mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-11 23:57:59 +00:00
219 lines
6.2 KiB
C++
219 lines
6.2 KiB
C++
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose: noise() primitives.
|
||
|
//
|
||
|
//=====================================================================================//
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "basetypes.h"
|
||
|
#include <memory.h>
|
||
|
#include "tier0/dbg.h"
|
||
|
#include "mathlib/mathlib.h"
|
||
|
#include "mathlib/vector.h"
|
||
|
#include "mathlib/noise.h"
|
||
|
|
||
|
// memdbgon must be the last include file in a .cpp file!!!
|
||
|
#include "tier0/memdbgon.h"
|
||
|
|
||
|
// generate high quality noise based upon "sparse convolution". HIgher quality than perlin noise,
|
||
|
// and no direcitonal artifacts.
|
||
|
|
||
|
#include "noisedata.h"
|
||
|
|
||
|
#define N_IMPULSES_PER_CELL 5
|
||
|
#define NORMALIZING_FACTOR 1.0
|
||
|
|
||
|
//(0.5/N_IMPULSES_PER_CELL)
|
||
|
|
||
|
static inline int LatticeCoord(float x)
|
||
|
{
|
||
|
return ((int) floor(x)) & 0xff;
|
||
|
}
|
||
|
|
||
|
static inline int Hash4D(int ix, int iy, int iz, int idx)
|
||
|
{
|
||
|
int ret=perm_a[ix];
|
||
|
ret=perm_b[(ret+iy) & 0xff];
|
||
|
ret=perm_c[(ret+iz) & 0xff];
|
||
|
ret=perm_d[(ret+idx) & 0xff];
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#define SQ(x) ((x)*(x))
|
||
|
|
||
|
static float CellNoise( int ix, int iy, int iz, float xfrac, float yfrac, float zfrac,
|
||
|
float (*pNoiseShapeFunction)(float) )
|
||
|
{
|
||
|
float ret=0;
|
||
|
for(int idx=0;idx<N_IMPULSES_PER_CELL;idx++)
|
||
|
{
|
||
|
int coord_idx=Hash4D( ix, iy, iz, idx );
|
||
|
float dsq=SQ(impulse_xcoords[coord_idx]-xfrac)+
|
||
|
SQ(impulse_ycoords[coord_idx]-yfrac)+
|
||
|
SQ(impulse_zcoords[coord_idx]-zfrac);
|
||
|
dsq = sqrt( dsq );
|
||
|
if (dsq < 1.0 )
|
||
|
{
|
||
|
ret += (*pNoiseShapeFunction)( 1-dsq );
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
float SparseConvolutionNoise( Vector const &pnt )
|
||
|
{
|
||
|
return SparseConvolutionNoise( pnt, QuinticInterpolatingPolynomial );
|
||
|
}
|
||
|
|
||
|
float FractalNoise( Vector const &pnt, int n_octaves)
|
||
|
{
|
||
|
float scale=1.0;
|
||
|
float iscale=1.0;
|
||
|
float ret=0;
|
||
|
float sumscale=0;
|
||
|
for(int o=0;o<n_octaves;o++)
|
||
|
{
|
||
|
Vector p1=pnt;
|
||
|
p1 *= scale;
|
||
|
ret+=iscale * SparseConvolutionNoise( p1 );
|
||
|
sumscale += iscale;
|
||
|
scale *= 2.0;
|
||
|
iscale *= 0.5;
|
||
|
}
|
||
|
return ret * ( 1.0/sumscale );
|
||
|
}
|
||
|
|
||
|
float Turbulence( Vector const &pnt, int n_octaves)
|
||
|
{
|
||
|
float scale=1.0;
|
||
|
float iscale=1.0;
|
||
|
float ret=0;
|
||
|
float sumscale=0;
|
||
|
for(int o=0;o<n_octaves;o++)
|
||
|
{
|
||
|
Vector p1=pnt;
|
||
|
p1 *= scale;
|
||
|
ret+=iscale * fabs ( 2.0*( SparseConvolutionNoise( p1 )-.5 ) );
|
||
|
sumscale += iscale;
|
||
|
scale *= 2.0;
|
||
|
iscale *= 0.5;
|
||
|
}
|
||
|
return ret * ( 1.0/sumscale );
|
||
|
}
|
||
|
|
||
|
#ifdef MEASURE_RANGE
|
||
|
float fmin1=10000000.0;
|
||
|
float fmax1=-1000000.0;
|
||
|
#endif
|
||
|
|
||
|
float SparseConvolutionNoise(Vector const &pnt, float (*pNoiseShapeFunction)(float) )
|
||
|
{
|
||
|
// computer integer lattice point
|
||
|
int ix=LatticeCoord(pnt.x);
|
||
|
int iy=LatticeCoord(pnt.y);
|
||
|
int iz=LatticeCoord(pnt.z);
|
||
|
|
||
|
// compute offsets within unit cube
|
||
|
float xfrac=pnt.x-floor(pnt.x);
|
||
|
float yfrac=pnt.y-floor(pnt.y);
|
||
|
float zfrac=pnt.z-floor(pnt.z);
|
||
|
|
||
|
float sum_out=0.;
|
||
|
|
||
|
for(int ox=-1; ox<=1; ox++)
|
||
|
for(int oy=-1; oy<=1; oy++)
|
||
|
for(int oz=-1; oz<=1; oz++)
|
||
|
{
|
||
|
sum_out += CellNoise( ix+ox, iy+oy, iz+oz,
|
||
|
xfrac-ox, yfrac-oy, zfrac-oz,
|
||
|
pNoiseShapeFunction );
|
||
|
}
|
||
|
#ifdef MEASURE_RANGE
|
||
|
fmin1=min(sum_out,fmin1);
|
||
|
fmax1=max(sum_out,fmax1);
|
||
|
#endif
|
||
|
return RemapValClamped( sum_out, .544487, 9.219176, 0.0, 1.0 );
|
||
|
}
|
||
|
|
||
|
|
||
|
// Improved Perlin Noise
|
||
|
// The following code is the c-ification of Ken Perlin's new noise algorithm
|
||
|
// "JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN"
|
||
|
// as available here: http://mrl.nyu.edu/~perlin/noise/
|
||
|
|
||
|
float NoiseGradient(int hash, float x, float y, float z)
|
||
|
{
|
||
|
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE
|
||
|
float u = h<8 ? x : y; // INTO 12 GRADIENT DIRECTIONS.
