mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-15 09:30:00 +00:00
1334 lines
39 KiB
C
1334 lines
39 KiB
C
|
/* Copyright (C) 2002 Jean-Marc Valin
|
||
|
File: sb_celp.c
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
|
||
|
- Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
|
||
|
- Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
|
||
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
||
|
contributors may be used to endorse or promote products derived from
|
||
|
this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "sb_celp.h"
|
||
|
#include "stdlib.h"
|
||
|
#include "filters.h"
|
||
|
#include "lpc.h"
|
||
|
#include "lsp.h"
|
||
|
#include "stack_alloc.h"
|
||
|
#include "cb_search.h"
|
||
|
#include "quant_lsp.h"
|
||
|
#include "vq.h"
|
||
|
#include "ltp.h"
|
||
|
#include "misc.h"
|
||
|
|
||
|
#ifndef M_PI
|
||
|
#define M_PI 3.14159265358979323846 /* pi */
|
||
|
#endif
|
||
|
|
||
|
#define sqr(x) ((x)*(x))
|
||
|
|
||
|
#define SUBMODE(x) st->submodes[st->submodeID]->x
|
||
|
|
||
|
#define QMF_ORDER 64
|
||
|
static float h0[64] = {
|
||
|
3.596189e-05, -0.0001123515,
|
||
|
-0.0001104587, 0.0002790277,
|
||
|
0.0002298438, -0.0005953563,
|
||
|
-0.0003823631, 0.00113826,
|
||
|
0.0005308539, -0.001986177,
|
||
|
-0.0006243724, 0.003235877,
|
||
|
0.0005743159, -0.004989147,
|
||
|
-0.0002584767, 0.007367171,
|
||
|
-0.0004857935, -0.01050689,
|
||
|
0.001894714, 0.01459396,
|
||
|
-0.004313674, -0.01994365,
|
||
|
0.00828756, 0.02716055,
|
||
|
-0.01485397, -0.03764973,
|
||
|
0.026447, 0.05543245,
|
||
|
-0.05095487, -0.09779096,
|
||
|
0.1382363, 0.4600981,
|
||
|
0.4600981, 0.1382363,
|
||
|
-0.09779096, -0.05095487,
|
||
|
0.05543245, 0.026447,
|
||
|
-0.03764973, -0.01485397,
|
||
|
0.02716055, 0.00828756,
|
||
|
-0.01994365, -0.004313674,
|
||
|
0.01459396, 0.001894714,
|
||
|
-0.01050689, -0.0004857935,
|
||
|
0.007367171, -0.0002584767,
|
||
|
-0.004989147, 0.0005743159,
|
||
|
0.003235877, -0.0006243724,
|
||
|
-0.001986177, 0.0005308539,
|
||
|
0.00113826, -0.0003823631,
|
||
|
-0.0005953563, 0.0002298438,
|
||
|
0.0002790277, -0.0001104587,
|
||
|
-0.0001123515, 3.596189e-05
|
||
|
};
|
||
|
|
||
|
static float h1[64] = {
|
||
|
3.596189e-05, 0.0001123515,
|
||
|
-0.0001104587, -0.0002790277,
|
||
|
0.0002298438, 0.0005953563,
|
||
|
-0.0003823631, -0.00113826,
|
||
|
0.0005308539, 0.001986177,
|
||
|
-0.0006243724, -0.003235877,
|
||
|
0.0005743159, 0.004989147,
|
||
|
-0.0002584767, -0.007367171,
|
||
|
-0.0004857935, 0.01050689,
|
||
|
0.001894714, -0.01459396,
|
||
|
-0.004313674, 0.01994365,
|
||
|
0.00828756, -0.02716055,
|
||
|
-0.01485397, 0.03764973,
|
||
|
0.026447, -0.05543245,
|
||
|
-0.05095487, 0.09779096,
|
||
|
0.1382363, -0.4600981,
|
||
|
0.4600981, -0.1382363,
|
||
|
-0.09779096, 0.05095487,
|
||
|
0.05543245, -0.026447,
|
||
|
-0.03764973, 0.01485397,
|
||
|
0.02716055, -0.00828756,
|
||
|
-0.01994365, 0.004313674,
|
||
|
0.01459396, -0.001894714,
|
||
|
-0.01050689, 0.0004857935,
|
||
|
0.007367171, 0.0002584767,
|
||
|
-0.004989147, -0.0005743159,
|
||
|
0.003235877, 0.0006243724,
|
||
|
-0.001986177, -0.0005308539,
|
||
|
0.00113826, 0.0003823631,
|
||
|
-0.0005953563, -0.0002298438,
|
||
|
0.0002790277, 0.0001104587,
|
||
|
-0.0001123515, -3.596189e-05
|
||
|
};
|
||
|
|
||
|
void *sb_encoder_init(SpeexMode *m)
|
||
|
{
|
||
|
int i;
|
||
|
SBEncState *st;
|
||
|
SpeexSBMode *mode;
|
||
|
|
||
|
st = (SBEncState*)speex_alloc(sizeof(SBEncState)+8000*sizeof(float));
|
||
|
st->mode = m;
|
||
|
mode = (SpeexSBMode*)m->mode;
|
||
|
|
||
|
st->stack = ((char*)st) + sizeof(SBEncState);
|
||
|
|
||
|
st->st_low = speex_encoder_init(mode->nb_mode);
|
||
|
st->full_frame_size = 2*mode->frameSize;
|
||
|
st->frame_size = mode->frameSize;
|
||
|
st->subframeSize = mode->subframeSize;
|
||
|
st->nbSubframes = mode->frameSize/mode->subframeSize;
|
||
|
st->windowSize = st->frame_size*3/2;
|
||
|
st->lpcSize=mode->lpcSize;
|
||
|
st->bufSize=mode->bufSize;
|
||
|
|
||
|
st->submodes=mode->submodes;
|
||
|
st->submodeSelect = st->submodeID=mode->defaultSubmode;
|
||
|
|
||
|
i=9;
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_QUALITY, &i);
|
||
|
|
||
|
st->lag_factor = mode->lag_factor;
|
||
|
st->lpc_floor = mode->lpc_floor;
|
||
|
st->gamma1=mode->gamma1;
|
||
|
st->gamma2=mode->gamma2;
|
||
|
st->first=1;
|
||
|
|
||
|
st->x0d=PUSH(st->stack, st->frame_size, float);
|
||
|
st->x1d=PUSH(st->stack, st->frame_size, float);
|
||
|
st->high=PUSH(st->stack, st->full_frame_size, float);
|
||
|
st->y0=PUSH(st->stack, st->full_frame_size, float);
|
||
|
st->y1=PUSH(st->stack, st->full_frame_size, float);
|
||
|
|
||
|
st->h0_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
st->h1_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
st->g0_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
st->g1_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
|
||
|
st->buf=PUSH(st->stack, st->windowSize, float);
|
||
|
st->excBuf=PUSH(st->stack, st->bufSize, float);
|
||
|
st->exc = st->excBuf + st->bufSize - st->windowSize;
|
||
|
|
||
|
st->res=PUSH(st->stack, st->frame_size, float);
|
||
|
st->sw=PUSH(st->stack, st->frame_size, float);
|
||
|
st->target=PUSH(st->stack, st->frame_size, float);
