Date*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
StringObject* StringObject::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<StringObject*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
SymbolObject* SymbolObject::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<SymbolObject*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
NumberObject* NumberObject::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<NumberObject*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
BooleanObject* BooleanObject::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<BooleanObject*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
RegExp* RegExp::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<RegExp*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Object* Object::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Object*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Array* Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Promise* Promise::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Promise*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Promise::Resolver*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<ArrayBuffer*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<ArrayBufferView*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
TypedArray* TypedArray::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<TypedArray*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Uint8Array* Uint8Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Uint8Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Int8Array* Int8Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Int8Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Uint16Array* Uint16Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Uint16Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Int16Array* Int16Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Int16Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Uint32Array* Uint32Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Uint32Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Int32Array* Int32Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Int32Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Float32Array* Float32Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Float32Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Float64Array* Float64Array::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Float64Array*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Uint8ClampedArray*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
DataView* DataView::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<DataView*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
Function* Function::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<Function*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
External* External::Cast(v8::Value* value) {
|
||
|
#ifdef V8_ENABLE_CHECKS
|
||
|
CheckCast(value);
|
||
|
#endif
|
||
|
return static_cast<External*>(value);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
|
||
|
return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Value> PropertyCallbackInfo<T>::Data() const {
|
||
|
return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Object> PropertyCallbackInfo<T>::This() const {
|
||
|
return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
Local<Object> PropertyCallbackInfo<T>::Holder() const {
|
||
|
return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
|
||
|
return ReturnValue<T>(&args_[kReturnValueIndex]);
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Primitive> Undefined(Isolate* isolate) {
|
||
|
typedef internal::Object* S;
|
||
|
typedef internal::Internals I;
|
||
|
I::CheckInitialized(isolate);
|
||
|
S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
|
||
|
return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Primitive> Null(Isolate* isolate) {
|
||
|
typedef internal::Object* S;
|
||
|
typedef internal::Internals I;
|
||
|
I::CheckInitialized(isolate);
|
||
|
S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
|
||
|
return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Boolean> True(Isolate* isolate) {
|
||
|
typedef internal::Object* S;
|
||
|
typedef internal::Internals I;
|
||
|
I::CheckInitialized(isolate);
|
||
|
S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
|
||
|
return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Boolean> False(Isolate* isolate) {
|
||
|
typedef internal::Object* S;
|
||
|
typedef internal::Internals I;
|
||
|
I::CheckInitialized(isolate);
|
||
|
S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
|
||
|
return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
|
||
|
}
|
||
|
|
||
|
|
||
|
void Isolate::SetData(uint32_t slot, void* data) {
|
||
|
typedef internal::Internals I;
|
||
|
I::SetEmbedderData(this, slot, data);
|
||
|
}
|
||
|
|
||
|
|
||
|
void* Isolate::GetData(uint32_t slot) {
|
||
|
typedef internal::Internals I;
|
||
|
return I::GetEmbedderData(this, slot);
|
||
|
}
|
||
|
|
||
|
|
||
|
uint32_t Isolate::GetNumberOfDataSlots() {
|
||
|
typedef internal::Internals I;
|
||
|
return I::kNumIsolateDataSlots;
|
||
|
}
|
||
|
|
||
|
|
||
|
int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
|
||
|
int64_t change_in_bytes) {
|
||
|
typedef internal::Internals I;
|
||
|
int64_t* amount_of_external_allocated_memory =
|
||
|
reinterpret_cast<int64_t*>(reinterpret_cast<uint8_t*>(this) +
|
||
|
I::kAmountOfExternalAllocatedMemoryOffset);
|
||
|
int64_t* amount_of_external_allocated_memory_at_last_global_gc =
|
||
|
reinterpret_cast<int64_t*>(
|
||
|
reinterpret_cast<uint8_t*>(this) +
|
||
|
I::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
|
||
|
int64_t amount = *amount_of_external_allocated_memory + change_in_bytes;
|
||
|
if (change_in_bytes > 0 &&
|
||
|
amount - *amount_of_external_allocated_memory_at_last_global_gc >
|
||
|
I::kExternalAllocationLimit) {
|
||
|
CollectAllGarbage("external memory allocation limit reached.");
|
||
|
} else {
|
||
|
*amount_of_external_allocated_memory = amount;
|
||
|
}
|
||
|
return *amount_of_external_allocated_memory;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
void Isolate::SetObjectGroupId(const Persistent<T>& object,
|
||
|
UniqueId id) {
|
||
|
TYPE_CHECK(Value, T);
|
||
|
SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
void Isolate::SetReferenceFromGroup(UniqueId id,
|
||
|
const Persistent<T>& object) {
|
||
|
TYPE_CHECK(Value, T);
|
||
|
SetReferenceFromGroup(id,
|
||
|
reinterpret_cast<v8::internal::Object**>(object.val_));
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T, typename S>
|
||
|
void Isolate::SetReference(const Persistent<T>& parent,
|
||
|
const Persistent<S>& child) {
|
||
|
TYPE_CHECK(Object, T);
|
||
|
TYPE_CHECK(Value, S);
|
||
|
SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
|
||
|
reinterpret_cast<v8::internal::Object**>(child.val_));
|
||
|
}
|
||
|
|
||
|
|
||
|
Local<Value> Context::GetEmbedderData(int index) {
|
||
|
#ifndef V8_ENABLE_CHECKS
|
||
|
typedef internal::Object O;
|
||
|
typedef internal::HeapObject HO;
|
||
|
typedef internal::Internals I;
|
||
|
HO* context = *reinterpret_cast<HO**>(this);
|
||
|
O** result =
|
||
|
HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
|
||
|
return Local<Value>(reinterpret_cast<Value*>(result));
|
||
|
#else
|
||
|
return SlowGetEmbedderData(index);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
void* Context::GetAlignedPointerFromEmbedderData(int index) {
|
||
|
#ifndef V8_ENABLE_CHECKS
|
||
|
typedef internal::Internals I;
|
||
|
return I::ReadEmbedderData<void*>(this, index);
|
||
|
#else
|
||
|
return SlowGetAlignedPointerFromEmbedderData(index);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \example shell.cc
|
||
|
* A simple shell that takes a list of expressions on the
|
||
|
* command-line and executes them.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \example process.cc
|
||
|
*/
|
||
|
|
||
|
|
||
|
} // namespace v8
|
||
|
|
||
|
|
||
|
#undef TYPE_CHECK
|
||
|
|
||
|
|
||
|
#endif // V8_H_
|