|
||
|
float v = h<4 ? y : (h==12||h==14 ? x : z);
|
||
|
return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
|
||
|
}
|
||
|
|
||
|
int NoiseHashIndex( int i )
|
||
|
{
|
||
|
static int s_permutation[] =
|
||
|
{
|
||
|
151,160,137,91,90,15,
|
||
|
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
|
||
|
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
|
||
|
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
|
||
|
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
|
||
|
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
|
||
|
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
|
||
|
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
|
||
|
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
|
||
|
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
|
||
|
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
|
||
|
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
|
||
|
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
|
||
|
};
|
||
|
|
||
|
return s_permutation[ i & 0xff ];
|
||
|
}
|
||
|
|
||
|
float ImprovedPerlinNoise( Vector const &pnt )
|
||
|
{
|
||
|
float fx = floor(pnt.x);
|
||
|
float fy = floor(pnt.y);
|
||
|
float fz = floor(pnt.z);
|
||
|
|
||
|
int X = (int)fx & 255; // FIND UNIT CUBE THAT
|
||
|
int Y = (int)fy & 255; // CONTAINS POINT.
|
||
|
int Z = (int)fz & 255;
|
||
|
|
||
|
float x = pnt.x - fx; // FIND RELATIVE X,Y,Z
|
||
|
float y = pnt.y - fy; // OF POINT IN CUBE.
|
||
|
float z = pnt.z - fz;
|
||
|
|
||
|
float u = QuinticInterpolatingPolynomial(x); // COMPUTE FADE CURVES
|
||
|
float v = QuinticInterpolatingPolynomial(y); // FOR EACH OF X,Y,Z.
|
||
|
float w = QuinticInterpolatingPolynomial(z);
|
||
|
|
||
|
int A = NoiseHashIndex( X ) + Y; // HASH COORDINATES OF
|
||
|
int AA = NoiseHashIndex( A ) + Z; // THE 8 CUBE CORNERS,
|
||
|
int AB = NoiseHashIndex( A + 1 ) + Z;
|
||
|
int B = NoiseHashIndex( X + 1 ) + Y;
|
||
|
int BA = NoiseHashIndex( B ) + Z;
|
||
|
int BB = NoiseHashIndex( B + 1 ) + Z;
|
||
|
|
||
|
float g0 = NoiseGradient(NoiseHashIndex(AA ), x , y , z );
|
||
|
float g1 = NoiseGradient(NoiseHashIndex(BA ), x-1, y , z );
|
||
|
float g2 = NoiseGradient(NoiseHashIndex(AB ), x , y-1, z );
|
||
|
float g3 = NoiseGradient(NoiseHashIndex(BB ), x-1, y-1, z );
|
||
|
float g4 = NoiseGradient(NoiseHashIndex(AA+1), x , y , z-1 );
|
||
|
float g5 = NoiseGradient(NoiseHashIndex(BA+1), x-1, y , z-1 );
|
||
|
float g6 = NoiseGradient(NoiseHashIndex(AB+1), x , y-1, z-1 );
|
||
|
float g7 = NoiseGradient(NoiseHashIndex(BB+1), x-1, y-1, z-1 );
|
||
|
|
||
|
// AND ADD BLENDED RESULTS FROM 8 CORNERS OF CUBE
|
||
|
float g01 = Lerp( u, g0, g1 );
|
||
|
float g23 = Lerp( u, g2, g3 );
|
||
|
float g45 = Lerp( u, g4, g5 );
|
||
|
float g67 = Lerp( u, g6, g7 );
|
||
|
float g0123 = Lerp( v, g01, g23 );
|
||
|
float g4567 = Lerp( v, g45, g67 );
|
||
|
|
||
|
return Lerp( w, g0123,g4567 );
|
||
|
}
|