|
||
|
/*Asymmetric "pseudo-Hamming" window*/
|
||
|
{
|
||
|
int part1, part2;
|
||
|
part1 = st->subframeSize*7/2;
|
||
|
part2 = st->subframeSize*5/2;
|
||
|
st->window = PUSH(st->stack, st->windowSize, float);
|
||
|
for (i=0;i<part1;i++)
|
||
|
st->window[i]=.54-.46*cos(M_PI*i/part1);
|
||
|
for (i=0;i<part2;i++)
|
||
|
st->window[part1+i]=.54+.46*cos(M_PI*i/part2);
|
||
|
}
|
||
|
|
||
|
st->lagWindow = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
for (i=0;i<st->lpcSize+1;i++)
|
||
|
st->lagWindow[i]=exp(-.5*sqr(2*M_PI*st->lag_factor*i));
|
||
|
|
||
|
st->rc = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->autocorr = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
st->lpc = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
st->bw_lpc1 = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
st->bw_lpc2 = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
st->lsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->qlsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->old_lsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->old_qlsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->interp_lsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->interp_qlsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->interp_lpc = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
st->interp_qlpc = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
st->pi_gain = PUSH(st->stack, st->nbSubframes, float);
|
||
|
|
||
|
st->mem_sp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->mem_sp2 = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->mem_sw = PUSH(st->stack, st->lpcSize, float);
|
||
|
|
||
|
st->vbr_quality = 8;
|
||
|
st->vbr_enabled = 0;
|
||
|
st->vad_enabled = 0;
|
||
|
st->abr_enabled = 0;
|
||
|
st->relative_quality=0;
|
||
|
|
||
|
st->complexity=2;
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_SAMPLING_RATE, &st->sampling_rate);
|
||
|
st->sampling_rate*=2;
|
||
|
|
||
|
return st;
|
||
|
}
|
||
|
|
||
|
void sb_encoder_destroy(void *state)
|
||
|
{
|
||
|
SBEncState *st=(SBEncState*)state;
|
||
|
|
||
|
speex_encoder_destroy(st->st_low);
|
||
|
|
||
|
speex_free(st);
|
||
|
}
|
||
|
|
||
|
|
||
|
int sb_encode(void *state, float *in, SpeexBits *bits)
|
||
|
{
|
||
|
SBEncState *st;
|
||
|
int i, roots, sub;
|
||
|
char *stack;
|
||
|
float *mem, *innov, *syn_resp;
|
||
|
float *low_pi_gain, *low_exc, *low_innov;
|
||
|
SpeexSBMode *mode;
|
||
|
int dtx;
|
||
|
|
||
|
st = (SBEncState*)state;
|
||
|
stack=st->stack;
|
||
|
mode = (SpeexSBMode*)(st->mode->mode);
|
||
|
|
||
|
/* Compute the two sub-bands by filtering with h0 and h1*/
|
||
|
qmf_decomp(in, h0, st->x0d, st->x1d, st->full_frame_size, QMF_ORDER, st->h0_mem, stack);
|
||
|
|
||
|
/* Encode the narrowband part*/
|
||
|
speex_encode(st->st_low, st->x0d, bits);
|
||
|
|
||
|
/* High-band buffering / sync with low band */
|
||
|
for (i=0;i<st->windowSize-st->frame_size;i++)
|
||
|
st->high[i] = st->high[st->frame_size+i];
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
st->high[st->windowSize-st->frame_size+i]=st->x1d[i];
|
||
|
|
||
|
speex_move(st->excBuf, st->excBuf+st->frame_size, (st->bufSize-st->frame_size)*sizeof(float));
|
||
|
|
||
|
|
||
|
low_pi_gain = PUSH(stack, st->nbSubframes, float);
|
||
|
low_exc = PUSH(stack, st->frame_size, float);
|
||
|
low_innov = PUSH(stack, st->frame_size, float);
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_PI_GAIN, low_pi_gain);
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_EXC, low_exc);
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_INNOV, low_innov);
|
||
|
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_LOW_MODE, &dtx);
|
||
|
|
||
|
if (dtx==0)
|
||
|
dtx=1;
|
||
|
else
|
||
|
dtx=0;
|
||
|
|
||
|
/* Start encoding the high-band */
|
||
|
for (i=0;i<st->windowSize;i++)
|
||
|
st->buf[i] = st->high[i] * st->window[i];
|
||
|
|
||
|
/* Compute auto-correlation */
|
||
|
_spx_autocorr(st->buf, st->autocorr, st->lpcSize+1, st->windowSize);
|
||
|
|
||
|
st->autocorr[0] += 1; /* prevents NANs */
|
||
|
st->autocorr[0] *= st->lpc_floor; /* Noise floor in auto-correlation domain */
|
||
|
/* Lag windowing: equivalent to filtering in the power-spectrum domain */
|
||
|
for (i=0;i<st->lpcSize+1;i++)
|
||
|
st->autocorr[i] *= st->lagWindow[i];
|
||
|
|
||
|
/* Levinson-Durbin */
|
||
|
wld(st->lpc+1, st->autocorr, st->rc, st->lpcSize);
|
||
|
st->lpc[0]=1;
|
||
|
|
||
|
/* LPC to LSPs (x-domain) transform */
|
||
|
roots=lpc_to_lsp (st->lpc, st->lpcSize, st->lsp, 15, 0.2, stack);
|
||
|
if (roots!=st->lpcSize)
|
||
|
{
|
||
|
roots = lpc_to_lsp (st->lpc, st->lpcSize, st->lsp, 11, 0.02, stack);
|
||
|
if (roots!=st->lpcSize) {
|
||
|
/*If we can't find all LSP's, do some damage control and use a flat filter*/
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
{
|
||
|
st->lsp[i]=cos(M_PI*((float)(i+1))/(st->lpcSize+1));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* x-domain to angle domain*/
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->lsp[i] = acos(st->lsp[i]);
|
||
|
|
||
|
/* VBR code */
|
||
|
if ((st->vbr_enabled || st->vad_enabled) && !dtx)
|
||
|
{
|
||
|
float e_low=0, e_high=0;
|
||
|
float ratio;
