source-engine/tier1/mempool.cpp

313 lines
7.8 KiB
C++
Raw Permalink Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//===========================================================================//
#include "mempool.h"
#include <stdio.h>
#include <malloc.h>
#include <memory.h>
#include "tier0/dbg.h"
#include <ctype.h>
#include "tier1/strtools.h"
// Should be last include
#include "tier0/memdbgon.h"
MemoryPoolReportFunc_t CUtlMemoryPool::g_ReportFunc = 0;
//-----------------------------------------------------------------------------
// Error reporting... (debug only)
//-----------------------------------------------------------------------------
void CUtlMemoryPool::SetErrorReportFunc( MemoryPoolReportFunc_t func )
{
g_ReportFunc = func;
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
CUtlMemoryPool::CUtlMemoryPool( int blockSize, int numElements, int growMode, const char *pszAllocOwner, int nAlignment )
{
#ifdef _X360
if( numElements > 0 && growMode != UTLMEMORYPOOL_GROW_NONE )
{
numElements = 1;
}
#endif
m_nAlignment = ( nAlignment != 0 ) ? nAlignment : 1;
Assert( IsPowerOfTwo( m_nAlignment ) );
m_BlockSize = blockSize < sizeof(void*) ? sizeof(void*) : blockSize;
m_BlockSize = AlignValue( m_BlockSize, m_nAlignment );
m_BlocksPerBlob = numElements;
m_PeakAlloc = 0;
m_GrowMode = growMode;
if ( !pszAllocOwner )
{
pszAllocOwner = __FILE__;
}
m_pszAllocOwner = pszAllocOwner;
Init();
AddNewBlob();
}
//-----------------------------------------------------------------------------
// Purpose: Frees the memory contained in the mempool, and invalidates it for
// any further use.
// Input : *memPool - the mempool to shutdown
//-----------------------------------------------------------------------------
CUtlMemoryPool::~CUtlMemoryPool()
{
if (m_BlocksAllocated > 0)
{
ReportLeaks();
}
Clear();
}
//-----------------------------------------------------------------------------
// Resets the pool
//-----------------------------------------------------------------------------
void CUtlMemoryPool::Init()
{
m_NumBlobs = 0;
m_BlocksAllocated = 0;
m_pHeadOfFreeList = 0;
m_BlobHead.m_pNext = m_BlobHead.m_pPrev = &m_BlobHead;
}
//-----------------------------------------------------------------------------
// Frees everything
//-----------------------------------------------------------------------------
void CUtlMemoryPool::Clear()
{
// Free everything..
CBlob *pNext;
for( CBlob *pCur = m_BlobHead.m_pNext; pCur != &m_BlobHead; pCur = pNext )
{
pNext = pCur->m_pNext;
free( pCur );
}
Init();
}
//-----------------------------------------------------------------------------
// Purpose: Reports memory leaks
//-----------------------------------------------------------------------------
void CUtlMemoryPool::ReportLeaks()
{
if (!g_ReportFunc)
return;
g_ReportFunc("Memory leak: mempool blocks left in memory: %d\n", m_BlocksAllocated);
#ifdef _DEBUG
// walk and destroy the free list so it doesn't intefere in the scan
while (m_pHeadOfFreeList != NULL)
{
void *next = *((void**)m_pHeadOfFreeList);
memset(m_pHeadOfFreeList, 0, m_BlockSize);
m_pHeadOfFreeList = next;
}
g_ReportFunc("Dumping memory: \'");
for( CBlob *pCur=m_BlobHead.m_pNext; pCur != &m_BlobHead; pCur=pCur->m_pNext )
{
// scan the memory block and dump the leaks
char *scanPoint = (char *)pCur->m_Data;
char *scanEnd = pCur->m_Data + pCur->m_NumBytes;
bool needSpace = false;
while (scanPoint < scanEnd)
{
// search for and dump any strings
if ((unsigned)(*scanPoint + 1) <= 256 && isprint(*scanPoint))
{
g_ReportFunc("%c", *scanPoint);
needSpace = true;
}
else if (needSpace)
{
needSpace = false;
g_ReportFunc(" ");
}
scanPoint++;
}
}
g_ReportFunc("\'\n");
#endif // _DEBUG
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CUtlMemoryPool::AddNewBlob()
{
MEM_ALLOC_CREDIT_(m_pszAllocOwner);
int sizeMultiplier;
if( m_GrowMode == UTLMEMORYPOOL_GROW_SLOW )
{
sizeMultiplier = 1;
}
else
{
if ( m_GrowMode == UTLMEMORYPOOL_GROW_NONE )
{
// Can only have one allocation when we're in this mode
if( m_NumBlobs != 0 )
{
Assert( !"CUtlMemoryPool::AddNewBlob: mode == UTLMEMORYPOOL_GROW_NONE" );
return;
}
}
// GROW_FAST and GROW_NONE use this.