|
||
|
if (st->abr_enabled)
|
||
|
{
|
||
|
float qual_change=0;
|
||
|
if (st->abr_drift2 * st->abr_drift > 0)
|
||
|
{
|
||
|
/* Only adapt if long-term and short-term drift are the same sign */
|
||
|
qual_change = -.00001*st->abr_drift/(1+st->abr_count);
|
||
|
if (qual_change>.1)
|
||
|
qual_change=.1;
|
||
|
if (qual_change<-.1)
|
||
|
qual_change=-.1;
|
||
|
}
|
||
|
st->vbr_quality += qual_change;
|
||
|
if (st->vbr_quality>10)
|
||
|
st->vbr_quality=10;
|
||
|
if (st->vbr_quality<0)
|
||
|
st->vbr_quality=0;
|
||
|
}
|
||
|
|
||
|
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
{
|
||
|
e_low += st->x0d[i]* st->x0d[i];
|
||
|
e_high += st->high[i]* st->high[i];
|
||
|
}
|
||
|
ratio = log((1+e_high)/(1+e_low));
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_RELATIVE_QUALITY, &st->relative_quality);
|
||
|
if (ratio<-4)
|
||
|
ratio=-4;
|
||
|
if (ratio>2)
|
||
|
ratio=2;
|
||
|
/*if (ratio>-2)*/
|
||
|
if (st->vbr_enabled)
|
||
|
{
|
||
|
int modeid;
|
||
|
modeid = mode->nb_modes-1;
|
||
|
st->relative_quality+=1.0*(ratio+2);
|
||
|
if (st->relative_quality<-1)
|
||
|
st->relative_quality=-1;
|
||
|
while (modeid)
|
||
|
{
|
||
|
int v1;
|
||
|
float thresh;
|
||
|
v1=(int)floor(st->vbr_quality);
|
||
|
if (v1==10)
|
||
|
thresh = mode->vbr_thresh[modeid][v1];
|
||
|
else
|
||
|
thresh = (st->vbr_quality-v1) * mode->vbr_thresh[modeid][v1+1] +
|
||
|
(1+v1-st->vbr_quality) * mode->vbr_thresh[modeid][v1];
|
||
|
if (st->relative_quality >= thresh)
|
||
|
break;
|
||
|
modeid--;
|
||
|
}
|
||
|
speex_encoder_ctl(state, SPEEX_SET_HIGH_MODE, &modeid);
|
||
|
if (st->abr_enabled)
|
||
|
{
|
||
|
int bitrate;
|
||
|
speex_encoder_ctl(state, SPEEX_GET_BITRATE, &bitrate);
|
||
|
st->abr_drift+=(bitrate-st->abr_enabled);
|
||
|
st->abr_drift2 = .95*st->abr_drift2 + .05*(bitrate-st->abr_enabled);
|
||
|
st->abr_count += 1.0;
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
/* VAD only */
|
||
|
int modeid;
|
||
|
if (st->relative_quality<2.0)
|
||
|
modeid=1;
|
||
|
else
|
||
|
modeid=st->submodeSelect;
|
||
|
/*speex_encoder_ctl(state, SPEEX_SET_MODE, &mode);*/
|
||
|
st->submodeID=modeid;
|
||
|
|
||
|
}
|
||
|
/*fprintf (stderr, "%f %f\n", ratio, low_qual);*/
|
||
|
}
|
||
|
|
||
|
speex_bits_pack(bits, 1, 1);
|
||
|
if (dtx)
|
||
|
speex_bits_pack(bits, 0, SB_SUBMODE_BITS);
|
||
|
else
|
||
|
speex_bits_pack(bits, st->submodeID, SB_SUBMODE_BITS);
|
||
|
|
||
|
/* If null mode (no transmission), just set a couple things to zero*/
|
||
|
if (dtx || st->submodes[st->submodeID] == NULL)
|
||
|
{
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
st->exc[i]=st->sw[i]=0;
|
||
|
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->mem_sw[i]=0;
|
||
|
st->first=1;
|
||
|
|
||
|
/* Final signal synthesis from excitation */
|
||
|
iir_mem2(st->exc, st->interp_qlpc, st->high, st->subframeSize, st->lpcSize, st->mem_sp);
|
||
|
|
||
|
#ifndef RELEASE
|
||
|
|
||
|
/* Reconstruct the original */
|
||
|
fir_mem_up(st->x0d, h0, st->y0, st->full_frame_size, QMF_ORDER, st->g0_mem, stack);
|
||
|
fir_mem_up(st->high, h1, st->y1, st->full_frame_size, QMF_ORDER, st->g1_mem, stack);
|
||
|
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
in[i]=2*(st->y0[i]-st->y1[i]);
|
||
|
#endif
|
||
|
|
||
|
if (dtx)
|
||
|
return 0;
|
||
|
else
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* LSP quantization */
|
||
|
SUBMODE(lsp_quant)(st->lsp, st->qlsp, st->lpcSize, bits);
|
||
|
|
||
|
if (st->first)
|
||
|
{
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->old_lsp[i] = st->lsp[i];
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->old_qlsp[i] = st->qlsp[i];
|
||
|
}
|
||
|
|
||
|
mem=PUSH(stack, st->lpcSize, float);
|
||
|
syn_resp=PUSH(stack, st->subframeSize, float);
|
||
|
innov = PUSH(stack, st->subframeSize, float);
|
||
|
|
||
|
for (sub=0;sub<st->nbSubframes;sub++)
|
||
|
{
|
||
|
float *exc, *sp, *res, *target, *sw, tmp, filter_ratio;
|
||
|
int offset;
|
||
|
float rl, rh, eh=0, el=0;
|
||
|
int fold;
|
||
|
|
||
|
offset = st->subframeSize*sub;
|
||
|
sp=st->high+offset;
|
||
|
exc=st->exc+offset;
|
||
|
res=st->res+offset;
|
||
|
target=st->target+offset;
|
||
|
sw=st->sw+offset;
|
||
|
|
||
|
/* LSP interpolation (quantized and unquantized) */
|
||
|
tmp = (1.0 + sub)/st->nbSubframes;
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->interp_lsp[i] = (1-tmp)*st->old_lsp[i] + tmp*st->lsp[i];
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->interp_qlsp[i] = (1-tmp)*st->old_qlsp[i] + tmp*st->qlsp[i];
|
||
|
|
||
|
lsp_enforce_margin(st->interp_lsp, st->lpcSize, .05);
|
||
|
lsp_enforce_margin(st->interp_qlsp, st->lpcSize, .05);
|
||
|
|
||
|
/* Compute interpolated LPCs (quantized and unquantized) */
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->interp_lsp[i] = cos(st->interp_lsp[i]);
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->interp_qlsp[i] = cos(st->interp_qlsp[i]);
|
||
|
|
||
|
lsp_to_lpc(st->interp_lsp, st->interp_lpc, st->lpcSize,stack);
|
||
|
lsp_to_lpc(st->interp_qlsp, st->interp_qlpc, st->lpcSize, stack);
|
||
|
|
||
|
bw_lpc(st->gamma1, st->interp_lpc, st->bw_lpc1, st->lpcSize);
|
||
|
bw_lpc(st->gamma2, st->interp_lpc, st->bw_lpc2, st->lpcSize);
|
||
|
|
||
|
/* Compute mid-band (4000 Hz for wideband) response of low-band and high-band
|
||
|
filters */
|
||
|
rl=rh=0;
|
||
|
tmp=1;
|
||
|
st->pi_gain[sub]=0;
|
||
|
for (i=0;i<=st->lpcSize;i++)
|
||
|
{
|
||
|
rh += tmp*st->interp_qlpc[i];
|
||
|
tmp = -tmp;
|
||
|
st->pi_gain[sub]+=st->interp_qlpc[i];
|
||
|
}
|
||
|
rl = low_pi_gain[sub];
|
||
|
rl=1/(fabs(rl)+.01);
|
||
|
rh=1/(fabs(rh)+.01);
|
||
|
/* Compute ratio, will help predict the gain */
|
||
|
filter_ratio=fabs(.01+rh)/(.01+fabs(rl));
|
||
|
|
||
|
fold = filter_ratio<5;
|
||
|
/*printf ("filter_ratio %f\n", filter_ratio);*/
|
||
|
fold=0;
|
||
|
|
||
|
/* Compute "real excitation" */
|
||
|
fir_mem2(sp, st->interp_qlpc, exc, st->subframeSize, st->lpcSize, st->mem_sp2);
|
||
|
/* Compute energy of low-band and high-band excitation */
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
eh+=sqr(exc[i]);
|
||
|
|
||
|
if (!SUBMODE(innovation_quant)) {/* 1 for spectral folding excitation, 0 for stochastic */
|
||
|
float g;
|
||
|
/*speex_bits_pack(bits, 1, 1);*/
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
el+=sqr(low_innov[offset+i]);
|
||
|
|
||
|
/* Gain to use if we want to use the low-band excitation for high-band */
|
||
|
g=eh/(.01+el);
|
||
|
g=sqrt(g);
|
||
|
|
||
|
g *= filter_ratio;
|
||
|
/*print_vec(&g, 1, "gain factor");*/
|
||
|
/* Gain quantization */
|
||
|
{
|
||
|
int quant = (int) floor(.5 + 10 + 8.0 * log((g+.0001)));
|
||
|
/*speex_warning_int("tata", quant);*/
|
||
|
if (quant<0)
|
||
|
quant=0;
|
||
|
if (quant>31)
|
||
|
quant=31;
|
||
|
speex_bits_pack(bits, quant, 5);
|
||
|
g= .1*exp(quant/9.4);
|
||
|
}
|
||
|
/*printf ("folding gain: %f\n", g);*/
|
||
|
g /= filter_ratio;
|
||
|
|
||
|
} else {
|
||
|
float gc, scale, scale_1;
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
el+=sqr(low_exc[offset+i]);
|
||
|
/*speex_bits_pack(bits, 0, 1);*/
|
||
|
|
||
|
gc = sqrt(1+eh)*filter_ratio/sqrt((1+el)*st->subframeSize);
|
||
|
{
|
||
|
int qgc = (int)floor(.5+3.7*(log(gc)+2));
|
||
|
if (qgc<0)
|
||
|
qgc=0;
|
||
|
if (qgc>15)
|
||
|
qgc=15;
|
||
|
speex_bits_pack(bits, qgc, 4);
|
||
|
gc = exp((1/3.7)*qgc-2);
|
||
|
}
|
||
|
|
||
|
scale = gc*sqrt(1+el)/filter_ratio;
|
||
|
scale_1 = 1/scale;
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i]=0;
|
||
|
exc[0]=1;
|
||
|
syn_percep_zero(exc, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2, syn_resp, st->subframeSize, st->lpcSize, stack);
|
||
|
|
||
|
/* Reset excitation */
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i]=0;
|
||
|
|
||
|
/* Compute zero response (ringing) of A(z/g1) / ( A(z/g2) * Aq(z) ) */
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
mem[i]=st->mem_sp[i];
|
||
|
iir_mem2(exc, st->interp_qlpc, exc, st->subframeSize, st->lpcSize, mem);
|
||
|
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
mem[i]=st->mem_sw[i];
|
||
|
filter_mem2(exc, st->bw_lpc1, st->bw_lpc2, res, st->subframeSize, st->lpcSize, mem);
|
||
|
|
||
|
/* Compute weighted signal */
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
mem[i]=st->mem_sw[i];
|
||
|
filter_mem2(sp, st->bw_lpc1, st->bw_lpc2, sw, st->subframeSize, st->lpcSize, mem);
|
||
|
|
||
|
/* Compute target signal */
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
target[i]=sw[i]-res[i];
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i]=0;
|
||
|
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
target[i]*=scale_1;
|
||
|
|
||
|
/* Reset excitation */
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
innov[i]=0;
|
||
|
|
||
|
/*print_vec(target, st->subframeSize, "\ntarget");*/
|
||
|
SUBMODE(innovation_quant)(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
|
||
|
SUBMODE(innovation_params), st->lpcSize, st->subframeSize,
|
||
|
innov, syn_resp, bits, stack, (st->complexity+1)>>1);
|
||
|
/*print_vec(target, st->subframeSize, "after");*/
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i] += innov[i]*scale;
|
||
|
|
||
|
if (SUBMODE(double_codebook)) {
|
||
|
char *tmp_stack=stack;
|
||
|
float *innov2 = PUSH(tmp_stack, st->subframeSize, float);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
innov2[i]=0;
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
target[i]*=2.5;
|
||
|
SUBMODE(innovation_quant)(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
|
||
|
SUBMODE(innovation_params), st->lpcSize, st->subframeSize,
|
||
|
innov2, syn_resp, bits, tmp_stack, (st->complexity+1)>>1);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
innov2[i]*=scale*(1/2.5);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i] += innov2[i];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/*Keep the previous memory*/
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
mem[i]=st->mem_sp[i];
|
||
|
/* Final signal synthesis from excitation */
|
||
|
iir_mem2(exc, st->interp_qlpc, sp, st->subframeSize, st->lpcSize, st->mem_sp);
|
||
|
|
||
|
/* Compute weighted signal again, from synthesized speech (not sure it's the right thing) */
|
||
|
filter_mem2(sp, st->bw_lpc1, st->bw_lpc2, sw, st->subframeSize, st->lpcSize, st->mem_sw);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef RELEASE
|
||
|
|
||
|
/* Reconstruct the original */
|
||
|
fir_mem_up(st->x0d, h0, st->y0, st->full_frame_size, QMF_ORDER, st->g0_mem, stack);