sizeMultiplier = m_NumBlobs + 1;
}
// maybe use something other than malloc?
int nElements = m_BlocksPerBlob * sizeMultiplier;
int blobSize = m_BlockSize * nElements;
CBlob *pBlob = (CBlob*)malloc( sizeof(CBlob) - 1 + blobSize + ( m_nAlignment - 1 ) );
Assert( pBlob );
// Link it in at the end of the blob list.
pBlob->m_NumBytes = blobSize;
pBlob->m_pNext = &m_BlobHead;
pBlob->m_pPrev = pBlob->m_pNext->m_pPrev;
pBlob->m_pNext->m_pPrev = pBlob->m_pPrev->m_pNext = pBlob;
// setup the free list
m_pHeadOfFreeList = AlignValue( pBlob->m_Data, m_nAlignment );
Assert (m_pHeadOfFreeList);
void **newBlob = (void**)m_pHeadOfFreeList;
for (int j = 0; j < nElements-1; j++)
{
newBlob[0] = (char*)newBlob + m_BlockSize;
newBlob = (void**)newBlob[0];
}
// null terminate list
newBlob[0] = NULL;
m_NumBlobs++;
}
void* CUtlMemoryPool::Alloc()
{
return Alloc( m_BlockSize );
}
void* CUtlMemoryPool::AllocZero()
{
return AllocZero( m_BlockSize );
}
//-----------------------------------------------------------------------------
// Purpose: Allocs a single block of memory from the pool.
// Input : amount -
//-----------------------------------------------------------------------------
void *CUtlMemoryPool::Alloc( size_t amount )
{
void *returnBlock;
if ( amount > (unsigned int)m_BlockSize )
return NULL;
if( !m_pHeadOfFreeList )
{
// returning NULL is fine in UTLMEMORYPOOL_GROW_NONE
if( m_GrowMode == UTLMEMORYPOOL_GROW_NONE )
{
//Assert( !"CUtlMemoryPool::Alloc: tried to make new blob with UTLMEMORYPOOL_GROW_NONE" );
return NULL;
}
// overflow
AddNewBlob();
// still failure, error out
if( !m_pHeadOfFreeList )
{
Assert( !"CUtlMemoryPool::Alloc: ran out of memory" );
return NULL;
}
}
m_BlocksAllocated++;
m_PeakAlloc = max(m_PeakAlloc, m_BlocksAllocated);
returnBlock = m_pHeadOfFreeList;
// move the pointer the next block
m_pHeadOfFreeList = *((void**)m_pHeadOfFreeList);
return returnBlock;
}
//-----------------------------------------------------------------------------
// Purpose: Allocs a single block of memory from the pool, zeroes the memory before returning
// Input : amount -
//-----------------------------------------------------------------------------
void *CUtlMemoryPool::AllocZero( size_t amount )
{
void *mem = Alloc( amount );
if ( mem )
{
V_memset( mem, 0x00, amount );
}
return mem;
}
//-----------------------------------------------------------------------------
// Purpose: Frees a block of memory
// Input : *memBlock - the memory to free
//-----------------------------------------------------------------------------
void CUtlMemoryPool::Free( void *memBlock )
{
if ( !memBlock )
return; // trying to delete NULL pointer, ignore
#ifdef _DEBUG
// check to see if the memory is from the allocated range
bool bOK = false;
for( CBlob *pCur=m_BlobHead.m_pNext; pCur != &m_BlobHead; pCur=pCur->m_pNext )
{
if (memBlock >= pCur->m_Data && (char*)memBlock < (pCur->m_Data + pCur->m_NumBytes))
{
bOK = true;
}
}
Assert (bOK);
#endif // _DEBUG
#ifdef _DEBUG
// invalidate the memory
memset( memBlock, 0xDD, m_BlockSize );
#endif
m_BlocksAllocated--;
// make the block point to the first item in the list
*((void**)memBlock) = m_pHeadOfFreeList;
// the list head is now the new block
m_pHeadOfFreeList = memBlock;
}