|
||
|
fir_mem_up(st->high, h1, st->y1, st->full_frame_size, QMF_ORDER, st->g1_mem, stack);
|
||
|
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
in[i]=2*(st->y0[i]-st->y1[i]);
|
||
|
#endif
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->old_lsp[i] = st->lsp[i];
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->old_qlsp[i] = st->qlsp[i];
|
||
|
|
||
|
st->first=0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void *sb_decoder_init(SpeexMode *m)
|
||
|
{
|
||
|
SBDecState *st;
|
||
|
SpeexSBMode *mode;
|
||
|
st = (SBDecState*)speex_alloc(sizeof(SBDecState)+6000*sizeof(float));
|
||
|
st->mode = m;
|
||
|
mode=(SpeexSBMode*)m->mode;
|
||
|
|
||
|
st->stack = ((char*)st) + sizeof(SBDecState);
|
||
|
|
||
|
|
||
|
|
||
|
st->st_low = speex_decoder_init(mode->nb_mode);
|
||
|
st->full_frame_size = 2*mode->frameSize;
|
||
|
st->frame_size = mode->frameSize;
|
||
|
st->subframeSize = mode->subframeSize;
|
||
|
st->nbSubframes = mode->frameSize/mode->subframeSize;
|
||
|
st->lpcSize=8;
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_SAMPLING_RATE, &st->sampling_rate);
|
||
|
st->sampling_rate*=2;
|
||
|
|
||
|
st->submodes=mode->submodes;
|
||
|
st->submodeID=mode->defaultSubmode;
|
||
|
|
||
|
st->first=1;
|
||
|
|
||
|
|
||
|
st->x0d=PUSH(st->stack, st->frame_size, float);
|
||
|
st->x1d=PUSH(st->stack, st->frame_size, float);
|
||
|
st->high=PUSH(st->stack, st->full_frame_size, float);
|
||
|
st->y0=PUSH(st->stack, st->full_frame_size, float);
|
||
|
st->y1=PUSH(st->stack, st->full_frame_size, float);
|
||
|
|
||
|
st->h0_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
st->h1_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
st->g0_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
st->g1_mem=PUSH(st->stack, QMF_ORDER, float);
|
||
|
|
||
|
st->exc=PUSH(st->stack, st->frame_size, float);
|
||
|
|
||
|
st->qlsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->old_qlsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->interp_qlsp = PUSH(st->stack, st->lpcSize, float);
|
||
|
st->interp_qlpc = PUSH(st->stack, st->lpcSize+1, float);
|
||
|
|
||
|
st->pi_gain = PUSH(st->stack, st->nbSubframes, float);
|
||
|
st->mem_sp = PUSH(st->stack, 2*st->lpcSize, float);
|
||
|
|
||
|
st->lpc_enh_enabled=0;
|
||
|
|
||
|
return st;
|
||
|
}
|
||
|
|
||
|
void sb_decoder_destroy(void *state)
|
||
|
{
|
||
|
SBDecState *st;
|
||
|
st = (SBDecState*)state;
|
||
|
speex_decoder_destroy(st->st_low);
|
||
|
|
||
|
speex_free(state);
|
||
|
}
|
||
|
|
||
|
static void sb_decode_lost(SBDecState *st, float *out, int dtx, char *stack)
|
||
|
{
|
||
|
int i;
|
||
|
float *awk1, *awk2, *awk3;
|
||
|
int saved_modeid=0;
|
||
|
|
||
|
if (dtx)
|
||
|
{
|
||
|
saved_modeid=st->submodeID;
|
||
|
st->submodeID=1;
|
||
|
} else {
|
||
|
bw_lpc(0.99, st->interp_qlpc, st->interp_qlpc, st->lpcSize);
|
||
|
}
|
||
|
|
||
|
st->first=1;
|
||
|
|
||
|
awk1=PUSH(stack, st->lpcSize+1, float);
|
||
|
awk2=PUSH(stack, st->lpcSize+1, float);
|
||
|
awk3=PUSH(stack, st->lpcSize+1, float);
|
||
|
|
||
|
if (st->lpc_enh_enabled)
|
||
|
{
|
||
|
float r=.9;
|
||
|
|
||
|
float k1,k2,k3;
|
||
|
if (st->submodes[st->submodeID] != NULL)
|
||
|
{
|
||
|
k1=SUBMODE(lpc_enh_k1);
|
||
|
k2=SUBMODE(lpc_enh_k2);
|
||
|
} else {
|
||
|
k1=k2=.7;
|
||
|
}
|
||
|
k3=(1-(1-r*k1)/(1-r*k2))/r;
|
||
|
k3=k1-k2;
|
||
|
if (!st->lpc_enh_enabled)
|
||
|
{
|
||
|
k1=k2;
|
||
|
k3=0;
|
||
|
}
|
||
|
bw_lpc(k1, st->interp_qlpc, awk1, st->lpcSize);
|
||
|
bw_lpc(k2, st->interp_qlpc, awk2, st->lpcSize);
|
||
|
bw_lpc(k3, st->interp_qlpc, awk3, st->lpcSize);
|
||
|
/*fprintf (stderr, "%f %f %f\n", k1, k2, k3);*/
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Final signal synthesis from excitation */
|
||
|
if (!dtx)
|
||
|
{
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
st->exc[i] *= .9;
|
||
|
}
|
||
|
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
st->high[i]=st->exc[i];
|
||
|
|
||
|
if (st->lpc_enh_enabled)
|
||
|
{
|
||
|
/* Use enhanced LPC filter */
|
||
|
filter_mem2(st->high, awk2, awk1, st->high, st->frame_size, st->lpcSize,
|
||
|
st->mem_sp+st->lpcSize);
|
||
|
filter_mem2(st->high, awk3, st->interp_qlpc, st->high, st->frame_size, st->lpcSize,
|
||
|
st->mem_sp);
|
||
|
} else {
|
||
|
/* Use regular filter */
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->mem_sp[st->lpcSize+i] = 0;
|
||
|
iir_mem2(st->high, st->interp_qlpc, st->high, st->frame_size, st->lpcSize,
|
||
|
st->mem_sp);
|
||
|
}
|
||
|
|
||
|
/*iir_mem2(st->exc, st->interp_qlpc, st->high, st->frame_size, st->lpcSize, st->mem_sp);*/
|
||
|
|
||
|
/* Reconstruct the original */
|
||
|
fir_mem_up(st->x0d, h0, st->y0, st->full_frame_size, QMF_ORDER, st->g0_mem, stack);
|
||
|
fir_mem_up(st->high, h1, st->y1, st->full_frame_size, QMF_ORDER, st->g1_mem, stack);
|
||
|
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
out[i]=2*(st->y0[i]-st->y1[i]);
|
||
|
|
||
|
if (dtx)
|
||
|
{
|
||
|
st->submodeID=saved_modeid;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int sb_decode(void *state, SpeexBits *bits, float *out)
|
||
|
{
|
||
|
int i, sub;
|
||
|
SBDecState *st;
|
||
|
int wideband;
|
||
|
int ret;
|
||
|
char *stack;
|
||
|
float *low_pi_gain, *low_exc, *low_innov;
|
||
|
float *awk1, *awk2, *awk3;
|
||
|
int dtx;
|
||
|
SpeexSBMode *mode;
|
||
|
|
||
|
st = (SBDecState*)state;
|
||
|
stack=st->stack;
|
||
|
mode = (SpeexSBMode*)(st->mode->mode);
|
||
|
|
||
|
/* Decode the low-band */
|
||
|
ret = speex_decode(st->st_low, bits, st->x0d);
|
||
|
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_DTX_STATUS, &dtx);
|
||
|
|
||
|
/* If error decoding the narrowband part, propagate error */
|
||
|
if (ret!=0)
|
||
|
{
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
if (!bits)
|
||
|
{
|
||
|
sb_decode_lost(st, out, dtx, stack);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*Check "wideband bit"*/
|
||
|
if (speex_bits_remaining(bits)>0)
|
||
|
wideband = speex_bits_peek(bits);
|
||
|
else
|
||
|
wideband = 0;
|
||
|
if (wideband)
|
||
|
{
|
||
|
/*Regular wideband frame, read the submode*/
|
||
|
wideband = speex_bits_unpack_unsigned(bits, 1);
|
||
|
st->submodeID = speex_bits_unpack_unsigned(bits, SB_SUBMODE_BITS);
|
||
|
} else
|
||
|
{
|
||
|
/*Was a narrowband frame, set "null submode"*/
|
||
|
st->submodeID = 0;
|
||
|
}
|
||
|
if (st->submodeID != 0 && st->submodes[st->submodeID] == NULL)
|
||
|
{
|
||
|
speex_warning("Invalid mode encountered: corrupted stream?");
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
/* If null mode (no transmission), just set a couple things to zero*/
|
||
|
if (st->submodes[st->submodeID] == NULL)
|
||
|
{
|
||
|
if (dtx)
|
||
|
{
|
||
|
sb_decode_lost(st, out, 1, stack);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
st->exc[i]=0;
|
||
|
|
||
|
st->first=1;
|
||
|
|
||
|
/* Final signal synthesis from excitation */
|
||
|
iir_mem2(st->exc, st->interp_qlpc, st->high, st->frame_size, st->lpcSize, st->mem_sp);
|
||
|
|
||
|
fir_mem_up(st->x0d, h0, st->y0, st->full_frame_size, QMF_ORDER, st->g0_mem, stack);
|
||
|
fir_mem_up(st->high, h1, st->y1, st->full_frame_size, QMF_ORDER, st->g1_mem, stack);
|
||
|
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
out[i]=2*(st->y0[i]-st->y1[i]);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
st->exc[i]=0;
|
||
|
|
||
|
low_pi_gain = PUSH(stack, st->nbSubframes, float);
|
||
|
low_exc = PUSH(stack, st->frame_size, float);
|
||
|
low_innov = PUSH(stack, st->frame_size, float);
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_PI_GAIN, low_pi_gain);
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_EXC, low_exc);
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_INNOV, low_innov);
|
||
|
|
||
|
SUBMODE(lsp_unquant)(st->qlsp, st->lpcSize, bits);
|
||
|
|
||
|
if (st->first)
|
||
|
{
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->old_qlsp[i] = st->qlsp[i];
|
||
|
}
|
||
|
|
||
|
awk1=PUSH(stack, st->lpcSize+1, float);
|
||
|
awk2=PUSH(stack, st->lpcSize+1, float);
|
||
|
awk3=PUSH(stack, st->lpcSize+1, float);
|
||
|
|
||
|
for (sub=0;sub<st->nbSubframes;sub++)
|
||
|
{
|
||
|
float *exc, *sp, tmp, filter_ratio, el=0;
|
||
|
int offset;
|
||
|
float rl=0,rh=0;
|
||
|
|
||
|
offset = st->subframeSize*sub;
|
||
|
sp=st->high+offset;
|
||
|
exc=st->exc+offset;
|
||
|
|
||
|
/* LSP interpolation */
|
||
|
tmp = (1.0 + sub)/st->nbSubframes;
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->interp_qlsp[i] = (1-tmp)*st->old_qlsp[i] + tmp*st->qlsp[i];
|
||
|
|
||
|
lsp_enforce_margin(st->interp_qlsp, st->lpcSize, .05);
|
||
|
|
||
|
/* LSPs to x-domain */
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->interp_qlsp[i] = cos(st->interp_qlsp[i]);
|
||
|
|
||
|
/* LSP to LPC */
|
||
|
lsp_to_lpc(st->interp_qlsp, st->interp_qlpc, st->lpcSize, stack);
|
||
|
|
||
|
|
||
|
if (st->lpc_enh_enabled)
|
||
|
{
|
||
|
float r=.9;
|
||
|
|
||
|
float k1,k2,k3;
|
||
|
k1=SUBMODE(lpc_enh_k1);
|
||
|
k2=SUBMODE(lpc_enh_k2);
|
||
|
k3=(1-(1-r*k1)/(1-r*k2))/r;
|
||
|
k3=k1-k2;
|
||
|
if (!st->lpc_enh_enabled)
|
||
|
{
|
||
|
k1=k2;
|
||
|
k3=0;
|
||
|
}
|
||
|
bw_lpc(k1, st->interp_qlpc, awk1, st->lpcSize);
|
||
|
bw_lpc(k2, st->interp_qlpc, awk2, st->lpcSize);
|
||
|
bw_lpc(k3, st->interp_qlpc, awk3, st->lpcSize);
|
||
|
/*fprintf (stderr, "%f %f %f\n", k1, k2, k3);*/
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Calculate reponse ratio between the low and high filter in the middle
|
||
|
of the band (4000 Hz) */
|
||
|
|
||
|
tmp=1;
|
||
|
st->pi_gain[sub]=0;
|
||
|
for (i=0;i<=st->lpcSize;i++)
|
||
|
{
|
||
|
rh += tmp*st->interp_qlpc[i];
|
||
|
tmp = -tmp;
|
||
|
st->pi_gain[sub]+=st->interp_qlpc[i];
|
||
|
}
|
||
|
rl = low_pi_gain[sub];
|
||
|
rl=1/(fabs(rl)+.01);
|
||
|
rh=1/(fabs(rh)+.01);
|
||
|
filter_ratio=fabs(.01+rh)/(.01+fabs(rl));
|
||
|
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i]=0;
|
||
|
if (!SUBMODE(innovation_unquant))
|
||
|
{
|
||
|
float g;
|
||
|
int quant;
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
el+=sqr(low_innov[offset+i]);
|
||
|
quant = speex_bits_unpack_unsigned(bits, 5);
|
||
|
g= exp(((float)quant-10)/8.0);
|
||
|
|
||
|
/*printf ("unquant folding gain: %f\n", g);*/
|
||
|
g /= filter_ratio;
|
||
|
|
||
|
/* High-band excitation using the low-band excitation and a gain */
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i]=mode->folding_gain*g*low_innov[offset+i];
|
||
|
/*speex_rand_vec(mode->folding_gain*g*sqrt(el/st->subframeSize), exc, st->subframeSize);*/
|
||
|
} else {
|
||
|
float gc, scale;
|
||
|
int qgc = speex_bits_unpack_unsigned(bits, 4);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
el+=sqr(low_exc[offset+i]);
|
||
|
|
||
|
|
||
|
gc = exp((1/3.7)*qgc-2);
|
||
|
|
||
|
scale = gc*sqrt(1+el)/filter_ratio;
|
||
|
|
||
|
|
||
|
SUBMODE(innovation_unquant)(exc, SUBMODE(innovation_params), st->subframeSize,
|
||
|
bits, stack);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i]*=scale;
|
||
|
|
||
|
if (SUBMODE(double_codebook)) {
|
||
|
char *tmp_stack=stack;
|
||
|
float *innov2 = PUSH(tmp_stack, st->subframeSize, float);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
innov2[i]=0;
|
||
|
SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), st->subframeSize,
|
||
|
bits, tmp_stack);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
innov2[i]*=scale*(1/2.5);
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
exc[i] += innov2[i];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
for (i=0;i<st->subframeSize;i++)
|
||
|
sp[i]=exc[i];
|
||
|
if (st->lpc_enh_enabled)
|
||
|
{
|
||
|
/* Use enhanced LPC filter */
|
||
|
filter_mem2(sp, awk2, awk1, sp, st->subframeSize, st->lpcSize,
|
||
|
st->mem_sp+st->lpcSize);
|
||
|
filter_mem2(sp, awk3, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
|
||
|
st->mem_sp);
|
||
|
} else {
|
||
|
/* Use regular filter */
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->mem_sp[st->lpcSize+i] = 0;
|
||
|
iir_mem2(sp, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
|
||
|
st->mem_sp);
|
||
|
}
|
||
|
/*iir_mem2(exc, st->interp_qlpc, sp, st->subframeSize, st->lpcSize, st->mem_sp);*/
|
||
|
|
||
|
}
|
||
|
|
||
|
fir_mem_up(st->x0d, h0, st->y0, st->full_frame_size, QMF_ORDER, st->g0_mem, stack);
|
||
|
fir_mem_up(st->high, h1, st->y1, st->full_frame_size, QMF_ORDER, st->g1_mem, stack);
|
||
|
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
out[i]=2*(st->y0[i]-st->y1[i]);
|
||
|
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->old_qlsp[i] = st->qlsp[i];
|
||
|
|
||
|
st->first=0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int sb_encoder_ctl(void *state, int request, void *ptr)
|
||
|
{
|
||
|
SBEncState *st;
|
||
|
st=(SBEncState*)state;
|
||
|
switch(request)
|
||
|
{
|
||
|
case SPEEX_GET_FRAME_SIZE:
|
||
|
(*(int*)ptr) = st->full_frame_size;
|
||
|
break;
|
||
|
case SPEEX_SET_HIGH_MODE:
|
||
|
st->submodeSelect = st->submodeID = (*(int*)ptr);
|
||
|
break;
|
||
|
case SPEEX_SET_LOW_MODE:
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_LOW_MODE, ptr);
|
||
|
break;
|
||
|
case SPEEX_SET_DTX:
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_DTX, ptr);
|
||
|
break;
|
||
|
case SPEEX_GET_DTX:
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_DTX, ptr);
|
||
|
break;
|
||
|
case SPEEX_GET_LOW_MODE:
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_GET_LOW_MODE, ptr);
|
||
|
break;
|
||
|
case SPEEX_SET_MODE:
|
||
|
speex_encoder_ctl(st, SPEEX_SET_QUALITY, ptr);
|
||
|
break;
|
||
|
case SPEEX_SET_VBR:
|
||
|
st->vbr_enabled = (*(int*)ptr);
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_VBR, ptr);
|
||
|
break;
|
||
|
case SPEEX_GET_VBR:
|
||
|
(*(int*)ptr) = st->vbr_enabled;
|
||
|
break;
|
||
|
case SPEEX_SET_VAD:
|
||
|
st->vad_enabled = (*(int*)ptr);
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_VAD, ptr);
|
||
|
break;
|
||
|
case SPEEX_GET_VAD:
|
||
|
(*(int*)ptr) = st->vad_enabled;
|
||
|
break;
|
||
|
case SPEEX_SET_VBR_QUALITY:
|
||
|
{
|
||
|
int q;
|
||
|
float qual = (*(float*)ptr)+.6;
|
||
|
st->vbr_quality = (*(float*)ptr);
|
||
|
if (qual>10)
|
||
|
qual=10;
|
||
|
q=(int)floor(.5+*(float*)ptr);
|
||
|
if (q>10)
|
||
|
q=10;
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_VBR_QUALITY, &qual);
|
||
|
speex_encoder_ctl(state, SPEEX_SET_QUALITY, &q);
|
||
|
break;
|
||
|
}
|
||
|
case SPEEX_SET_ABR:
|
||
|
st->abr_enabled = (*(int*)ptr);
|
||
|
st->vbr_enabled = 1;
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_VBR, &st->vbr_enabled);
|
||
|
{
|
||
|
int i=10, rate, target;
|
||
|
float vbr_qual;
|
||
|
target = (*(int*)ptr);
|
||
|
while (i>=0)
|
||
|
{
|
||
|
speex_encoder_ctl(st, SPEEX_SET_QUALITY, &i);
|
||
|
speex_encoder_ctl(st, SPEEX_GET_BITRATE, &rate);
|
||
|
if (rate <= target)
|
||
|
break;
|
||
|
i--;
|
||
|
}
|
||
|
vbr_qual=i;
|
||
|
if (vbr_qual<0)
|
||
|
vbr_qual=0;
|
||
|
speex_encoder_ctl(st, SPEEX_SET_VBR_QUALITY, &vbr_qual);
|
||
|
st->abr_count=0;
|
||
|
st->abr_drift=0;
|
||
|
st->abr_drift2=0;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
case SPEEX_GET_ABR:
|
||
|
(*(int*)ptr) = st->abr_enabled;
|
||
|
break;
|
||
|
case SPEEX_SET_QUALITY:
|
||
|
{
|
||
|
int nb_qual;
|
||
|
int quality = (*(int*)ptr);
|
||
|
if (quality < 0)
|
||
|
quality = 0;
|
||
|
if (quality > 10)
|
||
|
quality = 10;
|
||
|
st->submodeSelect = st->submodeID = ((SpeexSBMode*)(st->mode->mode))->quality_map[quality];
|
||
|
nb_qual = ((SpeexSBMode*)(st->mode->mode))->low_quality_map[quality];
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_MODE, &nb_qual);
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_SET_COMPLEXITY:
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_COMPLEXITY, ptr);
|
||
|
st->complexity = (*(int*)ptr);
|
||
|
if (st->complexity<1)
|
||
|
st->complexity=1;
|
||
|
break;
|
||
|
case SPEEX_GET_COMPLEXITY:
|
||
|
(*(int*)ptr) = st->complexity;
|
||
|
break;
|
||
|
case SPEEX_SET_BITRATE:
|
||
|
{
|
||
|
int i=10, rate, target;
|
||
|
target = (*(int*)ptr);
|
||
|
while (i>=0)
|
||
|
{
|
||
|
speex_encoder_ctl(st, SPEEX_SET_QUALITY, &i);
|
||
|
speex_encoder_ctl(st, SPEEX_GET_BITRATE, &rate);
|
||
|
if (rate <= target)
|
||
|
break;
|
||
|
i--;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_BITRATE:
|
||
|
speex_encoder_ctl(st->st_low, request, ptr);
|
||
|
/*fprintf (stderr, "before: %d\n", (*(int*)ptr));*/
|
||
|
if (st->submodes[st->submodeID])
|
||
|
(*(int*)ptr) += st->sampling_rate*SUBMODE(bits_per_frame)/st->full_frame_size;
|
||
|
else
|
||
|
(*(int*)ptr) += st->sampling_rate*(SB_SUBMODE_BITS+1)/st->full_frame_size;
|
||
|
/*fprintf (stderr, "after: %d\n", (*(int*)ptr));*/
|
||
|
break;
|
||
|
case SPEEX_SET_SAMPLING_RATE:
|
||
|
{
|
||
|
int tmp=(*(int*)ptr);
|
||
|
st->sampling_rate = tmp;
|
||
|
tmp>>=1;
|
||
|
speex_encoder_ctl(st->st_low, SPEEX_SET_SAMPLING_RATE, &tmp);
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_SAMPLING_RATE:
|
||
|
(*(int*)ptr)=st->sampling_rate;
|
||
|
break;
|
||
|
case SPEEX_RESET_STATE:
|
||
|
{
|
||
|
int i;
|
||
|
st->first = 1;
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->lsp[i]=(M_PI*((float)(i+1)))/(st->lpcSize+1);
|
||
|
for (i=0;i<st->lpcSize;i++)
|
||
|
st->mem_sw[i]=st->mem_sp[i]=st->mem_sp2[i]=0;
|
||
|
for (i=0;i<st->bufSize;i++)
|
||
|
st->excBuf[i]=0;
|
||
|
for (i=0;i<QMF_ORDER;i++)
|
||
|
st->h0_mem[i]=st->h1_mem[i]=st->g0_mem[i]=st->g1_mem[i]=0;
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_PI_GAIN:
|
||
|
{
|
||
|
int i;
|
||
|
float *g = (float*)ptr;
|
||
|
for (i=0;i<st->nbSubframes;i++)
|
||
|
g[i]=st->pi_gain[i];
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_EXC:
|
||
|
{
|
||
|
int i;
|
||
|
float *e = (float*)ptr;
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
e[i]=0;
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
e[2*i]=2*st->exc[i];
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_INNOV:
|
||
|
{
|
||
|
int i;
|
||
|
float *e = (float*)ptr;
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
e[i]=0;
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
e[2*i]=2*st->exc[i];
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_RELATIVE_QUALITY:
|
||
|
(*(float*)ptr)=st->relative_quality;
|
||
|
break;
|
||
|
default:
|
||
|
speex_warning_int("Unknown nb_ctl request: ", request);
|
||
|
return -1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int sb_decoder_ctl(void *state, int request, void *ptr)
|
||
|
{
|
||
|
SBDecState *st;
|
||
|
st=(SBDecState*)state;
|
||
|
switch(request)
|
||
|
{
|
||
|
case SPEEX_GET_LOW_MODE:
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_LOW_MODE, ptr);
|
||
|
break;
|
||
|
case SPEEX_GET_FRAME_SIZE:
|
||
|
(*(int*)ptr) = st->full_frame_size;
|
||
|
break;
|
||
|
case SPEEX_SET_ENH:
|
||
|
speex_decoder_ctl(st->st_low, request, ptr);
|
||
|
st->lpc_enh_enabled = *((int*)ptr);
|
||
|
break;
|
||
|
case SPEEX_GET_BITRATE:
|
||
|
speex_decoder_ctl(st->st_low, request, ptr);
|
||
|
if (st->submodes[st->submodeID])
|
||
|
(*(int*)ptr) += st->sampling_rate*SUBMODE(bits_per_frame)/st->full_frame_size;
|
||
|
else
|
||
|
(*(int*)ptr) += st->sampling_rate*(SB_SUBMODE_BITS+1)/st->full_frame_size;
|
||
|
break;
|
||
|
case SPEEX_SET_SAMPLING_RATE:
|
||
|
{
|
||
|
int tmp=(*(int*)ptr);
|
||
|
st->sampling_rate = tmp;
|
||
|
tmp>>=1;
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_SET_SAMPLING_RATE, &tmp);
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_SAMPLING_RATE:
|
||
|
(*(int*)ptr)=st->sampling_rate;
|
||
|
break;
|
||
|
case SPEEX_SET_HANDLER:
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_SET_HANDLER, ptr);
|
||
|
break;
|
||
|
case SPEEX_SET_USER_HANDLER:
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_SET_USER_HANDLER, ptr);
|
||
|
break;
|
||
|
case SPEEX_RESET_STATE:
|
||
|
{
|
||
|
int i;
|
||
|
for (i=0;i<2*st->lpcSize;i++)
|
||
|
st->mem_sp[i]=0;
|
||
|
for (i=0;i<QMF_ORDER;i++)
|
||
|
st->h0_mem[i]=st->h1_mem[i]=st->g0_mem[i]=st->g1_mem[i]=0;
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_PI_GAIN:
|
||
|
{
|
||
|
int i;
|
||
|
float *g = (float*)ptr;
|
||
|
for (i=0;i<st->nbSubframes;i++)
|
||
|
g[i]=st->pi_gain[i];
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_EXC:
|
||
|
{
|
||
|
int i;
|
||
|
float *e = (float*)ptr;
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
e[i]=0;
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
e[2*i]=2*st->exc[i];
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_INNOV:
|
||
|
{
|
||
|
int i;
|
||
|
float *e = (float*)ptr;
|
||
|
for (i=0;i<st->full_frame_size;i++)
|
||
|
e[i]=0;
|
||
|
for (i=0;i<st->frame_size;i++)
|
||
|
e[2*i]=2*st->exc[i];
|
||
|
}
|
||
|
break;
|
||
|
case SPEEX_GET_DTX_STATUS:
|
||
|
speex_decoder_ctl(st->st_low, SPEEX_GET_DTX_STATUS, ptr);
|
||
|
break;
|
||
|
default:
|
||
|
speex_warning_int("Unknown nb_ctl request: ", request);
|
||
|
return -1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|